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Abstract: Understanding and modelling pedestrian behavior is important for traffic safety, not least in 17 

the context of vehicle automation. There exist competing models for how pedestrians decide if and when 18 

to cross a road with oncoming traffic. Distinguishing between these competing models is non-trivial, but 19 

recent results in the cognitive neuroscience of decision-making offer a promising method, complementing 20 

behavioral data with electroencephalography (EEG): Previous EEG studies have shown that the centro-21 

parietal positive potential (CPP) reflects evidence accumulation during abstract perceptual decision-22 

making tasks, and that it can be used to arbitrate between alternative models of these tasks. However, it 23 

is not yet known whether the CPP can be used to support modeling in more complex, embodied contexts, 24 

such as human locomotion in road traffic. Here, we address this question by designing an EEG paradigm 25 

for pedestrian road-crossing. In a computer-based experiment, participants made road-crossing decisions 26 

in a simulated scenario where a car approached them under different time-to-arrival (TTA) conditions. 27 

Three perception-based drift diffusion models and one utility-based drift diffusion model were used to 28 

model the pedestrian behavior. The behavioral data showed a partial preference for the utility-based model 29 

over the perception-based drift diffusion models. The EEG data showed a CPP signal, which helped 30 

distinguish between the models in a way that behavioral data alone could not: CPP amplitude was 31 

positively correlated with accumulated evidence in the drift-diffusion models, and with stronger 32 

correlations for the utility-based model than for the perception-based models. Our results show that the 33 

CPP signature can be used to help arbitrate between competing decision-making models also in more 34 

embodied tasks, a finding which has applied implications not least in the context of traffic safety 35 

engineering and vehicle automation. 36 
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1 Introduction 4 

Decision-making is a critical cognitive process that underlies human behavior in various contexts, 5 

not least in human locomotion and interaction in road traffic (González-Méndez et al., 2021; Wang et al., 6 

2024). Autonomous vehicles (AVs) face great challenges in interacting with pedestrians, prompting 7 

researchers to focus on modeling pedestrian behavior to better predict their road-crossing decisions. 8 

Competing models have been proposed to explain how pedestrians decide if and when to cross roads with 9 

oncoming traffic. It is crucial to identify models that  achieve high prediction accuracy, and which ideally 10 

also accurately replicate human decision-making processes, to maximize generalization performance. 11 

These models are pivotal for designing AV systems capable of anticipating and responding effectively to 12 

pedestrian behavior, thereby enhancing safety and facilitating the seamless integration of AVs into 13 

transportation networks (Camara et al., 2020; Markkula et al., 2020).  14 

The decision-making process can be captured from a behavioral modeling perspective. Several 15 

evidence accumulation models have been proposed, including the drift-diffusion model (DDM; Ratcliff, 16 

1978), Ornstein–Uhlenbeck model (Busemeyer & Townsend, 1993), and the Linear Ballistic Accumulator 17 

(Brown & Heathcote, 2008). These models translate accuracy and response time into psychologically 18 

interpretable constructs assumed to underlie decision-making processes (Bogacz et al., 2006; Parker and 19 

Ramsey, 2024). Here, we focus on the DDM, which serves as a foundational model bridging cognitive 20 

theories and computational modeling for understanding the decision-making process. Proposed by 21 

Ratcliff (1978), the DDM offers a principled framework for comprehending decision-making mechanisms 22 

in two-choice tasks, effectively capturing both the choices made and the corresponding decision times 23 

(Ratcliff & McKoon, 2008; Nunez et al., 2017). The basic DDM includes four key parameters (Ratcliff, 24 

1978): a drift rate representing evidence accumulation speed, a decision boundary representing the 25 

evidence threshold for decision-making, a starting position representing initial bias towards one option, 26 

and a non-decision time representing perception and motor execution delays external to the decision-27 

making process. Since its development, researchers have extended the four-parameter DDM to the seven-28 

parameter full DDM to account for inter-trial variabilities of the drift rate, non-decision time, and starting 29 

point bias (Ratcliff and Rouder, 1998; Ratcliff and Tuerlinckx, 2002).  30 

Characterizing the state of mind solely through behavioral data is challenging because decision-31 

making is fundamentally a process rooted in brain activity (Turner et al., 2015). Within 32 

neuropsychological research, there has been a growing interest in studying how the neural processes 33 

underlying evidence accumulation contribute to decision-making (Forstmann et al., 2010; Steinemann et 34 

al., 2018; Yau et al., 2021). This interest has led to a focus on event-related potential (ERP) components 35 

such as the centro-parietal positivity (CPP), which is thought to reflect how the brain processes and 36 
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integrates information in the lead up to a decision (O’Connell et al., 2012; Kelly & O’Connell, 2013; 1 

Kohl et al., 2020). CPP has been analyzed in simple perceptual decision-making tasks and tasks requiring 2 

response selection based on probabilistic information. For example, studies have utilized CPP in tasks 3 

involving random dot-motion perception (Kelly and O’Connell, 2013; Kohl et al., 2020), gradual contrast-4 

change detection (O’Connell et al., 2012; McGovern et al., 2018), and face recognition (Van Vugt et al., 5 

2019). In all of these tasks, CPP shows a peak at the time of response. However, it is not known whether 6 

the CPP signature is present in more embodied decision-making tasks, such as locomotor tasks, where 7 

one decides about one's own movement in the world.  8 

Combining neural data with mathematical modeling - commonly referred to as model-based 9 

cognitive neuroscience - can provide a better understanding of the decision-making process (Forstmann 10 

et al., 2011; Forstmann & Wagenmakers, 2014; Turner et al., 2015). Most studies of model-based 11 

cognitive neuroscience have utilized a two-stage correlational procedure: First, the model is fitted to 12 

behavioral data to generate the best-fitting parameters, and neural signatures are extracted from the raw 13 

neural data. Then, correlations are analyzed to test whether the underlying processes assumed by the 14 

cognitive model are reflected in the brain (Forstmann et al., 2008; Purcell et al., 2010; Turner et al., 2015). 15 

This type of combination of DDM modelling with CPP observations has previously proven fruitful. For 16 

example, in a face-morphing decision-making task, Yau et al. (2021) identified a covariation between 17 

CPP amplitude, and the drift rate parameter derived from the DDM. In another study, utilizing both 18 

perception- and memory-based face stimuli (Van Vugt et al., 2019), participants were required to 19 

determine whether two faces shown at different angles represented the same person (the perception task) 20 

and whether a test face matched previously shown faces (the memory task). Van Vugt et al. (2019) 21 

observed that the CPP slope was related to the drift rate parameter for both tasks. These findings 22 

demonstrated the possibility of using DDM to represent the actual decision-making process in the brain 23 

(as indicated by CPP) across different lab-based tasks. However, it is unclear whether this type of 24 

connection between mathematical decision-making models and brain activity can be established in more 25 

complex behaviors like driving a vehicle or walking and interacting with traffic.  26 

Recently, there have been several attempts to model decision-making using the DDM in applied road 27 

traffic scenarios, such as drivers’ left-turn gap acceptance (Zgonnikov et al., 2024) and pedestrians’ road-28 

crossing behavior (Lin et al., 2022; Pekkanen et al., 2022; Theisen et al., 2024). There are two kinds of 29 

models based on different theoretical frameworks in DDM modeling, which can be referred to as 30 

perception-based versus utility-based models. Perception-based models derive the evidence to be 31 

accumulated directly from perceptual heuristics (Pekkanen et al., 2022; Zgonnikov et al., 2024; Theisen 32 

et al., 2024), whereas utility-based models provide derive the evidence from the estimated future utility 33 

of the action being decided upon (Lin et al., 2022; Markkula et al., 2023; for related approaches in non-34 
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traffic contexts see also Drugowitsch et al., 2012; Tajima et al., 2016). There is currently a lack of direct 1 

comparison between these two types of models.  2 

The aforementioned studies highlight the effectiveness of the DDM modelling framework in 3 

describing human decision-making in the road traffic context. However, none of them have included an 4 

analysis of neural characteristics. Only one study, on collision threat detection, has analyzed CPP and 5 

DDM simultaneously, demonstrating that a DDM could predict the onset of the CPP signature (Markkula 6 

et al., 2021), but this study focused purely on perception, excluding any decision-making regarding one’s 7 

own movement, and did not measure the correlation between CPP and DDM evidence.  8 

Based on the research gaps outlined above, the aim of the present study was to compare perception-9 

based and utility-based models of pedestrian road crossing, and whether CPP analyses could be used to 10 

further support such a comparison. Since both CPP and DDM describe the process of evidence 11 

accumulation in decision-making - CPP reflecting this process in the brain and DDM simulating it within 12 

computational models - there may be a correlation between the two. A higher correlation would suggest 13 

that the evidence accumulation process in DDM closely mirrors that in the brain, as reflected in CPP. To 14 

this end, a computer-based pedestrian crossing experiment was conducted, where participants were 15 

instructed to initiate road crossings at a time of their choice by pressing a button, and their 16 

electroencephalography (EEG) and behavioral responses were recorded simultaneously. The CPP signal 17 

was extracted, and behavioral data were modeled using the different DDM variants. The correlation 18 

between CPP amplitude and accumulated evidence in DDM was examined to illustrate the cognitive 19 

evidence accumulation process underlying decision-making in the road-crossing task. 20 

2 Method 21 

 Participants and apparatus 22 

Sixteen right-handed participants (9 males, 7 females; mean age 31 years, range 26–42) completed 23 

the experiment, recruited via the subject pool of the School of Psychology, University of Leeds. The 24 

sample size was determined based on previous studies analyzing CPP (e.g., n=9 in Forstmann et al., 2010; 25 

n=13 in Kelly and O’Connell, 2013; n=19 in Kelly et al., 2019). All participants had normal or corrected-26 

to-normal vision, and no history of psychiatric diagnosis or severe brain injury. The experiment took 27 

approximately 90 minutes, and each participant provided informed consent before participating and was 28 

compensated with a gift voucher worth £20 after completing the experiment. The study was approved by 29 

the School of Psychology Research Ethics Committee at the University of Leeds (Reference: PSYC-266). 30 

In this computer-based experiment, we utilized Unity® for creating high-quality 3D scenes and 31 

motion control. Behavioral responses were recorded at the 60 Hz refresh rate of the screen. Meanwhile, 32 

participants’ EEG data were recorded using a Biosemi ActiveTwo system with a 64-channel 10–20 33 
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international cap and six additional electrodes, including four channels for electrooculogram (EOG) to 1 

monitor lateral and dorsal eye movements, along with two mastoid electrodes. The data were recorded at 2 

a 1,024 Hz sampling rate and then downsampled to 256 Hz immediately after acquisition using ActiTools 3 

software (version 9.01). 4 

 Experimental design 5 

The experiment was designed as a within-subjects repeated measures study with four time-to-arrival 6 

(TTA) conditions. Figure 1 depicts one experimental trial and the schematic of experiment setup. Each 7 

trial began with an auditory chime followed by the presentation of a fixation cross on a grey background, 8 

which lasted 2 s, 2.5 s, or 3 s, selected at random. Then the stimulus car image appeared centrally on the 9 

screen, signaling the start of the pedestrian crossing scenario. The participant's point of view (the “camera” 10 

in the virtual environment) was consistently directed toward the geometrical center of the car to simulate 11 

a realistic crossing view. In each trial, the initial distance between the car and the pedestrian was fixed at 12 

40 m. The car approached the participant's crossing location at speeds of 16 m/s, 13.33 m/s, 11.42 m/s, 13 

and 10 m/s, corresponding to four TTA conditions (2.5 s, 3 s, 3.5 s, and 4 s). These vehicle speeds, ranging 14 

from 36 km/h to 57.6 km/h, are typical in urban traffic environments where vehicles frequently interact 15 

with pedestrians. There was also a small per-trial jitter of ±0.1 s, to minimize the risk of the four discrete 16 

trial types becoming individually recognizable to participants. The car approached participants from either 17 

the left or right side, with equal frequency. There were no audio cues when the car was approaching, to 18 

avoid the influence of auditory information on participant judgments (Schiff & Oldak, 1990). The road 19 

width was 4.2 m, and the participant’s initial position was 0.5 m from the roadside. Once the participant 20 

decided to cross, they were required to press the forward slash key on a computer keyboard, at which 21 

point the participant’s location in the virtual world was translated across the road, emulating a road 22 

crossing. Participants could choose freely when to cross, i.e. typically either before the car passed or after 23 

the car had passed. In this paper, we will refer to these decisions as cross-before and cross-after. The 24 

pedestrian's walking speed was maintained at 1.6 m/s, which is considered a typical fast walking speed 25 

(Fitzpatrick et al., 2006). If there was a collision between the participant and the car, the participant would 26 

hear a warning beep at the time of collision. After completion of  a crossing, the scene faded out for 0.25 27 

s before initiating a new trial.  28 
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  1 

(a) 2 

 3 

  4 

(b)  5 

Fig. 1 (a) Example of one trial of the pedestrian crossing experiment, and (b) Schematic of the task setup. 6 

 Procedure 7 

Participants were required to sit at approximately 60 cm distance from the screen in a darkened EEG 8 

laboratory. The experiment began with a 5-minute practice block consisting of 16 trials. After the practice, 9 

participants proceeded to conduct the formal testing on their own. The formal testing consisted of 4 10 

experimental blocks, with each block including 64 trials (4 TTAs × 2 Directions × 8 Repetitions), resulting 11 

in a total of 256 trials. The trial order was fully randomized within each block and across all participants. 12 
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Participants were allowed to take self-paced breaks between blocks. During the experimental blocks, they 1 

were instructed to maintain their gaze on the fixation target, refrain from blinking while the car was 2 

displayed and until their response. 3 

 Data preprocessing 4 

EEG preprocessing was done using EEGLAB 2019 (Delorme & Makeig, 2004) and Fieldtrip 5 

(Oostenveld et al., 2011). The main steps of preprocessing were in line with Boyle et al. (2022), as follows: 6 

All data were checked by eye, and channels exhibiting obvious poor quality were removed. The 7 

continuous data were then re-referenced to the average of all 64 channels. The data were high-pass filtered 8 

using a finite impulse response (FIR) filter with separate cut-offs of 1 Hz and 0.1 Hz. Subsequently, both 9 

sets of filtered data underwent a low-pass filter with a 40 Hz cut-off. Independent component analysis 10 

(ICA; Delorme et al., 2007) was used to decompose components from the 1 Hz filtered dataset and the 11 

derived ICA components were then removed from the 0.1 Hz filtered set to remove artefacts. This 12 

procedure preserves the integrity of ERP components by preventing the distortion that can occur when 13 

applying ICA to EEG data filtered at 0.1 Hz (Boyle et al., 2022). A baseline correction was applied using 14 

the 200 ms period before the car appeared. Data were then segmented into epochs of 1 s as follows: 15 

Stimulus-locked epochs, [-0.1, 0.9] s around the time of car appearance, and response-locked epochs, [-16 

0.9, 0.1] s around the time at which the participant initiated a crossing. After defining the epochs, a 17 

MATLAB implementation of the Fully Automated Statistical Thresholding for EEG Artefact Rejection 18 

(FASTER; Nolan et al., 2010) was employed to identify and remove bad epochs from the data. Next, the 19 

five channels centered on Pz (CPz, POz, P1, P2) were averaged to yield the CPP amplitude, as in 20 

(Markkula et al., 2021). 21 

 Statistical analysis 22 

To examine the effect of TTA conditions on CPP amplitude, we performed a multivariate F-test 23 

obtained from a Monte Carlo simulation with 1000 iterations in Fieldtrip. This test compared the CPP 24 

amplitude across each TTA condition at each time point in the stimulus-locked data and the response-25 

locked data, including Bonferroni correction to control the overall Type I error rate (false positive). To 26 

test the difference in centro-parietal signal amplitude between cross-before and cross-after decisions, a 27 

similar Monte Carlo simulation was carried out using a T-test. These methods have been used in previous 28 

studies (Van Vugt et al., 2019; Boyle et al., 2022). 29 

Pearson correlation analysis was done to analyze the relationship between CPP amplitude and the 30 

accumulated evidence in drift-diffusion models. 31 

 Evidence accumulation models 32 

The evidence accumulation models constructed in this study were based on previous research, where 33 

TTA conditions were considered a primary variable influencing road-crossing decisions (Lin et al., 2022; 34 
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Pekkanen et al., 2022; Markkula et al., 2023; Zgonnikov et al., 2024). To verify this notion, logistic 1 

regression analysis was conducted, demonstrating a significant influence of TTA conditions on decisions 2 

of whether to cross before or after (B = 2.41, p < 0.01). The probability of cross-before decision for all 3 

trials and response time for cross-before trials were shown in Fig. 2. As expected (Petzoldt, 2014; Tian et 4 

al., 2022),  a higher TTA was associated with a higher probability of a cross-before decision. Additionally, 5 

the effect of TTA conditions on response time for cross-before decisions was found to be significant, with 6 

response time increasing as TTA increased (F (3, 2240) = 48.20, p < 0.01). These statistical results are in 7 

line with the model assumption that pedestrian’s decisions are influenced by TTA conditions.  8 

 9 

Fig. 2 The probability of a cross-before decision for all trials (left; shaded area represents 95% confidence interval) and 10 

response time for cross-before trials (right).  11 

 12 

Both perception-based and utility-based models were tested, with the former assuming that evidence 13 

accumulation rates are obtained from heuristics applied to information that is perceptually available in 14 

the scenario, especially TTA, and the latter assuming that evidence accumulation rates are obtained from 15 

the perceived utility of crossing the road, at each point in time. These models represent different aspects 16 

of the decision-making process. All models were implemented in PyDDM (Shinn et al., 2020). 17 

 Perception-based models 18 

The perception-based models in this study were modified from the model proposed by Zgonnikov 19 

et al. (2024), including the dynamic drift rate collapsing bound model (DC), dynamic drift rate fixed 20 

bound model (DF) and static drift rate fixed bound (SF) model.  21 

The definition of dynamic drift rate dxd is shown in Eq. (1): 22 

 23 

( )0d crit
dx TTA t dt dW = − − +   (1) 24 

 25 

Where α (α > 0) quantifies the relative contribution of incoming perceptual information to the 26 

accumulated evidence. 
crit
  is a critical TTA threshold where the evidence accumulation begins only if 27 

TTA is higher than 
crit
 . W represents noise following a stochastic Wiener process (Ricciardi, 1976).  The 28 
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dynamic drift rate assumes that the drift rate is influenced by the initial TTA conditions and that evidence 1 

stops accumulating towards the crossing boundary if the TTA at time t is lower than the critical threshold. 2 

The static drift rate dxs is defined similarly to the dynamic drift rate but without time dependency, 3 

as shown in Eq. (2). It assumes that the drift rate is influenced by the initial TTA conditions and the critical 4 

TTA threshold, and does not change over time. 5 

 6 

( )0s crit
dx TTA dt dW = − +  (2) 7 

 8 

The collapsing boundary indicates that a decision is reached more quickly as time goes by because 9 

there is only a limited amount of time allowed for making decisions. The definition of collapsing boundary 10 

is as follows: 11 

 12 

( ) ( )( )0
0

1

1
k TTA t

b t b

e
− − −

=  
+

  (3) 13 

 14 

Where b0 represents the boundary scale parameter, multiplied by a sigmoid function of TTA to 15 

establish a collapsing bound. Parameter k (k > 0) defines the sensitivity of boundary to TTA, and τ equals 16 

to the TTA value when the boundary is at its baseline value (±1/2b0).   17 

The definition of a fixed boundary can be considered a special case of a collapsing bound model 18 

where the boundary b(t) remains constant at ±b0, without employing the sigmoidal modulation.  19 

 20 

Furthermore, a normally distributed non-decision time tND is included in all models to represent time 21 

delays associated with sensory perception and motor execution, as follows: 22 

 23 

( , )
ND ND ND

t N    (4) 24 

 25 

 Utility-based model 26 

In the utility-based model, the pedestrian's decision-making process is formulated in terms of the 27 

utility of crossing, rendering more explicit trade-off between the benefits of making progress one one’s 28 

journey and the costs of collision risk (Lin et al., 2022; Markkula et al., 2023). The utility-based model 29 

in this paper is based on (Lin et al, 2022) and (Markkula, 2023), in a simplified form adapted to this 30 

study's scenario.  31 

 32 

The definition of utility-based drift rate dxu is as follows: 33 
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0

0

0 0

0

( ) tanh( ( )) tanh( ) tanh( ( ))

( ),
( )

0,

TTA

u
t TTA t

c

dx t U C t dt U dt dW U C t dt dW

k TTA t t TTA
C t

t TTA

 
    = − − + = − +

 − 
 =   

  
 (5) 1 

 2 

In this expression, the integrals represent the estimated future total utility of crossing at time t versus 3 

waiting until time TTA0 and crossing thereafter. In both cases after initiating crossing there is a utility with 4 

rate U for making progress, but if crossing in front of the car there is also a cost with rate ( )C t . This can 5 

be thought of as a discomfort cost, increasing rapidly as the car comes closer. kc represents the degree to 6 

which the subject is concerned about the risk of being hit; a higher value indicates greater caution. The 7 

hyperbolic tangent (tanh) function acts as a squashing function such that at the time of car passing (t = 8 

TTA0), the value of ( )C t  approaches infinity, while tanh( ( ))U C t−   approaches -1, ensuring that the 9 

function remains integrable.  10 

We included a collapsing bound also for the utility-based model, and will thus refer to it here as the 11 

utility-based model with a collapsing bound (UC). The definitions of collapsing bound and non-decision 12 

time are the same as those described for the perception-based model. 13 

 Loss function 14 

A negative log likelihood loss function was employed for model fitting to quantify how well the 15 

model's predictions matched the observed data. This approach measures the probability of the observed 16 

data under the model, with lower values indicating a better model fit. For the cross-before decisions, 17 

response times were binned with a size of 0.005 s, consistent with the model fitting timestep. For the 18 

cross-after decisions, all response times were aggregated into a single bin since they were not safety-19 

critical. That is, our models do not make predictions about evidence accumulation after the car has passed. 20 

For each trial, the model predicted the probability of a response occurring in each bin, and these 21 

probabilities were then compared with the observed data. The likelihood of the observed data under the 22 

model was computed as the product of these probabilities across all trials, from which the negative log 23 

likelihood was derived. Akaike Information Criterion (AIC) values were then calculated based on the 24 

negative log likelihood to assess model fit and complexity. 25 

 26 

3 Results 27 

 Centro-parietal signal dynamics in pedestrian crossing decisions 28 

Fig. 3 depicts single-trial plots of the centro-parietal signal amplitude, illustrating the temporal 29 

relationship between the centro-parietal signal and response time at the trial level. Only trials with cross-30 

before decisions were plotted. The upper topographical maps show the stimulus-locked and response-31 

locked brain activity, covering a period from 50 ms before to 50 ms after the onset of the stimulus and 32 
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response time, respectively. It is clear that the amplitude of the centro-parietal signal steadily increases 1 

with incoming evidence and reaches a high value around the response time.  2 

 3 

 4 

Fig. 3 Single-trial plots for temporal relation between the centro-parietal signal and response time (black line) for 5 

cross-before decisions in all TTA conditions. 6 

 7 

Fig. 4 shows the stimulus-locked centro-parietal signal under different TTA conditions for cross-8 

before and cross-after decisions. The changes in centro-parietal signal amplitude for these two decisions 9 

exhibit a similar pattern: Initially, there is a negative potential prior to the signal buildup at 300 – 350 ms, 10 

which is likely influenced by visual evoked potentials triggered by a sudden stimulus onset, in our case 11 

the car appearing on the screen. This observation is consistent with findings from other decision-making 12 

tasks with a sudden appearance of a visual stimulus (Van Vugt et al., 2019). Subsequently, the signal 13 

amplitude increases from around 350 ms in all conditions, representing the actual centro-parietal signal 14 

positivity. 15 

The comparison between different TTA conditions shows that for cross-before decisions, the buildup 16 

of centro-parietal signal at a TTA of 2.5 s is significantly higher than the other TTA conditions, suggesting 17 

that a TTA of 2.5 s elicits a more pronounced centro-parietal signal buildup in preparation for crossing 18 

before the car. For cross-after decisions, the differences in centro-parietal signal buildup between different 19 

TTA conditions was not statistically significant.  20 
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 1 

Fig. 4 Stimulus-locked centro-parietal signal of cross-before and cross-after decisions. Time 0 corresponds to car 2 

appearing time. Red dots indicate a significant difference in CPP amplitude between the four TTA conditions (Bonferroni 3 

corrected, p < 0.05). A moving average with 0.1 s window size was applied to smooth the data for visualization. 4 

 5 

Fig. 5 shows the response-locked centro-parietal signal under different TTA conditions for cross-6 

before and cross-after decisions. It’s clear that the centro-parietal signal peaks at the time of response 7 

execution. This characteristic matches the feature of the CPP discussed in previous research (O’Connell 8 

et al., 2012; Kelly & O’Connell, 2013). Therefore, we refer to this signal as CPP from now on. The CPP 9 

at the response time for cross-before decisions shows a significant difference between the TTA conditions, 10 

with TTA values of 3.5 s and 4 s exhibiting higher values compared to TTA values of 2.5 s and 3 s. In 11 

contrast, there is no significant difference in response-locked CPP for cross-after decisions between 12 

different TTA conditions.  13 

Looking between the cross-before and cross-after trials the CPP amplitude at the response time was 14 

higher for cross-before decisions than for cross-after decisions. A priori, it is not obvious whether one 15 

would expect a CPP peak at cross-after decisions, since it seems this decision is qualitatively different 16 

from the cross-before decision. Whereas the cross-before decision seems intuitively easy to understand 17 

as an evidence accumulation type of decision, the cross-after decision is arguably more of a timing task, 18 

where the participant simply waits until the car has passed and then presses the response key. Interestingly, 19 

our results suggest that also this type of task elicits a CPP peak. 20 
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 1 

 Fig. 5 Response-locked CPP of cross-before and cross-after decisions. Time 0 corresponds to response time. Red dots 2 

indicate a significant difference in CPP amplitude between the four TTA conditions (Bonferroni corrected, p < 0.05). A 3 

moving window of 0.1 seconds was used to smooth the data for visualization. 4 

 5 

 Fitting DDMs to pedestrian crossing decisions 6 

AIC values were calculated for all participants to compare the four models, yielding the following 7 

results: UC (utility-based collapsing bound model, 22445) < DC (dynamic drift rate collapsing bound 8 

model, 22456) < DF (dynamic drift rate fixed bound model, 22628) < SF (static drift rate fixed bound 9 

model, 22647). Opinions differ on appropriate thresholds for AIC-based model selection, but the most 10 

stringent guidelines suggest that an AIC difference of 14 indicates "very strong support" (Murtaugh, 2014). 11 

Therefore, it can be concluded that there is a very strong preference for the collapsing boundary over the 12 

fixed boundary (DC vs DF, ΔAIC = 172), and a very strong preference for the dynamic drift rate over the 13 

static drift rate (DF vs SF, ΔAIC = 19). The preference for the utility-based model over the perception-14 

based model is not as decisive (UC vs DC, ΔAIC = 11). While this AIC difference can be taken to provide 15 

relatively strong support in favor of UC over DC, it does not meet the most stringent thresholds for 16 

rejecting DC. 17 

Figure 6 depicts the overall model performance across all participants, and the model fitting results 18 

for each participant are shown in the Appendix Fig. A1 & A2. The models only make predictions of 19 

response time for cross-before trials. The upper panel shows the probability of go decisions and response 20 

times. All four models could accurately simulate the probability of go decisions. However, for response 21 

times, the fixed boundary models (i.e., DF and SF) performed relatively poorly, failing to capture the 22 

increase of response times with increasing TTA conditions. In contrast, the collapsing boundary models 23 

successfully captured this pattern, with the UC model showing a slight performance advantage over the 24 

DC model. The panel (b) of Fig. 6 shows the cumulative probability density distribution of response times 25 

for cross-before trials, further supporting the above findings. The fitting results of the UC and DC models 26 

more closely resemble the experimental data, especially when TTA is 2.5 s and 3 s, compared to the DF 27 



 

14 

 

and SF models. Additionally, the UC model slightly outperforms the DC model in the upper tail of the 1 

response time distribution when TTA is 4 s.  2 

 3 

Fig. 6 Model prediction results. UC: utility-based collapsing bound model, DC: dynamic drift rate collapsing bound 4 

model, DF: dynamic drift rate fixed bound model, SF: static drift rate fixed bound model. (a) Group-averaged probability 5 

of go decision for all trials, and response time for cross-before trials; (b) probability density function of response time 6 

for cross-before trials. The lines represent the model value fitted to the group-averaged data, while the markers represent 7 

the group-averaged experimental data. 8 

 9 

 Correlation between accumulated evidence and CPP 10 

Based on the findings outlined in Section 3.2, where the UC and DC models demonstrated superior 11 

performance compared to other models, this section exclusively focuses on these two models to analyze 12 

the correlation between accumulated evidence and CPP. The analysis begins with a qualitative comparison 13 

between the two, followed by a quantitative correlation analysis.  14 

(1) Qualitative analysis 15 

The average stimulus-locked evidence of cross-before and cross-after trials for the DC and UC 16 

models are shown in Fig. 7. These averages were obtained by generating a simulated dataset of the same 17 

size as the original experiment, using the per-participant fitted models, and then averaging the obtained 18 

simulated evidence traces across all participants. It can be noted that these average evidence traces appear 19 

smoother at the beginning and noisier towards the end. This is because beyond the time point when 20 

participants have made decisions, the model evidence is undefined, so the average is across fewer trials. 21 
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For cross-before decisions, the average evidence for both the DC and UC models consistently 1 

increases toward the upper decision boundary across all TTA conditions. In contrast, for cross-after 2 

decisions, the trend of average evidence traces differs between DC and UC models: In the UC model, the 3 

average evidence consistently decreases toward the lower decision boundary, in all TTA conditions, 4 

whereas in the DC model there is an initial increase and positive evidence peak in the  low TTA conditions 5 

(2.5 s and 3 s) but not in the high TTA conditions (3.5 s and 4 s). In the cross-after CPP traces in  Fig. 4, 6 

there are no indications of any such qualitative difference in the CPP buildup between the low and high 7 

TTA conditions. Instead, the CPP amplitude for cross-after decisions exhibits a continuous increase and 8 

peaks around the response time in all TTA conditions, which is qualitatively more similar to the evidence 9 

traces for the UC model. 10 

Fig. 8 shows the response-locked evidence traces of DC and UC models, only for trials with cross-11 

before decisions. In the DC model, the accumulated evidence values at response follow a consistent 12 

pattern: highest for a TTA of 4 s, followed by 3.5 s, 3 s, and shortest for 2.5 s. In the UC model, the 13 

evidence values at the response time are similar at TTAs of 3.5 s and 4 s, both of which are higher 14 

compared to the evidence values at TTAs of 2.5 s and 3 s. The evidence value of UC model at response 15 

time closely corresponds to the CPP amplitude at the same response time, as shown in Fig. 5, where the 16 

CPP amplitudes at TTAs of 3.5 s and 4 s are higher than at TTAs of 2.5 s and 3 s.  17 

The above qualitative analyses tentatively suggest an alignment between CPP and model evidence 18 

that is closer for the UC model than for the DC model, both with stimulus-locked and response-locked 19 

signals. 20 

 21 
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Fig. 7 Comparison of accumulated evidence traces for DC and UC models with cross-before and cross-after 1 

decisions. 2 

 3 

 4 

Fig. 8 Response-locked accumulated evidence of cross-before decisions. 5 

 6 

(2) Quantitative analysis 7 

Correlation analysis between response-locked CPP amplitude (Fig. 5) and response-locked 8 

accumulated evidence (Fig. 8) was done for the cross-before trials. A time period of 400 ms pre response 9 

was chosen since it reflects the typical CPP buildup period in our data (Fig. 5).  10 

Fig. 9 show that the CPP amplitude was positively correlated with the evidence in both the DC and 11 

UC models across all TTA conditions, with all correlations being statistically significant (p < 0.01). The 12 

Pearson correlation coefficients show that the coefficients for the UC model is higher than for the DC 13 

model in each individual TTA condition, suggesting the evidence buildup in the UC model is more 14 

consistent with the observed CPP data. Furthermore, under the assumption that the CPP is a neural 15 

correlate of accumulated evidence, we would expect a certain amount of model evidence to correspond 16 

to the same CPP amplitude across all conditions. As can also be seen in the rightmost panels of Fig. 9, 17 

model UC shows this type of consistency across conditions, but not the DC model. This result further 18 

strengthens the argument that the UC model generates evidence traces that are more consistent with CPP 19 

amplitudes. 20 
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 1 

Fig. 9 Correlation between response-locked CPP amplitude and response-locked accumulated evidence of the DC and 2 

UC models for cross-before trials. r represents correlation coefficient, and all correlations are statistically significant (p 3 

< 0.01). 4 

  5 

4 Discussion 6 

 An observable CPP signature in the pedestrian crossing task 7 

This study extends the CPP analysis from simple abstract stimuli to a pedestrian crossing scenario, 8 

which differs from previous studies of CPP by involving more embodied decision-making about 9 

navigating one's own body in the world (albeit virtually). To successfully complete the task, participants 10 

needed to track and interpret the movement of the approaching car, and decide when it was safe to cross, 11 

balancing their desire to complete the task early against the need to avoid a collision. If the pedestrian 12 

intended to cross before the vehicle, they had to make timely decisions based on changing visual cues 13 

while respecting time constraints, i.e., the time left for the car to pass. If the pedestrian decided to cross 14 

after the vehicle, they had to wait until the car had passed and then initiate their crossing. This set of 15 

characteristics of our task sets it clearly apart from previous tasks where a CPP has been observed, such 16 

as random dot direction discrimination tasks (Kelly and O'Connell, 2013), and emotion decision task with 17 

face morphing (Yau et al., 2021), where participants only need to react to task itself without navigating 18 

their own body. 19 

It is notable, then, that despite these differences in task nature, we observed the same type of CPP 20 

signature as in the existing literature, with an amplitude buildup leading up to and peaking at response 21 

time (Kelly & O’Connell, 2013; Kohl et al., 2020). Furthermore, we found a significant positive 22 

correlation between CPP amplitude and accumulated evidence value in DDMs for this applied task, which 23 

is in line with previous findings (O’Connell et al., 2018; Van Vugt et al., 2019; Yau et al., 2021). These 24 
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findings reinforce the notion of the CPP as a marker for decision-making processes that is remarkably 1 

stable across different task contexts and modalities. 2 

In the context of road users, evidence accumulation has long been suggested to play a role, and has 3 

been included in models of road user decision-making (Markkula, 2014; Ratcliff and Strayer, 2014; Svärd 4 

et al., 2021) and other forms of sustained sensorimotor control (Markkula et al., 2018). Previously, a CPP 5 

signature was observed in a task where participants detected collision threats in the form of visual looming 6 

from a lead car stimulus (Markkula et al., 2021), but our study is the first to demonstrate this 7 

neurophysiological marker of evidence accumulation in a task where the participants make a decision on 8 

their own movement. These findings have broad implications for the applicability of CPP measurements 9 

in real-world decision-making scenarios. For example, if we extend CPP analysis to domains such as 10 

aviation (Čokorilo, 2013), and human-computer interaction (Van Mierlo et al., 2017), we can gain a 11 

clearer understanding of how decisions are made under various conditions. This could drive the creation 12 

of more effective monitoring tools and the design of more intuitive interfaces, ultimately enhancing both 13 

the efficiency and safety of decision-making processes in complex, high-stakes environments. 14 

On the other hand, we found that CPP peak is of a different amplitude for different TTA conditions, 15 

which is in line with findings in the random dot motion task (Kohl et al., 2020), abstract gradual target 16 

detection task (O'Connell et al., 2012), and human collision threat detection task (Markkula et al., 2018). 17 

According to the ‘two-accumulator’ hypothesis proposed by Markkula et al. (2021), the differing peak 18 

amplitudes at response might be attributed to continued evidence accumulation beyond the decision point. 19 

This is due to the motor execution delay between reaching the decision threshold and the observable 20 

response. In conditions where evidence is more salient, this accumulation process is prolonged, leading 21 

to higher peak amplitudes at the time of response. 22 

 DDM performance in the applied pedestrian crossing task 23 

From a modeling perspective, this study found that models with collapsing boundaries showed better 24 

fit to the experimental data compared to those with fixed boundaries. These models produced response 25 

time distributions that are less skewed, consistent with findings from previous studies (Hawkins et al., 26 

2015; Palestro et al., 2018). However, it should be noted that not all tasks benefit from models with 27 

collapsing boundary. Previous studies show that the collapsing boundary is prominent in situations where 28 

responses must be made within a strict deadline (Frazier & Yu, 2007; Malhotra, G. et al., 2018; O’Connell 29 

et al., 2018). In the pedestrian crossing scenario, as the car approaches, the window of opportunity for the 30 

pedestrian to safely cross diminishes rapidly. Therefore, the time when the car approached could be 31 

viewed as a strict deadline for decision-making, imposing time pressure on the pedestrian to make a quick 32 

decision. This contributes to the observed preference for the collapsing boundary in the DDM model.  33 

Importantly, incorporating the CPP signature into our analysis distinguished between the utility-34 

based model and perception-based model in a way that behavioral data alone could not. Based solely on 35 

behavioral data, there was a preference for the utility-based model over perception-based models, but not 36 
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to the most stringent requirements of model comparison significance. However, when extending the 1 

model comparison to the CPP data, the results showed that the accumulated evidence values in the utility-2 

based model were more closely aligned with the observed CPP amplitude before and at response time, 3 

suggesting that this model provides a more accurate representation of the underlying decision process in 4 

neural terms. Taken together, these results from both behavioral modeling and model-neurophysiology 5 

correlation provide rather compelling evidence in favor of the utility-based account of pedestrian crossing 6 

decisions. 7 

The perception-based and utility-based models are based on two different underlying assumptions 8 

about how humans achieve locomotion and perceptual-motor control, more broadly. The perceptual 9 

account suggests that locomotor decisions are made based on perceptual heuristics, based on information 10 

more or less directly available from the perceptual input, in line with ecological psychology theories of 11 

human behavior (Gibson, 1958; Fajen 2013; Prédhumeau et al., 2022). In contrast, the utility-based 12 

account suggests that locomotor decisions are instead made by estimating the utility, or future rewards, 13 

that will come from a decision under consideration. This view of humans as reward-maximisers is also 14 

very well-established and actively used, not least in models of locomotion (von Neumann et al., 1944; 15 

Hoogendoorn & Bovy, 2003; Markkula et al., 2023).  16 

Looking more specifically at the differences in mathematical assumptions between the DC and UC 17 

models, it is not trivial to say exactly what is behind the better performance for the UC model in this 18 

case. Behaviorally, the main difference lies in a slightly better capability of the UC model to capture the 19 

upper tail of crossing decision times in the 4 s TTA condition (Fig. 5). Neurophysiologically, the key 20 

reason for the stronger correlation of the UC model evidence with the CPP signal (Fig. 8) is that the DC 21 

model has a faster evidence buildup early in the trial. Both of these observations may be related to how 22 

the two models consider collision risk: The DC model's evidence increment dx is linear around the critical 23 

TTA 
crit
  (Eq. 1), whereas in the UC model, the inverse of TTA in ( )C t  (Eq. 5) introduces a nonlinearity 24 

whereby a change in TTA makes a much bigger difference if TTA is small. At the same time, it should 25 

also be pointed out that the theoretical perspectives behind these two models are not strictly incompatible; 26 

it may be that humans use perceptual heuristics, but precisely those heuristics which maximize utility. In 27 

this vein, one could surely formulate a perceptually available heuristic which approximates well the UC 28 

dx in Eq. 5. 29 

One benefit of the utility-based formulation is that it seems easier to generalize to a more diverse set 30 

of scenarios. The task of getting to one's goal without colliding with others can be succinctly formulated 31 

in terms of a utility or reward function, but the perceptual heuristics required to achieve those rewards 32 

may differ substantially between different situations. From this perspective, our favorable results for the 33 

utility-based model have applied importance also in the sense that they provide support for this more 34 

easily generalizable approach to pedestrian modelling, with applications in traffic safety and vehicle 35 

automation (Sadigh et al., 2018; Schwarting et al., 2019; Lin et al., 2022). 36 



 

20 

 

 Limitations and future work 1 

There are some limitations in this study. Firstly, the differences between the UC and DC models were 2 

quite small, especially behaviorally. Future experiments could be designed in such a way to more clearly 3 

separate the two models behaviorally. Secondly, the utility formulation in the UC model tested here is 4 

relatively simplistic. In more advanced models of value-based evidence accumulation in simple 5 

laboratory tasks, it has been proposed that humans balance the utility of committing to a decision versus 6 

the utility of gathering more information (Drugowitsch et al., 2012). In this type of formulation, the 7 

estimated utility of gathering more information is highly non-trivial to write analytically, yet it seems 8 

reasonable that such processes are also at play in embodied decisions such as pedestrian road-crossing. 9 

5 Conclusion 10 

This study expands the analysis of CPP and DDM from abstract stimuli to an applied pedestrian 11 

crossing scenario. The results revealed a typical CPP signature, characterized by a buildup that peaks at 12 

response time. Relying solely on behavioral data, there was a partial preference for the utility-based model 13 

over perception-based models, while the CPP signature provided additional support for the utility-based 14 

model over the perception-based ones in predicting pedestrian road crossing behavior. Since the utility-15 

based model is easier to generalize to a wider range of scenarios, it holds great promise for applications 16 

in transport safety and vehicle automation.  17 
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Fig. A1 Probability of cross-before decision for four models fitted to experimental data. Error bars indicate 16 

binomial proportion standard error of mean. 17 
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Fig. A2 Response time of cross-before decision for four models fitted to experimental data. Response times for 3 

conditions with less than 15 data points are omitted. Error bars indicate standard error of mean. 4 
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