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Abstra
t. Dynami
al systems with symmetries show a number of atypi
al behaviours

for generi
 dynami
al systems. As 
oupled 
ell systems often possess symmetries, these

behaviours are important for understanding dynami
al e�e
ts in su
h systems. In parti
-

ular the presen
e of symmetries gives invariant subspa
es that intera
t with attra
tors

to give new types of instability and intermittent attra
tor. In this paper we review and

extend some re
ent work (Ashwin, Ru
klidge and Sturman 2002) on robust non-ergodi


attra
tors 
onsists of 
y
les between invariant subspa
es, 
alled `
y
ling 
haos' by Dellnitz

et al. (1995).

By 
onsidering a simple model of 
oupled os
illators that show su
h 
y
les, we

investigate the di�eren
e in behaviour between what we 
all free-running and phase-

resetting (dis
ontinuous) models. The di�eren
e is shown most 
learly when observing

the types of attra
tors 
reated when an attra
ting 
y
le loses stability at a resonan
e. We

des
ribe both s
enarios { giving intermittent stu
k-on 
haos for the free-running model,

and an in�nite family of periodi
 orbits for the phase-resetting 
ase. These require 
areful

numeri
al simulation to resolve quantities that routinely get as small as 10

�1000

.

We 
hara
terise the di�eren
e between these models by 
onsidering the rates at whi
h

the 
y
les approa
h the invariant subspa
es. Finally, we demonstrate similar behaviour

in a 
ontinuous version of the phase-resetting model that is less amenable to analysis and

raise some open questions.
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1
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hronization: Theory and Appli
ation A. Pikovsky and Y. Maistrenko

(eds), Kluwer: Dordre
ht, 5{23.
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2 P. ASHWIN, A. RUCKLIDGE AND R. STURMAN

1. Introdu
tion

To understand more 
omplex dynami
al systems, it is often helpful to break

them down into a number of smaller units or `
ells' that intera
t with ea
h

other. These 
ells may be imposed naturally by the system one is modelling

(for example, neuronal a
tivity), or may just be mathemati
ally helpful

(su
h as linear spatial modes in a spatially extended nonlinear system).

Isolating the intera
tions between the units and the dynami
s of the in-

dividual units gives a 
oupled 
ell des
ription for the dynami
s. A basi


question for su
h systems is whether the attra
ting dynami
s of the system

is syn
hronized in any sense.

In 
ases where the 
ells are identi
al the dynami
s is 
onstrained by the

existen
e of invariant (syn
hronized) subspa
es for the dynami
s. The paper

reviews some re
ent work that exploits symmetries of 
oupled identi
al 
ell

systems to help understand their generi
 behaviour.

The paper pro
eeds as follows. In se
tion 2 we review some basi
 
on-


epts from dynami
al systems with �nite symmetry group and the e�e
ts of

invariant subspa
es. In se
tion 2.1 we dis
uss the stability and bifur
ation

of attra
tors in and near invariant subspa
es; a 
ommon feature of su
h

attra
tors is that they may be highly intermittent (Ashwin, 1999).

In se
tion 2.2 we dis
uss a 
lass of more 
ompli
ated intermittent at-

tra
tors that nevertheless robustly appear, that involve a number of invari-

ant subspa
es. These attra
tors have dynami
s that show `
y
ling 
haos'

(Dellnitz et al., 1995) between a number of invariant sets that may be


haoti
 or periodi
. These attra
tors may be non-ergodi
, namely there are

obstru
tions to 
onvergen
e of averages of observations made on the system.

For the remainder of this arti
le we fo
us on a parti
ular family of


oupled systems introdu
ed in (Ashwin et al., 2002) that have robust 
y
ling

attra
tors. Se
tion 3 introdu
es these 
y
li
ally 
oupled logisti
 maps, and

if we ensure (by introdu
ing a dis
ontinuity in the map) that the approa
h

to 
onse
utive 
haoti
 saddles is via a single traje
tory (we 
all this phase-

resetting) we 
an investigate how their instability 
auses the appearan
e of

an in�nite family of nearby periodi
 orbits. Finally we present in se
tion 3.5

eviden
e that phase-resetting 
an appear even if the map remains smooth.

�
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CYCLING ATTRACTORS AND SYMMETRY 3

2. Dynami
s with symmetry

Ri
h dynami
s are frequently found in systems that 
ommute with a group

of symmetries. These symmetries 
onstrain what 
an happen in the system

while also 
ausing atypi
al behaviour to be
ome generi
. At the simplest

level, symmetries 
ause multistability of attra
tors; any symmetri
 image of

an attra
tor must also be an attra
tor. Moreover, if an initial 
ondition has

a 
ertain symmetry, this symmetry must be retained along the traje
tory

giving rise to invariant subspa
es for the dynami
s. Symmetries 
an also


ause 
onstrain instabilities by for
ing repetition of eigenvalues or Lyapunov

exponents 
orresponding to perturbations that are in symmetri
ally related

dire
tions.

The development of equivariant dynami
al systems, or dynami
al sys-

tems with symmetry, has made great progress in giving a number of tools

from group representation and singularity theory to 
lassify su
h behaviour.

This has been parti
ularly su

essful in 
lassifying lo
al bifur
ations of

equilibria and periodi
 solutions (see Golubitsky et al. 1985, 1988, 2002)

but in this arti
le we do not dis
uss this or its appli
ation to 
oupled 
ell

networks.

2.1. ATTRACTORS IN INVARIANT SUBSPACES AND INTERMITTENCY

For dynami
s that is symmetri
 under linear a
tions of a �nite group, there

is a linear invariant subspa
e asso
iated with ea
h subgroup of symmetries.

When an attra
tor in an invariant subspa
e loses transverse stability due

to a 
hange of parameter we have a so-
alled blowout bifur
ation. More

pre
isely, 
onsider a dynami
al system on R

n

, 
ontaining an subspa
e M

of dimension m < n whi
h is invariant under the a
tion of the system.

Suppose that for parameters � below a 
riti
al parameter �




the subspa
e

M 
ontains a 
haoti
 attra
tor A of the full system. A blowout bifur
ation

o

urs at �




if A 
eases to be an attra
tor for � > �




. Two di�erent types

of blowout bifur
ation s
enario were 
hara
terised in (Ott and Sommerer,

1994) and appli
ations to 
oupled systems noted in (Ashwin, Bues
u and

Stewart, 1994). The �rst s
enario is sub
riti
al (also 
alled hystereti
 or

hard) and o

urs when there are no nearby attra
tors beyond the bifur
a-

tion. This 
lass of blowout is 
hara
terised by a riddled basin of attra
tion.

The se
ond is the super
riti
al (also 
alled nonhystereti
 or soft 
ase), in

whi
h on-o� intermittent attra
tors bran
h from the original attra
tor when

the bifur
ation parameter in
reases; for a review of intermitten
y e�e
ts see

(Ashwin, 1999).

Despite the 
omplexity and diversity of the dynami
s in su
h 
ases, the

resulting attra
tors are generally observed to have ergodi
 natural measures

as far as one 
an tell from numeri
al simulations. This seems is true for
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4 P. ASHWIN, A. RUCKLIDGE AND R. STURMAN

generi
 attra
tors that arise in dynami
al systems and means that average

quantities (su
h as Lyapunov exponents) 
an be 
omputed from attra
ted

traje
tories and are natural in the sense that they are the same for almost

all initial 
onditions. One of the most surprising results from the study

of symmetri
 systems is that attra
tors without ergodi
ity 
an be found

in fairly simple symmetri
 systems and moreover these 
an be robust to

(symmetry-respe
ting) perturbations. A review of these robust hetero
lini



y
les 
an be found in (Krupa, 1997) and a 
lassi�
ation of more general

hetero
lini
 networks that may arise in symmetri
 systems 
an be found in

(Ashwin and Field, 1999).

2.2. CYCLING ATTRACTORS

One of the best-known non-ergodi
 attra
tors is the stru
turally stable het-

ero
lini
 
y
le between �xed points in R

3

(the \Gu
kenheimer and Holmes


y
le", (Gu
kenheimer and Holmes, 1988)). This is given by the equation

_x = x(l + ax

2

+ by

2

+ 
z

2

)

_y = y(l + ay

2

+ bz

2

+ 
x

2

) (1)

_z = z(l + az

2

+ bx

2

+ 
y

2

):

For the system (1) the 
oordinates planes, the diagonals x(�1;�1;�1) and

the axes are all invariant. Moreover, there is an open set of parameters

(a; b; 
) su
h that all traje
tories o� these invariant subspa
es approa
h a

robust 
y
le formed from three equilibrium points on the 
oordinate axes

and traje
tories in the 
oordinate planes 
onne
ting these points. Although

hetero
lini
 
y
les are possible in systems without symmetry, they are not

stru
turally stable unless there are 
onstraints on the system. The presen
e

of invariant subspa
es means that the 
y
le 
an be robust { that is, stable

with respe
t to perturbations whi
h preserve invarian
e of the 
oordinate

planes.

This hetero
lini
 
y
le, illustrated in Figure 1, is robust simply be
ause

within the invariant subspa
es, the 
onne
tions are generi
 
onne
tions

from saddle to sink. A typi
al traje
tory approa
hing the 
y
le will swit
h

between neighbourhoods of the equilibrium points progressively getting


loser to the 
y
le. One 
an 
al
ulate that it will spend a geometri
ally

in
reasing amount of time 
lose to ea
h equilibrium point and be
ause of

this the ergodi
 averages will be dominated by the present equilibrium and

fail to 
onverge. Rather, they will os
illate for ever (Sygmund, 1992; Hof-

bauer and Sygmund, 1992; Gaunersdorfer, 1990). On varying a parameter

in su
h a system, several me
hanisms whereby robust attra
ting 
y
le 
an

be 
reated and destroyed have been identi�ed.
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CYCLING ATTRACTORS AND SYMMETRY 5

z

y

x

p

q

r

Figure 1. An example of a robust hetero
lini
 
y
le; the Gu
kenheimer-Holmes 
y
le in

R

3

. This is a 
y
le of hetero
lini
 
onne
tions between the equilibria p; q; r as illustrated,

that exists and is attra
ting for an open set of parameters (a; b; 
). The 
y
le is stru
turally

stable to all perturbations that preserve the 
oordinate planes; the 
onne
tion within ea
h


oordinate plane is one from a saddle to a sink.

� A resonan
e bifur
ation (Chow et al, 1990) 
reates a large period

periodi
 orbit at loss of stability of the 
y
le.

� The �xed points themselves bifur
ate in su
h a way as to destroy

the 
onne
tion, for example at saddle-node or Hopf bifur
ations or

other transverse bifur
ations that may 
reate new longer attra
ting

hetero
lini
 
y
les (Chossat et al. 1997a, 1997b).

Cy
les 
an also exist between sets that are more 
ompli
ated than sim-

ple �xed points but 
an be 
reated and destroyed in a similar way. For

example, if we have 
y
les between 
haoti
 sets (that is, 
haoti
 saddles {

attra
ting within an invariant subspa
e but repelling in transverse dire
-

tions) we have 
y
ling 
haos, as dis
ussed in (Ashwin, 1997; Ashwin and

Ru
klidge, 1998; Dellnitz et al., 1995), an aspe
t of a phenomenon referred

to as 
haoti
 itineran
y by (Kaneko, 1998). The stability of su
h 
y
les

is usually governed by the ratios of Lyapunov exponents at the saddles.

Loss of stability 
an o

ur at a blowout bifur
ation that destroys the set

of 
onne
tions (Ashwin and Ru
klidge, 1998) or at a resonan
e bifur
ation

that 
orresponds to a resonan
e of Lyapunov exponents (whi
h o

urs when

the rates of linear expansion and 
ontra
tion be
ome equal).

One would like to understand the sort of attra
tors that are 
reated at a

resonan
e bifur
ation. This question was posed and investigated for a spe-


i�
 planar magneto
onve
tion model with robust 
y
ling 
haos in (Ashwin

and Ru
klidge, 1998). The 
y
le in this 
ase was between a 
haoti
 saddle,

an equilibrium point and their images under symmetries of the problem.

Numeri
al simulations in (Ashwin and Ru
klidge, 1998) suggest that the

resonan
e bifur
ation 
reates a large number of periodi
 attra
tors that

bran
h from the 
y
ling 
haos. By 
ontrast, for the skew-produ
t example

of 
y
ling 
haos examined in (Ashwin, 1997) the resonan
e was found to
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6 P. ASHWIN, A. RUCKLIDGE AND R. STURMAN

give rise not to periodi
 orbits but to a 
haoti
 attra
tor with average


y
ling 
haos, or to quasiperiodi
ity that is intermittent (`stu
k on') to the


y
ling 
haos.

An initial attempt to re
on
ile these di�eren
es was made in (Ashwin et

al., 2002), by introdu
ing the terms phase-resetting and free-running. For

the remainder of this paper we re
all this distin
tion and expand upon the

examples in (Ashwin et al., 2002). We use phase-resetting to des
ribe a 
y
le

in whi
h the 
onne
tions between invariant subspa
es 
onsist of only a single

traje
tory (for example, in a 
ow the 
onne
tions are one-dimensional, or

in a map, they are zero-dimensional). By 
ontrast, free-running des
ribes


y
les whi
h have a set of many possible 
onne
tions.

3. Coupled logisti
 maps

3.1. FREE-RUNNING MODEL

Let f(x) = rx(1�x) denote the logisti
 map with parameter r 2 [0; 4℄ and


onsider the system introdu
ed in (Ashwin et al., 2002):

x

n+1

= f(x

n

)e

�
z

n

y

n+1

= f(y

n

)e

�
x

n

(2)

z

n+1

= f(z

n

)e

�
y

n

:

This map 
learly preserves the 
oordinate planes de�ned by xyz = 0. Three

distin
t types of evolution are possible for ea
h variable. For example,


onsider x: if z � 1 and x � 1 then x grows approximately linearly {

the growing phase. For z � 1 and x � O(1), x evolves a

ording to logisti


map dynami
s { the a
tive phase. Finally if z � O(1) the dynami
s in the

x dire
tion is suppressed by the 
oupling term { the de
aying phase. For

suÆ
iently large 
 we have a robust 
y
le between invariant sets. In this

state, ea
h variable alternates 
y
li
ally between the growing, a
tive and

de
aying phases. We term a 
hange in the phases a swit
h. More pre
isely,

we say a swit
h o

urs when the growing variable ex
eeds ln r=
. The num-

ber of iterations between swit
hes in
reases approximately geometri
ally as

traje
tories approa
h the invariant subspa
es, and this rate of in
rease de-

pends on the 
oupling 
. The rate of in
rease of swit
hing times approa
hes

zero as 
 approa
hes some 
riti
al value from above, whi
h forms the limit

of the stability of 
y
ling 
haos. This geometri
 in
rease is examined in

more detail in se
tion 3.3.

For r < 3 the 
y
les are between period one points; as r is in
reased

through period doubling we obtain 
y
les progressively between periodi


orbits and then 
haoti
 saddles. Sin
e numeri
al simulations of this system
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Figure 2. Attra
ting 
y
ling 
haos, with r = 4:0, 
 = 6:0. The model is iterated and

x; y; z plotted (in logarithmi
 
oordinates) against time. The 
haoti
 behaviour is O(1)

and is visible in the inset. The traje
tory 
y
les through growing, a
tive and then de
aying

phases for ea
h variable, with the length of phase in
reasing approximately geometri
ally.

(The same behaviour is found for the phase-resetting version dis
ussed in se
tion 3.3.)

need to resolve a neighbourhood of the invariant subspa
es at high resolu-

tion, we use logarithmi
 
oordinates (Ashwin and Ru
klidge, 1998; Pikovsky

et al, 2002). The time series in Figure 2 is for parameters that produ
e

attra
ting 
y
ling 
haos. This sort of behaviour 
ould be viewed as a sort of

antisyn
hronization; when one variable be
omes a
tive, the 
urrently a
tive

variables be
ome quies
ent. Referring to Figure 2, de
reasing 
 results in a

slower rate of in
rease in the number of iterations between swit
hes, and the

line formed by 
onne
ting the lo
al minima would be
ome more horizontal.

3.2. COMPUTATION OF RESONANCE BIFURCATION

Suppose that 
y
ling 
haos loses stability on de
reasing 
 through a 
riti
al

value 





. We 
ompute 





analyti
ally as follows, as shown in (Ashwin et

al., 2002). Suppose that the growing variable is z and a swit
h has just

o

urred, so z � 1, x is O(1) and y is de
aying. The evolution of z is

governed by z

n+1

= rz

n

(1 � z

n

)e

�
y

n

, and this 
an be approximated by

z ! rz. Starting at a swit
h at z

0

, suppose that the number of iterations

until the next swit
h is N . Then z

N

� r

N

z

0

, and sin
e z

N

is O(1) at a

swit
h, N � � ln z

0

= ln r, where z

0

is the value of z at the start of the

growing phase. Whilst z is growing, y is de
aying, and for 
riti
al 
 we
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Figure 3. The 
riti
al value of 
 at whi
h loss of stability of 
y
ling 
haos o

urs by

resonan
e. The line is estimated using (3) whereas the boxes show points of numeri
ally


al
ulated loss of stability of 
y
ling attra
tors on varying 
 for �xed r. Above the line

there is a 
y
le that is an attra
tor; below the line the 
y
ling persists but is no longer

an attra
tor.

require y

N

= z

0

. We approximate y

N

in a similar way, with y

0

an O(1)

number. Throughout the de
ay phase y � 1, but it is for
ed by the a
tive

variable x. Here we approximate by y ! rye

�
x

, and repla
e x by its long-

term average A

1

(= lim

M!1

1

M

P

M

i

f

i

(x

0

)) for ea
h of the N iterations,

giving y

N

� r

N

e

�
NA

1

. Then substituting our expression for N , we have

ln y

N

� � ln z

0

+ (
 ln z

0

A

1

)=(ln r). The 
riti
al value of 
 o

urs when

ln y

N

= ln z

0

, giving







= 2 ln r=A

1

: (3)

Equivalently, this 
an be obtained by 
onsidering the ratio of the trans-

versely expanding Lyapunov exponent � = ln r and the 
ontra
ting Lya-

punov exponent �� = ln r � 
A

1

. There will be geometri
 slowing down

with asymptoti
 rate R, where R is

R =

�

�

> 1: (4)

There is a resonan
e when this quantity is equal to unity, also leading to

(3).

The average A

1

is easy to 
ompute numeri
ally, and so we 
an obtain

a 
urve of 
riti
al 
 shown in Figure 3, plotted as a line. We superimpose

points 
omputed by seeking the parameter at whi
h the number of itera-
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Figure 4. After losing stability at resonan
e, in the free-running 
ase, the 
y
le gives

way to a stu
k-on attra
tor. Traje
tories are intermittent to ea
h invariant subspa
e,

visiting portions of 
haoti
 behaviour in an irregular fashion but with a �nite mean time

of 
y
ling. r = 4:0; 
 = 5:4.

tions between swit
hes be
omes 
onstant, demonstrating the a

ura
y of

the approximation. When the attra
ting 
y
le loses stability in a resonan
e

bifur
ation, the resulting stable behaviour is stu
k-on 
haos { that is, a

traje
tory whi
h 
y
les irregularly between invariant subspa
es, visiting

portions of 
haoti
 traje
tory in an intermittent fashion. A se
tion of su
h

a traje
tory is shown in Figure 4.

This agrees with the 
onje
ture in (Ashwin and Ru
klidge, 1998) that

in a free-running model, 
y
ling 
haos loses stability to stu
k-on 
haos. Al-

though the 
onne
tions between invariant subspa
es here are one-dimensional,

be
ause the model deals with dis
rete time, it is possible for approa
hes to


haoti
 saddles to be along many di�erent traje
tories. In order to 
reate

a phase-resetting version, and thus hopefully obtain periodi
 orbits, the

logisti
 map was adapted in (Ashwin et al., 2002) to for
e the 
onne
tions

to 
onsist of only a single approa
h traje
tory.

3.3. PHASE-RESETTING MODEL

In order to model the phase-resetting observed in a magneto
onve
tion

system in (Ashwin and Ru
klidge, 1998), (Ashwin et al., 2002) introdu
ed

a phase-resetting enfor
ed by the introdu
tion of a dis
ontinuous `shelf' in

the logisti
 map. That is, we repla
e the logisti
 map f during a growing
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Figure 5. A `shelf' is introdu
ed to the logisti
 map. Any iteration falling in [�; f(�)℄ is

for
ed to leave at exa
tly � = f

2

(�). Thus all initial 
onditions follow the same traje
tory

into the next saddle.
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Figure 6. For the phase-resetting 
ase the attra
ting 
y
ling 
haos gives way to many


o-existing periodi
 orbits. The phase-resetting for
es ea
h a
tive phase to begin with

the same segment of 
haoti
 traje
tory.The parameters are r = 3:75, 
 = 3:9.
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Figure 7. S
hemati
 diagram of a periodi
 orbit of period 3N for the phase-resetting


ase; one third of a period is shown. This is a periodi
 orbit as the �nal and initial phases

mat
h up as shown. The iterate k shows where the phases swit
h.

phase by

~

f :

~

f(x

n

) =

�

f(x

n

) x

n

< � or x

n

> f(�)

f

2

(�) = � x

n

2 [�; f(�)℄:

Ea
h time a growing variable rea
hes the interval [�; f(�)℄ (we use � = 10

�6

in the following), it is set to � = f

2

(�), as shown in Figure 5. To ensure

that � < f(�) we now restri
t to r 2 [

1

1��

; 4℄.

Attra
ting 
y
ling 
haos similar to that in Figure 2 
an be found for

the phase-resetting model and the resonan
e o

urs at the same value of







given by (3) and shown in Figure 3. The only di�eren
e from the free-

running version is that ea
h portions of 
haoti
 traje
tory in the a
tive

phases now begin in the same way. The main di�eren
e between the two

models 
omes in the behaviour as the 
y
ling loses stability at resonan
e. In

the phase-resetting 
ase, the attra
ting 
y
le loses stability not to stu
k-on


haos but to many 
o-existing periodi
 orbits. One su
h periodi
 orbit is

shown in Figure 6.

3.4. APPROXIMATION OF THE PERIODIC ORBITS NEAR RESONANCE

The nature of the resetting allows us to predi
t where periodi
 orbits

are likely to o

ur without having to 
ompute them using the full three-

dimensional map. We do this by 
onsidering the evolution of the variables

over one third of a periodi
 orbit of period 3N as shown in Figure 7,

following the method outlined in (Ashwin et al., 2002). We assume that

x has just reset to x

n

= � at n = 0, so that y is in the a
tive phase and
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z is de
aying. For a periodi
 orbit of period 3N , we require that z

N

= � {

this will o

ur when the previous iterate, z

N�1

2 [�; f(�)℄. We take y

k

= �,

where � is either some O(1) number

�

A (for a rough estimate), or more

pre
isely takes the value f

N+k

(�) (sin
e y

0

= x

N

� f

N

(�)). There follows

N iterates of for
ed de
ay. We approximate this by y

N+k

= r

N

y

k

e

�
N�

,

where � approximates the suppressing e�e
t of the for
ing. Again, for a

rough estimate, we take � to be the long-term average A

1

, but for a more

a

urate estimate we take � to be the N -average A

N

=

1

N

P

N�1

i=0

f

i

(f

k

(�)).

Sin
e this is a periodi
 orbit, y

N+k

= z

k

= r

N

�e

�
N�

. Finally we have

(N � k � 1) iterates of growth, approximated by z ! rz. This gives

z

N�1

= r

2N�k�1

�e

�
N�

. Taking logarithms, this estimate predi
ts that

a periodi
 orbit 
an exist when

ln � < (2N � k � 1) ln r + ln�� 
N� < ln �+ ln r:

Taking the rough estimates � =

�

A, � = A

1

gives a pair of hyperbolae

(as dis
ussed in (Ashwin et al., 2002)), given by

N 2 [N

1

; N

2

℄ =

�

a

2 ln r � 
A

1

;

a+ ln r

2 ln r � 
a

1

�

(5)

where a = ln � � ln

�

A + (k + 1) ln r. We expe
t periodi
 orbits to exist for

values of N lying between these two hyperbolae. The results in (Ashwin et

al., 2002) illustrate that this is indeed the 
ase for values of r giving �xed

points and periodi
 solutions within the a
tive invariant subspa
e, for a

suitable 
hoi
e of �tting parameter

�

A. Moreover, sin
e the denominators in

these expressions equals zero when 
 = 2 ln r=A

1

= 





, we 
an see that the

period of the periodi
 orbits approa
hes in�nity as the 
oupling parameter

approa
hes the 
riti
al value 





.

For values of r giving 
haoti
 dynami
s within subspa
es, the bifur
ation

diagram of periodi
 orbits approa
hing resonan
e gets more 
ompli
ated,

and the estimate (5) has larger error. We turn to the more sophisti
ated

estimate given by � = f

N+k

(�), � = A

N

and get

z

N�1

= r

2N�k�1

f

N+k

(�)e

�
NA

N

:

This is a fun
tion only of N (for �xed parameters) and so a 
urve of

z

N�1


an be easily 
omputed and plotted. Now the method predi
ts that

a periodi
 orbit 
an exist for ea
h N for whi
h the 
urve of z

N�1

falls

within the band given by [�; f(�)℄. The su

ess of this approximation is again

illustrated in (Ashwin et al., 2002). Using this method also demonstrates

that we expe
t to �nd periodi
 orbits of in
reasing period as we approa
h







, and moreover, for the 
haoti
 
ase, that we may expe
t periodi
 orbits

to persist even beyond resonan
e.
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Figure 8. Curves of ln z

N�1

given for three di�erent values of 
: a) 
 = 4:060 < 





, b)


 = 4:061167 = 





, 
) 
 = 4:062 > 





.

Consider the 
urve of ln z

N�1

against N , as illustrated in Figure 8 for

values of 
 below, equal to, and above 





. For 
 < 





the 
u
tuations driven

by the NA

N

term results in many 
rossings of the band, but eventually the

positive linear average behaviour leads the 
urve away from the band and

the 
u
tuations are no longer large enough to 
reate more 
rossings. For 
 =







there is no average in
rease or de
rease, but the mean square 
u
tuations

in
rease linearly with time in a manner familiar from the 
entral limit

theorem. This is to be expe
ted for typi
al 
haoti
 attra
tors (Baladi, 2001)

and means that the 
urve repeatedly 
rosses the band, resulting in stable

periodi
 orbits of arbitrarily high period. For 
 > 





the negative linear

average again leads the 
urve away from the band, but for values of 
 very


lose to 





the possibility of a 
rossing before the 
urve is for
ed too far

away remains, and with it the 
han
e of �nding periodi
 orbits persisting

beyond resonan
e.

Figure 9 shows a bifur
ation diagram of stable periodi
 orbits approa
h-

ing resonan
e. The lines give the envelope of predi
ted periodi
 orbits {

the initial and �nal times the approximation z

N�1

falls into the band. In

between, the dots representing numeri
ally lo
ated periodi
 orbits lie in a


ompli
ated stru
ture, but still the approximation works well. In parti
ular
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Figure 9. Bifur
ation diagram of period 3N stable periodi
 orbits (marked with dots)

for r = 3:75. The lines show the predi
ted envelope on varying the parameter 
 for the

periods 
omputed. The period of the periodi
 orbits approa
hes in�nity as 
 approa
hes







� 4:061165. Stable periodi
 orbits 
an be seen to persist beyond the resonan
e point.

just beyond 





we see the predi
ted envelope protrudes past the resonan
e,

and indeed one 
an lo
ate stable periodi
 orbits for these parameter values,

although most initial 
onditions appear to lead to 
y
ling 
haos instead.

This is reminis
ent of the phenomenon in Shilnikov-type 
haos (for exam-

ple, see (Gu
kenheimer and Holmes, 1983)) in whi
h stable horseshoes are

observed to exist for parameters on both sides of a homo
lini
 orbit to a

spiral saddle, and also to the similar phenomena observed near 
y
les to

hetero
lini
 
y
les (Chawanya, 1999).

If we examine the geometri
al rate R of in
rease (4) of swit
hing time

as approximated by R

n

= T

n+1

=T

n

, we observe a di�eren
e in behaviour

between the free-running and phase-resetting versions of the system. This

is illustrated in Figure 10 where we re
ord the ratio of the number of it-

erations between su

essive swit
hes. Before resonan
e, the phase-resetting

model exhibits periodi
 orbits and so as expe
ted (after transients have

died down) this ratio tends to unity as the number of iterations between

swit
hes be
omes 
onstant. (There are also 
ases where this 
an tend to

a periodi
ally varying fun
tion with unit mean in 
ase the periodi
 orbit

modulo the symmetry does not repeat after N iterates but rather after a

multiple of N iterates.) The os
illations in the ratio as the periodi
 orbit is

approa
hed were also seen in the 
ow example of (Ashwin and Ru
klidge,

1998). Conversely, for the free-running 
ase we see the ratio 
u
tuates as a


rim_pro
_14_8.tex; 12/08/2003; 12:34; p.14



CYCLING ATTRACTORS AND SYMMETRY 15

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

0 10 20 30 40 50 60 70 80 90 100

P

S

f

r

a

g

r

e

p

l

a




e

m

e

n

t

s

n

R

n


 = 4:0


 = 4:2 
 = 4:4

Figure 10. The ratio R

n

= T

n+1

=T

n

of number of iterations T

n

between swit
hes, n,

for the phase-resetting model (solid lines), and the free-running model (dashed lines).

The lower pair show a parameter before resonan
e (
 = 4:0), giving unity for the

periodi
 orbits in the phase-resetting 
ase, and irregularity for the stu
k-on 
haos in

the free-running model. The other pairs show the free-running model 
onverging more

slowly than the phase-resetting model to a geometri
 in
rease (
 = 4:2 and 4:4). The

parameter r = 3:75 for all pairs.

traje
tory follows the irregular 
y
ling of stu
k-on 
haos.

Beyond resonan
e, the ratios for both models tend to the same limit R

as expe
ted; the 
onvergen
e appears to be less uniform for the free-running

model be
ause of di�erent approa
hes to the invariant subspa
es after ea
h

swit
h; however this is misleading as for example if we 
hoose a value of �

for the phase-resetting shelf that has a non-generi
 orbit this 
ould lead to

atypi
al behaviour for arbitrarily long periods on the 
y
le.

3.5. SMOOTH MAP WITH PHASE-RESETTING

The map introdu
ed in (Ashwin et al., 2002) and dis
ussed in the previous

se
tion 
ould be 
riti
ized as being degenerate in the phase-resetting 
ase;

it has a 
at dis
ontinuous `shelf' introdu
ed to for
e the growing phase onto

a spe
i�
 traje
tory. We show here that it is a straightforward matter to


reate a similar map that is arbitrarily smooth. For the growing phase we

repla
e the logisti
 fun
tion f(x) within the interval [�; f(�)℄ by a fun
tion

whi
h joins on as smoothly as possible at both x = � and x = f(�), but

whi
h has as small a derivative as possible for as mu
h as possible of the
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Figure 11. The fun
tions g(x) and

~

f(x) for p = 9. This is a smoothed version of the

`shelf' resetting in Figure 5.

interval. To 
reate su
h a fun
tion 
onsider the polynomial

g(x) = �x(1 + x

p

)

p

(1� x

p

)

p

for integer values of p. This has zero derivative at x = �1, and derivative

�1 at x = 0. Next we 
ombine g(x) with the logisti
 map to form a fun
tion

h(x), valid in the interval [�; f(�)℄, su
h that h(�) = f(�), h(f(�)) = f(f(�)),

and also all the �rst p derivatives of h and f mat
h up at � and f(�):

h(x) = f(x) +Bg(�(x)):

The fun
tion �(x) is 
hosen to res
ale � and f(�) to �1 and +1 respe
tively

(that is, �(x) = mx + 
, where m = 2=(f(�) � �), and 
 = �1 �m�), and

B is 
hosen to ensure h

0

((� + f(�))=2) = 0, to give a 
at shelf. The higher

the value of p 
hosen, the longer and 
atter the shelf. Finally, the phase-

resetting fun
tion

~

f(x) is 
reated by 
ombining f(x) and h(x) a

ording

to

~

f(x

n

) =

�

f(x

n

) x

n

< � or x

n

> f(�)

h(x) x

n

2 [�; f(�)℄:

The behaviour in this 
ontinuous version of the phase-resetting model


ombines properties from both the free-running and the original phase-

resetting maps. Again the 
riti
al value of 
 marking the onset of stability

of 
y
ling 
haos 
an be found as before. De
reasing 
 through 





we �nd

that 
y
ling 
haos gives way to stu
k-on 
haos, just as in the free-running

example above. However, de
reasing 
 results in the stu
k-on 
haos being

repla
ed by stable periodi
 orbits, as found in the phase-resetting example.

Figure 12 illustrates these transitions by showing (as in �gure 10) the rate

of in
rease of swit
hing times R

n

= T

n+1

=T

n

. First in graph (a) for 
 = 3:87

(far from 





� 4:0116), R

n

tends to unity after quite a long transient. This

indi
ates presen
e of a periodi
 orbit that 
loses after a single 
ir
uit of

the 
y
le (in this 
ase the period is N = 35). In
reasing to 
 = 4:0 leaves
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Figure 12. The ratio R

n

= T

n+1

=T

n

of number of iterations T

n

between swit
hes n for

the smooth phase-resetting model. All graphs have p = 79 and r = 3:75. The top graph

a) shows the ratio 
onverging to unity, as a periodi
 orbit is rea
hed for 
 = 3:87. The

middle graph b) shows the irregularity of stu
k-on 
haos obtained from 
 = 4:0. Finally

the bottom graph 
) shows the geometri
 in
rease of 
y
ling 
haos beyond the resonan
e

for 
 = 4:15.

the system in a state of stu
k-on 
haos, shown in graph (b) by the ratio


u
tuating about an average of unity. Finally in graph (
) the ratio tends

to 1.0437 giving, for the post-resonan
e 
ase 
 = 4:2, the exponent of the

geometri
 in
rease of swit
hing times asso
iated with 
y
ling 
haos.

4. Con
lusions

In this work we have brie
y reviewed some e�e
ts of symmetries on dy-

nami
s of 
oupled 
ell networks and syn
hronization. We have also extended

(Ashwin et al., 2002) in a number of ways: �rstly by 
onsidering the ratio of

geometri
 slowing-down for the phase-resetting and free-running 
ases; and

se
ondly by adapting the phase-resetting 
ase to show that the dis
ontinuity

is not essential to give phase-resetting e�e
ts.
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The model in itself 
an be interpreted as a ring of mutually-inhibiting


ells, and exhibits non-ergodi
 and intermittent attra
ting behaviour fa-

miliar for robust 
y
les (Krupa, 1997) and `
y
ling 
haos' (Dellnitz et al.,

1995).

The s
enario for loss of stability of a 
y
le in a 
ow as investigated

in (Ashwin and Ru
klidge, 1998) has addition problems in that there is

no global se
tion to the attra
tor and the equilibria are 
ontained within

the subspa
es that 
ontain the 
haoti
 attra
tors but nonetheless the maps

with singularities appear not to be a bad approximation. In the former

model the 
y
le is formed between alternating saddle equilibria and 
haoti


saddles, and the phase resetting is 
aused by the fa
t that the 
onne
tion

from equilibrium to 
haos was along a one-dimensional unstable manifold.

This 
an 
learly be robust within an invariant subspa
e. If we try to make

a global se
tion to the 
ow, near the 
y
ling 
haos this will give rise to, at

best, a return map that has in�nite time of return near the 
y
le itself and

a singularity in the map near the stable manifold of the equilibrium.

In 
on
lusion, there seems to be a lot of promise to understand a wide

variety of very 
ompli
ated but robust intermittent dynami
al states in

networks of 
oupled 
ells by exploiting and adapting tools from dynami
al

systems with symmetries.
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