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Group field theory posits that spacetime is emergent and is hence defined
without any background notion of space or time; dynamical questions are for-
mulated in relational terms, in particular using (scalar) matter degrees of free-
dom as time. Unlike in canonical quantisation of gravitational systems, there is
no obvious notion of coordinate transformations or constraints, and established
quantisation methods cannot be directly applied. As a result, different canon-
ical formalisms for group field theory have been discussed in the literature.
We address these issues using a parametrised version of group field theory, in
which all (geometry and matter) degrees of freedom evolve in a fiducial param-
eter. There is a constraint associated to the freedom of reparametrisation and
the Dirac quantisation programme can be implemented. Using the “trinity of
relational dynamics”, we show that the resulting “clock-neutral” theory is en-
tirely equivalent to a deparametrised canonical group field theory, interpreted
in terms of the Page–Wootters formalism. Our results not only show that the
deparametrised quantisation is fully covariant and can be seen as encoding the
dynamics of joint quantum matter and geometry degrees of freedom, they also
appear to be the first application of the Page–Wootters formalism directly to
non-perturbative quantum gravity. We show extensions to a setting in which
many independent gauge symmetries are introduced, which connects to the
“multi-fingered time” idea in quantum gravity and provides a somewhat novel
extension of the Page–Wootters formalism.

1 Introduction

A central theme in many approaches to quantum gravity is that of background indepen-
dence. This principle stems directly from general relativity where the geometry of space-
time is not taken as a background structure for a given system, but rather is understood as
a dynamical part of it. In particular, the absence of a background time poses a challenge
for the definition of dynamics, which leads to the “problem of time” of classical and quan-
tum gravity [1, 2]. More precisely, the canonical Hamiltonian of general relativity vanishes
on shell and gravitational observables, required to have vanishing Poisson brackets with
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the constraints, appear to be “frozen” in coordinate time [3–5]. The most common pro-
posal to bypass this problem is to adopt a relational strategy, where one picks a degree of
freedom of the system to serve as internal time relative to which the remaining degrees of
freedom evolve. For example, in the case of cosmological settings, the proposal is usually
to add matter (commonly a massless scalar field) to describe the relational dynamics of
the gravitational degrees of freedom. At the classical level, one can define relational Dirac
observables of constrained systems following the general theory of [6–8] (see also [9–12]
for earlier work and [13] for a recent extension of the concept of relational observables),
which allows to deal with the freedom of choosing different clocks by means of “complete
observables”; these implement precisely the idea of encoding dynamics as a relation be-
tween phase space functions, without referring to any external structure (in particular any
background time). The quantum theory for constrained systems can be obtained following
the Dirac quantisation programme [4, 5, 14], which has the advantage of preserving the
structures of the classical theory such as constraints (which, in the case of gravity, are
associated with the notion of covariance). The Dirac programme provides a clear notion
of relational observables for the quantum theory and importantly, because all the degrees
of freedom are treated on the same footing, does not require any gauge fixing or choice
of time parameter before quantisation. This aspect is clarified in particular in the recent
work of [15, 16], where the Dirac quantisation programme is denoted “clock-neutral” as it
describes physics before choosing a (temporal) reference frame.

A prominent example of a background-independent framework for quantum gravity
is loop quantum gravity (LQG) [17]. In its canonical formulation, LQG seeks to obtain
a quantisation of general relativity by means of the Dirac programme [18]: one formally
defines a space of physical quantum states by imposing constraints on kinematical states.
Although the full realisation of this programme faces significant technical challenges, no-
table progress has been made in the context of loop quantum cosmology [19] where, due to
symmetry reduction, there is only one constraint associated with the freedom to choose the
time parameter. Another approach that adheres to the paradigm of background indepen-
dence is given by group field theory (GFT), which describes spacetime as emerging from
the collective behaviour of (possibly pre-geometric) quantum gravity degrees of freedom
[20, 21]. While GFT is closely related to the covariant spin foam formulation of LQG [22,
23] and to tensor models [24, 25], a canonical framework was also proposed in [26]. This
Hilbert space quantisation of GFT is motivated by similarities with the canonical setting
of LQG and, more practically, is used to extract effective cosmological dynamics [27, 28].

A somewhat peculiar challenge for the GFT framework is that one cannot directly apply
the methods of canonical quantisation, due to the absence of a Hamiltonian formulation
of the theory. Since there is no background time and no immediate definition of a phase
space structure at the classical level, the Hilbert space formalism for GFT of [26] is not
derived from a canonical quantisation of a classical theory; rather, it is introduced via the
kinematical structures of a Fock space, constructed along the lines of many-body quantum
physics. This is the so-called algebraic approach to GFT, a canonical formulation where
the equations of motion are imposed at the quantum level as constraints, so as to reduce
from the postulated kinematical Hilbert space to a physical Hilbert space. Another way to
define dynamics in GFT is to follow a deparametrised approach [29, 30]: this amounts to
selecting a time parameter for the classical theory which allows to write down a relational
Hamiltonian, and hence perform a standard canonical quantisation. Deparametrisation
is subject to the general concerns and criticisms of “tempus ante quantum” frameworks
[1, 2], as it is not clear whether the choice of a classical time label before quantisation
breaks clock-covariance [31]. While both of these frameworks yield similar dynamics in the
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restriction to homogeneous and isotropic cosmology (see, e.g., [32]), one would ideally like to
leverage their complementary strengths by performing a genuine canonical quantisation of
a classical theory in terms of constraints, without singling out an arbitrary time parameter
at the classical level.

In this paper we address these challenges by defining relational dynamics in GFT, in
particular for models where a scalar field is used as relational clock, in a way that connects
with the known methods for quantisation (such as the Dirac programme mentioned above
and the Page–Wootters formalism, as explained below). We will only be interested in
the free theory, where interactions are ignored. Following the parametrisation strategy
adopted in quantum mechanics [4, 5] and quantum field theories [33–35], we reformulate
GFT cosmology models as constrained systems where the constraint is associated with the
notion of time reparametrisation invariance. This allows us to implement the programme
of Dirac quantisation along the lines of other systems that are well understood (e.g., loop
quantum cosmology), and to connect with the “trinity of relational quantum dynamics”
of [15, 16]. Already for the classical theory, we can define relational Dirac observables for
GFT in a precise way as those that Poisson-commute with the constraint [6–8]. Quantising
the parametrised GFT à la Dirac, namely reducing from a kinematical Hilbert space to
a physical space via group averaging techniques, makes clock covariance transparent for
the GFT cosmological models of interest. In particular, we define the relational Dirac
observable associated with the GFT number operator (the main observable for cosmology),
and interpret its quantum dynamics by means of the Page–Wootters formalism [36, 37].
More precisely, thanks to the equivalence established in [15, 16], we describe the expectation
value of the GFT number operator as conditional on the reading of the (quantum) clock
associated with the matter scalar field. This is the first application of the Page–Wootters
formalism in non-perturbative quantum gravity (a recent application to a perturbative
quantum gravity setting was given in [38]), and enables us to discuss GFT cosmology in a
“tempus post quantum” framework [1, 2, 31]. Remarkably, the relational dynamics turn out
to match with the ones obtained in the deparametrised setting (where the clock is selected
prior to quantisation), proving that deparametrisation in GFT cosmology is fully covariant.
By defining a new variant of the Page–Wootters formalism for the case of multiple quantum
clocks, we also generalise the setup to a situation with multiple Hamiltonian constraints
(associated to an independent gauge invariance for each field mode), which realises the
idea of “multi-fingered time evolution” [39, 40].

Ultimately, our results establish a framework that consistently describes the relational
evolution of GFT geometric observables with respect to a “quantum time”, here identified
with the matter scalar field. Crucially, this is given by a canonical quantisation that does
not require to single out the clock classically, and where dynamics are implemented by a
Hamiltonian constraint (somewhat similar to the situation in general relativity). We thus
obtain a manifestly covariant formulation of GFT relational quantum dynamics, which in
particular is equipped with the conditional interpretation of the Page–Wootters formalism,
providing robust insights on relational dynamics for quantum gravity.

The paper is structured as follows. In section 2 we briefly review the main approaches
adopted in the literature to define relational dynamics in GFT cosmology, emphasising
relative merits and limitations. In section 3 we parametrise the GFT models of interest,
focussing on a single field mode for simplicity, and we discuss the notion of classical Dirac
observables. We then quantise the theory in section 4, clearly distinguishing between
kinematical aspects and relational quantum dynamics, obtained equivalently with the Dirac
and the Page–Wootters formalisms. The construction is generalised to the case of multiple
field modes in section 5, where we showcase two scenarios: one where all the modes evolve
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with respect to one clock, and one where they evolve with respect to separate “single-mode
times”. Appendix A shows details on the relational GFT Hamiltonian introduced in [29,
30] and its full spectral decomposition.

2 Relational dynamics in group field theory

The GFT formalism was originally conceived as a way of encoding discrete gravity (spin
foam) amplitudes into Feynman amplitudes of an abstract field theory on a group manifold
[20, 21]. The quantum theory is then defined as a path integral or partition function,
defined perturbatively in terms of Feynman diagrams or perhaps non-perturbatively using
resummation methods analogous to matrix and tensor models [24, 25].

Concretely, models for simplicial quantum gravity coupled to a scalar field χ can be
built by defining a group field φ whose arguments are four SU(2) elements and a real label
χ, satisfying

φ(gI , χ) ≡ φ(g1, . . . , g4, χ) = φ(g1h, . . . , g4h, χ) ∀ h ∈ SU(2) . (1)

This property ensures that the resulting amplitudes are invariant under local SU(2) gauge
transformations acting on vertices. One often prefers working with field modes obtained
from the Peter–Weyl decomposition

φ(gI , χ) =
∑

J

φJ(χ)DJ(gI) , DJ(gI) =
∑

nI

RjI ,ı
nI

4
∏

a=1

√

2ja + 1D(ja)
ma,na

(ga) , (2)

where J = (jI ,mI , ı) is a multi-index containing irreducible SU(2) representations jI ,

magnetic indices mI and intertwiner labels ı labelling the intertwiners RjI ,ı
nI

; D
(j)
m,n(g) are

Wigner D-matrices in the j representation. This choice of kinematical structure ensures
that the resulting Feynman amplitudes will contain the same variables as the simplicial
gravity model of interest; the action can be chosen so that the amplitudes agree [22].

More recently, significant attention has been focused on Hilbert space formalisms for
GFT, starting from the proposal of [26] which was immediately applied to obtain effective
GFT cosmology [27, 28]. As in the somewhat related setting of loop quantum gravity and
its application to cosmology [19], a Hilbert space formalism has the advantage of giving
easier access to dynamical equations which can be related to the equations of cosmology.
Since GFT is a background-independent approach, one would expect any such Hilbert
space definition of the theory to suffer from the problem of time. The main proposal in
GFT has been to follow what is done in other approaches to quantum gravity and use
matter fields as relational clocks; here this role is played by the scalar field variable χ.
The question is then how precisely to obtain relational dynamics in GFT, and two main
approaches have been followed.

Algebraic approach. In this approach one uses a complex group field, and assumes
that the field operators φ̂ and φ̂† satisfy the commutation relation

[

φ̂J(χ), φ̂†
J ′(χ′)

]

= δJJ ′δ(χ− χ′) . (3)

These operators act as creation and annihilation operators to generate a (kinematical) Fock
space, based on a vacuum ♣∅⟩ that satisfies φ̂J(χ)♣∅⟩ = 0 for all J and χ; a one-particle state

reads ♣J, χ⟩ = φ̂†
J(χ)♣∅⟩. By analogy with spin network states of loop quantum gravity,

the “particle” is now interpreted as a tetrahedron or open four-valent spin network node,
and more complicated spin network states can be constructed from (not uniquely defined)
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many-particle states [26]. Hence, these Fock states can be related to kinematical states in
loop quantum gravity [41].

One can construct operators on such a Hilbert space, such as the number operator

N̂ =
∑

J

∫

dχ φ̂†
J(χ)φ̂J(χ) =

∑

J

∫

dχ N̂J(χ) , (4)

and the volume operator V̂ =
∑

J vJ
∫

dχ N̂J(χ) where vJ is the volume assigned to quan-
tum tetrahedra with group theoretic data J (usually imported from loop quantum gravity).
Furthermore, one can define a scalar field operator and scalar field momentum [31, 42, 43]

X̂ =
∑

J

∫

dχχ φ̂†
J(χ) φ̂J(χ) , Π̂ = −i

∑

J

∫

dχ


φ̂†
J(χ)∂χφ̂J(χ)



, (5)

which satisfy [X̂, Π̂] = iN̂ , meaning that these operators are not exactly canonically con-
jugate. One can indeed make the observation that both operators are “extensive” whereas
one would expect one intensive and one extensive quantity to form a canonical pair (see
[44] for a related discussion).

These operators act on the “frozen” kinematical Hilbert space and do not encode any
notion of dynamics. The proposal of [42, 43] was to define relational observables by re-
moving the χ integral from the definition of basic operators; one obtains, e.g., a relational
number operator by

N̂(χ) =
∑

J

φ̂†
J(χ)φ̂J(χ) . (6)

Expectation values of such an operator in mean-field coherent states appear well-behaved
and follow the behaviour of classical solutions, leading to effective Friedmann equations for
a relational volume operator V̂ (χ) which provide excellent agreement with usual cosmol-
ogy [42, 43]. However, the distributional nature of such an operator becomes clear once
one studies higher powers and divergences appear [45, 46]; for less simple states already
expectation values are divergent [47].

The usual assumption is that physical states should satisfy constraints of the form

δS[φ̂, φ̂†]

δφ̂†
J(χ)

♣Ψ⟩ = 0 (7)

corresponding to the quantum equations of motion of the theory [27, 28, 42, 43]. This looks
similar to the type of equation used in a Dirac quantisation of constrained systems. For a
simple choice of action, one can find exact solutions to this constraint equation [47] (see also
[27] for an exact solution of an interacting theory). Such states will be non-normalisable
in the original Fock space inner product, leading to another type of divergence.1

One proposal for dealing with these issues with divergences and obtaining a different
notion of relational dynamics in the algebraic approach is to focus on very specific types
of states, called coherent peaked states [31]. These states are defined as coherent states

♣σϵ;χ0, π0⟩ = Nσ exp



∑

J

∫

dχσϵ
J(χ)φ̂†

J(χ)



♣∅⟩ , Nσ = exp



−1
2

∑

J

∫

dχ♣σϵ
J(χ)♣2



,

(8)

1Moreover, the equation of motion and its Hermitian conjugate are expected to be second class con-
straints with no joint solutions.
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with mean field

σϵ
J(χ) = e− (χ−χ0)2

2ϵ eiπ0(χ−χ0)σ̃J(χ) (9)

defined as the product of a Gaussian and a function σ̃J(χ) assumed to satisfy certain
equations (viewed as approximations to the full equations of motion) so that the state is
now normalisable in the Fock space inner product.

The next step is then to compute expectation values of operators such as (4) and
(5) and view them as functions of the parameter χ0 used in the definition of the state.
Concretely, given that in such a peaked coherent state ⟨X̂⟩ ≃ χ0⟨N̂⟩, one now defines an
intensive effective clock variable by

χ̂ =
X̂

⟨N̂⟩
(10)

so that in the given approximations ⟨χ̂⟩ = χ0, and χ0 can be seen as the expectation value
of the clock χ̂. One can also show that ⟨Π̂⟩ ≃ ⟨Ĥ⟩ for a suitably defined Ĥ (again adapted
to the specific choice of state) and finally obtain an effective Heisenberg-like equation for
the volume operator,

d
dχ0

⟨V̂ ⟩ = i⟨[Ĥ, V̂ ]⟩ . (11)

In this picture, dynamical equations emerge on the kinematical Hilbert space from con-
sidering the evolution of expectation values relative to the clock expectation value ⟨χ̂⟩,
choosing rather specific states so that a simple relation between these expectation values
can be derived. The proposal does not refer to a classical Hamiltonian notion of dynam-
ics or to classical relational observables as in usual Dirac quantisation, and it is unclear
whether constraints such as (7) play a significant role. The resulting equations for relational
dynamics rely on a particular choice of state.

Deparametrised approach. In contrast to the algebraic approach, the deparametrised
approach is a conventional canonical quantisation of a GFT action, using the scalar field
label χ as a notion of time variable from the beginning. This approach was first devel-
oped in [29, 30], based on a real group field whose Peter–Weyl modes satisfy φJ(χ) =

(−1)
∑

I
(jI−mI)φ−J(χ) with −J = (jI ,−mI , ı) denoting sign reversal of magnetic indices.

In the most commonly used situation, one restricts the action to its quadratic part,
assuming interactions are weak or entirely negligible. One also assumes that the kinetic
term is made up of a “mass term” with no derivatives and a term with second derivatives
in χ. First derivatives are excluded if one imposes symmetry under χ → −χ, and explicit
χ dependence is forbidden by a shift symmetry χ → χ+χ0. It is natural to demand these
symmetries given that χ should represent a free massless scalar field, which has the same
symmetries, in GFT [42, 43]. The action then reads

S0[φ] =
1
2

∫

dχ
∑

J

φ−J(χ)


K
(0)
J +K

(2)
J ∂2

χ



φJ(χ) , (12)

where K
(0)
J and K

(2)
J can in general be positive or negative. In the following we take the

kinetic term to be symmetric under J ↔ −J , i.e., K
(0)
J = K

(0)
−J and K

(2)
J = K

(2)
−J . This

kinetic term is also the one appearing in studies of GFT phase transitions [48, 49]. After
integration by parts, one has

S0[φ] =
1
2

∫

dχ
∑

J



K
(0)
J φ−J(χ)φJ(χ) −K

(2)
J ∂χφ−J(χ)∂χφJ(χ)



, (13)
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which is now just a function of field modes and their “time” derivatives, so that the Leg-
endre transform to a relational Hamiltonian is straightforward. Introducing the conjugate
momentum πJ(χ), one obtains

H = −1
2

∑

J



πJ(χ)π−J(χ)

K
(2)
J

+K
(0)
J φJ(χ)φ−J(χ)

]

. (14)

χ appears on the same footing as a background time parameter, and the equation of motion
of any classical observable O can be derived from the Poisson bracket dO/dχ = ¶O, H♢.
Only now, the group field and its momentum are promoted to operators with the canonical
equal-time commutation relation

[φ̂J(χ), π̂J ′(χ)] = iδJJ ′ . (15)

All operators satisfy the Heisenberg equations of motion

i
dÔ
dχ

= [Ô, Ĥ] , (16)

where Ĥ is the quantum version of (14).

Depending on relative signs of K
(0)
J and K

(2)
J , the Hamiltonian for each J mode is either

a harmonic oscillator or an upside-down harmonic oscillator, which after introducing the
usual creation and annihilation operators takes the form of a squeezing operator [32].
Concretely, one defines

âJ =
1√
2ΩJ

(ΩJ φ̂J + iϵJ π̂−J) , â†
J =

1√
2ΩJ

(ϵJΩJ φ̂−J − iπ̂J) , (17)

with ΩJ =
√

♣K(0)
J K

(2)
J ♣ and ϵJ = (−1)

∑

I
(jI−mI). By construction these operators satisfy

[

âJ(χ), â†
J ′(χ)

]

= δJJ ′ , (18)

and again generate a Fock space (when all J modes are taken into account) by acting on

a ground state ♣0⟩. If we only include modes for which K
(0)
J and K

(2)
J have opposite sign,

the Hamiltonian is (cf. appendix A for the more general case)

Ĥ =
1
2

∑

J

ωJ



â†
J â

†
−J + âJ â−J



(19)

with ωJ = −sgn
(

K
(0)
J

)

√

♣K(0)
J /K

(2)
J ♣. This case of a squeezing Hamiltonian is particularly

relevant for applications to cosmology, since squeezing leads to an exponentially growing
number of particles under evolution in χ [50], which in turn means the volume for a single
mode satisfies the correct effective Friedmann equation for any state in the theory [32],
in contrast with the focus on very specific states in the algebraic approach. The particle
number in modes with harmonic oscillator Hamiltonians is conserved, interpreted as a
volume that remains constant in time, so that these modes will eventually be subdominant
and are often neglected.

Still working in the Heisenberg picture, a time-dependent number operator is defined
as

N̂(χ) =
∑

J

â†
J(χ)âJ(χ) , (20)
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and similarly the volume operator as V̂ (χ) =
∑

J vJ â
†
J(χ)âJ(χ). The main difference with

(4) is that (20) evolves in χ as dictated by (16), i.e., as

N̂(χ) = Û †(χ) N̂(0) Û(χ) , Û(χ) = e−iĤχ . (21)

While this quantisation is straightforward to obtain and interpret and the connection
to the classical theory is clear throughout, one might raise the concern that χ appears
only as a “classical” parameter with no quantum operators or fluctuations associated to
it. This is a common concern with deparametrised approaches, as the expected covariance
of the GFT formalism – the freedom to choose an arbitrary time parameter to express
dynamics – might be broken by making a classical clock choice before quantisation (see,
e.g., the general criticism of “tempus ante quantum” in [1, 2] and a more specific discussion
for GFT in [31]). Our main goal in this paper is to resolve these concerns by embedding
the deparametrised approach into a more covariant setting which allows for an arbitrary
choice of evolution parameter.

3 Parametrisation of classical group field theory

In this section we parametrise the classical GFT defined by the action (13) (for the general
idea of parametrisation see, e.g., [4, 5]). To start with a simple case, we restrict the
formalism to a single field mode J with vanishing magnetic indices, and we postpone the
discussion of a quantum theory with multiple field modes to section 5. The action then
reads

S0[φ] =
1
2

sgn(K(0)
J )

∫

dχ
[

♣K(0)
J ♣φ2

J + ♣K(2)
J ♣(∂χφJ)2

]

, (22)

where we chose a mode for which K
(0)
J and K

(2)
J have opposite sign, meaning the dynamics

for this mode are governed by a Hamiltonian of the form (cf. (14))

HJ(φJ , πJ) =
1
2

sgn(K(0)
J )



πJ
2

♣K(2)
J ♣

− ♣K(0)
J ♣φ2

J



. (23)

Because we deal with this (specific) mode only, we drop the label J in the following
discussion. Since the global sign of (23) is irrelevant (see appendix A for details on the
eigenvalue problem for the Hamiltonian (23)), from now on we choose K(2) < 0 and
K(0) > 0 without loss of generality.

Following the standard parametrisation strategy [4, 5], we now introduce an arbitrary
parameter τ to describe φ(χ) by means of two functions φ(τ) and χ(τ), so that the “group
field” and the matter field are treated parametrically on the same footing. In this manner
we obtain a new action

S[φ, χ] =
1
2

∫

dτ



♣K(0)♣φ2 ∂τχ+ ♣K(2)♣(∂τφ)2

∂τχ

]

. (24)

The Hamiltonian theory derived from the parametrised action (24) has an extended phase
space spanned by coordinates (φ, χ) and conjugate momenta (πφ, pχ) defined as usual,

πφ :=
∂L

∂(∂τφ)
= ♣K(2)♣∂τφ

∂τχ
,

pχ :=
∂L

∂(∂τχ)
=

1
2

♣K(0)♣φ2 − 1
2

♣K(2)♣(∂τφ)2

(∂τχ)2
.

(25)
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It is easy to check that the Hamiltonian associated to the new action (24) vanishes. Indeed,
the momenta (25) form a constraint

C = pχ +H(φ, πφ) = 0 , (26)

where H(φ, πφ) is given in (23). (26) defines a constraint hypersurface in the extended
phase space and generates trajectories on such surface according to

∂τf = ¶f,NC♢ , (27)

for any phase space function f , where N is a Lagrange multiplier defining the particular
parametrisation of these trajectories. From (27) one can find the equations of motion

∂τφ = ¶φ,NC♢ = N
πφ

♣K(2)♣ ,

∂τχ = ¶χ,NC♢ = N ,
(28)

while ∂τπφ = ∂τpχ = 0. Of course, combining the equations (28) one finds the definition
of πφ in (25). The second equation in (28) shows that N gives the rate of change of χ with
respect to the label τ , and it is sometimes called lapse function for this reason (borrowing
the nomenclature from general relativity). Using (25), (26) and (28) one can formulate the
same dynamics starting from the action

S[φ, χ] =
∫

dτ (πφ∂τφ+ pχ∂τχ−NC) , (29)

which explicitly shows that NC plays the role of the Hamiltonian (sometimes called super-
Hamiltonian), and indeed yields the same equations of motion (28). Note that such a
parametrised theory describes the same physics of the initial action S0[φ] (cf. (22)); while
(29) contains one extra canonical pair (χ, pχ), it also implies the constraint (26) (obtained
by varying with respect toN). Since (26) is a first-class constraint, it eliminates two degrees
of freedom so that the two actions describe the same number of independent degrees of
freedom. We have now introduced a form of “general covariance”, as (29) is invariant under
τ -reparametrisation. This symmetry is reflected in the fact that N can be an arbitrary
function, playing the role of a gauge field.

The action (29) is comprised of two parts: one related to geometry described by the
group field φ, and one for the matter scalar field χ. Since we will want to use the scalar
field χ as internal dynamical clock to describe the GFT system (which corresponds to
the choice of the lapse N = 1), we briefly review here the notions of classical relational
dynamics and Dirac observables. Following [6–8], we begin by noticing that (27) defines a
flow ατ

C with parameter τ that transforms a phase space function f as

f 7→ ατ
C(f) :=

∞
∑

n=0

τn

n!
¶f, C♢n , (30)

where ¶f, C♢n denotes the iterated Poisson bracket defined as ¶f, C♢n+1 := ¶¶f, C♢, C♢n

with ¶f, C♢0 = f . Given that the action (29) is invariant under τ -reparametrisation, the
evolution with respect to the flow parameter τ is not physical as it is a gauge transformation
on the constraint hypersurface defined by (26). Physical observables (known as Dirac
observables) are defined as functions of canonical variables F (φ, πφ, χ, pχ) that are invariant
under τ evolution. Then, they satisfy

¶F,C♢ ≈ 0 , (31)
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where ≈ represents a “weak equality”, meaning the equality holds on the constraint hy-
persurface. In other words, functions F satisfying (31) are constant along the trajectories
(within the constraint hypersurface) generated by the constraint (26).

One can now use the strategy of “evolving constants of motion” [9–12] to define relational

Dirac observables, which evolve with respect to another chosen observable along the flow
generated by C. These are also known as “complete” observables Ff,χ(χ0), and correspond
to the value a partial observable f takes on C when another partial observable χ takes
the value χ0. The second partial observable χ is thought as a dynamical “clock” degree of
freedom, chosen to parametrise the flow in place of the unphysical parameter τ . In short,
one can construct a complete observable satisfying (31) as [6–8, 15, 16]

Ff,χ(χ0) ≈
∞
∑

n=0

(χ0 − χ)n

n!



f,
C

¶χ,C♢



n

, (32)

which is well-defined if ¶χ,C♢ ≠ 0 (i.e., if χ is a good clock to parametrise the flow).
While (32) holds for (finite-dimensional) systems with a generic Hamiltonian constraint
[6–8], our scenario belongs to the specific class of systems thoroughly analysed in [15, 16];
a simplification arises because of the partition of the classical constraint (26) into a χ
component and a φ component

C = Hχ +Hφ = 0 , (33)

where the so-called clock Hamiltonian is Hχ = pχ and the GFT Hamiltonian Hφ is given
in (23). Thanks to the crucial fact that the clock Hamiltonian is canonically conjugate to
χ,

¶χ,Hχ♢ = ¶χ, pχ♢ = 1 , (34)

one can show that a relational Dirac observable associated to a function fφ of the GFT
phase space (i.e., a function of φ and πφ) takes the simple form [6–8, 15, 16]

Ffφ,χ(χ0) ≈
∞
∑

n=0

(χ0 − χ)n

n!
¶fφ, Hφ♢n . (35)

The partition into a matter clock sector and a geometry sector will be exploited in the
quantum theory to express the dynamics in the general framework of [15, 16]; this will
allow to relate the parametrised theory introduced here to existing approaches to canonical
quantisation of GFT.

4 Quantum theory for single mode

4.1 Kinematics

We now quantise the theory described by S[φ, χ] in (29), promoting the canonical coordi-
nates and momenta to operators with the commutation relations

[φ̂, π̂φ] = i , [χ̂, p̂χ] = i , (36)

all the others being zero. Kinematically, the Hilbert space of such a quantum theory is the
tensor product of two Hilbert spaces: one for the matter sector associated with the scalar
field χ and one for the geometry sector associated with the group field φ, namely

Hkin = Hχ ⊗ Hφ . (37)
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Both Hχ and Hφ are spaces of square-integrable functions over the real line, so that
Hkin = L2(R2).

Geometry sector. The Hamiltonian for the (single-mode) GFT system living on the
geometry sector is given by promoting (23) to an operator on Hφ as

Ĥφ =
1
2



π̂2
φ

♣K(2)♣ − ♣K(0)♣φ̂2



, (38)

which resembles the Hamiltonian of a quantum particle with an inverted harmonic poten-
tial. The Schrödinger problem for the Hamiltonian (38) can be solved explicitly [51, 52]
(we refer to appendix A for the details) to find a doubly degenerate continuous energy
spectrum

Ĥφ♣ψE
±⟩ = E♣ψE

±⟩ , (39)

where the energy eigenstates can be expressed in terms of special functions known as
parabolic cylinder functions [53, 54]. Two essential properties that we will need when
discussing relational quantum dynamics in section 4.2 are the generalised orthonormality
condition

⟨ψE
m♣ψE′

n ⟩ = δmnδ(E − E′) , (40)

where m and n can either be + or −, and the spectral resolution of the Hamiltonian (38)

Ĥφ =
∫

±
dE E ♣ψE

±⟩⟨ψE
± ♣ , (41)

where the notation
∫

± :=
∑

±
∫

takes into account the double degeneracy of the spectrum
(see appendix A). Note that while a Schrödinger equation for GFT with such a Hamiltonian
was introduced in [29, 30], there was no discussion of exact solutions (even for a single field
mode).

Similarly to the deparametrised approach described in section 2, one can now change
basis and introduce ladder operators â and â†. These are to be considered kinematical

operators at this stage: the dynamics of our (parametrised) theory are only defined when
the quantum version of the constraint (33) is used, as we will do in the next section. In
other words, one can build a kinematical Fock space starting from the Fock vacuum ♣0⟩
defined by â♣0⟩ = 0, and building n-particle states in the usual way; for example, the
one-particle state reads ♣1⟩ = â†♣0⟩. Moreover, one can discuss kinematical operators built
from â and â†, such as the number operator

N̂ = â
†
â , (42)

and the volume operator V̂ = vN̂. We use a new notation for these kinematical operators
to emphasise that these are a priori different operators than the ones introduced in the
deparametrised approach.

Matter sector. As already discussed at the classical level, we will want to use the
matter field as relational clock. The quantum theory living on Hχ is isomorphic to the
Hilbert space of a particle on a line, so we have the following properties for the χ̂ operator

χ̂♣χ⟩ = χ♣χ⟩ ,
⟨χ♣χ′⟩ = δ(χ− χ′) ,

(43)

and similarly for its conjugate momentum

p̂χ♣pχ⟩ = pχ♣pχ⟩ ,
⟨pχ♣p′

χ⟩ = δ(pχ − p′
χ) ,

(44)

Accepted in Quantum 2025-01-08, click title to verify. Published under CC-BY 4.0. 11



where we choose conventions with ⟨pχ♣χ⟩ = 1√
2π
e−ipχχ. It follows that one can write the

identity on Hχ as

Iχ =
∫

dχ♣χ⟩⟨χ♣ =
∫

dpχ♣pχ⟩⟨pχ♣ , (45)

and the spectral decomposition of χ̂ and p̂χ as

χ̂ =
∫

dχ χ ♣χ⟩⟨χ♣ , (46)

Ĥχ = p̂χ =
∫

dpχ pχ ♣pχ⟩⟨pχ♣ . (47)

Notice that interpreting p̂χ as the (quantum) clock Hamiltonian (cf. (33) and (34))
implies that the operator χ̂ in (46) will be interpreted as time operator.2 The clock states
correspond to eigenstates ♣χ⟩ of the time operator χ̂. Such states “evolve” under the action
of the group generated by p̂χ as

Ûχ(α)♣χ′⟩ = ♣χ′ + α⟩ , (48)

where
Ûχ(α) := e−ip̂χα , α ∈ R . (49)

4.2 Relational dynamics

One now makes use of the quantum version of the classical constraint (26), Ĉ, to identify
physical states among the kinematical ones. This is the first step of the Dirac quantisation
procedure, which allows to discuss the notion of relational Dirac observables in a precise
sense (via the quantum analogue of (31) and (35)). At the same time, the tensor product
structure of (37) suggests that the Page–Wootters formalism could also be used to imple-
ment the notion of relational dynamics. For this reason, we explicitly write the quantum
constraint as

Ĉ = p̂χ + Ĥφ = p̂χ ⊗ Iφ + Iχ ⊗ Ĥφ , (50)

where Iφ and Iχ are the identity operators on Hφ and Hχ respectively. It was shown
in [15, 16] that with a constraint of the form (50), the Dirac algorithm for a constraint
quantisation (for instance implemented using group averaging techniques) and the Page–
Wootters formalism yield equivalent relational dynamics, as we will exemplify with our
GFT model.

From now on, both operators and states will occasionally have a subscript χ or φ, to
clarify (when necessary) in which sector of (37) they act or live.

Dirac quantisation. A generic state in the kinematical Hilbert space (37), ♣Ψkin⟩ ∈ Hkin,
can be written as

♣Ψkin⟩ =
∫

±
dE

∫

dpχ Ψ±(pχ, E) ♣pχ⟩χ ⊗ ♣ψE
±⟩φ . (51)

Following the Dirac programme for quantising constrained systems, one defines physical
states by demanding that they are annihilated by the constraint (50),

Ĉ♣Ψphys⟩ = 0 . (52)

2More formally, one can define the time operator χ̂ as the first moment operator (cf. (46)) of the “time
observable” Eχ := ♣χ⟩⟨χ♣, in turn defined via the most general notion of quantum observable as a positive
operator-valued measure (POVM) [15, 16].
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As is well known [18], such physical states are not normalisable in Hkin; one needs to
introduce a new inner product since ⟨Ψphys♣Ψphys⟩kin diverges, where ⟨·♣·⟩kin is the inner
product on (37). One way of doing this is by “projecting” a kinematical state onto a
physical one by means of group averaging [18, 55, 56],

δ(Ĉ) =
1

2π

∫

dα eiαĈ , (53)

as ♣Ψphys⟩ = δ(Ĉ)♣Ψkin⟩, and then defining a physical inner product as

⟨Ψphys♣Ψphys⟩phys := ⟨Ψkin♣δ(Ĉ)♣Ψkin⟩kin . (54)

Starting from (51) and using properties (39), (40) and (44), one explicitly finds

♣Ψphys⟩ =
∫

±
dEΨ±(−E,E) ♣ − E⟩χ ⊗ ♣ψE

±⟩φ , (55)

and

⟨Ψphys♣Ψphys⟩phys =
∫

±
dE ♣Ψ±(−E,E)♣2 . (56)

This norm defines Hphys as the space of solutions to (52). Physical states do not change

under the flow of the total Hamiltonian Ĉ,

Ûχφ(α)♣Ψphys⟩ = ♣Ψphys⟩ , (57)

with
Ûχφ(α) := e−iαĈ = e−iαp̂χ ⊗ e−iαĤφ , α ∈ R , (58)

and are sometimes called “timeless” or “frozen”. More recently [15, 16], they have been de-
noted “clock-neutral” as they describe physics before choosing a temporal reference system.
(57) is what gives rise to the problem of time [1, 2], which can be tackled by defining the
quantum counterpart of Dirac relational observables (cf. (31) and (35)). Indeed, one can
now choose the temporal reference system (namely, the clock) associated with the Hilbert
space Hχ with properties (43)–(48), and find the quantised version of (35) as [15, 16]

F̂fφ,χ(χ0) =
1

2π

∫

dχ ♣χ⟩⟨χ♣ ⊗
∞
∑

n=0

in

n!
(χ− χ0)n

[

f̂φ, Ĥφ

]

n
, (59)

where the commutator [f̂φ, Ĥφ]n := [[f̂φ, Ĥφ]n−1, Ĥφ] and [f̂φ, Ĥφ]0 := f̂φ. Thanks to the
Baker-Campbell-Hausdorff formula, (59) can be equivalently recast as

F̂fφ,χ(χ0) =
1

2π

∫

dχ ♣χ⟩⟨χ♣ ⊗ Ûφ(χ− χ0)f̂φÛ
†
φ(χ− χ0)

=
1

2π

∫

dα Ûχφ(α)


♣χ0⟩⟨χ0♣ ⊗ f̂φ



Û †
χφ(α) ,

(60)

where Ûφ(α) := e−iĤφα, Ûχφ(α) is given in (58), and in the last line we changed integra-
tion variable, χ → α + χ0. Crucially, quantum relational observables defined using the
prescription (59) commute with the constraint operator Ĉ,

[

F̂fφ,χ(χ0), Ĉ
]

= 0 , (61)
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and are thus called (quantum) Dirac observables.3

The prototype Dirac observable for our GFT model is the number operator f̂φ = N̂

(cf. (42)); thus, we will be specifically interested in the observable

N̂D(χ0) :=
1

2π

∫

dα Ûχφ(α)


♣χ0⟩⟨χ0♣ ⊗ N̂



Û †
χφ(α) , (62)

where the subscript D refers to the fact that this is a Dirac observable on the total Hilbert
space. As opposed to the kinematical counterpart N̂, the operator N̂D(χ0) evolves as the
parameter χ0 runs (taking the values the time operator χ̂ can take), meaning that (62)
truly defines relational quantum dynamics on Hphys for the GFT number operator. In
particular, even if physical states do not transform under the action of the Hamiltonian
constraint Ĉ, we will evaluate the relational Dirac observable (62) using the physical inner
product (54) so to obtain an expectation value for the number operator which indeed
changes with respect to the matter scalar field.

Page–Wootters formalism. The framework introduced by Page and Wootters [36, 37]
provides another way to define relational dynamics for systems subject to a quantum
constraint of the form (50). Specifically, starting again with a kinematical Hilbert space
(37) that is split into clock and system (our matter scalar field χ and single-mode GFT
model, respectively), one selects physical states using the constraint equation (52). The
apparent difference with the previous section arises when choosing an inner product on
Hphys to completely specify the space of solutions of (52).

The conceptual idea behind the Page–Wootters formalism is to interpret quantum
theory with conditional probabilities. More precisely, one defines the state of a system at
a given instant of (relational) time as a solution to the constraint equation conditioned on
a subsystem of the theory to be in a state corresponding to that time. Following this idea,
we define the state of our single-mode GFT system at a given time, say χ0, as a solution
to the constraint (52) conditioned on the clock being in the state ♣χ0⟩,

♣ψ(χ0)⟩φ :=


⟨χ0♣ ⊗ Iφ



♣Ψphys⟩ . (63)

It follows that a physical state can be expressed as a “history state”, namely

♣Ψphys⟩ =
∫

dχ0 ♣χ0⟩χ ⊗ ♣ψ(χ0)⟩φ , (64)

since Iχ ⊗ Iφ =
∫

dχ0♣χ0⟩⟨χ0♣ ⊗ Iφ. Indeed, the state (64) encodes information about the
whole timeline. The usual formulation of quantum mechanics for the conditioned states
can be recovered in terms of a Schrödinger equation in the clock time χ0 [36, 37],

i
d

dχ0
♣ψ(χ0)⟩φ = Ĥφ♣ψ(χ0)⟩φ , (65)

which is easily found from the constraint equation as


χ⟨χ0♣⊗ Iφ



Ĉ♣Ψphys⟩ = 0. Moreover,

one introduces what is known as the Page–Wootters inner product [15, 16, 57]

⟨Ψphys♣Ψphys⟩PW := ⟨Ψphys♣


♣χ0⟩⟨χ0♣ ⊗ Iφ



♣Ψphys⟩kin , (66)

3Since our clock Hamiltonian is simply Ĥχ = p̂χ, the commutator in (61) vanishes strongly (i.e.,
algebraically). In [15, 16] it is shown that for more complicated clock Hamiltonians one can still prove that
a Dirac observable associated to a physical phase space function weakly commutes with the constraint Ĉ,
namely when applied to physical states.
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which is consistent with the usual inner product on Hφ at all times since

⟨Ψphys♣Ψphys⟩PW =

∫

dχ′
χ⟨χ′♣ ⊗ φ⟨ψ(χ′)♣





♣χ0⟩χχ⟨χ0♣ ⊗ Iφ




∫

dχ ♣χ⟩χ ⊗ ♣ψ(χ)⟩φ



= φ⟨ψ(χ0)♣ψ(χ0)⟩φ ,
(67)

where φ⟨ψ(χ0)♣ψ(χ0)⟩φ = φ⟨ψ(0)♣ψ(0)⟩φ is independent of χ0 thanks to (65) and the fact
that Ĥφ is self-adjoint (cf. (38)).

In what follows we will provide an application of the equivalence shown in [15, 16]
between the relational dynamics defined using a Dirac quantisation and using the Page–
Wootters formalism, mainly focussing on the number operator of our GFT model. To
begin with, it is easy to check explicitly that

⟨Ψphys♣Ψphys⟩PW =
∫

±
dE ♣Ψ±(−E,E)♣2 (68)

is the same as (56). Note that in the following calculations we use the generic expressions
for the physical inner product (54) and the Page–Wootters inner product (66) instead of
their explicit form (68) (or (56)). We can now turn to the calculation of the expectation
value of the Dirac observable associated to the number operator (62), using the physical
inner product. First, we find

N̂D(χ0)♣Ψphys⟩ =
1

2π

∫

dα Ûχφ(α)


♣χ0⟩⟨χ0♣ ⊗ N̂



♣Ψphys⟩

=
1

2π

∫

dα Ûχ(α)♣χ0⟩⟨χ0♣ ⊗ Ûφ(α)N̂♣Ψphys⟩

= δ(Ĉ)


♣χ0⟩⟨χ0♣ ⊗ N̂



♣Ψphys⟩ ,

(69)

where we used Û †
χφ(χ)♣Ψphys⟩ = ♣Ψphys⟩ (cf. (57)) and the definitions (58) and (53). Then,

we calculate the expectation value in the physical inner product (54) as

ND(χ0) := ⟨Ψphys♣N̂D(χ0)♣Ψphys⟩phys

= ⟨Ψphys♣δ(Ĉ)


♣χ0⟩⟨χ0♣ ⊗ N̂



♣Ψphys⟩phys

= ⟨Ψkin♣δ(Ĉ)


♣χ0⟩⟨χ0♣ ⊗ N̂



δ(Ĉ)♣Ψkin⟩kin

= ⟨Ψphys♣


♣χ0⟩⟨χ0♣ ⊗ N̂



♣Ψphys⟩kin

= ⟨Ψphys♣N̂♣Ψphys⟩PW .

(70)

Of course, using the definition of conditioned states (63), it is easy to show that (70) gives
back the result of the deparametrised approach of section 2:

ND(χ0) = ⟨Ψphys♣


♣χ0⟩⟨χ0♣ ⊗ N̂



♣Ψphys⟩kin

= φ⟨ψ(χ0)♣N̂♣ψ(χ0)⟩φ

= φ⟨ψ♣ Û †
φ(χ0) N̂ Ûφ(χ0) ♣ψ⟩φ ,

(71)

where ♣ψ⟩φ = ♣ψ(0)⟩φ and we switched from the Schrödinger picture on the second line to
the Heisenberg picture on the third line. Indeed, (71) shows that the expectation value
of the relational Dirac observable N̂D(χ0), computed with the physical inner product on
Hphys, is equivalent to the expectation value of (21) (here for a single-mode) in the de-
parametrised quantum theory. Of course, the same holds true for the volume operator (and
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any other one built from ladder operators), so that all the GFT results and applications
to cosmology are recovered in our parametrised theory.

The equivalence established in (71) strengthens the deparametrised approach described
in section 2, since the relational Dirac observable N̂D(χ0) in (62) is defined relationally
with respect to the eigenvalues of a time operator χ̂, in contrast with the deparametrised
theory where the clock label is chosen before quantisation. In this sense, the construction
of section 4 belongs to the “tempus post quantum” type of relational dynamics discussed
in [31] (see also [1, 2]).

Moreover, (70) shows that ND(χ0) is also equal to the Page–Wootters expectation
values of the corresponding kinematical operator N̂, which allows to reinterpret GFT ob-
servables as conditional on the clock. In particular, this suggests a canonical picture
characterised by a splitting between quantum geometry and a constant-time “slice” on the
history state (64), where the internal time takes a fixed value χ0. This construction is
similar in spirit to the 3 + 1 splitting of canonical GR, where one describes evolution as
a sequence of constant time hypersurfaces. While the physical state (64) of Page and
Wootters is a superposition of all clock states and all GFT states, it allows to answer the
relevant questions of what happens at any specific value of relational time. In other words,
this approach justifies the interpretation of the GFT quanta as being associated to the
same clock reading since the conditioned state (63), by definition, involves a projection
onto the χ0 slice.

5 Extension to multiple field modes

In this section we show that our construction can be extended to any number of Peter–
Weyl modes. While in principle a GFT contains an infinite number of modes J (see
(2)), we will consider a truncation to a finite (but arbitrary) number of modes. Such a
truncation could be elegantly implemented using the quantum group SUq(2), where the
deformation parameter q is related to a nonvanishing cosmological constant (see, e.g., [58–
61]), which leads to a maximum irreducible representation and hence a maximum value
for the multi-index J . Similar ideas on q-deformation were recently applied in the context
of three-dimensional group field theories in [62], and provide a way to implement a cut-off
value Jmax in the Peter–Weyl decomposition (2). We assume such a cut-off in the following
sections.

5.1 Single reparametrisation symmetry

Without making any assumptions on magnetic indices and on the relative sign of K
(0)
J and

K
(2)
J for the various modes, we start the analysis with the generic action given in (13). As a

first generalisation of the procedure described in section 3, we proceed here by introducing
a parameter τ for the theory with multiple field modes. Then, all the φJ(τ)’s as well as
χ(τ) depend on τ , and by means of the chain rule one obtains the action

S[φ, χ] =
1
2

∫

dτ
∑

J



K
(0)
J φ−JφJ ∂τχ−K

(2)
J

(∂τφ−J)(∂τφJ)
∂τχ



. (72)

All the key points discussed for the single-mode scenario also apply here. In particu-
lar, while we have enlarged the phase space, the theory is now subject to a Hamiltonian
constraint (cf. (26))

C = Htot
φ + pχ = 0 , (73)
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where, rewriting (14) here for convenience,

Htot
φ = −1

2

∑

J



πJ(χ)π−J(χ)

K
(2)
J

+K
(0)
J φJ(χ)φ−J(χ)

]

, (74)

with momenta given by

πJ = −K(2)
J

∂τφ−J

∂τχ
, (75)

pχ =
1
2

∑

J



K
(0)
J φ−JφJ +K

(2)
J

(∂τφ−J)(∂τφJ)
(∂τχ)2



. (76)

The equations of motion for every group field mode, ∂τφJ = −Nπ−J/K
(2)
J , and for the

matter field, ∂τχ = N , can be obtained as in (28). They also follow from the action (in
Hamiltonian form)

S[φ, χ] =
∫

dτ



∑

J

πJ∂τφJ + pχ∂τχ−NC



, (77)

which generalises (29) for multiple modes.
Finally, in complete analogy with section 3, one can adopt the strategy of relational

Dirac observables and define quantities satisfying ¶F,C♢ ≈ 0 as

Ffφ,χ(χ0) ≈
∞
∑

n=0

(χ0 − χ)n

n!
¶fφ, H

tot
φ ♢n , (78)

where Htot
φ is given in (74) and fφ is now a function of multiple GFT modes. The complete

observable Ffφ,χ(χ0) associates values of fφ to the specific relational time χ = χ0 (see
section 3).

The quantum theory corresponding to the above construction is obtained in the usual
manner by means of the commutators

[φ̂J , π̂J ′ ] = iδJJ ′ , [χ̂, p̂χ] = i , (79)

where the kinematical Hilbert space can be written as

Hkin = Hχ ⊗ Htot
φ , Htot

φ =
⊗

J

HφJ
, (80)

namely as a tensor product of a matter clock sector Hχ (just as in (37)) and the total

GFT Hilbert space given by the tensor product of single-mode Hilbert spaces HφJ
for the

various modes.
Even though the Hamiltonian Ĥtot

φ (obtained by quantising (74)) couples modes in
pairs (J is coupled to −J), we show in appendix A that it can be written as the sum
over modes of single-mode contributions. As mentioned in section 2, one can distinguish

between two cases based on the relative signs of K
(0)
J and K

(2)
J , which lead to harmonic

oscillator (HO) and squeezing (SQ) Hamiltonians. Then, defining JHO as the set of J such

that K
(0)
J and K

(2)
J have the same sign and JSQ as the set of J such that K

(0)
J and K

(2)
J

have opposite signs,4 one can write the quantised version of (74) as

Ĥtot
φ =

∑

J∈JHO

ĤHO
J +

∑

J∈JSQ

ĤSQ
J (81)

4We exclude the fine-tuned case in which K
(0)
J = 0 (note that the Hamiltonian (74) is not defined when

K
(2)
J = 0).
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where, depending on the set J belongs to,

ĤHO
J = ϵJωJ



â†
J âJ +

1
2



, J ∈ J
HO ,

ĤSQ
J =

1
2
ωJ



(â†
J)2 + â2

J



, J ∈ J
SQ ,

(82)

with ϵJ = (−1)
∑

I
(jI−mI) and ωJ = −sgn

(

K
(0)
J

)

√

♣K(0)
J /K

(2)
J ♣. In (82) we are suppressing

the explicit mentioning of the identity operators acting on all the other factors of Htot
φ ;

i.e., a tensor product with
⊗

J ′ ̸=J IφJ′
is understood for every single-mode Hamiltonian.

Both single-mode Hamiltonians (82) admit a spectral decomposition (we refer to appendix
A for details), so that the total Hamiltonian can be written as

Ĥtot
φ =

∑

J


∫

∑

E
EJ ♣ψEJ ⟩⟨ψEJ ♣



, (83)

where the sum-integral notation introduced in [15, 16] is used to take into account all modes
in a compact way (it represents a sum for modes J ∈ JHO and an integral

∫

± for modes

J ∈ JSQ). Accordingly, the notation ♣ψEJ ⟩ refers to harmonic oscillator number eigenstates
associated with discrete energy eigenvalues EJ for J ∈ JHO,5 and squeezing Hamiltonian
eigenstates ♣ψEJ

± ⟩ introduced in section 4 (see also appendix A), with continuous label EJ

and degeneracy label ±, for J ∈ JSQ.
Since every single-mode Hamiltonian only acts on the corresponding HφJ

(namely the
factor of (80) with the same J), one can easily show that

Ĥtot
φ



⊗

J

♣ψEJ ⟩


= Etot



⊗

J

♣ψEJ ⟩


, (84)

where
⊗

J ♣ψEJ ⟩ ∈ Htot
φ and Etot :=

∑

J EJ . Then, one can use the quantum constraint,

Ĉ = p̂χ ⊗I
tot
φ +Iχ ⊗Ĥtot

φ with I
tot
φ =

⊗

J IφJ
, to formally define a group averaging operation

δ(Ĉ) (see (53)) to obtain physical states. As in the single-mode scenario, one starts with
a kinematical state

♣Ψkin⟩ =
∫

∑

¶EJ ♢

∫

dpχ Ψ (pχ, ¶EJ♢, ¶±♢) ♣pχ⟩ ⊗


⊗

J

♣ψEJ ⟩


, (85)

where Ψ(pχ, ¶EJ♢, ¶±♢) depends on discrete EJ variables for all J ∈ JHO and on continuous
EJ variables (together with the set of all ± labels) for all J ∈ JSQ, which are respectively

all summed and integrated over with the notation

∫

∑

¶EJ ♢
. Then, a physical state ♣Ψphys⟩ =

δ(Ĉ)♣Ψkin⟩ reads

♣Ψphys⟩ =
∫

∑

¶EJ ♢
Ψ (−Etot, ¶EJ♢, ¶±♢) ♣ − Etot⟩ ⊗



⊗

J

♣ψEJ ⟩


. (86)

By suitably generalising the construction for multiple field modes, the Page–Wootters
formalism described in section 4 can be applied here. In particular, one can define the
conditioned state ♣ψ(χ0)⟩φtot ∈ Htot

φ as

♣ψ(χ0)⟩φtot :=


⟨χ0♣ ⊗ I
tot
φ



♣Ψphys⟩ , (87)

5Specifically, EJ = ϵJωJ

(

n+ 1
2

)

for J ∈ J
HO, with n ∈ N0.
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and check that both the Page–Wootters inner product (defined as in (66) with Iφ replaced
by I

tot
φ ) and the physical inner product (54) evaluate to

⟨Ψphys♣Ψphys⟩PW = ⟨Ψphys♣Ψphys⟩phys =
∫

∑

¶EJ ♢

∣

∣Ψ (−Etot, ¶EJ♢, ¶±♢)
∣

∣

2
. (88)

Since the procedure is the same as in the single-mode case, we can readily show the
main results as follows. First, one defines the quantum version of (78) for the total number

operator N̂tot :=
∑

J [â†
J âJ ⊗ (

⊗

J ′ ̸=J IφJ′
)] generalising (62) as

N̂ tot
D (χ0) :=

1
2π

∫

ds
[

Ûχ(s) ⊗


⊗

J

ÛφJ
(s)
] 

♣χ0⟩⟨χ0♣ ⊗ N̂tot

 [

Û †
χ(s) ⊗



⊗

J

Û †
φJ

(s)
]

,

(89)

where the tensor product of operators Ûχ(s)⊗


⊗

J ÛφJ
(s)


:= e−isp̂χ ⊗


⊗

J e
−isĤJ



leaves

the physical state (86) invariant (cf. (57)). Then, exactly as in (70) and (71), one shows
that

N tot
D (χ0) := ⟨Ψphys♣N̂ tot

D (χ0)♣Ψphys⟩phys = ⟨Ψphys♣N̂tot♣Ψphys⟩PW = φtot⟨ψ(χ0)♣N̂tot♣ψ(χ0)⟩φtot ,
(90)

where we used the conditioned state of the Page–Wootters formalism (87) in the last
equality. Recalling that the conditioned state satisfies a Schrödinger equation with respect
to χ0 (cf. (65)), we recover the results from the deparametrised approach for a GFT with
multiple modes since, working in the Heisenberg picture, (90) is

N tot
D (χ0) = φtot⟨ψ♣

[

⊗

J

Û †
φJ

(χ0)
]

N̂tot

[

⊗

J

ÛφJ
(χ0)

]

♣ψ⟩φtot

= φtot⟨ψ♣
∑

J

Û †
φJ

(χ0) â†
J âJ ÛφJ

(χ0) ♣ψ⟩φtot ,
(91)

namely the expectation value of (21) (again note that a tensor product with
⊗

J ′ ̸=J IφJ′
is

understood in the last line of (91)).
In summary, this section simply shows that one can properly introduce both a Dirac

quantisation and the Page–Wootters formalism for a parametrised GFT with any number
of Peter–Weyl modes, and obtain a generalisation of all the results of sections 3 and 4. From
a conceptual point of view, everything is analogous to the single-mode case: the quantum
theory obtained from our parametrised GFT is still characterised by a Hilbert space split
into clock and geometry (cf. (80)). By carefully adapting the formalism to accommodate
multiple GFT modes, one finds a clear notion of physical relational observables representing
quantum geometrical quantities (for instance, the total number of GFT quanta in the
various modes (91)) for every value of relational time.

While we have assumed a maximum value for the Peter–Weyl label Jmax in the above
scenario, one might be able to remove the cut-off and consider the full GFT using the
theory of infinite tensor products firstly developed in [63] and implemented in the context
of loop quantum gravity in [64, 65]. In particular, extra care would be needed to make
sure the inner product (88), which in principle can contain infinite sums and integrals,
converges. Such questions require functional analysis techniques that are beyond the scope
of the present paper, and we leave them for future work.

5.2 Many reparametrisation symmetries and multi-fingered time

Here we go beyond the simple generalisation of section 5.1, looking into the possibility
of having different clocks for different GFT modes. In the quantum theory of section
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4, which focuses on a single group field mode, the Hilbert space (37) seems to have an
“artificial” symmetry as it splits into two equal pieces, one for the matter clock and one
for the GFT mode. This is not the case for the theory of section 5.1, where we consider
multiple modes on the GFT sector, but we still make use of one single clock (cf. (80)).
In this section we restore such a symmetry so that we have a clock Hilbert space that is
“as big” as the GFT Hilbert space. In other words, we study the case where every GFT
mode J has its own relational time, which realises what is known as multi-fingered time

evolution [39, 40], as we explain below. This relates to some of the ideas of [31] where
the various GFT quanta are associated with different “single-quantum times”; however, in
that scenario one encounters the problem of synchronisation since it is not clear how to
find a unique time variable to describe the whole many-body system (see also the earlier
work [66] for a classical picture). Here, we will show that by working with field modes
– and “single-mode times” – rather than particles, one can still obtain well-defined Dirac
observables and therefore pose meaningful relational dynamical questions.

In order to discuss “multiple times” and hence generalise the single reparametrisation
invariance of section 5.1, we employ the following trick. First, we rewrite the action (13)
as a sum over single-J contributions, S0[φ] =

∫

dχ
∑

J LJ (see the end of appendix A for
the details); that is, we consider the action (131). We then move the integral sign under
the summation sign and rename dummy integration variables such that, for every element
in the sum over J , χ gets labelled with an index as χJ . This allows to write the action
equivalently as

S0[φ] =
1
2

∑

J

∫

dχJ



K
(0)
J φ2

J(χJ) −K
(2)
J

(

∂χJ
φJ(χJ)

)2


. (92)

Then, one can apply the parametrisation strategy adopted in previous sections, but here
for every mode J . In other words, one can parametrise the theory multiple times (adding
a symmetry for every J) by introducing a set of parameters τJ . Just as in section 3, this
process essentially doubles the phase space and one can write the parametrised action as

S[φ, χ] =
1
2

∑

J

∫

dτJ



K
(0)
J φ2

J ∂τJ
χJ −K

(2)
J

(∂τJ
φJ)2

∂τJ
χJ



=
1
2

∫

dτ
∑

J



K
(0)
J φ2

J ∂τχJ −K
(2)
J

(∂τφJ)2

∂τχJ



.

(93)

The first line of (93) explicitly shows multiple reparametrisation invariances (one for every
mode) and in the second line we renamed the dummy integration variables τJ to τ , so that
we could write the action as a single integral. Note that while in the action (72) the same
χ contributes to all the terms in the sum, in (93) we have a different χJ for every J . With
the usual steps, one can easily derive the Hamiltonian theory from (93). The conjugate
momenta to φJ and χJ are defined for every mode J as

πJ = −K(2)
J

∂τφJ

∂τχJ
, pχJ

=
1
2



K
(0)
J φ2

J +K
(2)
J

(∂τφJ)2

(∂τχJ)2



. (94)

Moreover, the theory is subject to a set of independent first-class constraints (one for every
mode),

CJ = HJ + pχJ
= 0 , HJ = −1

2



π2
J(χ)

K
(2)
J

+K
(0)
J φ2

J(χ)

]

. (95)
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While the constraint (73) was associated with a single lapse function, one here has a mode-
dependent lapse NJ for every constraint (95). Indeed, just like with (29) and (77), it is
easy to see that this theory can be obtained from an action

S[φ, χ] =
∫

dτ
∑

J

(πJ∂τφJ + pχJ
∂τχJ −NJCJ) , (96)

which explicitly shows that the total super-Hamiltonian is given by
∑

J NJCJ . Since the
modes are independent, one obtains the equations of motion

∂τφJ = ¶φJ ,
∑

JNJCJ♢ = −NJ
πJ

K
(2)
J

, ∂τχJ = ¶χJ ,
∑

JNJCJ♢ = NJ , (97)

clearly showing that the lapses NJ describe the rate of change of the various χJ (which
will be used as clocks) with respect to τ .

Following [6–8, 67], one can generalise the notion of relational Dirac observables to
systems with multiple constraints. In particular, the scenario discussed here is easily
tractable since the constraints form an Abelian algebra,6 ¶CJ , CJ ′♢ = 0. Because a gauge-
orbit is multidimensional, one needs to introduce as many dynamical clocks as there are
constraints. Then, similarly to the single-clock case, a complete observable can be defined
as a relation between a phase space function fφ (of the φ degrees of freedom only) and a
set of independent clocks χJ . In short, the relational Dirac observable (generalising (35)
and (78)) defined as [6–8, 67]

Ffφ,¶χJ ♢(¶χ0
J♢) :=

∞
∑

n=0

1
n!

{

fφ,
∑

J

αJHJ

}

n

∣

∣

∣

∣

∣

αJ →(χ0
J

−χJ )

(98)

is invariant under the flows generated by the constraints (95). Ffφ,¶χJ ♢(¶χ0
J♢) gives the

value of fφ when the dynamical clocks χJ take the values χ0
J for all J ’s (the curly brackets

in (98) are meant to emphasise that we deal with a set of clocks and not with the J-th clock
only). The linear combination of the single-mode GFT Hamiltonians

∑

J αJHJ can be used
to define a physical Hamiltonian7 which generates evolution for the complete observables
(98). Indeed, since one can show that ∂χ0

J
Ffφ,¶χJ ♢(¶χ0

J♢) = ¶Ffφ,¶χJ ♢(¶χ0
J♢), HJ♢, the

quantity
∑

J αJHJ is the generator of multi-fingered time evolution; it evolves observables
along the various arbitrary parameters αJ (related to the lapse functions in (97)) associated
with the clocks χJ (see [6–8, 67] for details).

All the properties of the quantum theory corresponding to (96) easily follow by suitably
generalising the constructions of previous sections. The canonical operators now satisfy

[φ̂J , π̂J ′ ] = iδJJ ′ and
[

χ̂J , p̂χJ′

]

= iδJJ ′ , and the kinematical Hilbert space is defined as

Hkin = Htot
χ ⊗ Htot

φ =


⊗

J

HχJ



⊗


⊗

J

HφJ



=
⊗

J



HχJ
⊗ HφJ



, (99)

where in the last equality we rearranged the single-mode Hilbert spaces to show that this
theory can be seen as a tensor product over modes of the theory studied in section 4. While

6Not many physical systems exhibit this property. An example with multiple constraints forming an
Abelian algebra can be found in [68, 69], where loop quantum gravity techniques are applied to spherically
symmetric settings.

7Note that incorporating the J-dependent flow parameters into the definition of the Hamiltonian is
equivalent to a rescaling of τ such that the initial and final configurations are separated by a time interval
of length unity.
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we already dealt with a theory on Htot
φ with multiple GFT modes in section 5.1, it also

follows from the structure in (99) that all the kinematical considerations for the “matter
sector” (cf. (43)–(49)) described in section 4 apply here. Thus, all single-mode quantities
described there will simply obtain a J label here (for both the φ and χ sectors).

In order to follow Dirac’s quantisation programme, we write down the quantum con-
straints (corresponding to (95)) on the Hilbert space (99) as

ĈJ = p̂χJ
⊗ (

⊗

J ′ ̸=J

IχJ′

)⊗ I
tot
φ + I

tot
χ ⊗ ĤφJ

⊗ (

⊗

J ′ ̸=J

IφJ′

)

, (100)

where the various identity operators clarify that each ĈJ acts non-trivially only on the
respective J-th piece of Htot

χ and Htot
φ in (99). A physical state is annihilated by all the

constraints separately,
ĈJ ♣Ψphys⟩ = 0 ∀J , (101)

and is defined via group averaging as ♣Ψphys⟩ :=
∏

J δ(ĈJ)♣Ψkin⟩, where a generic state
♣Ψkin⟩ on (99) reads

♣Ψkin⟩ =
∫

∑

¶EJ ♢

∫

∏

J

dpχJ
Ψ (¶pχJ

♢, ¶EJ♢, ¶±♢)
[

⊗

J



♣pχJ
⟩ ⊗ ♣ψEJ ⟩

]

. (102)

Here we adopt the notation of section 5.1 (see in particular (85)), and
∫
∏

J dpχJ
means

we integrate over the scalar field momenta for all modes. One obtains the physical states

♣Ψphys⟩ =
∫

∑

¶EJ ♢
Ψ(¶−EJ♢, ¶EJ♢, ¶±♢)

[

⊗

J



♣ − EJ⟩ ⊗ ♣ψEJ ⟩
]

, (103)

which naturally generalises all the findings of previous sections (cf. (55) and (86)). Aim-
ing to discuss again the equivalence between the physical inner product with multiple
constraints (denoted with an M), which we define as

⟨Ψphys♣Ψphys⟩Mphys := ⟨Ψkin♣
∏

J

δ(ĈJ)♣Ψkin⟩kin , (104)

and the Page–Wootters inner product, one needs to extend the Page–Wootters construction
to the case of multiple clocks. In short, by introducing the “multi-conditioned” state in
Htot

φ

♣ψ(¶χ0
J♢)⟩Mφtot

:=
[

⊗

J

⟨χ0
J ♣


⊗ I
tot
φ

]

♣Ψphys⟩ , (105)

which generalises (63) by “projecting” all clocks to the values χ0
J ,8 one is lead to the

following definition of the multi-fingered (M) time Page–Wootters inner product

⟨Ψphys♣Ψphys⟩MPW := ⟨Ψphys♣
[

⊗

J

♣χ0
J⟩⟨χ0

J ♣


⊗ I
tot
φ

]

♣Ψphys⟩kin . (106)

Then, as expected from the results for a single clock of [15, 16], one finds

⟨Ψphys♣Ψphys⟩Mphys = ⟨Ψphys♣Ψphys⟩MPW =
∫

∑

¶EJ ♢
♣Ψ (¶−EJ♢, ¶EJ♢, ¶±♢) ♣2 . (107)

8Note that a physical state can be written as ♣Ψphys⟩ =


⊗

J

∫

dχ0
J ♣χ0

J ⟩


⊗ ♣ψ(¶χ0
J ♢)⟩M

φtot
so that

it encodes information about all the timelines in their entirety, and can be dubbed “state of histories”,
generalising (64).
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We point out that the steps presented here represent the first explicit construction of
the Page–Wootters formalism extended to the case of multiple (but finitely many) clocks,
which corresponds to a Dirac quantisation with multiple Hamiltonian constraints. We note
however that this could be seen as a special case of [70], where the Page–Wootters formalism
is formally applied to field theories. As mentioned above, the limiting case of infinitely
many modes (and thus clocks) could be related to infinite tensor products techniques,
and indeed be dealt with wave-functional treatments for quantum field theories (which are
employed in [70]).

We now proceed to the formal quantisation of the classical observable (98),

F̂fφ,¶χJ ♢(¶χ0
J♢) :=

[

⊗

J



∫

dχJ

2π
♣χJ⟩⟨χJ ♣

]

⊗
∞
∑

n

in

n!

[

f̂φ ,
∑

J

αJĤJ

]

n

∣

∣

∣

∣

∣

αJ →(χJ −χ0
J

)

,

(108)
which represents a natural generalisation of the quantity (59) introduced in [15, 16]. In
this sense, (108) extends the discussion of Dirac observables (and their connection to the
Page–Wootters formalism) to the multi-fingered time scenario, which we now apply to our
GFT setting.

From the physical Hamiltonian
∑

J αJĤJ one can define the multi-fingered evolution

operator
⊗

J ÛφJ
(αJ) := e−i

∑

J
αJ ĤJ on Htot

φ , where the factors ÛφJ
(αJ) = e−iαJ ĤJ gen-

eralise the evolution operators of previous sections (cf. (60)) by evolving along the mode-
dependent time parameter αJ . Then, specialising the expression (108) to the GFT number
operator with f̂φ = N̂tot (as in section 5.1), one can define

N̂ tot
D (¶χ0

J♢) :=
[

⊗

J



∫

dχJ

2π
♣χJ⟩⟨χJ ♣

]

⊗
[

⊗

J

ÛφJ
(χJ − χ0

J)


N̂tot



⊗

J

Û †
φJ

(χJ − χ0
J)
]

=
∫

∏

J

dαJ

2π
Û tot

χφ (¶αJ♢)
[

⊗

J

♣χ0
J⟩⟨χ0

J ♣


⊗ N̂tot

]

Û tot †
χφ (¶αJ♢) ,

(109)

where Û tot
χφ (¶αJ♢) :=

⊗

J



ÛχJ
(αJ) ⊗ ÛφJ

(αJ)


is the generalisation of (58), we used the

properties of the clock states introduced in section 4 (which now apply to all the clocks χJ),
and we changed integration variables χJ → αJ + χ0

J in the last line. We emphasise that
N̂ tot

D (¶χ0
J♢) is different from (89) as it depends on multiple clocks and thus it represents a

multi-fingered time version of the number operator. Recall that the subscript D means that
(109) defines a true Dirac observable, which strongly commutes with all the constraints,
namely

[

N̂ tot
D (¶χ0

J♢), ĈJ

]

= 0 ∀J . (110)

Finally, since N̂ tot
D (¶χ0

J♢)♣Ψphys⟩ =
∏

J δ(ĈJ)
[(
⊗

J ♣χ0
J⟩⟨χ0

J ♣) ⊗ N̂tot

]♣Ψphys⟩, one can
use the inner products (104) and (106), as well as the state (105), to show that

⟨Ψphys♣N̂ tot
D (¶χ0

J♢)♣Ψphys⟩Mphys = ⟨Ψphys♣N̂tot♣Ψphys⟩MPW

= M
φtot

⟨ψ(¶χ0
J♢)♣N̂tot♣ψ(¶χ0

J♢)⟩Mφtot

= M
φtot

⟨ψ♣
∑

J

Û †
φJ

(χ0
J) â†

J âJ ÛφJ
(χ0

J) ♣ψ⟩Mφtot
,

(111)

where ♣ψ⟩Mφtot
= ♣ψ(0, . . . , 0)⟩Mφtot

and we suppressed again the trivial factors
⊗

J ′ ̸=J IφJ′
. As

expected, the last line in (111) shows that every GFT mode in the total number operator
evolves according to its own relational time parameter.
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At this point we want to stress that since in a free GFT the various J modes are
decoupled, a multi-fingered setting still allows to have well-defined Dirac observables, both
classically and at the quantum level (in the sense that they commute with the constraints
(110)). In other words, synchronisation between the different J-times is not really an issue
here: while one can indeed reduce to the synchronised case of section 5.1 by gauge-fixing
all the χJ to be the same χ (using the freedom coming from all the reparametrisation
symmetries), this is not necessary in order to answer physically meaningful questions.
Indeed, one can study the dynamics of the various modes of the number operator by
means of mode-dependent clocks, and still be able to compute the total number operator
combining all the information (i.e., summing all the separate contributions together). In
a sense, it does not matter whether one uses a unique time or a different time for every
mode (even with an infinite number of modes), as they are independent.

On this note, we also emphasise that the synchronisation problem mentioned in the
literature [31] relies on having different clocks for different GFT quanta, rather than field
modes. Specifically, the issue arises because the number of particles is not conserved under
time evolution (indeed, this is how the GFT cosmology framework explains the expansion
of the Universe [27–30, 42, 43]). Even in standard quantum field theory the number of
particles is not a well-defined quantity, and the Fourier mode decomposition (here given
by the Peter–Weyl decomposition (2)) represents the most natural way of reducing the
theory to quantum-mechanical systems. Of course, one then interprets field excitations
as particles so that the single-mode times of (111) describe the evolution of GFT quanta
associated with the same J (naively, building blocks of quantum geometry with the same
“shape”).

Finally, since adding reparametrisation symmetries does not change the physical con-
tent of the theory, we note that one could have investigated equivalent questions directly in
the deparametrised setting of section 2. While there one usually studies observables where
every mode is associated with the same time label (cf. (20) and (21)), (111) suggests that
one could have defined an observable as a sum of single-mode contributions at different

times,

Ôtot(¶χJ♢) =
∑

J

eiĤJ χJ ÔJ(0) e−iĤJ χJ , (112)

where every Peter–Weyl mode is associated with a different reading of the same clock. In
the free theory, this is a well-defined observable for the deparametrised approach that was
never investigated because of its somewhat unusual interpretation (where the modes are
observed at different times), which in section 5.2 is revisited in terms of multi-fingered
time evolution. When Ô = N̂ , the expectation value of (112) is nothing but (111); in
this sense, the articulated construction of section 5.2 shows again the equivalence between
deparametrisation and “post-quantum time” dynamics.

6 Discussion

The main result of this paper is the construction and quantisation of parametrised group
field theory models for quantum gravity coupled to a massless scalar field (to be used
as a clock), and a proper definition of the corresponding relational quantum dynamics.
By virtue of the equivalence between the quantum dynamics defined by relational Dirac
observables and the Page–Wootters formalism, we showed that using the quantum degree
of freedom associated to the scalar field as dynamical clock yields the same results as
choosing the scalar field as background time variable at the classical level (i.e., following
what we call deparametrised approach in section 2).
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Specifically, we first analysed the case of a free parametrised GFT restricted to a single
field mode. Employing the strategy of “evolving constants of motion” [9–12], we could define
classical physical observables (which Poisson-commute with the Hamiltonian constraint)
as relational Dirac observables [6–8]. In particular, we focussed on the number operator in
the quantum theory – the main geometrical quantity in GFT cosmology – as evolving with
respect to the values of the matter scalar field. After discussing the quantum kinematics of
the geometry sector and of the clock sector, where the matter scalar field (and hence, “time”)
is represented by a quantum operator, we defined relational dynamics following both Dirac’s
method for constraint quantisation and the Page–Wootters formalism. These were shown
to be equivalent in [15, 16] for constraints of the form used in this paper. This is the first
application of the Page–Wootters formalism in a non-perturbative quantum gravity theory,
and it can provide useful insights for the interpretation of relational dynamics of quantum
geometry. In particular, thanks to the projection of the physical state (annihilated by the
Hamiltonian constraint) onto the “conditioned state” of the Page–Wootters formalism, this
setup provides a coherent framework describing the evolution of (the expectation values
of) the geometrical quantities of interest conditional on a quantum time operator reading
a certain value.

Other than reproducing the equivalence established in [15, 16] for GFT, a central result
of this paper is the recovery of the relational dynamics of the deparametrised setting. Before
our work, it was not clear whether one was allowed to select a clock variable at the classical
level without losing covariance [31]. By matching the dynamics of the deparametrised
approach to the ones of the “tempus post quantum” theory introduced here (which in
particular has a clear notion of Dirac observables), we showed that choosing a clock and
quantising are procedures that commute, at least for the free GFT models usually adopted
to extract cosmology from quantum gravity.

We then generalised the construction to the more complicated case of free GFT models
with an arbitrary (but finite) number of field modes. We distinguished between two sce-
narios: one where the system exhibits a single reparametrisation invariance (just like in the
single-mode case) and one with many such invariances. The first case straightforwardly
extends all the previously mentioned results; we showed that one can easily deal with
observables for GFT models with as many mode-contributions as desired. In this sense,
while the theory must be truncated to a finite number of modes for this construction to
be well-defined, the level of approximation is arbitrary.

The case of many reparametrisation symmetries, on the other hand, is achieved by
parametrising the independent modes separately and relates to the idea of “multi-fingered
time” introduced in [39, 40]. In addition to using Dirac’s quantisation programme, which
can take care of multiple constraints, we defined an extension of the Page–Wootters for-
malism to the case of multiple quantum clocks. This generalises and corroborates the
correspondence between the two frameworks proved in [15, 16] for a “single notion of time”.
We obtained a well-defined Dirac observable corresponding to the GFT number operator
that describes each single-mode contribution as evolving with respect to a different “single-
mode time”. This theory represents the most general situation: one can (but does not need
to) reduce to the setting with a single reparametrisation invariance thanks to the freedom –
coming from all the symmetries – to “synchronise” the different mode-dependent notions of
time, so as to have a unique clock for the entire system. Essentially, the framework intro-
duced in this paper provides an appropriate representation at the quantum level for both
cases (with one or multiple clocks for the various modes) as both can address well-defined
questions regarding the relational dynamics of GFT observables, such as the number of
quanta.
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We highlight that the “problem of synchronisation” noted in [31] is related to the idea of
GFT quanta (whose number is not conserved) as evolving with respect of different notions
of time; this issue is avoided in our work because we defined multi-fingered time evolution
with respect to field modes instead of particles. Already classically, the various modes
can either evolve with respect to their own relational time or with respect to the same
clock; we showed that for a non-interacting theory these dynamical questions are equally
well-defined. Moreover, we note in passing that since our construction is built upon a well-
defined physical inner product in the quantum theory, no divergences arise as in formalisms
that aim to describe relational dynamics at the kinematical level.

In light of the results of [15, 16] on the notion of changing temporal reference frames (see
also [71–74]), our work opens up the possibility of investigating clock changes and obtaining
a quantum notion of covariance in group field theory models.9 In particular, given that
the GFT literature relies to a great extent on a single massless scalar field, one can now
explore other clock candidates with a proper treatment at the quantum level. For example,
building on the work of [77] for models with multiple scalar fields, one could take advantage
of the “clock-neutral” picture to explicitly show the equivalence between quantum dynamics
with different choices of clocks in GFT. Additionally, the tools developed here also allow to
explore what happens if one uses a degree of freedom on the geometry sector (e.g., a GFT
mode) as a clock to describe relational dynamics of the matter scalar field. In a sense, this
reflects the situation in classical cosmology where for example the volume of an expanding
Universe is expected to be a good clock. Potentially, these tools could be applied to other
geometrical observables in GFT which may be considered as dynamical clocks (see [78] for
a proposal with an anisotropy degree of freedom). All such investigations would provide a
stronger handle on general covariance questions in a quantum gravity framework such as
GFT; questions that might be of interest for the communities of quantum information and
foundations of quantum mechanics, other than quantum gravity.

As mentioned in section 5, another natural line of research would be to study the case
with infinite field modes, which requires functional analysis tools for the Page–Wootters
formalism in the context of field theories [70], and might be related to infinite tensor
products techniques [63–65].

To conclude, we remark that this paper only deals with free group field theories; this
is clearly a limitation as realistic models for quantum gravity would also include higher
order terms in the group field. Importantly, such interactions are not expected to spoil
the parametrisation process as one would still obtain a constraint that is linear in the
scalar field momentum, and there would be no difference to the conceptual construction
presented in this work. In particular, one could implement the Page–Wootters formalism
and obtain a clock-neutral perspective; however, one would not be able to solve the in-
teracting quantum theory explicitly as we do here. Finally, one could in principle also
consider interactions between matter (i.e., the scalar field clock χ) and geometry. Such
interactions would require an explicit χ dependence in the action, which is usually excluded
in GFT models for cosmology as χ is interpreted as a free massless scalar field (meaning the
action must satisfy a shift symmetry). In this sense, a clock-system interaction is absent
due to the very definition of the models, where the non-interacting massless scalar field
is chosen because it behaves as an idealised clock. If one were to relax this assumption,
the matter-geometry interactions could potentially be addressed with the general tools of
[57], where the Page–Wootters states satisfy a time-nonlocal Schrödinger equation which
can be solved perturbatively. We leave the investigation of models with possible nontrivial

9Note that the role of diffeomorphisms in GFT has been studied by [75]; these appear as global sym-
metries at the level of the group manifold (see also [76]), and hence are not associated with constraints.
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matter interaction for future work.
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A GFT Hamiltonian decomposition

In this appendix we show in detail how the total GFT Hamiltonian can be written as a sum
of single-mode contributions, thus we obtain its spectral decomposition by studying prop-
erties of single-mode Hamiltonians. We begin by noting that the (quantum) Hamiltonian
(cf. (14)),

Ĥ = −1
2

∑

J



π̂J(χ)π̂−J(χ)

K
(2)
J

+K
(0)
J φ̂J(χ)φ̂−J(χ)



, (113)

can be seen as the sum of two-mode Hamiltonians, since every contribution to the sum
depends on the modes J and −J . In other words, even in the free theory, the Peter–Weyl
modes are a priori pairwise coupled such that the dynamics of the mode J is coupled with
that of the mode −J . Since the term within brackets in (113) is symmetric with respect to
exchanging J and −J (recall that KJ = K−J by assumption), the sum receives the same
contribution twice (except in the case where J = −J , i.e., a mode with vanishing magnetic
indices). One thus obtains an overall factor of 2, so that we are interested in summing over
two-mode components of the form

Ĥ(J,−J) = − π̂J(χ)π̂−J(χ)

K
(2)
J

−K
(0)
J φ̂J(χ)φ̂−J(χ) . (114)

Excluding the specific modes for which K
(0)
J = 0, the contributions (114) can be of two

different types, depending on the signs of K
(0)
J and K

(2)
J . The modes for which these

have the same sign (we denote this case with a single dash ′) contribute with a two-mode
Hamiltonian Ĥ ′

(J,−J) that automatically decouples the mode J from −J when working in

the ladder operator basis. Indeed, using (17) one obtains

Ĥ ′
(J,−J) = ϵJωJ



â†
J âJ + â†

−J â−J + 1


= ĤHO
J + ĤHO

−J , (115)

with ϵJ = (−1)
∑

I
(jI−mI) and ωJ = −sgn

(

K
(0)
J

)

√

♣K(0)
J /K

(2)
J ♣. That is, Ĥ ′

(J,−J) decouples

into the sum of two single-mode harmonic oscillator (HO) Hamiltonians, which have well-
known properties (eigenvalue problem, spectral decomposition, et cetera).

On the other hand, the modes for which K
(0)
J and K

(2)
J have opposite signs (we denote

this case with a double dash ′′) contribute with a two-mode Hamiltonian Ĥ ′′
(J,−J) that takes

the form
Ĥ ′′

(J,−J) = ωJ



â†
J â

†
−J + âJ â−J



. (116)

While this is still a two-mode operator coupling J and −J , it is possible to diagonalise it
as follows. First, we introduce the vector notation aT := (âJ , â−J) and (a†)T := (â†

J , â
†
−J)

which allows to rewrite (116) as

Ĥ ′′
(J,−J) =

1
2
ωJ



(a†)T σ1 (a†) + (a)T σ1 (a)


, (117)
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where here and in the following σi refers to the i-th Pauli matrix. Then, we perform a
change of basis by means of a unitary transformation U ,

a −→ Ua , U := e−i π
4

σ2



1 0
0 −i



. (118)

Finally, thanks to the property ei π
4

σ2 σ1 e
−i π

4
σ2 = σ3, one can easily check that UTσ1U =

I2×2 so that Ĥ ′′
(J,−J) can be written in the diagonal form

Ĥ ′′
(J,−J) =

1
2
ωJ



(â†
J)2 + â2

J



+
1
2
ωJ



(â†
−J)2 + â2

−J



= ĤSQ
J + ĤSQ

−J , (119)

namely as the sum of two single-mode squeezing (SQ) Hamiltonians.
To summarise, all types of two-mode contributions Ĥ ′

(J,−J) and Ĥ ′′
(J,−J) can be brought

into a diagonal form ((115) and (119)); i.e., the Hamiltonians Ĥ(J,−J) in (114) decouple
into a sum of single-mode Hamiltonians for all modes. It follows that the total GFT
Hamiltonian can be cast as

Ĥ =
∑

J

ĤJ , (120)

where, depending on the mode, ĤJ is either ĤHO
J or ĤSQ

J (as in the main text, see (81)).
To prove that one can obtain the spectral decomposition of the total Hamiltonian as

given in (83), one simply needs to work out the single-mode cases. Since the harmonic
oscillator is solved in any quantum mechanics textbook, we briefly review here only the
eigenvalue problem for the squeezing Hamiltonian. Working in the (φ̂, π̂) basis, the Hamil-
tonian ĤSQ for a single mode (dropping the label J in the following) can be written as (cf.
(23))

ĤSQ =
1
2

sgn(K(0))



π̂2

♣K(2)♣ − ♣K(0)♣φ̂2



. (121)

As pointed out in the main text, this is the Hamiltonian of an inverted (or upside-
down) harmonic oscillator, for which we want to solve the Schrödinger problem [51,
52]. Given the shape of the potential, and in virtue of general properties for the one-
dimensional Schrödinger equation (see, e.g., [79]), the energy spectrum is continuous,
σ(ĤSQ) = (−∞,∞), and doubly-degenerate

ĤSQψE
±(φ) = EψE

±(φ) , E ∈ R . (122)

Notice that the global sign factor sgn(K(0)) in (121) is irrelevant since switching sign
amounts to a relabelling of the eigenvalue E ∈ (−∞,∞). Thus we can set sgn(K(0)) = 1
for simplicity and without loss of generality in what follows. We then want to solve

d2

dφ2
ψE

±(φ) +


♣K(0)K(2)♣φ2 + 2♣K(2)♣E


ψE
±(φ) = 0 . (123)

To that end, we introduce the variable

ζ =

√

2i
√

♣K(0)K(2)♣ φ (124)

so that (123) becomes

d2

dζ2
ψE

±(ζ) +



ν +
1
2

− ζ2

4



ψE
±(ζ) = 0 , (125)
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with

ν = −i

√

√

√

√

∣

∣

∣

∣

∣

K(2)

K(0)

∣

∣

∣

∣

∣

E − 1
2
. (126)

(125) is called Weber equation and has known solutions in terms of parabolic cylinder
functions [53, 54], denoted Dν(ζ). Specifically, the two independent solutions are given
by ψE

+(ζ) = N+Dν(ζ) and ψE
−(ζ) = N−D−ν−1(iζ), where N± are normalisation constants

and ζ and ν are given in (124) and (126). Interestingly, when ν is a non-negative integer
n, a parabolic cylinder function simplifies to Dn(ζ) = 2−n/2e−ζ2/4Hn(ζ/

√
2), where Hn is

a Hermite polynomial (which notoriously solves the differential equation representing the
eigenvalue problem for the standard harmonic oscillator).

The first important property in the context of our paper is the orthonormality of the
eigenstates ♣ψE

±⟩ (switching to the bra-ket notation), which for suitable N± reads [51, 52]

⟨ψE
m♣ψE′

n ⟩ = δmnδ(E − E′) , (127)

where m and n label the degeneracy (+ or −) and the Kronecker delta δmn indicates that
“+ states” and “− states” are orthogonal. (127) is sometimes called generalised orthonor-
mality because of the distributional nature of the Dirac delta (one can rigorously deal
with distributions by considering rigged Hilbert spaces; see, e.g., [80]). Moreover, one can
decompose the Hamiltonian (121) and obtain a spectral resolution in the following form
[51, 52]

ĤSQ =
∫

dE E ♣ψE
+⟩⟨ψE

+ ♣ +
∫

dE E ♣ψE
−⟩⟨ψE

− ♣

=
∫

±
dE E ♣ψE

±⟩⟨ψE
± ♣ ,

(128)

where we introduced the notation
∫

± :=
∑

±
∫

. Finally, since the total GFT Hamiltonian
(113) decomposes as (120), one can make use of (128) and the standard properties of
harmonic oscillator-like Hamiltonians to obtain a total spectral decomposition for Ĥ of the
form given in (83).

To conclude the appendix, we note that one could separate the theory into uncoupled
modes already from classical considerations in the Lagrangian formalism, by writing the
GFT action (13) as a sum over single-mode contributions. In short, one can use the
following classical field redefinitions that combine the J and −J modes (somewhat as in
(118)),

φJ −→ φ̃J =
1√
2

(φJ + iφ−J) , φ−J −→ φ̃−J =
1√
2

(φJ − iφ−J) , (129)

together with the corresponding “velocities” ∂χφ̃J and ∂χφ̃−J , to show that the addenda

of the Lagrangian in (13) can be written in the following form

1
2



K
(0)
J φ̃−J φ̃J −K

(2)
J ∂χφ̃−J∂χφ̃J



=
1
4



K
(0)
J φ2

J −K
(2)
J (∂χφJ)2 +K

(0)
J φ2

−J −K
(2)
J (∂χφ−J)2



=:
1
2

(LJ + L−J) .

(130)
Just as with the Hamiltonians (see discussion above), the Lagrangians LJ and L−J provide
the same contribution to the sum

∑

J so that one can write the action (13) as

S0[φ] =
1
2

∫

dχ
∑

J



K
(0)
J φ2

J −K
(2)
J (∂χφJ)2



=
∫

dχ
∑

J

LJ . (131)

The same conclusion was already reached in a different way in [77].
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