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Abstract

This paper addresses the limitations of the com-

mon data annotation and training methods for

objective single-label classification tasks. Typ-

ically, in such tasks annotators are only asked

to provide a single label for each sample and

annotator disagreement is discarded when a

final hard label is decided through majority vot-

ing. We challenge this traditional approach, ac-

knowledging that determining the appropriate

label can be difficult due to the ambiguity and

lack of context in the data samples. Rather than

discarding the information from such ambigu-

ous annotations, our soft label method makes

use of them for training. Our findings indicate

that additional annotator information, such as

confidence, secondary label and disagreement,

can be used to effectively generate soft labels.

Training classifiers with these soft labels then

leads to improved performance and calibration

on the hard label test set.

1 Introduction

Reliable, human-annotated data is crucial for train-

ing and evaluation of classification models, with

the quality of annotations directly impacting the

models’ classification performance. Traditionally,

in order to ensure high quality annotated data, mul-

tiple annotators are asked to judge each individual

data instance, and the final ‘gold standard’ hard

label is determined by majority vote.

However, this hard label approach tends to ig-

nore valuable information from the annotation pro-

cess, failing to capture the uncertainties and in-

tricacies in real-world data (Uma et al., 2021).

An emerging alternative approach that addresses

these limitations is the use of soft labels through

techniques such as Knowledge Distillation (Hin-

ton et al., 2015), Label Smoothing (Szegedy et al.,

2016), Confidence-based Labeling (Collins et al.,

2022), and Annotation Aggregation (Uma et al.,

2020). These soft label approaches demonstrate

potential for improved robustness (Peterson et al.,

2019), superior calibration, enhanced performance

(Fornaciari et al., 2021) and even enable less

than one-shot learning (Sucholutsky and Schonlau,

2021).

This paper’s primary focus is on exploring effec-

tive ways for improving classification performance

using soft labels. Our experimental findings indi-

cate that confidence-based labelling significantly

enhances model performance. Nevertheless, the

interpretation of confidence scores can also pro-

foundly influence model capability. Given the vari-

ability in confidence levels among different anno-

tators (Lichtenstein and Fischhoff, 1977), aligning

these disparate confidence levels emerges as the

central research question of this paper.

To address this challenge, we propose a novel

method for generating enhanced soft labels by

leveraging annotator agreement to align confidence

levels. Our contributions include:

• We demonstrate how classification perfor-

mance can be improved by using soft labels

generated from annotator confidence and sec-

ondary labels. This presents a solution to the

challenge of generating high-quality soft la-

bels with limited annotator resources.

• We propose a Bayesian approach to leverag-

ing annotator agreement as a way of aligning

individual annotators’ confidence scores.

• We introduce a novel dataset to facilitate re-

search on the use of soft labels in Natural

Language Processing.1

2 Related Work

Current research typically interprets annotator dis-

agreement in two primary ways, either by captur-

ing diverse beliefs among annotators, or by assum-

ing a single ground truth label exists despite dis-

agreement (Rottger et al., 2022; Uma et al., 2021).

This paper focuses on situations where the latter

1Dataset can be found at: https://github.com/

GateNLP/dont-waste-single-annotation
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viewpoint is more applicable. Thus, we focus on

traditional “hard” evaluation metrics such as F1-

score which rely on a gold-label, despite the emer-

gence of alternative, non-aggregated evaluation ap-

proaches (Basile et al., 2021; Baan et al., 2022;

Basile et al., 2020). This is made possible because

we evaluate on high-agreement test sets, where the

‘true’ label is fairly certain.

Aggregation of annotator disagreement gener-

ally falls into two categories: aggregating labels

into a one-hot hard label (Dawid and Skene, 1979;

Hovy et al., 2013; Jamison and Gurevych, 2015;

Beigman and Beigman Klebanov, 2009), or model-

ing disagreement as a probability distribution with

soft labels (Sheng et al., 2008; Uma et al., 2020; Pe-

terson et al., 2019; Davani et al., 2022; Rodrigues

and Pereira, 2018; Fornaciari et al., 2021).

Similar to Collins et al. (2022), our study ex-

plores how soft labels can be generated from a

small pool of annotators, using additional informa-

tion such as their self-reported confidence. This has

benefits over traditional hard/soft label aggregation,

which requires extensive annotator resources and/or

reliance on potentially unreliable crowd-sourced

annotators (Snow et al., 2008; Dumitrache et al.,

2018; Poesio et al., 2019; Nie et al., 2020).

3 Methodology

In order to generate soft labels, our methodology

requires annotators to provide confidence scores.

Figure 1 shows how each annotator provides both

a primary class label and a confidence rating that

represents their certainty. This ranges from 0 to 1,

with 1 representing 100% confidence.2 In addition,

annotators can also provide an optional ‘secondary’

class label. This represents their selection of the

second most probable class. Thus, formally, the

annotation of the text xi by an annotator am con-

sists of a primary label lim, its confidence rating

cim, and an optional secondary label l2
im

. We use

yi to denote the text’s true label.

Overall, there are three steps to generating soft

labels as shown in Figure 1:

1. Annotator confidences are calibrated using our

Bayesian method (Section 3.1)

2. Annotations are converted to soft labels (Sec-

tion 3.2)

3. Annotator soft labels are merged into a final

2In practice, annotators can provide this directly as a per-
centage or choose from a Likert-style numerical rating (e.g.
1-5) that is then converted to 0-1 scale.
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Text 0.7
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Figure 1: Soft label conversion pipeline

soft label (Section 3.2)

3.1 Bayesian Confidence Calibration

To calibrate confidence levels across annotators,

we use annotator agreement as a proxy for reliabil-

ity. For each annotator, we consider the level of

agreement obtained (across all their annotations)

when they have expressed a particular confidence

score, and use this to re-weight their confidence.

The process comprises two steps:

First, we compute the probability of the primary

label (lim) according to the confidence level (cim).

This step is agnostic to the identity of the annotator.

P (ŷi = lim|cim) =
P (cim|lim)P (lim)

P (cim)
(1)

Where P (lim) is the prior, P (cim|lim) is the like-

lihood of the confidence score assigned to the pri-

mary label and P (cim) = P (cim|lim)P (lim) +
P (cim|¬lim)P (¬lim) is the marginal probability.

In this paper, we just make a simple assumption

P (lim) = 1/C and P (¬lim) = (C− 1)/C, where

C is the total number of possible classes. We also

assume that P (cim|yi) = cim and P (cim|¬yi) =
1− cim.

In the second step, using information about

agreement, we compute the calibrated probability

of the primary label (lim) given the specifc annota-

tor (am).

P (yi = lim|am) =
P (am|lim)P (lim)

P (am)
(2)

Where our updated prior P (lim) = P (ŷi) calcu-

lated from Equation 1. P (am|lim) is the likelihood

that an annotator assigns the label lim matching

the true label, yi, and P (am) = P (am|yi)P (ŷi) +
P (ai|¬yi)P (¬ŷi).
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We calculate this likelihood based on annotator

disagreement:

P (am|yi) =
Count(am ∩ ¬am, am, li)

Count(am ∩ ¬am,¬am, li)
(3)

Count(am∩¬am, am, li) is the number of sam-

ples that involves annotator am and any other an-

notator(s) ¬am, where both am and at least one

other annotator provided the label li. Count(am ∩
¬am,¬am, li) is the number of samples that in-

volves annotator am and other annotator(s) ¬am,

where at least one annotator provided the label li.
Similarly, we calculate:

P (am|¬yi) =
Count(am ∪ ¬am, am, li)

Count(am ∩ ¬am,¬am,¬li)
(4)

Count(am∪¬am, am, li) is the number of sam-

ples that involves annotator am and other annota-

tor(s) ¬am where am annotated the sample as li
but others did not. Count(am ∩ ¬am,¬am,¬li)
is the number of samples that involves annotator

am and other annotator ¬am where ¬am did not

annotate the sample as label li.
We also employ fallback mechanisms to miti-

gate cases where annotator agreement cannot be

reliably estimated. If the number of counts (< 3

in our experiments) is insufficient to calculate pos-

terior probability, we fall back to using the prior

confidence score.

3.2 Soft Label Conversion & Merging

Annotations

Once we have calibrated confidence, P (yi|am), we

assign this probability to the primary class li, and

assign 1−P (yi|am) to the secondary class l2
i
. Thus,

in Figure 1, Annotator 1’s soft label consists of 0.7

for their primary class and 0.3 for their secondary

class. If a secondary class label is not provided

by the annotator, we just uniformly distribute the

confidence level to the other classes. In Annotator

2’s case, this means 0.85 for their primary class

and 0.05 for the three remaining classes.

Once we have generated soft labels for each an-

notator, we merge these into a final soft label by

taking the mean of each class.

4 Experiments

4.1 Datasets

We experiment with two datasets: VaxxHesitancy

(Mu et al., 2023) and the COVID-19 Disinfor-

mation Corpus (CDS) (Song et al., 2021). Both

datasets release the confidence scores which anno-

tators provided alongside their class labels (anno-

tators are denoted by a corresponding anonymous

ID).

4.1.1 COVID-19 Disinformation Corpus

(CDS)

CDS (Song et al., 2021) includes 1,480 debunks

of COVID-19-related disinformation from various

countries. The debunks are classified into ten topic

categories (e.g., public authority, conspiracies and

prominent actors). The number of annotators per

instance ranges from one to six. Each annotator

has provided only one first-choice topic class and

their confidence score for each annotated debunk

(0 ≤ cim ≤ 9).

4.1.2 VaxxHesitancy

VaxxHesitancy (Mu et al., 2023) consists of 3,221

tweets annotated for stance towards the COVID-

19 vaccine. Each instance is categorised into pro-

vaccine, anti-vaccine, vaccine-hesitant, or irrele-

vant. The number of annotators per tweet ranges

from one to three. Annotators provide a first-

choice stance category and a confidence score

(1 ≤ cim ≤ 5).

VaxxHesitancy Additional Annotation As our

aim is to investigate how additional information

provided by annotators could impact classification

performance, we also explore the integration of

a secondary label for instances where annotators

have expressed uncertainty about their primary la-

bel choice.

As none of the original datasets had such sec-

ondary labels, we undertake an additional round of

data annotation, based on the original annotation

guidelines. We introduce two new tasks in this data

annotation round: 1) For all instances (train + test

set) exhibiting low confidence (less than 4), we op-

tionally request that annotators provide a ‘second

stance’ label. We guide annotators to propose this

if they believe it to be appropriate, even if it wasn’t

their primary choice. Consequently, we add 569

additional second-choice stances. 2) We assign a

third annotator to all instances annotated by two

annotators. As a result, we obtain a majority vote

for the majority of annotated tweets. This major-

ity vote can be employed for hard label training in

subsequent experiments.
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VaxxHesitancy (5 fold) CDS (5 fold)

Labels Used F1 Macro ECE Calibration Labels Used F1 Macro ECE Calibration

Test-set only

Hard Label 1 and 2 66.9 0.262 1 65.2 0.182

Soft Label 1 and 2 68.7 0.192 1 67.7 0.161

Train+Test-set

Without confidence

Hard Label 1 and 2 70.2 0.237 1 67.1 0.211

Dawid Soft Label 1 71.7 0.162 1 19.6 -

Soft Label (primary label) 1 71.0 0.171 1 68.2 0.160

Soft Label (primary and secondary) 1 and 2 70.7 0.188 - - -

With confidence

Hard Label 1 and 2 73.1 0.198 1 69.0 0.190

Hard Label (label smoothed 0.1) 1 and 2 68.8 0.167 1 68.8 0.096

Soft Label (from primary label) 1 73.7 0.107 1 71.1 0.096

Soft Label (primary and secondary) 1 and 2 74.5 0.106 - - -

With confidence + bayes calibration

Bayesian Soft Label 1 and 2 75.2 0.099 1 70.4 0.118

Table 1: Evaluation results for the CDS and VaxxHesitancy datasets. The ’Labels Used’ column indicates whether

the hard/soft labels are generated using only the primary label (1), or considering the secondary label as well (2).

For the CDS dataset, all labels are generated using only primary since no secondary labels are available.

4.1.3 Dataset Split

We construct the test sets to contain instances

where annotators reach agreement on every in-

stance with high confidence scores. For VaxxH-

esitancy, we follow the original train-test split by

including instances whose confidence scores are

larger than three in the test set. For CDS, the test

set has debunks that are labelled by more than one

annotator with confidence scores larger than six

(on their original 10 point scale). Given the limited

size of this subset, data with only one annotation

but very high confidence scores is also included in

the CDS test set. Summary of the statistics is in the

Appendix Table 2.

4.2 Baselines & Ablations

We compare our methods against a variety of

hard/soft label aggregation strategies, which make

use of annotator confidences/secondary labels to

varying degrees.

Hard label w/o confidence We employ majority

voting for hard labels. In the absence of consensus,

a class category is chosen at random.

Hard label with confidence: For each xi, we ag-

gregate ai to estimate a single hard label ŷi by

giving different weights to lim according to the

annotator confidence cim.

Dawid-Skene Soft label:We utilise an enhanced

Dawid-Skene model (Passonneau and Carpenter,

2014) as an alternative to majority voting, and use

the model’s confusion matrices to generate soft

labels. This model only relies on class labels does

not make use of additional information.

Label Smoothing Soft Label: For each class,

we use a mixture of its one-hot hard label vector

and the uniform prior distribution over this class

(Szegedy et al., 2016).

Soft label w/o annotator confidence We explore

generating soft labels using only annotator dis-

agreement. In this approach, we assign 0.7 to the

primary stance, 0.3 to the secondary stance label

(if available), or evenly distribute the remaining

probability among all other classes.

4.3 Experimental Setup

We conduct 5-fold cross-validation where each fold

contains the entire training set, and 4/5 folds of

the test set. We also investigate a second scenario

in which we perform 5-fold cross-validation only

on the test set. These two scenarios allow us to

investigate the performance of soft labels when the

level of annotator agreement differs.

These two scenarios are motivated by the fact

that the train-test splits of our datasets contain

an uneven distribution of samples: low annotator

agreement samples were placed in the train set and

high-agreement samples in the test set. This is nec-

essary to enable evaluation against a gold-standard

test set. However, for generating soft labels, we

want to use a mixture of high-agreement and low-

agreement annotations, so we include a portion of

the original test set for training.

We perform experiments using Pytorch (Paszke

et al., 2019) and the Transformers library from

HuggingFace (Wolf et al., 2020). We fine-tune

COVID-Twitter BERT V2, a BERT large uncased

model that has been pre-trained on COVID-19 data

(Müller et al., 2023). We fine-tune for 20 epochs

with learning rate as 2e-5 (1 epoch warm-up fol-

lowed by linear decay) and batch size as 8, with
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AdamW optimizer (Loshchilov and Hutter, 2017).

We use cross-entropy loss. The model performance

is evaluated with macro-F1 due to the imbalanced

datasets, and we use expected calibration error

(ECE) (Naeini et al., 2015) to measure model cali-

bration.

For both the VaxxHesitancy and CDS datasets,

we harmonise the range of confidence scores. In

the case of the VaxxHesitancy dataset, this involves

converting a confidence score of 5 to 1, 4 to 0.9,

and so forth, down to 1 being converted to 0.6.

Similarly, for the CDS dataset, a confidence score

of 10 is converted to 1, 9 to 0.95, and so on, with 1

also becoming 0.6. 3

5 Results

Soft labels improve classification performance

across all of our scenarios. Table 1 presents the

results on the VaxxHesitancy and CDS datasets.

Soft labels surpass hard labels for both datasets,

with and without confidence, as well as for the

test-only and train + test set scenarios. In the case

of test-set only, soft labels achieve 68.7 F1 Macro

vs hard label’s 66.9 (VaxxHesitancy) and 67.7 vs

65.2 (CDS). As previously mentioned, the test set

comprises of only high-agreement samples, so this

indicates that soft labels are beneficial for learn-

ing even when there is not a lot of disagreement

between annotators and they are relatively certain.

Combining confidence scores and secondary la-

bels generates better soft labels. Using annota-

tors’ self-reported confidence scores helps to im-

prove soft labels, as shown by the F1 and cali-

bration improvements between soft labels in the

‘with’ and ‘without confidence’ settings (Table 1).

Alternative approaches such as Dawid Skene are

able to outperform soft labels when confidence

scores are not available (71.7 vs 71.0 on VaxxH-

esitancy). However, once confidence information

is introduced, soft labels significantly improves

and outperforms alternatives, achieving 73.7 (from

71.0) on VaxxHesitancy and 71.1 (from 68.2 on

CDS).

Furthermore, for the VaxxHesitancy dataset,

once secondary label information is included, clas-

sification performance is further improved from

73.7 to 74.5. This suggests that more consideration

should be taken during the data annotation stage

3We manually tested different confidence conversion scales
and this conversion yields the best classification performance.
See Appendix 3 for an alternative conversion strategy.

to collect such information, as it can be greatly

beneficial for the creation of effective soft labels.

Bayesian calibration outperforms other meth-

ods on the VaxxHesitancy dataset. By incorpo-

rating the full annotation information, i.e., confi-

dence, secondary label, and annotator agreement,

our Bayesian soft label method achieves a 75.2 F1

Macro score on the VaxxHesitancy dataset, improv-

ing upon 74.5 from the soft label stance 1 and 2.

In addition, Bayesian soft label also has the best

confidence alignment (ECE) score.

However, on the CDS dataset, despite outper-

forming hard labels, our Bayesian method fails to

improve upon soft labels. Its adjustments to soft

labels results in a fall from 71.1 to 70.4. We be-

lieve this is due to the characteristics of the CDS

dataset, which has 10 possible classes (vs the 4

of VaxxHesitancy), an increased range of possible

confidences (1-9), as well as fewer overall sam-

ples. Because there is less annotator overlap, this

greater range of options makes it more difficult to

accurately estimate annotator reliability on a per-

confidence score level. This reveals a direction in

which our Bayes methodcould be improved, as it is

currently reliant on sufficient overlap between an

individual annotator and their peers.

6 Conclusion

We demonstrate the benefits of using soft labels

over traditional hard labels in classification tasks.

We propose a novel Bayesian method for annota-

tion confidence calibration, and efficiently utilising

all available annotation information, outperforming

other methods for the VaxxHesitancy dataset. The

performance improvements offered by soft labels

suggests the importance of collecting additional

information from annotators during the annotation

process, with annotator confidence being particu-

larly important.
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Limitations

Our dataset construction introduces secondary la-

bels that are not provided by the same annotators as

those who created the original dataset, which may

not accurately reflect the choices that the original

annotators would have made.

As discussed in the Results section, the CDS

dataset was more challenging due number of class

labels and number of samples. This caused the

Dawid Skene model to perform poorly. This issue

may be alleviated using Laplace Smoothing, but

we did not explore this due to time constraints.

Another important limitation of our Bayesian

method is its assumption that an individual annota-

tor’s level of agreement with their peers is a good

proxy for their reliability. This leaves it vulner-

able to situations where there is high agreement

between poor annotators.

Even though our soft label method is effective,

it is not compared against ‘traditional’ soft labels,

which are constructed by aggregating many annota-

tor labels per sample, since this would necessitate

the large-scale annotation of the two datasets by

many users, which we are trying to avoid as our

goal is to reduce the amount of annotators and an-

notation effort required.

Finally, we observed high variance across folds

during cross-validation. We believe this was due

to the small size of test set as well as the pres-

ence of ‘hard-to-classify’ samples in certain folds.

These were samples where annotators relied on

multimodal information to come to a decision (e.g.

viewing a video embedded in the tweet). Our model

is only provided with text, and so struggles on these

samples.
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A Appendix

Table 2 shows information about the composition

of the two datasets used in our experiments.

VaxxHesitancy CDS

Train Test Train Test

Number of items 2,790 431 965 515

Avg annotations per item 1.25 2 1.38 1.58

Avg confidence score 4.16 4.63 6.73 8.53

Table 2: Summary of the datasets

Table 3 shows the effect of changing the annota-

tor confidence conversion scale from the one pre-

sented in the main section of this paper (9: 1.0 ...

1:0.6) to an alternative one (9: 1.0, 8: 0.9 ... 1: 0.1).

By comparing between the two columns, we can

see that this change leads to a drop of 1 F1 point

for the resulting soft labels. This highlights the

importance of selecting a good initial conversion

scale.
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Covid Misinfo (5 fold)

1-0.1 conversion 1-0.6 conversion

Uses confidence F1 Macro F1 Macro

Experiments on test-set only

Hard Label yes 65.18 - (same as left)

Soft Label yes 66.51 67.71

Experiments on train + test-set

Hard Label (majority vote, ties broken by confidence) yes 68.53 69.02

Soft Label yes 70.59 71.11

Experiments with no confidence

Hard Label no 67.13 - (same as left)

Soft Label no 68.15 - (same as left)

Dawid Soft Label no 19.58 - (same as left)

Experiments with confidence

Hard Label yes 68.53 69.02

Hard Label (label smoothed 0.1) yes 68.69 68.75

Hard Label (label smoothed 0.3) yes 68.86 68.44

Soft Label yes 70.59 71.11

Experiments with bayesian calibration

Soft label with Bayesian yes 69.75 70.40

Table 3: CDS Results with different confidence conversions.
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