
This is a repository copy of Adaptive Human-Robot Collaborative Missions using Hybrid
Task Planning.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/223260/

Version: Accepted Version

Proceedings Paper:
Vazquez Flores, Gricel, Evangelidis, Alexandros, Shahbeigi Roudposhti, Sepeedeh et al.
(1 more author) (2025) Adaptive Human-Robot Collaborative Missions using Hybrid Task
Planning. In: 20th International Conference on Software Engineering for Adaptive and Self-
Managing Systems. 20th International Conference on Software Engineering for Adaptive
and Self-Managing Systems, 28-29 Apr 2025 , CAN

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse
This article is distributed under the terms of the Creative Commons Attribution (CC BY) licence. This licence
allows you to distribute, remix, tweak, and build upon the work, even commercially, as long as you credit the
authors for the original work. More information and the full terms of the licence here:
https://creativecommons.org/licenses/

Takedown
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

Adaptive Human-Robot Collaborative Missions

using Hybrid Task Planning

Gricel Vázquez, Alexandros Evangelidis, Sepeedeh Shahbeigi, Simos Gerasimou

University of York, UK

{gricel.vazquez,alexandros.evangelidis,sepeedeh.shahbeigi,simos.gerasimou}@york.ac.uk

Abstract—Producing robust task plans in human-robot collab-
orative missions is a critical activity in order to increase the
likelihood of these missions completing successfully. Despite the
broad research body in the area, which considers different classes
of constraints and uncertainties, its applicability is confined to
relatively simple problems that can be comfortably addressed
by the underpinning mathematically-based or heuristic-driven
solver engines. In this paper, we introduce a hybrid approach
that effectively solves the task planning problem by decomposing
it into two intertwined parts, starting with the identification of a
feasible plan and followed by its uncertainty augmentation and
verification yielding a set of Pareto optimal plans. To enhance
its robustness, adaptation tactics are devised for the evolving
system requirements and agents’ capabilities. We demonstrate
our approach through an industrial case study involving workers
and robots undertaking activities within a vineyard, showcasing
the benefits of our hybrid approach both in the generation of
feasible solutions and scalability compared to native planners.

Index Terms—hybrid task planning, multi-robot multi-human
systems, genetic algorithms

I. INTRODUCTION

Cyber-Physical-Human Systems (CPHS) are advanced, in-

terconnected systems comprising human agents, robotic com-

ponents, and cyber infrastructure [1]. These systems are in-

creasingly used in diverse domains such as agriculture [2],

manufacturing [3], and healthcare [4], where they must collab-

orate effectively to complete their tasks while adhering to func-

tional and non-functional, probabilistic and non-probabilistic

requirements. A crucial CPHS challenge is developing robust

task plans that account for uncertainty and ensure the suc-

cessful completion of missions under dynamically changing

conditions, while ensuring plan correctness [5], [6], [7], [8].

Uncertainty in CPHS arises from various factors, including

unpredictable human behaviour, environmental variability, and

mechanical failures [9]. Addressing such uncertainty often

requires the verification of task plans by considering prob-

abilistic properties, such as the likelihood of mission success.

Probabilistic Model Checking (PMC) is a widely recognized

approach for verifying these properties [10], [11]. However,

while PMC excels at providing formal guarantees, its com-

putational requirements grow exponentially with the size and

complexity of the problem, a limitation commonly referred to

as the state explosion problem [12]. This makes PMC imprac-

tical for large-scale CPHS task planning scenarios involving

numerous agents, tasks, and potential disruptions [13], [14].

Existing approaches to task planning in CPHS can be

broadly classified into deterministic and probabilistic meth-

ods [15]. Deterministic planners, such as those based on

classical planning models like PDDL [16], are computationally

efficient but fail to address uncertainties arising from dynamic

environments or probabilistic task outcomes [17]. Probabilistic

planning frameworks, such as those using Markov Decision

Processes (MDPs), provide a formal way to model uncertainty

but suffer from scalability issues due to the exponential growth

of state space, as seen in large-scale multi-agent systems [13].

Probabilistic model checking tools like PRISM [18] and

Storm [19] have been extensively used for verification, yet

their application is often limited to relatively small problem

instances due to computational constraints.

Recent advanced hybrid approaches combine the strengths

of numerical and probabilistic methods. For instance, ap-

proaches like [20], [21] integrate constraint solving with

probabilistic verification, while probabilistic extensions of the

main definition language (PPDDL) [16] facilitate modelling

and verification of uncertain planning domains. Despite these

efforts, there remains a need for solutions that can generate

adaptable, verified plans capable of addressing real-world

requirements, such as task retries, energy consumption, and

human factors, while accommodating runtime changes.

In this paper, we propose a hybrid task planning approach

that decomposes the planning problem into two stages to tackle

the scalability and efficiency challenges. First, we employ off-

the-shelf numerical planning techniques to generate a feasible

initial plan. Next, we augment this plan with uncertainty

information yielding a parametric probabilistic model. Meta-

heuristic search allows us to synthesise Pareto-optimal task

plans that meet probabilistic requirements. We also introduce

a task planning adaptation algorithm for the generation and

unfolding of new correct and verified plans, if required.

We evaluate our approach in an industrial case study involv-

ing task execution at a vineyard, where human workers and

robots collaborate to perform vineyard activities. The results

demonstrate that our hybrid framework effectively balances

the scalability of numerical planning with the rigour of prob-

abilistic verification. By supporting incremental adaptation to

runtime changes, such as task failures or evolving require-

ments, our approach ensures both robustness and flexibility in

the CPHS plan, while also reducing computational demands.

Our main contributions are as follows: (1) we present a

hybrid approach for the generation of correct verified plans

leveraging numerical planning and PMC to mitigate the state

explosion problem; (2) we integrate meta-heuristic search to

(a) Vineyard layout. (b) World abstraction

Fig. 1: Vineyard layout and abstract representation. Locations

l1-l9 represent a section of a vineyard’s row, where tasks t1-t3
have to be completed. Task t1 can be done by human workers,

t2 by robots and t3 by either.

synthesise Pareto-optimal plans concerning maximising the

probability of mission success while minimising the mission

cost; (3) we propose an algorithm for task plan adaptation in

response to failures in the completion of tasks and changes

in requirements; and (4) we evaluate our hybrid planning ap-

proach and the adaptation algorithm on an industrial vineyard

case study provided by our project partners.

Paper structure. Section II describes our industrial case

study. Section III provides the required background. Section IV

describes the problem formulation, while Sections V and VI

present our approach and its evaluation, respectively. Finally,

Sections VII and VIII cover related work and conclusions.

II. VINEYARD INSPECTION CPHS MISSION

We motivate our approach through an industrial case study

on task automation in a vineyard in Portugal, provided by

our research partner Quinta Do Castro and the University of

Trás-os-Montes (see Figure 1a). The vineyard is divided into

subsections, each with multiple rows where different varieties

of vines grow. The old vineyards are equipped with GPS

technology, providing the precise location of each plant.

The vineyard tasks are classified as follows:

• Harvesting (t1): Grape harvesting is an extremely arduous

and repetitive activity. As a highly-dexterous task, this is

delegated only to humans. Severe fatigue has to be mitigated

whenever possible as, after many days in steep terrain condi-

tions, workers show signs of physical and mental fatigue [22].

• Vineyard monitoring (t2): Continuous monitoring of vine-

yards includes monitoring the vines’ health, the vines’ state

after a heatwave or heavy rainfall, and routine monitoring. As

remote areas can be extremely difficult for humans to reach

and magnify human fatigue, this task is delegated to robots.

• Grapevine identification (t3): Grapevine varietal identifica-

tion occurs during the observation period between the hot

months of June and August. This task, comprising vine leaf

pictures taken and sent to a central unit, is shared between

human workers and robots. This task might fail due to

communication errors, hardware failures, or the collection of

unsatisfactory low-quality images.

Costs and success probabilities associated with each task are

shown in Table I. Costs are representative of human fatigue

and the robot’s battery consumption, both scaled from 1 to

TABLE I: Task cost, success probability and maximum num-

ber of retries per task and agent (human worker or robot).
Cost Success prob. Max. retries

Task t1 t2 t3 t1 t2 t3 t1, t2, t3
Human 3 - 5 1.00 - 0.99 5
Robot - 1 1 - 0.99 0.97 10

5 units. We assume that tasks can be retried up to 5 times

by human workers and up to 10 times by robots. Tasks are

located at different locations (l1-l9) as shown in Figure 1b.

Human workers (w1, w2) and robots (r1, r2) start at l1 and can

only move between adjacent locations. They must coordinate

to complete all tasks while avoiding each other at all times

after deployment. Each move incurs a cost of 1 unit and is

allowed only if the destination location is unoccupied.

Addressing this problem entails producing a plan that en-

ables successful mission completion while minimising human

fatigue and energy costs. During operation, tasks might fail

or requirements might change and the system is required

to recover whenever possible to mitigate disruptions. Hence,

maximising the probability of success while minimising cost

and time is required. Finally, the task planner must ensure a

success probability of 0.95.

III. BACKGROUND

A. Numeric planning

A numerical planning model consists of a domain, speci-

fying the world and its behaviours, and a planning problem,

describing the specific task to be solved within that world [23],

[24]. The tuple D = (T,P,F,A) defines a domain, where T is

a set of types, P a set of predicates, F a set of numerical-valued

functions, and A a set of actions. Types categorise objects

in the domain; predicates represent properties or relationships

between objects; and actions describe possible state transitions,

each comprising preconditions and effects. Functions represent

quantities (e.g., distance, fuel level, travelling cost) and might

depend on a finite number of typed objects. A numerical fluent

is a function that models quantities that change over time.

A planning problem is defined by the tuple P =
(O, s0, g, o) where O is the set of typed objects, s0 is a set of

grounded predicates that define the state of the world at the

initial state, g is a set of predicates that must be satisfied in the

goal state, and o is the planning optimisation objective [24].

Objects are instances of domain types.

PDDL. The planning model is aligned with the standard

Planning Domain Description Language (PDDL) [16]. Dif-

ferent variants exist to accommodate classical, numeric or

temporal planning requirements. The PDDL requirements for

our task planning problem without uncertainty quantifica-

tion are :requirements :strips :typing :negative-preconditions

:numeric-fluents. Hence, we use PDDL2.1 [24], which allows

conditional statements (e.g. x > 0.5) and numerical fluents

(e.g., x+ = 1) in preconditions and effects, respectively. We

refer interested readers to [24] for a full description.

Heuristic numerical planning. The Expressive Numeric

Heuristic Search Planner (ENHSP) [25] is a planner that can

solve problems defined in PDDL. ENHSP uses an expressive

representation for the planning problem and the heuristic

search process and integrates numerical fluents to handle com-

plex numeric constraints and effects efficiently. By combining

domain-specific heuristics and search techniques, ENHSP can

find optimal or near-optimal solutions more effectively than

traditional planners in domains with numerical variables.

B. Probabilistic Model Checking

Probabilistic model checking (PMC) [12] is a formal veri-

fication technique for the quantitative analysis of probabilistic

systems. PMC tools, such as PRISM [18] and Storm [19]

automatically verify properties of such systems.

Discrete-time Markov chain (DTMC). A DTMC is a tuple

D = (S, s̄, δ, AP, L) where S is a finite set of states and s̄ ∈ S

is an initial state; δ : S → Dist(S) is a probabilistic transition

function, mapping states to probability distributions over S;

AP is a set of atomic propositions; and L : S → 2AP is a

state labelling function.

Markov Decision Process (MDP). An MDP extends a

DTMC with actions, formalized as Q = (S, s̄, Act, δ, AP, L),
where Act is a finite action set and δ : S × Act → Dist(S)
is a partial transition function. For s ∈ S, let Act(s) = {a ∈
Act | δ(s, a) is defined}, with Act(s) ̸= ∅.

Property Specification. To specify and analyse properties

of probabilistic systems, we use quantitative extensions of

temporal logic. In particular, we use Probabilistic Computation

Tree Logic (PCTL) augmented with reward-based operators

and leverage the PRISM property specification language [13],

[18]. Given the set AP of atomic propositions, we identify

four types of constructs: (i) state formulae: ϕ ::= true |
a | ¬ϕ | ϕ ∧ ϕ, where a ∈ AP ; (ii) path formulae:

ψ ::= Xϕ | ϕU≤k ϕ | ϕUϕ; (iii) reward formulae: ρ ::=
I=k | C≤k | F ϕ; and (iv) queries: Φ ::= P▷◁p[ψ] | Rr

▷◁q[ρ],
where ▷◁∈ {<,≤, >,≥}, p ∈ [0, 1], r is a reward structure,

q ∈ R≥0, and k ∈ N.

For example, the quantitative query P=?[F"success"] com-

putes the probability of eventually reaching a state labelled

"success", while R=?[F"success"] computes the correspond-

ing expected reward. Qualitative queries check threshold con-

ditions; for example, P≥0.9[F"success"] checks if the prob-

ability to reach a "success" state is at least 0.9. For MDPs,

min/max queries, like Pmin/max=?, and their reward-based

counterparts Rmin/max=? enable computing the minimum/-

maximum probability (or reward) over all MDP policies.

IV. PROBLEM FORMULATION

We consider a CPHS comprising a set of agents (robots

and humans) A = {a1, a2, a3, . . .} that reside in a world with

locations L = {l1, l2, l3, . . .}. A predicate Path : L × L → B
indicates whether a path exists between location pairs with

distance distli,lj ∈ R. The mission entails a set of tasks

T = {t1, t2, . . . , }, each to be completed at a given location

TaskLoc : T × L → B. Each agent can perform actions

Act = {Move,Do}, where Move : A × L × L → B and

Do : A×T ×L → B. The probability of an agent successfully

performing a task is given by PSuccess : A × T → [0, 1],

TABLE II: Mission requirements partitioned into constraints

Ci and optimisation objectives Oj .

ID Description

C1 An agent can travel between locations iff a path exists.
C2 An agent must be at the initial location of the path to travel.
C3 Each location must be occupied by at most one agent at any time.
C4 Agent a can be allocated task t iff PSuccess(a, t)≥γ, γ∈(0, 1]
C5 A plan is feasible iff all tasks T are completed.
C6 A plan is feasible iff the probability of succeeding is at least psucc.

O1 The mission execution cost must be minimised.
O2 The overall mission success probability must be maximised.

where 0 means that the agent cannot perform the task. In case

of a failure, an agent can retry the task up to a maximum

number of possible retries given by Retry : A × T → N0.

Finally, the cost incurred by an agent to perform a task

is given by CostT : A × T → R+
0 . These functions

neatly capture differences between the agents; for example,

PSuccess allows specifying that humans are more competent

in dexterous tasks, such as picking grapes, requiring fewer

retries than a robot, while CostT allows specifying the robots’

energy consumption or the increase in a human’s fatigue. The

CPHS mission includes the constraints C and optimisation

objectives O shown in Table II. An optimisation objective

defines if a quality attribute should be maximised or minimised

provided that all constraints are met.

Definition 1 (Problem Specification): A CPHS planning

problem is defined by the tuple M = (A,L, T ,Act, C,O, s0),

where A is a set of agents, L is a set of locations, T is a set of

tasks, Act is a set of actions, C and O are the sets of mission

constraints and optimisation objectives, respectively, and s0 is

the initial CPHS configuration comprising the set of pending

tasks and the initial location of the agents.

Definition 2 (Problem Solution): A solution to the planning

problem M is a plan comprising the list of actions performed

per agent a during its (finite) execution horizon Ha of the

mission, represented by Π =
(

(

Actha
)

h∈1...Ha

)

a∈A
.

Definition 3 (Pareto Front Solutions): Given the set of

plans ΠS , the planning problem comprises finding the Pareto-

optimal front PF induced by the Pareto-optimal set PS of

plans that satisfy the C constraints and are Pareto-optimal with

respect to the O optimisation objectives. Formally:

PS = {Π ∈ ΠS |
∧

c∈C

B(Π, c) ∧ (∄Π′ ∈ ΠS •Π′ ≺ Π)} (1)

PF = {(o,Π)o∈O|Π ∈ PS} (2)

where B(Π, c) ∈ B is True if constraint c is satisfied by plan Π
and False, otherwise, and ≺: ΠS×ΠS → B is the conventional

dominance relation from Pareto optimisation [26].

V. ADAPTIVE AND HYBRID TASK PLANNING

A. Overview

Our hybrid task planning approach realises a separation

of concerns between the probabilistic and non-probabilistic

problem elements of M to address its intrinsic complexity

and scalability issues, and solves equations (1) and (2). Fig. 2

S0. Define problem
specification

Numerical
task planning

problem

S2. Generate task
plan

Task plan

S1b. Generate task
planning problem

S3a. Extract
uncertainty-related
problem information

Artifact
Process

Task allocation and scheduling
Uncertainty plan augmentation
and verification

A3

Adaptation step

S1a. Formalise
non-probabilistic

requirements

S3c. Generate
probabilistic model
planning problem

S3b. Formalise
probabilistic
requirements Meta-heuristic

 search for task
 planning problem

Probabilistic
Model

Checking

Pareto set
of verified
task plans

A1
S4. Synthesis and verification

A2

Fig. 2: Overview of our approach showing the required steps and generated artefacts, and adaptation relevant parts.

shows the key steps of our approach. Step S0 involves defining

the problem specification M, typically provided by engineers,

with input from stakeholders and domain experts. In step S1,

this problem specification is transformed into a task planning

problem and its non-probabilistic requirements are formalised.

In step S2, a feasible plan is generated using non-probabilistic

numeric planners and constraint solvers. Next, step S3 extracts

uncertainty-relevant information from the problem specifi-

cation to both devise probabilistic-related requirements and

augment the plan produced in step S2 with such information

(e.g., number of retries, the expected probability of success).

Finally, step S4 employs meta-heuristics to synthesise the

Pareto front (PF) and the corresponding Pareto set (PS) of

revised plans that are robust to uncertainties in the CPHS

mission. During this step, probabilistic models of the task

planning problem are automatically generated and formally

verified using PMC. At runtime, our approach enables incre-

mental adaptation in response to CPHS changes by selecting

an alternative plan from the Pareto set (A1), re-executes the

probabilistic synthesis (A2) if the original plan is still feasible

and only resorts to adaptation from scratch (A3) if it cannot

deal with the changes or guarantee a new set of constraints.

B. Approach

Problem Specification (S0): Starting at step S0, our ap-

proach involves defining the problem specification M, encod-

ing information needed for the CPHS mission. This model M
conforms to the JSON format. The following example presents

its structure for the vineyard CPHS mission from Section II.

Example 1 (Problem Specification). Figure 3a shows the

syntax of the problem specification file for our vineyard case

study. This is divided into locations L, paths, tasks T , agents

A, and mission constraints C and objectives O. Location

elements comprise a unique identifier and an optional descrip-

tion. Path objects contain start and end location identifiers, an

optional description, and a travelling cost (distance = 1).

Task objects define groups of inter-related tasks, comprising a

unique identifier (e.g., t1), an optional description and a list

of tasks with identifiers (t1l4, t1l6a, t1l6b, t1l7 ∈ T) and

locations (e.g., Taskloc(t1l4) = l4). Agent objects are defined

by a unique identifier, a type, type ∈ {“worker", “robot"},

and a set of tasks the agent can perform. Each task has an

identifier (e.g., t1 which refers to tasks t1l4, t1l6a, t1l6b and

t1l7), an expected cost (e.g., CostT (t1l4) = 3), a probability

of success (e.g., PSuccess(t1l4) = 1) and the number of

retries allowed per agent (e.g., Retry(t1l4) = 5). In our

example, worker1 can perform tasks t1 and t3. Lastly, two

constraints describe the probability of success (psucc) given by

mission_probability_of_success = 0.95, and the allocation

threshold γ = 0.5 (“min_assignment_probability”).

Task Planning Problem Generation (S1): Step S1 extracts

the relevant requirements (S1a) for creating the domain D and

the numeric planning problem P (S1b), cf. Section III-A. The

relevant requirements from Table II are formalised to inform

the execution of feasible actions Act for the CPHS agents.

Concretely, constraints C1–C3 apply to action Move,

∀a : A; li, lj : L | Path(li, lj) ∧ AgentLoc(a) = li ∧

Empty(lj) =⇒ Move(a, li, lj) (3)

resulting in move actions that are available only when there

is a path to the target location (C1), the agent is at the initial

location (C2), given by AgentLoc : A → L, and the target

location is empty (C3), given by Boolean Empty : L 7→ B.

For the Do action, only constraint C4 applies, yielding

∀a : A; l : L; t : T |AgentLoc(a) = l∧ TaskLoc(t) = l∧

¬TaskDone(t) ∧ Psucc(a, t) ≥ γ =⇒ Do(a, t, l) (4)

resulting in do actions executable when an agent is at the task’s

location, the task is available and not yet done at that location,

and provided that the agent’s competency exceeds threshold γ.

The numeric planning problem is written in the PDDL

language [16]. Figure 3b shows the PDDL domain D, where

the non-highlighted parts are generic and reusable. The domain

comprises three types T: locations, tasks and agents. Predi-

cates P are defined for the agent’s location (agent_at), paths

(path), empty locations (empty), task locations (task_loc), and

the completion of tasks (task_done). The two functions F spec-

ify the probability of an agent completing a task successfully

(p_success) and track the travelling cost (travel_dist).

Actions A exist to move an agent and perform a task. The

Move action precondition (Figure 3b, lines 13-15) requires an

existing path, an agent at the initial location, and the next

location to be empty. The effect of this action (lines 16-19)

is that the agent moves to the specified location, the original

location becomes empty, the destination location is no longer

dtmc

evolve int w2_maxRetry_t1l4 [1..5];

evolve int w2_maxRetry_t3l4 [1..5]; ...

const double p_w2_t1l4=1.0;

const double p_w2_t3l4=0.99; ...

const int w2Final = 12;

const int w2Fail = 13; ...

module _w2

w2 : [0..13];

w2retry_t1l4 : [0..w2_maxRetry_t1l4] init 0;

w2retry_t3l4 : [0..w2_maxRetry_t3l4] init 0;

...

[w2movel4] w2=0-> 1:(w2’=w2+1);

[w2dot1l4Retry] w2=1 &

w2retry_t1l4 < w2_maxRetry_t1l4 ->

p_w2_t1l4 : (w2’=w2+1) +

(1-p_w2_t1l4) : (w2’=w2) &

(w2retry_t1l4’ = w2retry_t1l4+1);

[w2dot1l4] w2=1 &

w2retry_t1l4 >= w2_maxRetry_t1l4 ->

1:(w2’=w2Fail);

... endmodule

module _r1

... endmodule

rewards "cost"

[w2movel4] true:1;

[w2dot1l4] true:3;

[w2dot1l4Retry] true:3;

[w2dot3l4] true:5;

... endrewards

{

"locations": [

{"id": " l1 ", "description": "Initial location.",}

,...],

"paths": [

{

"start_location": "l1", "end_location": "l2" ,

"description": "Path from l1 to l2",

"distance": 1

},...]

"tasks": [

{

"id": "t1", "description": "Harvesting",

"instances": [

{ "id": " t1l4 ", "location": " l4 "},

{ "id": " t1l6a ", "location": " l6 "},

{ "id": " t1l6b ", "location": " l6 "},

{"id": " t1l7 ", "location": " l7 "}]

},...]

"agents": [

{

"id": " w1 ", "type": "worker",

"initial_location": " l1 ",

"tasks": [

{

"type": "t1", "cost": 3 ,

"completion_time": 1;

"probability_of_success": 1.00,

"number_of_retries": 5

},

{

"type": "t3", "cost": 5 ,

"completion_time": 1;

"probability_of_success": 0.99,

"number_of_retries": 5

}]

},...

]

"constraints":

{

"mission_probability_of_success": 0.95,

"min_assignment_probability": " 0.5 "

}

}

(define (domain cphs-domain)

(:requirements :strips :typing :negative-preconditions :numeric-

fluents)

(:types location task agent)

(:predicates

(agent_at ?a - agent ?l - location)

(path ?l_from - location ?l_to - location)

(empty ?l - location)

(task_loc ?t - task ?l - location)

(task_done ?t - task))

(:functions (p_success ?a - agent ?t - task) (travel_dist))

(:action move

:parameters (?a - agent ?l_from - location ?l_to - location)

:precondition

(and (path ?l_from ?l_to) (agent_at ?a ?l_from)

(empty ?l_to))

:effect

(and (not (agent_at ?a ?l_from)) (agent_at ?a ?l_to)

(empty ?l_from) (not (empty ?l_to))

(increase (travel_dist) 1)))

(:action do

:parameters (?a - agent ?t - task ?l - location)

:precondition

(and (agent_at ?a ?l) (task_loc ?t ?l)

(not (task_done ?t)) (<= 0.5 (p_success ?a ?t)))

:effect (and (task_done ?t))))

(a) Input Json file

(define (problem cphs-problem)

(:domain cphs-domain)

(:objects l1 l2 l3 l4 l5 l6 l7 l8 l9 - location

w1 w2 r2 r1 - robot

t1l6a t2l5 t1l4 t3l4 t2l8b t1l6b t3l7 t1l7 t3l9 t2l8a - task)

(:init

(= (travel_dist) 0)

(path l1 l2) (path l2 l1) ...

(empty l2) (empty l3) (empty l4) ...

(task_loc t1l4 l4) (task_loc t1l6a l6) ...

(agent_at w1 l1) (agent_at r1 l1) ...

(= (p_success w1 t1l4) 1)

(= (p_success w1 t3l4) 0.99)

(= (p_success w1 t2l5) 0) ...)

(:goal

(and (task_done t1l4) (task_done t1l6a)...)

(:metric minimize (travel_dist)))

(c) PDDL problem file

(b) PDDL domain file

(d) Parametric DTMC and properties in EvoChecker

//objective, max

P=? [F "success"]

//objective, min

R=? [F "done"]

////constraint, min, 0.95

//P=? [F "success"]

Pareto set point at (0.98,37.81)

with Pareto front point given by

{t1l4:1, t3l4:1, t1l7:2, t3l7:1, t3l9: 2,

t1l6b:4, t1l6a:5, t2l5:9, t2l8a:5,

t2l8b:7}

(e) Pareto-optimal set of solutions
P=? [F "success"]

R
=
?
[
F
"d
o
n
e
"
]

Fig. 3: Input file (a), generated PDDL files (b,c), parametric DTMC with probabilistic properties (d) and synthesis Pareto-

optimal set of solutions (plans). The highlighted sections of the PDDL files use a colour palette based on the corresponding

parts of the input file. The yellow parts refer to the task planning with uncertainty quantification part (see Figure 2).

empty and the total travel time increases (line 19). The Do

action precondition (Figure 3b, lines 22-24) specifies that an

agent must be present at the task location, the task must be

in an undone state, and the agent must have a probability of

successfully completing the task ≥ γ. The function p_success

associates an agent to its probability of task completion. In our

example, as γ = 0.5, only robots with at least 50% chance of

completing the task are allowed to take action Do. The effect

of this action (line 25) results in the task being done.

Figure 3c shows an example of the planning problem

P in PDDL. As before, non-highlighted parts are generic

and reusable The problem-typed objects O are defined by

the location, agent and task identifiers from the input file.

The initial state sinit (lines 6-14) comprises the travel cost

initialised to zero (line 7); all existing paths defined by the

symmetric relation of paths defined in the input file (line 8);

the empty locations comprising all locations except the initial

location of agents (line 9); the task locations (line 10) defined

from task instances in the input file; the agents initial locations

(line 11); and the probabilities of each agent succeeding with

the tasks capable of performing (lines 12-14). When an agent

cannot perform a task, this is initialised to zero (line 14).

Finally, goal g entails that all tasks are done, i.e., constraint C5,

(line 16) is met and the optimisation objective of minimising

travel distance (line 17) is achieved.

Example 2 (Task Planning Model). We defined the task

planning model in Figures 3b and 3c, showing the domain

D and problem P in PDDL for our vineyard case study. The

highlighted parts follow the colour palette of the corresponding

parts in the input file from which these were obtained.

Task Plan Generation (S2): Given the task planning

formulation, defined in PDDL by a domain D and a problem

P, step S2 generates a feasible but uncertainty-agnostic task

plan using an off-the-shelf numeric planner like ENHSP [25].

The outcome of the planning problem is a plan Π, comprising

a sequence of actions that transitions the CPHS from one state

to another, ultimately achieving the goal state (g).

Example 3 (Task plan). For our case study, an

optimal plan that minimises the travelling cost is the

following sequence of robot (r1) and worker (w2)

actions: ⟨Move(w2, l1, l4), Do(w2, t1l4, l4), Do(w2, t3l4, l4),

Move(w2, l4, l7), Do(w2, t1l7, l7), Do(w2, t3l7, l7),

Move(r1, l1, l4), Move(r1, l4, l5), Do(r1, t2l5, l5), Move(

w2, l7, l8), Move(w2, l8, l9), Move(r1, l5, l8), Do(r1,

t2l8a, l8), Do(r1, t2l8b, l8), Do(w2, t3l9, l9), Move(w2, l9, l6),

Do(w2, t1l6b, l6), Do(w2, t1l6a, l6)⟩.

Uncertainty Augmentation and Task Plan Refinement

(S3): Step S3a extracts uncertainty information from the

problem specification to generate the relevant probabilistic

requirements and a probabilistic model of the plan in steps S3b

and S3c, respectively. For the probabilistic model, it extracts

the probability of task success (PSuccess), costs (distance

and CostT) and allowed number of task retries (Retry).

For the probabilistic requirements, it extracts the minimum

probability of mission success psucc.

Next, step S3b formalises requirements C6 and O1, O2 in

PCTL. Thus, it uses information about the task plan gener-

ated in step S2 to define the final states: “success", where

all agents completed their allocated tasks successfully, and

“done", where no more actions are possible (due to mission

success or failure). The PCTL requirements yielded are: C6:

P≥psucc
[F “success"]; O1: minimise the total expected cost

(min Rcost
=? [F “done"]); and O2: maximise the probability of

mission success (max P=?[F “success"]).

In step S3c, a parametric DTMC model D of the plan is

created, enhanced with uncertainty information. To create this

model, we extract the number of actions (nact) assigned to

an agent in the task plan from step S2 and the number of

tasks assigned to an agent (nt) that allow for retries. Model D
contains state variables for each agent in the task plan, defined

by the tuple s = (c, x,), where c ∈ [0, nact + 1] tracks the

agent’s actions increasing by one when an action is completed

(c =0 to nact), or when a task has failed (c = nact + 1); and

x = x1, x2, ... is a collection of variables such that xi tracks

the attempted retries of a task. The upper bound of variable

xi, i.e., x̂i, is a parameter of D and its value is synthesised in

step S4 to yield a robust plan. The maximum number of retries

cannot exceed the limit defined in the problem specification

(step S0), hence x̂i ∈ [1, Retry(t)]. The total number of state

variables is the sum of agents selected to undertake tasks in

the CPHS and the set of tasks with retries per agent.

Transitions in model D per agent a are defined based on the

sequence of actions it must perform. Move actions increase

c by one. Attempting a task t with Retry(t) = 0 results

in c + = 1 with probability PSuccess(a, t) representing a

succeeded attempt, and in c = nact + 1 with probability 1-

PSuccess(a, t) when failed. Finally, attempting a task t with

Retry(t) > 0 has two possible transitions depending on the

value of x. Let x ∈ x be the state variable tracking the number

of retries for task t,

• if x < x̂, then with probability PSuccess(a, t) succeeds

and c + = 1, and with probability 1-PSuccess(a, t) fails

increasing the number of retries x + = 1.

• else, it fails resulting in c = nact + 1.

Rewards are defined over transitions so that a Move action

incurs a travelling cost distance, and Do action a cost

of CostT (a, t) per agent-task pair (a, t). This step yields

the model D and PCTL properties in the EvoChecker lan-

guage [27], used for the task retries’ synthesis in step S4.

Example 4 (Probabilistic Model). Figure 3d shows the task

plan augmented with uncertainty data. Lines 2-3 define the

retry parameters and their range for the meta-heuristic search.

For instance, w2 assigned with task t1l4 which can retry up to

five times is shown in line 2. Lines 4-5 capture the probability

of success for each task assigned to each agent. Lines 6-7

define two values of state variable c for each agent, named

as Final (i.e., robot succeeds with its tasks) and Fail. Each

agent’s behaviour is modelled as a separate module. Lines 8-

22 describe worker w2 actions. Lines 9-12 initialise the state

variables c (line 9) and x (lines 10-12). The transition at line 13

shows a move action. Transition at lines 14-18 shows the

attempt to complete task t1l4. Transition at lines 19-22 shows

w2 failing to complete the task after the allowed number of

retries. The reward structure (lines 25-30) shows the transition

rewards with costs specified in the input file. The formalised

properties in EvoChecker are shown in the white rectangle,

with the minimum success probability value (0.95) extracted

from the problem specification in step S0.

Synthesis and verification (S4): To generate a Pareto-

optimal set of verified plan solutions, our approach uses meta-

heuristic search to search for combinations of task retries using

genetic algorithms (GAs) [26]. Chromosomes represent the

number of retries for each task. Internally, at the GA evaluation

stage, our approach generates concrete DTMC models of the

task plan with the parameters x̂ fixed, and employs PMC to

analyse the set of extracted PCTL properties (bottom right of

Figure 3d). The Pareto-optimal front PF contains the values

of the task plan’s expected cost and success probability for

objectives O1 and O2, while the Pareto-optimal solutions set

PS contains the values of the number of retries per task.

Example 5 (Pareto Front). Figure 3e shows the Pareto-

optimal front found with 25 different combinations of decision

points clustered into five regions. A single solution depicted

in red shows the task retries allowed as a dictionary. The GA

was set to 200 evaluations with a population size of 25.

Incremental Adaptation (A1–A3): At runtime, the imple-

mented plan is adjusted in response to changes, leveraging

the self-management and adaptation capabilities for CPHS

offered by the MAPE-K loop [28]. The Monitor checks for

the following changes and disruptions:

• C1: a task failure;

• C2: a change in the minimum success probability psucc;

• C3: a change in the minimum assignment probability γ;

• C4: a change in an agent’s probability PSuccess(a, t).

The Analyse phase receives the change type

C∈{C1,C2,C3,C4} and analyses the current state of the

system compared to its status in the knowledge base. Based

on the analysis result, a strategy is selected by the Plan phase.

The adaptation process is shown in Algorithm 1. Given a

change C, a deployed plan Π, the time of the change τ and an

initial set of verified and robust plans PS (i.e., the Pareto front

set), our approach results in an adaptation related to different

parts of the task planning approach (A1, A2 or A3) as shown

in Figure 2. For all changes, our algorithm follows a similar

data flow: (a) reduce the PS set by removing incorrect plans

that do not comply with the change, (b) if our current plan

is part of this PS, continue without adaptation, (c) otherwise,

check if another plan exists (PS.nonempty) and deploy a new

plan. If no plan exists, re-plan from step S0.

Let Πj ∈ PS be a verified plan. Let Πj [k], k ∈ R+0 denote

the action (starting) at time k in Πj ; Πj [: k] all actions up to

time k and Πj [k :] from k onwards. Here, we use the notion

of a time unit as the duration of an action. A change occurs

at time τ if it happens at time τ or later, but before τ + 1.

When C1 occurs at time τ (lines 1-2),

REDUCE_PS_TF(PS, τ, t) selects a new set of plans

PS′ ⊆ PS with plans that comply with the current progress

(Πj [: τ] = Π[: τ]) and has (a retry of) do task t at the

next step Πj [τ + 1]. Similarly, when C2 occurs (lines 3-4),

REDUCE_PS_PSUCC(PS, τ, p′succ) selects a new set of

plans PS′ ⊆ PS with plans that comply with the current

progress as in C1 and that have a mission success probability

greater than or equal to the new p′succ.

When C3 occurs (lines 5-6),

REDUCE_PS_PASSIGN(PS, τ, t, γ′) first checks if any

(undone) task in Π[τ :] has PSuccess(a, t) ≤ γ′. If

this holds, it yields an empty PS′ triggering line 15 in

Algorithm 1. This change entails that as all Πj ∈ PS

follow the same allocation from S2, when the allocation is

invalid all plans become invalid. Finally, when C4 occurs,

REDUCE_PS_PTASK(PS,t, a, p′) first checks whether the

new probability p′ of succeeding with t by agent a applies to

any (undone) tasks in Π[τ :]. If it does, the function proceeds

similarly to C3, checking if the new probability p′ > γ; if

not, the process is reset from step S0. If the condition holds,

a new set PS′ ⊆ PS is generated from S3 for the tasks in

Π[τ :], with the updated probabilistic information p′.

Adaptations A1-A3 occur at various stages of the task

planning process, as illustrated in Fig. 2. A minor adaptation

A1 might be required by changes C1 or C2, requiring only

plans from PS. A medium adaptation A2 might be required

by C3 or C4 when plans follow the allocation constraints but

new probabilistically verified plans must be obtained. A major

adaptation A3 might be required by C3 or C4 when allocations

are no longer valid as they violate constraints related to the

allocation threshold γ.

Algorithm Correctness. Algorithm 1 terminates for a finite

|PS| and without any loops. A finite |PS| is ensured as

PS results from the synthesis step S4 (see Fig. 2), which

is set to a finite number of evaluations. The correctness of

the solutions produced by the adaptation algorithm is ensured

through the following guarantees: (a) changes C1 and C2 only

modify the plan by selecting from previously generated correct

plans in PS; (b) change C3 solely impacts the allocation

process (as the γ threshold only impacts the task allocation),

hence adaptations result in a new task planning problem from

S0, with the new problem specification guarantees a new

correct set of solutions; (c) change C4 checks compliance

with both planning and probabilistic constraints. This change

can proceed as C3, or generate new plans from S3. As the

input plan in S3 guarantees compliance with the planning

constraints, from S3, a new set of verified plans (in S4) is

then guaranteed to be correct.

Although we can guarantee the correctness of the generated

plans through our adaptation process, we cannot guarantee that

a plan exists, for example, when too strict requirements are set

(e.g., minimum probability of success >0.99) or the planning

problem is unsolvable (e.g., when no path exists to reach one

Algorithm 1 Task plan adaptation algorithm

Require: Monitored change C
Require: Global var. Π ▷ current plan
Require: Global var. τ ▷ time of change
Require: Global var. PS ▷ set of verified plans
Require: Global var. M ▷ Definition 1 (Problem specification)

1: if C=C1 then ▷ C1: task t failure
2: PS′ ← REDUCE_PS_TF(PS,τ ,t)
3: else if C=C2 then ▷ C2: mission success p′

succ
change

4: PS′ ← REDUCE_PS_PSUCC(PS,τ, p′
succ

)
5: else if C=C3 then ▷ C3: prob. of assignment γ′ change
6: PS′ ← REDUCE_PS_PASSIGN(PS,t,γ′) ▷ via PMC
7: else if C=C4 then ▷ C4: task t success from a changed to p′

8: PS′ ← REDUCE_PS_PTASK(PS,t, a, p′) ▷ via PMC
9: end if

10: if (Π ∈ PS′) then
11: return Π ▷ No adaptation required (N/A)
12: else if (PS′ ̸= ∅) then
13: return SELECT_NEW_PLAN(PS′) ▷ A1/A2
14: else
15: PS ← GENERATE_NEW_PLANS(M,Π, τ) ▷ A3
16: return SELECT_NEW_PLAN(PS)
17: end if
18: Return

of the tasks). Moreover, to reduce complexity, we limit our

approach to only one change per time unit for this paper. This

assumption holds for agents working in parallel. A plan Π
contains the actions of all agents, while an individual agent’s

plan contains only that agent’s actions. The key difference

is that multiple actions can be executed simultaneously. By

restricting ourselves to one change per time unit, adaptations

impact the plans of all agents at once. Future work will

investigate ways to relax this constraint.

VI. EVALUATION

A. Research questions

RQ1 (Effectiveness): How effective is our hybrid approach,

in terms of solution quality and computational perfor-

mance, when compared to an optimal solution derived

from a full MDP model of the problem specification? To

mitigate the state explosion problem, our approach leverages

heuristic numerical planners for task partitioning and schedul-

ing, and verifies augmented plans using PMC. We compare the

effectiveness of our verified plan solutions against those from

a full MDP (optimal) baseline synthesised using PRISM [18].

RQ2 (Adaptation): How effective is our approach in

dealing with runtime changes by adapting the plan when

necessary and reducing latency costs? We assess the ef-

fectiveness of our runtime adaptation to changes C1-C4 and

discuss reductions in replanning latency.

RQ3 (Efficiency): How computationally efficient is our

hybrid approach when we increase the number of tasks

and agents in the problem specification? We investigate

the efficiency of our approach when increasing the planning

problem in the number of tasks and the number of agents.

B. Experimental setup

We assess the effectiveness, adaptability, and efficiency of

our hybrid approach and compare it against a full MDP base-

line derived from the problem specification. We use several

TABLE III: Hybrid approach compared to a full-MDP model

Planning problem Full MDP verification approach Hybrid approach

ID |T | |L| retries agents #states #trans

PMC
execution
mean time
(SD) [s]

|PS| #
states*

#
trans*

Numerical
planner
mean time
(SD) [s]

Verif.
& search
mean time
(SD) [s]

|PS|
mean (SD)

M1 3 9 1 1 human, 1 robot 35,081 172,714 196.69 (85.38) 3 14 17 0.29 (0.02) 104.2 (1.85) 1 (0.00)
M2 2 6 3 1 human, 1 robot 134,581 541,767 128.53 (53.93) 3 36 48 0.33 (0.02) 105.7 (5.94) 4 (0.00)
M3 3 9 CS 2 human, 2 robot 270,100,547 1,351,524,022 Timeout - 398 553 0.33 (0.02) 884.2 (138.06) 47.80 (7.87)
M4 10 9 CS 2 human, 2 robot OOM OOM - - 1,825,976 3,822,145 2.02 (0.08) 128.1 (10.31) 39.93 (3.17)

* from DTMC with max. number of task retries per agent (i.e., largest possible model checked).

OOM = out of memory. CS = retries set as in Table I. All tasks in M1−2 are type t3. Model M4 is our vineyard case study (Section II)

problem instances of varying complexity and numbers of tasks

and agents, including those (M1, M2, M3, M4) from Table III.

RQ1 (Effectiveness). To evaluate the effectiveness of our

approach compared to an optimal baseline, we generated a

full MDP from the problem specification in Section IV. By

obtaining policies from this full MDP, we compute optimal

Pareto fronts that serve as baselines for comparison. We apply

our approach to several problem instances of increasing com-

plexity and measure solution quality, execution times (mean

and standard deviation), and the number of solutions over

30 runs. We also compare the model sizes of the MDP, and

the DTMC generated in step S4 with parameters set to the

maximum number of retries.

RQ2 (Adaptation). To investigate how our approach man-

ages runtime changes (e.g., task failures, probability value

changes), similar to [29], we present a scenario where all

changes (C1-C4) and adaptations (A1-A3) happen during a

typical execution of our industrial vineyard case study. We

assessed latency reduction when applying different adaptation

strategies at different steps of our hybrid planning approach.

RQ3 (Efficiency). We examine how the computational

efficiency of our approach changes as the problem size grows.

Thus, we vary the number of tasks (10 to 13) and agents (2,

4, and 6) from our vineyard case study. Tasks were assigned

random locations, while agents were deployed at location

l1. We report metrics as those for RQ1; however, given the

high variation in the execution time results, we reported the

geometric median following standard statistical guidance [30].

Implementation details. All experiments are run on an Intel

Core i5 @2.40 GHz machine with 8 GB RAM, under Ubuntu

22.04.5 LTS 64-bit. Our hybrid approach is fully automated.

For step S2, we use a model-to-model (M2M) transformation

implemented in Python to generate the PDDL files. We pro-

duce a task plan using the ENHSP numerical solver in the

Unified Planning library [31]. A second M2M transformation

generates the EvoChecker input files. Multi-objective optimi-

sation at steps S3-S4 is performed using EvoChecker [27],

[32], which orchestrates PRISM and the JMetal [33] search

framework with NSGA-II configured to 150 evaluations and a

population size of 30 following guidelines [34]. In RQ3, as we

were interested in efficiency, we increased the population size

to 100. Experiments use PRISM set to 8 GB memory limit.

Our open-source code is available at [35].

C. Results and Discussion

RQ1 (Effectiveness). To generate the optimal Pareto front,

we tested the multi-objective verification capabilities of the

widely-used PMC tools PRISM [18] and Storm [19]. How-

ever, neither tool could solve the multi-objective verification

problem outlined in Section V-B—reachability rewards for

multi-objective properties are not supported. Thus, we verified

the bounded cumulative reward Rmin=?[C<=20] and the

reachability property Pmax=?[F “success"] simultaneously for

both our approach and PRISM/Storm using the full MDP.

For the first two models (M1 and M2) we were able to

generate Pareto solutions for both the full MDP and our

approach. However, due to an explosion in the size of the

MDP models, we could not do the same for M3 and M4—

M3 was parsed but could not be checked (Table III). Our

hybrid approach successfully generated plans for all models.

Since we resolved the allocation and scheduling separately,

the probabilistically checked models were reduced by several

orders of magnitude. For example, M1 was reduced from

35,081 states to 14, and 172,714 transitions to 17. This also

resulted in a lower execution time compared to the full MDP.

Figures 4a and 4b show that our approach generates dominated

solutions while the full MDP yields the optimal Pareto front.

We continue evaluating each model’s results separately.

For M1 we only allowed for one retry. Our approach first

generated a plan to deploy only one robot. Therefore, we only

find one single solution where the robot can retry all three tasks

once. In comparison, the full MDP resulted in plans to deploy

the robot or the human worker. These are the red diamonds

close to Pmax=?[F “success"]=0.99. A human has a slightly

higher probability of completion (0.99) than the robot (0.97)

but incurs a higher expected cumulative cost.

For M2, our approach also deploys a single robot. However,

as more retries are allowed, the Pareto front results in four

solutions. Calculating the total number of solutions for this

allocation results in 32 (multiplying the number of retries

per task), this is only 9 solutions to search by the GA—five

dominated and four non-dominated. Models M1 and M2 are

too small to benefit from our hybrid approach implementation

resulting in unnecessary latencies. For these smaller problems,

exhaustive searches can be considered instead.

For M3 and M4, we obtained several verified plans as shown

in their Pareto front plots. Moreover, each of these Pareto

front points corresponds to more than one combination of

task retries. For example, for model M3 we obtained 8.51

Pareto front points on average (the solution in Fig. 4c shows

these clustered near five points), while these correspond to a

total of 27.77 different verified plans on average. These results

are the basis for our adaptation algorithm: we can change

Fig. 4: Pareto front from optimal baseline and our hybrid solution for problem instances. From left to right: M1,M2,M3,M4.

the plan to one with more retries, if needed, while ensuring

plan correctness, even for complex models where full MDP

verification is not feasible—though at the cost of optimality.

RQ2 (Adaptation). Our adaptation algorithm accommodates

a finite number of monitored changes C1-C4 and adaptation

strategies A1-A3. Therefore, these were exhaustively tested

in our provided tool [35], where changes are injected along

the plan timespan. Here, we present the adaptation results on

a continuous run for our industrial case study showing all

monitor changes and adaptations (see Fig. 5). Worker 2 starts

by travelling to l4.

• Case N/A: At time 1 (i.e., between 1 and 2 time units

as explained in Sec. V-B), worker w2 attempts task t1l4 and

fails. The task failure is already anticipated in the current plan,

allowing for a t1l4 retry.

• Case A1: At time 2, task t1l4 fails during a retry attempt.

No second retry is allowed. Plan B, which allows for two t1l4
retries and is consistent with the current plan A progress, is

found in the verified plans. After the second retry, the task

succeeds and proceeds with t3l4.

• Case N/A 2: At time 4, a change in the probability of

mission success psucc = 0.8 results in no adaptation, as all

plans already comply with such constraint update.

• Case A2: At time 11, the worker’s probability

PSuccess(w2, t3l9) changes to 0.89 as tiredness start build-

ing up. This modifies the probability of plan success and a new

verified plan is synthesised at S3 for the remaining actions for

both w2 and r1 agents (due to space limitations, we show only

w2). A new plan C is deployed, which follows the same task

and travel sequence —up to this point— as Plans A and B.

• Case A3: At time 13, a change γ′ = 0.9 invalidates all

verified plans obtained from S2 , as w2 can succeed with t3l9
only with 0.89 probability. Hence, a new plan is generated

from S0 and the completion of tasks continues.

This representative scenario shows how the planning adapta-

tion transpires at runtime to avoid a task failure or the violation

of a requirement. In RQ1, we discuss the computational costs

of the different stages of the generation of plans. Here, we

show that some of these costs can be avoided when no adapta-

tion, or adaptations A1 and A2, are performed. At times 1 and

2, no replanning costs were incurred. At time 11, the execution

time for numerical planning was avoided. Meanwhile, the

execution of the hybrid planning was only required at time 12,

emphasizing the efficiency gains achieved via the adaptation

of hybrid planning techniques. The benefit of this incremental

Fig. 5: Sample scenario showing adaptation cases A1-A3.

Fig. 6: a) DTMC states, b) DTMC transitions, c) Numerical

planner time, and d) Verif. & search time for 10-13 tasks.

adaptation shows that replanning from scratch is not always

necessary. In fact, task planning adaptation can leverage results

from different stages of the planning process (such as the

structure of a plan and the expanded set of verified plans),

provided that the stages generating these results can guarantee

their correctness after the change is applied.

RQ3 (Efficiency). We conducted experiments for different

combinations of the number of tasks and robots, with the

results presented in Table IV and Figure 6. The planner’s

computation time increases consistently for increments in both

of these parameters, demonstrating relatively low variation in

comparison to the verification and search counterpart. This

is expected as verification and search perform multiple GA

evaluations of the possible feasible plans. The verification

and search times show significant variability depending on the

number of tasks—in particular, on the number and locations

of the tasks (see Fig. 6c and d). As we randomly generated the

task locations, these resulted in multiple planning problems,

some easier to solve than others. This diversity explains the

consistent increase in reported mean, but also in the standard

deviation (SD). For instance, for 13 tasks, we have a variation

in model size of ±10.34×1011 and ±38.20×1011 geometric

SD for states and transitions, respectively. The overall time

required for verification and search increases as the total

TABLE IV: Computational times and model sizes for RQ3.

#

tasks

#

agents

Num. planner

time (SD) [s]

Verif. & search

time (SD×10
4) [s]

states ×10
7

(SD×10
9)

transitions ×10
9

(SD×10
10)

10 4 3.71 (11.85) 4,760.4 (0.06) 1.89 (0.43) 0.06 (0.15)

11 4 14.11 (10.35) 21,301.05 (16.2) 18.64 (20.00) 0.55 (5.17)

12 4 16.02 (35.12) 73,001.82 (28.2) 84.39 (547.00) 2.62, (155.00)

13 4 32.43 (49.70) 348,623.4 (28.8) 684.40 (1034.00) 24.09 (382.0)

#

tasks

#

agents

Num. planner

time (SD) [s]

Verif. & search

time (SD) [m]
states (SD) # transitions (SD)

10 2 0.53 (0.04) 7.54 (11.65) 1,872,856 3,915,885

10 4 2.10 (0.09) 13.92 (2.38) 1,825,976 3,822,145

10 6 9.39 (0.19) 15.31 (1.38) 1,872,856 3,915,885

number of tasks grows, driven by the corresponding increase

in plan complexity. The variations in the number of states

and transitions follow a similar trend (Fig. 6a and b). This

determines the complexity of the probabilistic model, which

increases on average with additional tasks.

For agent variations, all agents starting from l1 resulted in a

single plan per robot count. This results in a single probabilis-

tic model size reported with retry parameter values set to the

maximum number of retries. Increasing the number of agents

increases the allocation complexity which, in turn, increases

the heuristic planners’ time. This increase is expected, as

a greater number of agents introduces additional decision

variables and constraints into the planning process. However,

the verification and search times do not exhibit a discernible

trend, highlighting their dependence on the sequential plan

generated by the numerical planner. For instance, 2-agent and

6-agent cases yielded similar states and transitions, as only

2 agents (1 human, 1 robot) were actively assigned tasks in

both scenarios. These findings indicate that the complexity of

the verification part is driven by the number of robots in the

numerical planning solution rather than by the initial number

of agents. Furthermore, increasing either the number of tasks

or agents leads to a significant rise in computational time.

Threats to validity. We reduce construct validity threats

due to simplifications in the specifications of the planning

problem and adaptation tactics selection by using an industrial

case study from our ongoing European-project collaboration.

This paper is aligned with their vision of long-term adaptation

for their CPHS tasks. We mitigate threats in the adaptation

cases of Algorithm 1 by exhaustively testing each of the

possible adaptation scenarios automatically through our tool.

We mitigate external validity threats that could affect

the generalisation of our approach by using off-the-shelf

numerical planners and the search-based software engineering

tool EvoChecker [27]; the latter using the widely used PRISM

model checker internally. This also mitigates introducing

errors in the relevant search algorithms underpinning our

approach. We use the widely used PDDL2.1 [16] language to

define our numerical planning problem, and the PRISM-based

EvoChecker language for the multi-objective optimisation part.

For consistency, we verified the full MDP in PRISM [18].

VII. RELATED WORK

Multiple hybrid approaches have been proposed to address

the multi-agent task planning problem and variants (task allo-

cation, task scheduling and motion planning [36]) [37], [38],

[39]. Reviews such as [40] present an overview of some of

these hybrid approaches. These include combining GAs with

mixed integer linear programming [41], Branch and Bound

(BnB) [42], Q-learning [43], game-theory [44], clustering [45],

[46] and simulated annealing [47]. KANOA [48], [21] com-

bines constraint solving with GA and PMC for the allocation

and scheduling of tasks. In contrast, our solution uses GA

and PMC for the verification of probabilistic properties and

task retry synthesis, while efficiently pre-solving the numerical

task planning problem through heuristic methods. PMC has

become a prominent technique for ensuring reliability under

uncertainty [11], [49], successfully applied in task planning

problems [50]. However, its limited adoption remains due to

the state explosion problem, motivating our approach.

Prior work on task planning under uncertainty, emphasis-

ing cyber-physical systems, has been studied using various

approaches [8], [51], [52]. Random resource availability is

considered in [5], while [53] considers dynamic task al-

location through replanning or task reallocation. For self-

adaptive systems, frameworks such as ROSRV, [54], and

runtime verification approaches [55], [56] can check the safety

and temporal properties during system execution. However,

these and many similar approaches [5] do not provide explicit

adaptation strategies. Finally, for CPHS, different variants,

including human-in-the-loop [15], human-on-the-loop [57],

[38], and human-machine-interaction [58] for task planning,

have been extensively studied. Specifications such as“humans

can reject plan solutions" [22] will be explored in future work.

VIII. CONCLUSIONS AND FUTURE WORK

We presented a hybrid adaptive task planning approach

to generate correct and verified CPHS plans. By combining

numerical planning methods and probabilistic model checking,

our approach effectively decomposes task planning into deter-

ministic and uncertainty-augmented stages. Integrating meta-

heuristic search enables synthesising Pareto-optimal plans that

manage uncertainties while meeting formal probabilistic re-

quirements. Our approach produced plans for larger problems

that policy synthesis based on full MDP and verification via

probabilistic model checking failed. Incremental adaptation

also yields computational time savings when possible.

Future work will extend our approach to support multiple

simultaneous changes and other requirements relevant to our

CPHS problem, e.g., human fatigue levels or sensor failures

instrumented through real-time feedback from agents. We will

also investigate using advanced numeric planners [59] and

decentralised adaptation [49]. Finally, we will explore using

graphical editors for mission specification [60].

Acknowledgements. This research was supported by the

Europe Horizon projects AI4Work (101135990) and SO-

PRANO (101120990), and by the ULTIMATE project funded

by the Advanced Research and Invention Agency, UK. We

thank Alessandro Valentini, Elisa Tosello and Andrea Micheli

from Fondazione Bruno Kessler for their helpful support on the

numerical planner, and Quinta Do Castro and the University

of Trás-os-Montes for their help with the case study.

REFERENCES

[1] A. Annaswamy, P. Khargonekar, F. Lamnabhi-Lagarrigue, and S. Spur-
geon, Cyber-Physical-Human Systems: Fundamentals and Applications,
ser. IEEE Press Series on Technology Management, Innovation, and
Leadership. Wiley, 2023.

[2] P. Tokekar, J. Vander Hook, D. Mulla, and V. Isler, “Sensor planning
for a symbiotic UAV and UGV system for precision agriculture,” IEEE

Transactions on Robotics, vol. 32, no. 6, pp. 1498–1511, 2016.

[3] J. Lee, B. Bagheri, and H.-A. Kao, “A cyber-physical systems archi-
tecture for industry 4.0-based manufacturing systems,” Manufacturing

Letters, vol. 3, pp. 18–23, 2015.

[4] R. Calinescu, J. Cámara, and C. Paterson, “Socio-cyber-physical sys-
tems: Models, opportunities, open challenges,” in 2019 IEEE/ACM

5th International Workshop on Software Engineering for Smart Cyber-

Physical Systems (SEsCPS). IEEE, 2019, pp. 2–6.

[5] R. Sanchez, J. Troya, and J. Camara, “Automated planning for adap-
tive cyber-physical systems under uncertainty in temporal availability
constraints,” in International Symposium on Software Engineering for

Adaptive and Self-Managing Systems, 2024, pp. 14–24.

[6] J. Camara, S. Hahner, D. Perez-Palacin, A. Vallecillo, M. Acosta,
N. Bencomo, R. Calinescu, and S. Gerasimou, “Uncertainty flow di-
agrams: Towards a systematic representation of uncertainty propagation
and interaction in adaptive systems,” in Proceedings of the 19th Inter-

national Symposium on Software Engineering for Adaptive and Self-

Managing Systems, 2024, pp. 37–43.

[7] D. Weyns, R. Calinescu, R. Mirandola, K. Tei, M. Acosta, N. Bencomo,
A. Bennaceur, N. Boltz, T. Bures, J. Camara et al., “Towards a research
agenda for understanding and managing uncertainty in self-adaptive
systems,” ACM SIGSOFT Software Engineering Notes, vol. 48, no. 4,
pp. 20–36, 2023.

[8] X. Zhao, S. Gerasimou, R. Calinescu, C. Imrie, V. Robu, and D. Flynn,
“Bayesian learning for the robust verification of autonomous robots,”
Communications Engineering, vol. 3, no. 1, p. 18, 2024.

[9] M. Zhang, B. Selic, S. Ali, T. Yue, O. Okariz, and R. Norgren,
“Understanding uncertainty in cyber-physical systems: A conceptual
model,” in Modelling Foundations and Applications, A. Wąsowski and
H. Lönn, Eds. Cham: Springer International Publishing, 2016, pp.
247–264.

[10] R. Calinescu, C. Ghezzi, M. Kwiatkowska, and R. Mirandola, “Self-
adaptive software needs quantitative verification at runtime,” Commun.

ACM, vol. 55, no. 9, p. 69–77, Sep. 2012. [Online]. Available:
https://doi.org/10.1145/2330667.2330686

[11] M. Kwiatkowska, G. Norman, and D. Parker, “Advances and challenges
of probabilistic model checking,” in 2010 48th Annual Allerton Confer-

ence on Communication, Control, and Computing (Allerton), 2010, pp.
1691–1698.

[12] M. Kwiatkowska, G. Norman, and D. Parker, “Stochastic model
checking,” in Formal Methods for Performance Evaluation: 7th

International School on Formal Methods for the Design of Computer,

Communication, and Software Systems, SFM 2007, Bertinoro, Italy, May

28-June 2, 2007, Advanced Lectures, M. Bernardo and J. Hillston, Eds.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2007, pp. 220–270.
[Online]. Available: https://doi.org/10.1007/978-3-540-72522-0_6

[13] M. Kwiatkowska, G. Norman, and D. Parker, “Probabilistic model
checking and autonomy,” Annual review of control, robotics, and au-

tonomous systems, vol. 5, no. 1, pp. 385–410, 2022.

[14] S. Gerasimou, J. Cámara, R. Calinescu, N. Alasmari, F. Alhwikem,
and X. Fang, “Evolutionary-guided synthesis of verified pareto-optimal
mdp policies,” in 2021 36th IEEE/ACM International Conference on

Automated Software Engineering (ASE). IEEE, 2021, pp. 842–853.

[15] J. E. Fischer, C. Greenhalgh, W. Jiang, S. D. Ramchurn, F. Wu, and
T. Rodden, “In-the-loop or on-the-loop? Interactional arrangements to
support team coordination with a planning agent,” Concurrency and

Computation: Practice and Experience, vol. 33, no. 8, p. e4082, 2021.

[16] H. L. Younes and M. L. Littman, “PPDDL1. 0: An extension to PDDL
for expressing planning domains with probabilistic effects,” Techn. Rep.

CMU-CS-04-162, vol. 2, p. 99, 2004.

[17] R. Calinescu, S. Gerasimou, K. Johnson, and C. Paterson, “Using
runtime quantitative verification to provide assurance evidence for self-
adaptive software: advances, applications and research challenges,” in
Software Engineering for Self-Adaptive Systems III. Assurances: Interna-

tional Seminar, Dagstuhl Castle, Germany, December 15-19,. Springer,
2017, pp. 223–248.

[18] M. Kwiatkowska, G. Norman, and D. Parker, “Prism 4.0: Verification of
probabilistic real-time systems,” in Computer Aided Verification: 23rd

International Conferenc (CAV). Proceedings 23. Springer, 2011, pp.
585–591.

[19] C. Hensel, S. Junges, J.-P. Katoen, T. Quatmann, and M. Volk,
“The probabilistic model checker storm,” Int. J. Softw. Tools Technol.

Transf., vol. 24, no. 4, p. 589–610, Aug. 2022. [Online]. Available:
https://doi.org/10.1007/s10009-021-00633-z

[20] J. Cámara, “Haiq: Synthesis of software design spaces with structural
and probabilistic guarantees,” in Proceedings of the 8th International

Conference on Formal Methods in Software Engineering, 2020, pp. 22–
33.

[21] G. Vázquez, R. Calinescu, and J. Cámara, “Scheduling of missions
with constrained tasks for heterogeneous robot systems,” in Formal

Methods for Autonomous Systems (FMAS), ser. Electronic Proceedings
in Theoretical Computer Science, vol. 371, Berlin, Germany, September
2022, pp. 156–174.

[22] B. Wang, P. Zheng, Y. Yin, A. Shih, and L. Wang, “Toward human-
centric smart manufacturing: A human-cyber-physical systems (hcps)
perspective,” Journal of Manufacturing Systems, vol. 63, pp. 471–490,
2022.

[23] M. Ghallab, D. Nau, and P. Traverso, Automated planning and acting.
Cambridge University Press, 2016.

[24] M. Fox and D. Long, “PDDL2. 1: An extension to PDDL for expressing
temporal planning domains,” Journal of artificial intelligence research,
vol. 20, pp. 61–124, 2003.

[25] E. Scala, P. Haslum, S. Thiébaux, and M. Ramirez, “Interval-based
relaxation for general numeric planning,” in ECAI. IOS Press, 2016,
pp. 655–663.

[26] C. C. Coello, “Evolutionary multi-objective optimization: a historical
view of the field,” IEEE computational intelligence magazine, vol. 1,
no. 1, pp. 28–36, 2006.

[27] S. Gerasimou, G. Tamburrelli, and R. Calinescu, “Search-based synthesis
of probabilistic models for quality-of-service software engineering (t),”
in IEEE/ACM International Conference on Automated Software Engi-

neering (ASE). IEEE, 2015, pp. 319–330.

[28] J. O. Kephart and D. M. Chess, “The vision of autonomic computing,”
Computer, vol. 36, no. 1, pp. 41–50, 2003.

[29] S. Gerasimou, R. Calinescu, and A. Banks, “Efficient runtime quantita-
tive verification using caching, lookahead, and nearly-optimal reconfig-
uration,” in Proceedings of the 9th international symposium on software

engineering for adaptive and self-managing systems, 2014, pp. 115–124.

[30] P. J. Fleming and J. J. Wallace, “How not to lie with statistics:
the correct way to summarize benchmark results,” Commun. ACM,
vol. 29, no. 3, p. 218–221, Mar. 1986. [Online]. Available:
https://doi.org/10.1145/5666.5673

[31] Rovetta, Alberto and Trapasso, Alessandro and Valentini, Alessandro
and et al., “Unified planning documentation,” 2024, accessed: 2024-
12-02. [Online]. Available: https://unified-planning.readthedocs.io/en/
latest/index.html

[32] S. Gerasimou, R. Calinescu, and G. Tamburrelli, “Synthesis of proba-
bilistic models for quality-of-service software engineering,” Automated

Software Engineering, vol. 25, no. 4, pp. 785–831, 2018.

[33] J. J. Durillo and A. J. Nebro, “jmetal: A java framework for multi-
objective optimization,” Advances in engineering software, vol. 42,
no. 10, pp. 760–771, 2011.

[34] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, “A fast and elitist
multiobjective genetic algorithm: Nsga-ii,” IEEE transactions on evolu-

tionary computation, vol. 6, no. 2, pp. 182–197, 2002.

[35] Project’s GitHub: https://github.com/Gricel-lee/EfficientPlanAdaptation.

[36] A. Messing, G. Neville, S. Chernova, S. Hutchinson, and H. Ravichan-
dar, “Grstaps: Graphically recursive simultaneous task allocation, plan-
ning, and scheduling,” The International Journal of Robotics Research,
vol. 41, no. 2, pp. 232–256, 2022.

[37] A. Fang and H. Kress-Gazit, “Automated task updates of temporal logic
specifications for heterogeneous robots,” in International Conference on

Robotics and Automation (ICRA). IEEE, 2022, pp. 4363–4369.

[38] A. Ham and M.-J. Park, “Human–robot task allocation and scheduling:
Boeing 777 case study,” IEEE Robotics and Automation Letters, vol. 6,
no. 2, pp. 1256–1263, 2021.

[39] Z. Chen, J. Alonso-Mora, X. Bai, D. D. Harabor, and P. J. Stuckey,
“Integrated task assignment and path planning for capacitated multi-
agent pickup and delivery,” IEEE Robotics and Automation Letters,
vol. 6, no. 3, pp. 5816–5823, 2021.

[40] H. Chakraa, F. Guérin, E. Leclercq, and D. Lefebvre, “Optimization
techniques for multi-robot task allocation problems: Review on the state-
of-the-art,” Robotics and Autonomous Systems, p. 104492, 2023.

[41] X. Zhou, H. Wang, B. Ding, T. Hu, and S. Shang, “Balanced connected
task allocations for multi-robot systems: An exact flow-based integer
program and an approximate tree-based genetic algorithm,” Expert

Systems with Applications, vol. 116, pp. 10–20, 2019.

[42] J. G. Martin, J. R. D. Frejo, R. A. García, and E. F. Camacho, “Multi-
robot task allocation problem with multiple nonlinear criteria using
branch and bound and genetic algorithms,” Intelligent Service Robotics,
vol. 14, no. 5, pp. 707–727, 2021.

[43] R. J. Alitappeh and K. Jeddisaravi, “Multi-robot exploration in task
allocation problem,” Applied Intelligence, vol. 52, no. 2, pp. 2189–2211,
2022.

[44] J. G. Martin, F. J. Muros, J. M. Maestre, and E. F. Camacho, “Multi-
robot task allocation clustering based on game theory,” Robotics and

Autonomous Systems, vol. 161, p. 104314, 2023.

[45] S. Saeedvand, H. S. Aghdasi, and J. Baltes, “Robust multi-objective
multi-humanoid robots task allocation based on novel hybrid metaheuris-
tic algorithm,” Applied Intelligence, vol. 49, no. 12, pp. 4097–4127,
2019.

[46] F. Janati, F. Abdollahi, S. S. Ghidary, M. Jannatifar, J. Baltes, and
S. Sadeghnejad, “Multi-robot task allocation using clustering method,”
in Robot Intelligence Technology and Applications 4: Results from the

4th International Conference on Robot Intelligence Technology and

Applications. Springer, 2017, pp. 233–247.

[47] Z. Junwei and Z. Jianjun, “Study on multi-UAV task clustering and task
planning in cooperative reconnaissance,” in 2014 Sixth International

Conference on Intelligent Human-Machine Systems and Cybernetics,
vol. 2. IEEE, 2014, pp. 392–395.

[48] G. Vázquez, “Scheduling of missions with constrained tasks for hetero-
geneous multi-robot systems,” Ph.D. dissertation, University of York,
2024.

[49] R. Calinescu, S. Gerasimou, and A. Banks, “Self-adaptive software with
decentralised control loops,” in Fundamental Approaches to Software

Engineering, A. Egyed and I. Schaefer, Eds. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2015, pp. 235–251.

[50] J. Cámara, B. Schmerl, and D. Garlan, “Software architecture and task
plan co-adaptation for mobile service robots,” in Proceedings of the

IEEE/ACM 15th International Symposium on Software Engineering for

Adaptive and Self-Managing Systems, ser. SEAMS ’20. New York, NY,
USA: Association for Computing Machinery, 2020, p. 125–136.

[51] T. Pan, A. M. Wells, R. Shome, and L. E. Kavraki, “Failure is an option:
task and motion planning with failing executions,” in International

Conference on Robotics and Automation (ICRA). IEEE, 2022, pp.
1947–1953.

[52] K. Ye, F. Yan, and S. Gerasimou, “Quantitative assurance and synthesis
of controllers from activity diagrams,” arXiv preprint arXiv:2403.00169,
2024.

[53] S. Alirezazadeh and L. A. Alexandre, “Dynamic task scheduling for
human-robot collaboration,” IEEE Robotics and Automation Letters,
vol. 7, no. 4, pp. 8699–8704, 2022.

[54] J. Huang, C. Erdogan, Y. Zhang, B. Moore, Q. Luo, A. Sundaresan,
and G. Rosu, “ROSRV: Runtime verification for robots,” in Runtime

Verification, B. Bonakdarpour and S. A. Smolka, Eds. Cham: Springer
International Publishing, 2014, pp. 247–254.

[55] A. Ferrando, L. A. Dennis, D. Ancona, M. Fisher, and V. Mascardi,
“Verifying and validating autonomous systems: Towards an integrated
approach,” in Runtime Verification, C. Colombo and M. Leucker, Eds.
Cham: Springer International Publishing, 2018, pp. 263–281.

[56] S. A. Zudaire, L. Nahabedian, and S. Uchitel, “Assured mission adapta-
tion of UAVs,” ACM Transactions on Autonomous and Adaptive Systems

(TAAS), vol. 16, no. 3-4, pp. 1–27, 2022.

[57] N. Li, S. Adepu, E. Kang, and D. Garlan, “Explanations for human-on-
the-loop: A probabilistic model checking approach,” in Proceedings of

the IEEE/ACM 15th International Symposium on Software Engineering

for Adaptive and Self-Managing Systems, 2020, pp. 181–187.

[58] J. Cleland-Huang, A. Agrawal, M. Vierhauser, M. Murphy, and M. Pri-
eto, “Extending mape-k to support human-machine teaming,” in Pro-

ceedings of the 17th Symposium on Software Engineering for Adaptive

and Self-Managing Systems, 2022, pp. 120–131.

[59] A. Micheli, A. Bit-Monnot, G. Röger, E. Scala, A. Valentini, L. Framba,
A. Rovetta, A. Trapasso, L. Bonassi, A. E. Gerevini et al., “Unified

planning: Modeling, manipulating and solving ai planning problems in
python,” SoftwareX, vol. 29, p. 102012, 2025.

[60] I. Predoaia, J. Harbin, S. Gerasimou, C. Vasiliou, D. Kolovos, and
A. García-Domínguez, “Tree-based versus hybrid graphical-textual
model editors: An empirical study of testing specifications,” in Proceed-

ings of the ACM/IEEE 27th International Conference on Model Driven

Engineering Languages and Systems, 2024, pp. 80–91.

