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AbstractÐThis paper introduces GrINet, a Graph-based
neural NETwork for channel estimation and Interpolation us-
ing Demodulation Reference Signals (DM-RS) to enhance esti-
mation accuracy in wireless communication systems. GrINet
models each Resource Element (RE), the smallest resource
unit in 5G New Radio, as a node in a graph, with edges con-
necting DM-RS-enriched nodes, enabling effective modeling
and processing of complex channel conditions. Building on
this, we propose decentralized Federated GrINet (FGrINet),
a hierarchical framework that combines Federated Learning
(FL) at the base station (BS) level with decentralized collab-
oration across BSs. Locally, each BS employs FL to optimize
CE models using data from its connected users under unique
channel conditions. Globally, BSs share and aggregate their
locally trained models in a decentralized manner, enabling
collaborative learning without relying on centralized orches-
tration. This two-tiered approach allows BSs to operate in
favorable conditions to assist others, enhancing adaptability to
diverse channel environments. FGrINet can be implemented
as an xApp architecture, aligning with O-RAN’s goals of using
distributed machine learning for intelligent, real-time RAN
optimization. Our simulation involving multiple BSs, diverse
channel profiles, and varying user mobility demonstrates that
FGrINet reduces local training time, enhances CE accuracy,
and achieves low mean squared error (MSE).

Index TermsÐGraph Neural Network (GNN), Federated
Learning (FL), Wireless Channel Estimation, Demodulation
Reference Signals (DM-RS), O-RAN

I. INTRODUCTION

Channel Estimation (CE) is a fundamental process in

modern wireless communication systems, enabling accu-

rate signal detection and robust system optimization. It is

particularly vital in 5G scenarios that demand high through-

put, low latency, and reliable performance in single-user

and multi-user MIMO configurations. In 5G New Radio

(NR), CE is achieved through Demodulation Reference

Signal (DM-RS), which utilize orthogonal frequencies and

orthogonal cover codes to ensure robust pilot transmission

across time and frequency resources [1]. The accuracy of

CE directly impacts key network metrics such as spectral

efficiency, signal robustness, and user quality of service,

especially in dynamic and interference-prone environments.

Emerging architectures such as Open Radio Access

Network (O-RAN) offer new opportunities to enhance CE

through flexible, modular, and software-driven solutions.

O-RAN disaggregates traditional RAN systems into Central

Units (CUs), Distributed Units (DUs), and Radio Units

(RUs), connected via open interfaces to enable multi-

vendor interoperability and scalability [2]. O-RAN intro-

duces programmable Radio Intelligent Controllers (RICs),

which host xApps and rApps that leverage Artificial Intel-

ligence (AI) and Machine Learning (ML) to dynamically

optimize network operations [3]. This modular and pro-

grammable architecture is particularly suited for integrating

advanced CE techniques to address challenges posed by

heterogeneous and high-mobility deployments.

While traditional CE methods like Least Squares (LS)

and Minimum Mean Squared Error (MSE) are compu-

tationally efficient, they often fail in highly dynamic or

complex channel conditions. Recent advancements in ML

have enabled data-driven approaches that significantly im-

prove CE [4]. Techniques like Convolutional Neural Net-

works (CNN) [5] and Long Short-Term Memory (LSTM)

networks [6] improved accuracy by leveraging the spatial

and temporal patterns of wireless channels. However, these

methods typically rely on grid- or sequence-based repre-

sentations, which are insufficient to capture the complex

relational structures in wireless channels fully. Centralized

ML-based CE frameworks face challenges such as commu-

nication overhead, privacy concerns, and scalability issues,

particularly in large-scale deployments.

Federated Learning (FL) addresses many of these chal-

lenges by enabling decentralized model training, where

local devices or Base stations (BS) share model parameters

rather than raw data, thereby preserving user privacy and

reducing communication overhead [7]. Recent studies [8],

[9] have proposed FL-based CE frameworks that achieve

high performance while addressing privacy concerns. How-

ever, existing FL-based approaches lack mechanisms for

collaborative knowledge sharing between BSs in diverse

environments, limiting their adaptability to dynamic de-

ployment scenarios. Therefore, it is essential to determine

how decentralized learning frameworks can be effectively

leveraged to enhance knowledge sharing across BSs while

preserving privacy and ensuring adaptability to dynamic

and heterogeneous environments.

The reliance on simplistic data representations signifi-

cantly limits the effectiveness of existing CE methods in

capturing the complex characteristics of wireless channels.

Graph Neural Networks (GNN)s have emerged as a power-



ful tool for modeling relational and structural data. Unlike

traditional grid-based approaches, GNNs represent wireless

channels as graphs, where nodes and edges capture spatial

and temporal relationships. This relational modeling capa-

bility makes GNNs particularly well-suited for CE [10].

However, GNNs have yet to see widespread adoption for

CE. This paper addresses three key research questions:

1) How can algorithms be designed to effectively lever-

age graph-based representations of wireless chan-

nels?

2) How can the integration of GNNs with decentralized

learning paradigms, such as FL, overcome current

challenges?

3) How can collaborative learning approaches improve

overall CE performance?

To address these questions, we introduce a novel framework

that integrates GNNs with FL within the O-RAN architec-

ture to enhance CE. The main contributions of this work

are as follows:

1) Graph-Based Wireless Channel Estimation & In-

terpolation: We propose a graph-based representa-

tion for wireless channels, where Resource Element

(RE)s are modeled as nodes, referred to as RE nodes

throughout this paper, and each node is connected to

DM-RS nodes with weighted edges. This approach

captures complex spatial and temporal correlations,

surpassing the limitations of grid- or sequence-based

methods.

2) Two-Tier Hierarchical Framework: We propose a

two-tier framework to enhance scalability and adapt-

ability in decentralized CE. At the first tier, user-level

models are aggregated locally at each BS, enabling

the capture of environment-specific channel charac-

teristics tailored to the unique conditions of each BS.

At the second tier, these locally aggregated models

are further combined across multiple BSs, facilitating

collaborative knowledge sharing and enabling BSs in

diverse or challenging conditions to benefit from the

network’s collective expertise.

3) Efficient Fine-Tuning Mechanism: To reduce com-

putational and communication overhead, we intro-

duce a fine-tuning mechanism where pre-trained

GNNs weights at each BS are updated by received

DM-RS symbols from new user devices.

Through this integration of GNNs, FL, and O-RAN, the

proposed framework addresses key limitations of existing

CE approaches, including their reliance on simplistic data

representations, lack of scalability, and centralized archi-

tectures. Simulation results demonstrate that the framework

achieves notable accuracy, robustness, and efficiency in dy-

namic and heterogeneous deployment scenarios, setting the

stage for next-generation wireless communication systems.

Fig. 1 illustrates the architecture of the proposed system,

which integrates multiple BSs operating under diverse

channel models and serving users with varying mobility

profiles. Users transmit DM-RS to the BSs, which use

these symbols to train the Graph-based Neural Network for

Channel Estimation and interpolation (GrINet) model Fig.

1A. In the first tier of the architecture, each BS performs

local FL by aggregating individual models trained on its

respective users’ data Fig. 1B. In the second tier, these

locally aggregated models are shared in a decentralized

manner with other BSs for collaborative improvement Fig.

1C. This decentralized sharing eliminates the need for BSs

to train GrINet from scratch for new users. Instead, BSs can

update the pre-trained model using the DM-RS of the new

users. The system employs a two-tier aggregation process:

first, local aggregation at each BS combines the models

trained for individual users. Subsequently, decentralized ag-

gregation across BSs refines the overall model, enhancing

performance and scalability.

Fig. 1A provides an overview of the GrINet architecture.

In each time slot, BSs represent the received DM-RS REs

as DM-RS nodes in a graph, while the remaining REs

requiring CE are represented as RE nodes. GrINet leverages

this graph-based structure by connecting each RE node

to all DM-RS nodes using weights. The input to GrINet

comprises features of the DM-RS nodes, including the

channel estimates’ real and imaginary components. These

features are passed through three stages involving Rectified

Linear Unit (ReLU) activation functions and graph convo-

lution layers, allowing GrINet to extract enhanced feature

representations. The output of GrINet is the estimated

channel for all nodes in the network for a given user,

representing the overall channel state.

II. SYSTEM MODEL

A. Frame Structure of 5G NR

In 5G NR, downlink and uplink data are transmitted

in 10 ms frames, each divided into 10 subframes of 1

ms. Subframes consist of variable slots determined by

the subcarrier spacing (∆f ), allowing flexibility based on

cell size, latency, and interference requirements. Each slot

consists of 14 Orthogonal Frequency Division Multiplexing

(OFDM) symbols when using a normal Cyclic Prefix (CP)

or 12 OFDM symbols when using an extended CP. RE, the

smallest resource unit in 5G NR, are grouped into Physical

Resource Blocks (PRB) of 12 neighboring REs per symbol.

The flexible frame structure and multiple OFDM numerolo-

gies improve adaptability and performance. As shown in

Fig. 2, this paper utilizes Numerology 0 with an extended

CP, configured with four PRBs and 1, 2, or 4 DM-RS

symbols per slot.

B. Network Topology

This paper considers a typical wireless communication

system, where multiple BSs serve single-antenna users,

denoted as Ub. During the uplink phase, each user transmits

DM-RS symbols along with data to the BS. At the BS,

CE is performed by training the GrINet using the received

DM-RS. At each BS, GrINet is trained for individual users,
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Fig. 2: Frame structure in 5G NR

and the resulting models are aggregated using Federated

Averaging (FedAvg) [11] to construct a Federated GrINet

(FGrINet) model. To address the heterogeneity of chan-

nel configurations, we consider a combination of channel

settings across BSs, including two models that utilize

different numbers of DM-RS symbols and support users

with varying mobility speeds.

The network consists of multiple BSs, denoted as b ∈
B = {1, 2, · · · , B}, where B = 12 represents the total

number of BSs in the system. We assume the use of

3GPP-defined Clustered Delay Line (CDL) channel mod-

els, specifically types A and C [12], to capture different

propagation environments. Additionally, two user mobility

patterns are considered, with speeds of 3 km/h and 300

km/h, representing low and high mobility scenarios, respec-

tively. Users transmit a varying number of DM-RS for CE,

ranging from 1 to 4 per slot, with each having a duration

of 71µs. This variation reflects diverse environmental and

communication conditions. Let ubm represent the m-th user

associated with the b-th BS, where b ∈ B and m ∈ Ub.

Here, Ub denotes the set of users served by BS b. The

wireless channel for each ubm in the uplink transmission is

represented by the channel matrix Hubm,b ∈ C
K×N , where

K is the total number of subcarriers and N is the total

number of symbols. The indices k ∈ K = {1, 2, · · · ,K}
denote the subcarrier index, and n ∈ N = {1, 2, · · · , N}
denote the symbol index.

The estimated channel corresponds to the received signal

from the user ubm at BS b at DM-RS positions is given

by Ĥ ∈ C
Kp×Np , where the number of DM-RS symbols,

Np, varies depending on the channel configuration. We

assume a half-DM-RS density in frequency, meaning that

the DM-RS symbols are spread across half of the available

subcarriers, specifically on every second subcarrier, i.e.,

kp = {2, 4, · · · , ⌊K/2⌋ ·2}. By incorporating these diverse

channel models and configurations, our system effectively

accounts for the heterogeneity of wireless channels. The

final step of CE involves interpolation, where the channel

estimates are extended to cover all subcarriers and the

entire OFDM resource grid. Instead of performing simple

interpolation sequentially first in the frequency domain and

then in the time domain, we integrate the interpolation

process directly into the GrINet framework. This integrated

approach allows for more accurate and efficient CE, as

detailed in the following subsection III-A.

III. GRINET & FGRINET

A. Graph Estimation & Interpolation Model: GrINet

This subsection introduces GrINet, by defining nodes,

edges, and their associated features. With graph represen-



tation of wireless channels, estimation and interpolation

can be integrated into a unified framework, improving

wireless channel prediction accuracy. A graph is a triplet

G = (V, E ,W), which includes vertices or nodes V , edges

E , and weights W . Each node v ∈ V corresponds to

a specific combination of a subcarrier and symbol. The

node v is characterized by its feature vector xv ∈ R
2,

where the dimensions represent the real and imaginary

parts of the channel coefficient. Initially, the features of

nodes corresponding to DM-RS are set to the estimated

channel values. For non-DM-RS nodes (RE nodes), the

feature values are initialized to zero and subsequently

refined during the training process.

To establish relationships between nodes, edges are cre-

ated between every node vi, where i ∈ V = {1, 2, · · · ,K×
N} and all DM-RS nodes dj , where, j ∈ VP =
{1, 2, · · · ,Kp × Np} ⊂ V , forming the set of edges E .

Let the Subcarrier Time Pair (S-T pair) of node vi be

(kvi
, nvi

), where kvi represents the subcarrier index and

nvi represents the symbol index. Similarly, let (kdj
, ndj

)
denote the S-T pair of node dj . The edge weight wvi,dj

is

defined as:

wvi,dj
= 1/

√

|kvi
− kdj

|2 + |nvi − ndj
|2 (1)

If vi = dj , we assign wvi,dj
= 1/ϵ, where constant ϵ

is used to prevent division by zero and to ensure high-

weighted self-connection for the DM-RS nodes. The re-

sulting edge set E and weight set W are given by:

E = {(vi, dj)|vi ∈ V, dj ∈ VP} (2)

W = {wvi,dj
|evi,dj

∈ E} (3)

In this model, BSs are provided DM-RS by users for CE.

After receiving these signals and estimating the channel,

each BS constructs a graph G that represents the channel

for the corresponding user requiring estimation. The fea-

tures of the nodes in the graph are initialized based on

initial estimation for received DM-RS. According to our

approach, every RE node is connected to DM-RS nodes

with weights proportional to their relative positions to the

DM-RS nodes. Once the graph G is constructed, a GNN

is employed to refine and predict the wireless channel for

each node. Specifically, we utilize a Graph Convolutional

Network (GCN)-based architecture comprising three layers.

Each layer consists of three key steps:

1) Self-Loop Addition: Self-loops are added to each

node, enabling nodes to aggregate information from

their own features and connected nodes.

2) Degree Normalization: Let A be the degree matrix,

where avi
is the degree of node vi, including self-

loops. The normalized degree matrix is computed as:

Ãvivi
= a

− 1

2

vi .

3) Aggregation and Transformation: for each node vi,
information can be aggregated from DM-RS nodes

dj ∈ VP by: x̂vi
=

∑

dj∈VP
Ãvivi

Ãx′

j
x̂dj

W , where

x̄vi
is the updated feature for node vi, x̂dj

is the

feature node of dj , W is the learnable weight matrix

for the layer.

The CE model can be described as a series of transforma-

tions consisting of three GCN layers. The first GCN layer

takes input features x̂dj
corresponding to the DM-RS node

features (which include the real and imaginary parts of the

estimated channel for these nodes:

x̂dj
=

[

Re
(

Ĥ(kp, np)
)

Im
(

Ĥ(kp, np)
)

]

,

∀kp ∈ {2, 4, · · · , ⌊K/2⌋ · 2}, ∀np ∈ Np, (4)

where kp and np denote the indices for DM-RS subcarriers

and symbols, respectively. After passing through the first

GCN layer, the output is a feature matrix x̄
1

vi
of dimension

64, which captures the enhanced features of the channel

for each node. This is followed by a ReLU activation and

a second GCN layer, producing output x̄2

vi
, which is again

a 64-dimensional feature matrix. After activation, the third

GCN layer produces the final output, x̄3

vi
, which represents

the estimated channel for each node. The output of the

third layer represents the final CE for each node, where

each node’s output feature dimension equals 2, matching

the required dimension for CE as the real and imaginary

value of the channel coefficient. The features for each node

vi after the third GCN layer are written as:

x̄
3
vi

=

[

Re
(

H̄(k, n)
)

Im
(

H̄(k, n)
)

]

, ∀k ∈ {1, 2, · · · ,K}, ∀n ∈ N ,

(5)

where H̄(k, n) is the channel estimate for the k-th subcar-

rier and n-th symbol as predicted by GrINet.

B. FGrINet: Tier1 & Tier2

In our proposed two-tier framework, the first tier occurs

locally at each BS, where user-specific GrINet models are

aggregated to construct a FGrINet. This process ensures

that each BS consolidates the knowledge gained from its

associated users. In the second tier, the FGrINet models

from individual BSs are shared and collaboratively refined

in a decentralized manner across the network. This ag-

gregation occurs directly between BSs without a central

server. A local federated round at the BS is denoted by

t ∈ T , during which BSs collaboratively train user-specific

models. For a BS b serving user ubm, the GrINet model is

optimized by minimizing the MSE loss, which is defined

as:

Lubm
(θtubm

) =
1

|Dubm
|

∑

(x̂dj
,xvi

)∈Dubm

ℓ(f(x̂dj
; θtubm

), xvi
)

(6)

In this model, f(x̂dj
; θtubm

) represents the output of GrINet

for the input x̂dj
(feature vector corresponding to DM-RS

4). The target channel value xvi represents the true channel

estimate at node vi, encompassing all node features and

capturing the entire channel. The local dataset for user ubm,

denoted by Dubm
, contains the data used by the BS to train



the user-specific GrINet model. At the end of each local

training round, the BS aggregates the user-specific GrINet

models using the FedAvg approach [11]. This aggregation

results in the creation of FGrINet, which is the BS-specific

model, denoted by θtb, the model update rule is given by:

θt+1
b = θtb − η

∑

ubm∈Ub

|Dubm
|

|Db|
∇Lubm

(θtubm
), (7)

where η is the learning rate for the aggregation step,

∇Lubm
(θtubm

) is the gradient of the local loss function for

user ubm, |Db| =
∑

ubm∈Ub
|Dubm

| is the total dataset size

for all users under BS b participated in local training, Ub

represents the set of users served by BS b. This update

rule ensures that the BS’s model is updated based on the

aggregated gradient information from all associated users,

with the influence of each user weighted by the size of

their local dataset. The result is a model that reflects the

collective learning progress of all users under BS b.
Once each BS has obtained its own specific model, a

decentralized phase is initiated. During this phase, BSs

share their updated models with one another through de-

centralized model sharing. The primary motivation for this

sharing and aggregation is to improve model performance

across BSs by leveraging the diversity in the data and

varying channel conditions. As BSs exchange models, the

accuracy of CE improves, and the convergence rate of

subsequent local training rounds accelerates. In the next

phase of local training, which corresponds to the following

round of decentralized sharing, the BSs utilize the achieved

FGrINet model for CE. When new DM-RS signals are

received from new users, the BS uses the FGrINet model

and updates it with the newly received DM-RS to perform

accurate CE.

This process significantly reduces local training time,

as the FGrINet model has inherited valuable information

from previous rounds. In collaboration among BSs, several

distinct aggregation methods are considered, which differ

based on how weights are assigned to the BSs and whether

model sharing is restricted to clusters or applied across the

entire network. The aggregation methods are as follows:

Weighted Clustered Sharing (W-Cl): BSs are grouped

into clusters, and weights are assigned to each BS based on

the number of DM-RS used for CE. BSs with more DM-RS

symbols contribute more to the aggregated model because

their channel estimates are more accurate, wb represents

the weight of the model from BS b. In each aggregation

round τ ∈ N0, BS b aggregates the models of other BSs

within the same cluster Cb ⊆ B, using a weighted averaging

scheme. The update rule for the model at BS b is expressed

as:

θτ+1
b =

∑

b′∈Cb

qb′
∑

b′′∈Cb
qb′′

θτb′ , (8)

where qb′ is a quality metric for the model from BS b′. The

quality metric depends on the number of DM-RS symbols

each BS uses during local GrINet training. The term θτ+1
b

represents the updated model for BS b after round τ , while

θτb′ is the model from BS b′ at the same round τ .

Uniform Clustered Sharing (U-Cl): In each round τ ∈
N0, BS b aggregates the models of the BSs within the same

cluster Cb ⊆ B, using uniform (same) weights. The update

rule for the model at BS b is expressed as:

θτ+1
b =

1

|Cb|

∑

b′∈Cb

θτb′ , (9)

where |Cb| is the number of BSs in cluster Cb. The term

θτ+1
b represents the updated model for BS b after round τ ,

while θτb′ is the model from BS b′ at the same round τ .

Weighted Centralized Sharing (W-Ce): In a weighted

centralized manner, each BS aggregates models from all

other BSs using a weighted averaging scheme; the update

rule is:

θτ+1
b =

∑

b′∈B

qb′
∑

b′′∈B
qb′′

θτb′ , (10)

where B is the set of all BSs and other parameters are the

same with weighted clustered sharing.

Uniform Centralized Sharing (U-Ce): In a uniform

centralized manner, each BS aggregates the model from all

other BSs, but this time all models are given equal weight.

The update rule is:

θτ+1
b =

1

|B|

∑

b′∈B

θτb′ . (11)

These methods outline how BSs update their models in

decentralized aggregation rounds, either with or without

weights, within clusters, or in a centralized manner, pro-

viding flexibility in balancing model accuracy and com-

munication efficiency. The training process for GrINet

and hierarchical FGrINet along with their interactions, is

outlined in the algorithm 1. It is important to note that

different users are assigned in each round.

IV. PERFORMANCE EVALUATION

A. Channel Models for Link-Level Evaluations

CDL models are defined to cover a wide frequency range

from 0.5 GHz to 100 GHz, with a maximum bandwidth

of 2 GHz. These models can be implemented through the

generation of a Tapped Delay Line (TDL) model using

spatial filters. To represent distinct channel profiles, three

CDL models CDLA, CDLB, CDLC are used for Non-

Line-of-Sight (NLOS) conditions, while CDL-D and CDL-

E models are employed for Line-of-Sight (LOS) conditions.

In this paper, we utilize data from 12 channel configura-

tions, each containing 100 slots with a total of 100 users.

The channel types employed are CDLA and CDLC, with

two different user speeds and varying numbers of DM-RS

symbols. The carrier frequency is set at 3.5 GHz, with

4 PRBs comprising 48 subcarriers and a delay spread of

300 ns. To evaluate the performance of the proposed work,

we utilized a dataset generated for AI-based link-level CE

research [13], following the specifications outlined in Table

7.7.1-1 and Table 7.7.1-3 of the 3GPP standard [12].
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Fig. 3: (a) Average MSE of all BSs versus federated rounds, (b) Average training time across all BSs for decentralized sharing rounds 10, 30, and 50,
(c) Aggregation time versus decentralized sharing rounds for each aggregation methods.

Algorithm 1: GrINet, FGrINet

1: OFDM Uplink Establishment and Resource Grid Configuration:

2: Configure uplink channels, initialize resource grid parameters.

3: Network Configuration:

4: Set up channel models, number of BSs B, number of users, DMRS

symbols, and their indices.

5: for each aggregation round τ ∈ N0 do

for each local federated round t ∈ T do

for each BS b ∈ B do

for each user in local training ubm ∈ Bb do
if FGrINet is available from previous

aggregation round then
6: Update FGrINet:

7: Reinitialize graph G with updated DMRS

nodes features from new users 4

8: Fine-tune the model with new DMRS

features from the current training 6.
end

else
9: Train GrINet:

10: Initialize graph G = (V, E,W) with RE

and DMRS nodes, edges 2, weights 3 and input

the features for DMRS nodes 4

11: Train GrINet model by minimizing MSE

loss 6.
end

end

12: FGrINet-T1: Federated averaging for all participants in

local training.
end

end

13: FGrINet-T2: BSs share their locally updated FGrINet models

among themselves based on one of the four aggregation methods;

W-Cl 8, U-Cl 9, W-Ce 10, U-Ce 11.
end

B. Simulation Results

Fig. 3(a) shows the average MSE of all BSs versus

decentralized sharing rounds for the four aggregation meth-

ods. The plot demonstrates weighted aggregation methods

achieving significantly lower MSE values. This is because

BSs using only 1 DM-RS symbol can benefit from the

model estimations of other BSs, particularly those using

4 symbols for more accurate CE. The next comparison

focuses on the clustered methods, highlighting that clus-

tering BSs with similar channel profiles leads to more

accurate estimations. The best performance is observed

with weighted clustered sharing, while uniform centralized

sharing yields the worst performance.

Fig. 3(b) shows the average training time across all BSs

for specific decentralized sharing rounds, illustrating the

trend of local training times. Uniform clustered sharing

achieves the lowest training time, indicating that users

in local training can more quickly fine-tune models ag-

gregated using this method. Weighted clustered sharing

also performs similarly, with clustering helping to optimize

model training. In contrast, centralized sharing methods,

both with and without weights, require more time to fine-

tune the models. This is because BSs need to train for

longer periods to adapt to models that aggregate infor-

mation from all channel profiles, making the fine-tuning

process more challenging.

Fig. 3(c) illustrates the aggregation time for models

across sharing rounds. Clustered methods require slightly

more time for aggregation compared to centralized learning

methods. This difference arises because clustered aggre-

gation involves multiple model specifics for each cluster,

whereas centralized aggregation only requires a single

model for all BSs.

V. CONCLUSION

This paper presents an algorithm for CE and inter-

polation based on GNN, leveraging the inherent graph

structure of wireless channel properties to achieve more

accurate estimations. We consider various channel models,

including different user speeds, and DM-RS symbol counts,

and propose a decentralized, federated learning framework,

FGrINet. In this scheme, BSs with better channel condi-

tions, particularly those utilizing more DM-RS symbols

for estimation, play a key role in improving overall model

accuracy. Rather than retraining from scratch, BSs can fine-

tune their models, leading to efficient learning. Among

aggregation methods, clustered weighted aggregation in

decentralized learning, which considers both model weights

and clustering of BSs, delivers superior performance.
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