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Abstract. Dynamical systems with symmetries show a number of atypical behaviours
for generic dynamical systems. As coupled cell systems often possess symmetries, these
behaviours are important for understanding dynamical effects in such systems. In partic-
ular the presence of symmetries gives invariant subspaces that interact with attractors
to give new types of instability and intermittent attractor. In this paper we review and
extend some recent work (Ashwin, Rucklidge and Sturman 2002) on robust non-ergodic
attractors consists of cycles between invariant subspaces, called ‘cycling chaos’ by Dellnitz
et al. (1995).

By considering a simple model of coupled oscillators that show such cycles, we
investigate the difference in behaviour between what we call free-running and phase-
resetting (discontinuous) models. The difference is shown most clearly when observing
the types of attractors created when an attracting cycle loses stability at a resonance. We
describe both scenarios — giving intermittent stuck-on chaos for the free-running model,
and an infinite family of periodic orbits for the phase-resetting case. These require careful
numerical simulation to resolve quantities that routinely get as small as 1079,

We characterise the difference between these models by considering the rates at which
the cycles approach the invariant subspaces. Finally, we demonstrate similar behaviour
in a continuous version of the phase-resetting model that is less amenable to analysis and
raise some open questions. '

1 (2003) In Synchronization: Theory and Application A. Pikovsky and Y. Maistrenko
(eds), Kluwer: Dordrecht, 5-23.
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2 P. ASHWIN, A. RUCKLIDGE AND R. STURMAN

1. Introduction

To understand more complex dynamical systems, it is often helpful to break
them down into a number of smaller units or ‘cells’ that interact with each
other. These cells may be imposed naturally by the system one is modelling
(for example, neuronal activity), or may just be mathematically helpful
(such as linear spatial modes in a spatially extended nonlinear system).
Isolating the interactions between the units and the dynamics of the in-
dividual units gives a coupled cell description for the dynamics. A basic
question for such systems is whether the attracting dynamics of the system
is synchronized in any sense.

In cases where the cells are identical the dynamics is constrained by the
existence of invariant (synchronized) subspaces for the dynamics. The paper
reviews some recent work that exploits symmetries of coupled identical cell
systems to help understand their generic behaviour.

The paper proceeds as follows. In section 2 we review some basic con-
cepts from dynamical systems with finite symmetry group and the effects of
invariant subspaces. In section 2.1 we discuss the stability and bifurcation
of attractors in and near invariant subspaces; a common feature of such
attractors is that they may be highly intermittent (Ashwin, 1999).

In section 2.2 we discuss a class of more complicated intermittent at-
tractors that nevertheless robustly appear, that involve a number of invari-
ant subspaces. These attractors have dynamics that show ‘cycling chaos’
(Dellnitz et al., 1995) between a number of invariant sets that may be
chaotic or periodic. These attractors may be non-ergodic, namely there are
obstructions to convergence of averages of observations made on the system.

For the remainder of this article we focus on a particular family of
coupled systems introduced in (Ashwin et al., 2002) that have robust cycling
attractors. Section 3 introduces these cyclically coupled logistic maps, and
if we ensure (by introducing a discontinuity in the map) that the approach
to consecutive chaotic saddles is via a single trajectory (we call this phase-
resetting) we can investigate how their instability causes the appearance of
an infinite family of nearby periodic orbits. Finally we present in section 3.5
evidence that phase-resetting can appear even if the map remains smooth.

P.Ashwin@Qex.ac.uk
A .M.Rucklidge@leeds.ac.uk
rsturman@amsta.leeds.ac.uk
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CYCLING ATTRACTORS AND SYMMETRY 3

2. Dynamics with symmetry

Rich dynamics are frequently found in systems that commute with a group
of symmetries. These symmetries constrain what can happen in the system
while also causing atypical behaviour to become generic. At the simplest
level, symmetries cause multistability of attractors; any symmetric image of
an attractor must also be an attractor. Moreover, if an initial condition has
a certain symmetry, this symmetry must be retained along the trajectory
giving rise to invariant subspaces for the dynamics. Symmetries can also
cause constrain instabilities by forcing repetition of eigenvalues or Lyapunov
exponents corresponding to perturbations that are in symmetrically related
directions.

The development of equivariant dynamical systems, or dynamical sys-
tems with symmetry, has made great progress in giving a number of tools
from group representation and singularity theory to classify such behaviour.
This has been particularly successful in classifying local bifurcations of
equilibria and periodic solutions (see Golubitsky et al. 1985, 1988, 2002)
but in this article we do not discuss this or its application to coupled cell
networks.

2.1. ATTRACTORS IN INVARIANT SUBSPACES AND INTERMITTENCY

For dynamics that is symmetric under linear actions of a finite group, there
is a linear invariant subspace associated with each subgroup of symmetries.
When an attractor in an invariant subspace loses transverse stability due
to a change of parameter we have a so-called blowout bifurcation. More
precisely, consider a dynamical system on R", containing an subspace M
of dimension m < n which is invariant under the action of the system.
Suppose that for parameters p below a critical parameter u. the subspace
M contains a chaotic attractor A of the full system. A blowout bifurcation
occurs at p. if A ceases to be an attractor for y > u.. Two different types
of blowout bifurcation scenario were characterised in (Ott and Sommerer,
1994) and applications to coupled systems noted in (Ashwin, Buescu and
Stewart, 1994). The first scenario is subcritical (also called hysteretic or
hard) and occurs when there are no nearby attractors beyond the bifurca-
tion. This class of blowout is characterised by a riddled basin of attraction.
The second is the supercritical (also called nonhysteretic or soft case), in
which on-off intermittent attractors branch from the original attractor when
the bifurcation parameter increases; for a review of intermittency effects see
(Ashwin, 1999).

Despite the complexity and diversity of the dynamics in such cases, the
resulting attractors are generally observed to have ergodic natural measures
as far as one can tell from numerical simulations. This seems is true for
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4 P. ASHWIN, A. RUCKLIDGE AND R. STURMAN

generic attractors that arise in dynamical systems and means that average
quantities (such as Lyapunov exponents) can be computed from attracted
trajectories and are natural in the sense that they are the same for almost
all initial conditions. One of the most surprising results from the study
of symmetric systems is that attractors without ergodicity can be found
in fairly simple symmetric systems and moreover these can be robust to
(symmetry-respecting) perturbations. A review of these robust heteroclinic
cycles can be found in (Krupa, 1997) and a classification of more general
heteroclinic networks that may arise in symmetric systems can be found in

(Ashwin and Field, 1999).

2.2. CYCLING ATTRACTORS

One of the best-known non-ergodic attractors is the structurally stable het-
eroclinic cycle between fixed points in R? (the “Guckenheimer and Holmes
cycle”, (Guckenheimer and Holmes, 1988)). This is given by the equation

& = z(l + az® + by? + c2?)
= y(l + ay® + bz* + c2?) (1)
5 = 2(14 az® + bx? + cy?).

For the system (1) the coordinates planes, the diagonals x(£1,+1,+1) and
the axes are all invariant. Moreover, there is an open set of parameters
(a,b,c) such that all trajectories off these invariant subspaces approach a
robust cycle formed from three equilibrium points on the coordinate axes
and trajectories in the coordinate planes connecting these points. Although
heteroclinic cycles are possible in systems without symmetry, they are not
structurally stable unless there are constraints on the system. The presence
of invariant subspaces means that the cycle can be robust — that is, stable
with respect to perturbations which preserve invariance of the coordinate
planes.

This heteroclinic cycle, illustrated in Figure 1, is robust simply because
within the invariant subspaces, the connections are generic connections
from saddle to sink. A typical trajectory approaching the cycle will switch
between neighbourhoods of the equilibrium points progressively getting
closer to the cycle. One can calculate that it will spend a geometrically
increasing amount of time close to each equilibrium point and because of
this the ergodic averages will be dominated by the present equilibrium and
fail to converge. Rather, they will oscillate for ever (Sygmund, 1992; Hof-
bauer and Sygmund, 1992; Gaunersdorfer, 1990). On varying a parameter
in such a system, several mechanisms whereby robust attracting cycle can
be created and destroyed have been identified.
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CYCLING ATTRACTORS AND SYMMETRY )

Figure 1. An example of a robust heteroclinic cycle; the Guckenheimer-Holmes cycle in
R®. This is a cycle of heteroclinic connections between the equilibria p, g, 7 as illustrated,
that exists and is attracting for an open set of parameters (a, b, c). The cycle is structurally
stable to all perturbations that preserve the coordinate planes; the connection within each
coordinate plane is one from a saddle to a sink.

— A resonance bifurcation (Chow et al, 1990) creates a large period
periodic orbit at loss of stability of the cycle.

— The fixed points themselves bifurcate in such a way as to destroy
the connection, for example at saddle-node or Hopf bifurcations or
other transverse bifurcations that may create new longer attracting
heteroclinic cycles (Chossat et al. 1997a, 1997b).

Cycles can also exist between sets that are more complicated than sim-
ple fixed points but can be created and destroyed in a similar way. For
example, if we have cycles between chaotic sets (that is, chaotic saddles —
attracting within an invariant subspace but repelling in transverse direc-
tions) we have cycling chaos, as discussed in (Ashwin, 1997; Ashwin and
Rucklidge, 1998; Dellnitz et al., 1995), an aspect of a phenomenon referred
to as chaotic itinerancy by (Kaneko, 1998). The stability of such cycles
is usually governed by the ratios of Lyapunov exponents at the saddles.
Loss of stability can occur at a blowout bifurcation that destroys the set
of connections (Ashwin and Rucklidge, 1998) or at a resonance bifurcation
that corresponds to a resonance of Lyapunov exponents (which occurs when
the rates of linear expansion and contraction become equal).

One would like to understand the sort of attractors that are created at a
resonance bifurcation. This question was posed and investigated for a spe-
cific planar magnetoconvection model with robust cycling chaos in (Ashwin
and Rucklidge, 1998). The cycle in this case was between a chaotic saddle,
an equilibrium point and their images under symmetries of the problem.
Numerical simulations in (Ashwin and Rucklidge, 1998) suggest that the
resonance bifurcation creates a large number of periodic attractors that
branch from the cycling chaos. By contrast, for the skew-product example
of cycling chaos examined in (Ashwin, 1997) the resonance was found to
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6 P. ASHWIN, A. RUCKLIDGE AND R. STURMAN

give rise not to periodic orbits but to a chaotic attractor with average
cycling chaos, or to quasiperiodicity that is intermittent (‘stuck on’) to the
cycling chaos.

An initial attempt to reconcile these differences was made in (Ashwin et
al., 2002), by introducing the terms phase-resetting and free-running. For
the remainder of this paper we recall this distinction and expand upon the
examples in (Ashwin et al., 2002). We use phase-resetting to describe a cycle
in which the connections between invariant subspaces consist of only a single
trajectory (for example, in a flow the connections are one-dimensional, or
in a map, they are zero-dimensional). By contrast, free-running describes
cycles which have a set of many possible connections.

3. Coupled logistic maps

3.1. FREE-RUNNING MODEL

Let f(z) = rz(1 — z) denote the logistic map with parameter r € [0, 4] and
consider the system introduced in (Ashwin et al., 2002):

Tt = flzn)e 7™
Ynt1 = flyn)e 7" (2)
Znp1 = flzn)e” 7.

This map clearly preserves the coordinate planes defined by xyz = 0. Three
distinct types of evolution are possible for each variable. For example,
consider z: if z < 1 and z < 1 then z grows approximately linearly —
the growing phase. For 2 < 1 and z = O(1), z evolves according to logistic
map dynamics — the active phase. Finally if z ~ O(1) the dynamics in the
z direction is suppressed by the coupling term — the decaying phase. For
sufficiently large v we have a robust cycle between invariant sets. In this
state, each variable alternates cyclically between the growing, active and
decaying phases. We term a change in the phases a switch. More precisely,
we say a switch occurs when the growing variable exceeds Inr /7. The num-
ber of iterations between switches increases approximately geometrically as
trajectories approach the invariant subspaces, and this rate of increase de-
pends on the coupling . The rate of increase of switching times approaches
zero as -y approaches some critical value from above, which forms the limit
of the stability of cycling chaos. This geometric increase is examined in
more detail in section 3.3.

For r < 3 the cycles are between period one points; as r is increased
through period doubling we obtain cycles progressively between periodic
orbits and then chaotic saddles. Since numerical simulations of this system
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Figure 2.  Attracting cycling chaos, with » = 4.0, v = 6.0. The model is iterated and
z,y, z plotted (in logarithmic coordinates) against time. The chaotic behaviour is O(1)
and is visible in the inset. The trajectory cycles through growing, active and then decaying
phases for each variable, with the length of phase increasing approximately geometrically.
(The same behaviour is found for the phase-resetting version discussed in section 3.3.)

need to resolve a neighbourhood of the invariant subspaces at high resolu-
tion, we use logarithmic coordinates (Ashwin and Rucklidge, 1998; Pikovsky
et al, 2002). The time series in Figure 2 is for parameters that produce
attracting cycling chaos. This sort of behaviour could be viewed as a sort of
antisynchronization; when one variable becomes active, the currently active
variables become quiescent. Referring to Figure 2, decreasing 7y results in a
slower rate of increase in the number of iterations between switches, and the
line formed by connecting the local minima would become more horizontal.

3.2. COMPUTATION OF RESONANCE BIFURCATION

Suppose that cycling chaos loses stability on decreasing v through a critical
value v.. We compute 7, analytically as follows, as shown in (Ashwin et
al., 2002). Suppose that the growing variable is z and a switch has just
occurred, so z < 1, z is O(1) and y is decaying. The evolution of z is
governed by z,41 = rz,(1 — 2z,)e” 7Y, and this can be approximated by
z — rz. Starting at a switch at zg, suppose that the number of iterations
until the next switch is N. Then zy ~ rVz, and since zy is O(1) at a
switch, N = —Inzy/Inr, where 2y is the value of z at the start of the
growing phase. Whilst z is growing, y is decaying, and for critical v we
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Figure 3. The critical value of v at which loss of stability of cycling chaos occurs by
resonance. The line is estimated using (3) whereas the boxes show points of numerically
calculated loss of stability of cycling attractors on varying ~ for fixed r. Above the line
there is a cycle that is an attractor; below the line the cycling persists but is no longer
an attractor.

require yy = zp. We approximate yy in a similar way, with yo an O(1)
number. Throughout the decay phase y < 1, but it is forced by the active
variable z. Here we approximate by y — rye 7", and replace = by its long-
term average Aog (= limp/_o0 77 Zf\/f fi(zg)) for each of the N iterations,
giving yy ~ rVe "NAx_ Then substituting our expression for N, we have
Inyy = —Inzp + (yIlnzpAs)/(Inr). The critical value of v occurs when
Inyy = In 2p, giving

Ye =2Inr/As. (3)

Equivalently, this can be obtained by considering the ratio of the trans-
versely expanding Lyapunov exponent A\ = Inr and the contracting Lya-
punov exponent —y = Inr — yA,,. There will be geometric slowing down
with asymptotic rate R, where R is

W
R==-—>1 4
= @)

There is a resonance when this quantity is equal to unity, also leading to
(3).

The average Ao, is easy to compute numerically, and so we can obtain
a curve of critical v shown in Figure 3, plotted as a line. We superimpose
points computed by seeking the parameter at which the number of itera-
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Figure 4. After losing stability at resonance, in the free-running case, the cycle gives
way to a stuck-on attractor. Trajectories are intermittent to each invariant subspace,
visiting portions of chaotic behaviour in an irregular fashion but with a finite mean time
of cycling. r =4.0,y =54.

tions between switches becomes constant, demonstrating the accuracy of
the approximation. When the attracting cycle loses stability in a resonance
bifurcation, the resulting stable behaviour is stuck-on chaos — that is, a
trajectory which cycles irregularly between invariant subspaces, visiting
portions of chaotic trajectory in an intermittent fashion. A section of such
a trajectory is shown in Figure 4.

This agrees with the conjecture in (Ashwin and Rucklidge, 1998) that
in a free-running model, cycling chaos loses stability to stuck-on chaos. Al-
though the connections between invariant subspaces here are one-dimensional,
because the model deals with discrete time, it is possible for approaches to
chaotic saddles to be along many different trajectories. In order to create
a phase-resetting version, and thus hopefully obtain periodic orbits, the
logistic map was adapted in (Ashwin et al., 2002) to force the connections
to consist of only a single approach trajectory.

3.3. PHASE-RESETTING MODEL

In order to model the phase-resetting observed in a magnetoconvection
system in (Ashwin and Rucklidge, 1998), (Ashwin et al., 2002) introduced
a phase-resetting enforced by the introduction of a discontinuous ‘shelf’ in
the logistic map. That is, we replace the logistic map f during a growing
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v

Figure 5. A ‘shelf’ is introduced to the logistic map. Any iteration falling in [, f(€)] is
forced to leave at exactly n = f(e). Thus all initial conditions follow the same trajectory
into the next saddle.

T e
T ’\"’\I"‘.' A .

log z, log y, log z

_50 ! ! ! ! !
30000 30050 30100 30150 30200 30250 30300
Iterations

Figure 6. For the phase-resetting case the attracting cycling chaos gives way to many
co-existing periodic orbits. The phase-resetting forces each active phase to begin with
the same segment of chaotic trajectory. The parameters are r = 3.75, v = 3.9.
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Figure 7. Schematic diagram of a periodic orbit of period 3N for the phase-resetting
case; one third of a period is shown. This is a periodic orbit as the final and initial phases
match up as shown. The iterate k shows where the phases switch.

phase by f :

. | fla) Ty < €0r xT, > f(€)
flzn) = { f2e)=n  x, €le f(e)].

Each time a growing variable reaches the interval [e, f(€)] (we use e = 106
in the following), it is set to n = f2(¢), as shown in Figure 5. To ensure
that € < f(e) we now restrict to r € [, 4].

Attracting cycling chaos similar to that in Figure 2 can be found for
the phase-resetting model and the resonance occurs at the same value of
ve given by (3) and shown in Figure 3. The only difference from the free-
running version is that each portions of chaotic trajectory in the active
phases now begin in the same way. The main difference between the two
models comes in the behaviour as the cycling loses stability at resonance. In
the phase-resetting case, the attracting cycle loses stability not to stuck-on
chaos but to many co-existing periodic orbits. One such periodic orbit is
shown in Figure 6.

3.4. APPROXIMATION OF THE PERIODIC ORBITS NEAR RESONANCE

The nature of the resetting allows us to predict where periodic orbits
are likely to occur without having to compute them using the full three-
dimensional map. We do this by considering the evolution of the variables
over one third of a periodic orbit of period 3N as shown in Figure 7,
following the method outlined in (Ashwin et al., 2002). We assume that
x has just reset to z, = n at n = 0, so that y is in the active phase and
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12 P. ASHWIN, A. RUCKLIDGE AND R. STURMAN

z is decaying. For a periodic orbit of period 3N, we require that zy =7 —
this will occur when the previous iterate, zy_1 € [e, f(€)]. We take y; = a,
where « is either some O(1) number A (for a rough estimate), or more
precisely takes the value fN*#(n) (since yo = zn ~ f™(n)). There follows
N iterates of forced decay. We approximate this by yyir = rNyre 7N8,
where 8 approximates the suppressing effect of the forcing. Again, for a
rough estimate, we take 8 to be the long-term average A.,, but for a more
accurate estimate we take (3 to be the N-average Ay = % Z?;Bl “(fE ).
Since this is a periodic orbit, ynyix = 2 = rNae7NB, Finally we have
(N — k — 1) iterates of growth, approximated by z — rz. This gives
Zn_1 = r2Nk-1ae "NB Taking logarithms, this estimate predicts that
a periodic orbit can exist when

Ine< (2N —k—1)Inr +Ina —yNf < Ine+Inr.

Taking the rough estimates « = A, 8 = A, gives a pair of hyperbolae
(as discussed in (Ashwin et al., 2002)), given by

a a+Inr

N € [Ny, No] = (5)

2Inr — yAs 2InT — yas
where a = Ine — In A + (k + 1) In7. We expect periodic orbits to exist for
values of N lying between these two hyperbolae. The results in (Ashwin et
al., 2002) illustrate that this is indeed the case for values of r giving fixed
points and periodic solutions within the active invariant subspace, for a
suitable choice of fitting parameter A. Moreover, since the denominators in
these expressions equals zero when v = 2Inr /A = 7., we can see that the
period of the periodic orbits approaches infinity as the coupling parameter
approaches the critical value ~,.

For values of r giving chaotic dynamics within subspaces, the bifurcation
diagram of periodic orbits approaching resonance gets more complicated,
and the estimate (5) has larger error. We turn to the more sophisticated
estimate given by a = fN*#(n), = Ax and get

QAF—k—lfJV+k( e—vALAN_

ZN—-1 =T 77)

This is a function only of N (for fixed parameters) and so a curve of
zn_1 can be easily computed and plotted. Now the method predicts that
a periodic orbit can exist for each N for which the curve of zy_; falls
within the band given by [e, f(€)]. The success of this approximation is again
illustrated in (Ashwin et al., 2002). Using this method also demonstrates
that we expect to find periodic orbits of increasing period as we approach
ve, and moreover, for the chaotic case, that we may expect periodic orbits
to persist even beyond resonance.
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Figure 8. Curves of In zy_1 given for three different values of v: a) v = 4.060 < 7., b)
v =4.061167 = 7, ¢) v = 4.062 > ~..

Consider the curve of In zy_1 against N, as illustrated in Figure 8 for
values of v below, equal to, and above .. For v < v, the fluctuations driven
by the N Ay term results in many crossings of the band, but eventually the
positive linear average behaviour leads the curve away from the band and
the fluctuations are no longer large enough to create more crossings. For v =
v. there is no average increase or decrease, but the mean square fluctuations
increase linearly with time in a manner familiar from the central limit
theorem. This is to be expected for typical chaotic attractors (Baladi, 2001)
and means that the curve repeatedly crosses the band, resulting in stable
periodic orbits of arbitrarily high period. For v > 7. the negative linear
average again leads the curve away from the band, but for values of v very
close to 7. the possibility of a crossing before the curve is forced too far
away remains, and with it the chance of finding periodic orbits persisting
beyond resonance.

Figure 9 shows a bifurcation diagram of stable periodic orbits approach-
ing resonance. The lines give the envelope of predicted periodic orbits —
the initial and final times the approximation zy_q falls into the band. In
between, the dots representing numerically located periodic orbits lie in a
complicated structure, but still the approximation works well. In particular
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14 P. ASHWIN, A. RUCKLIDGE AND R. STURMAN
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Figure 9. Bifurcation diagram of period 3N stable periodic orbits (marked with dots)
for r = 3.75. The lines show the predicted envelope on varying the parameter « for the
periods computed. The period of the periodic orbits approaches infinity as « approaches
Ye = 4.061165. Stable periodic orbits can be seen to persist beyond the resonance point.

just beyond 7. we see the predicted envelope protrudes past the resonance,
and indeed one can locate stable periodic orbits for these parameter values,
although most initial conditions appear to lead to cycling chaos instead.
This is reminiscent of the phenomenon in Shilnikov-type chaos (for exam-
ple, see (Guckenheimer and Holmes, 1983)) in which stable horseshoes are
observed to exist for parameters on both sides of a homoclinic orbit to a
spiral saddle, and also to the similar phenomena observed near cycles to
heteroclinic cycles (Chawanya, 1999).

If we examine the geometrical rate R of increase (4) of switching time
as approximated by R, = T,41/T,, we observe a difference in behaviour
between the free-running and phase-resetting versions of the system. This
is illustrated in Figure 10 where we record the ratio of the number of it-
erations between successive switches. Before resonance, the phase-resetting
model exhibits periodic orbits and so as expected (after transients have
died down) this ratio tends to unity as the number of iterations between
switches becomes constant. (There are also cases where this can tend to
a periodically varying function with unit mean in case the periodic orbit
modulo the symmetry does not repeat after N iterates but rather after a
multiple of N iterates.) The oscillations in the ratio as the periodic orbit is
approached were also seen in the flow example of (Ashwin and Rucklidge,
1998). Conversely, for the free-running case we see the ratio fluctuates as a
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Figure 10. The ratio R, = Th41/Tn of number of iterations T; between switches, n,
for the phase-resetting model (solid lines), and the free-running model (dashed lines).
The lower pair show a parameter before resonance (y = 4.0), giving unity for the
periodic orbits in the phase-resetting case, and irregularity for the stuck-on chaos in
the free-running model. The other pairs show the free-running model converging more
slowly than the phase-resetting model to a geometric increase (y = 4.2 and 4.4). The
parameter r = 3.75 for all pairs.

trajectory follows the irregular cycling of stuck-on chaos.

Beyond resonance, the ratios for both models tend to the same limit R
as expected; the convergence appears to be less uniform for the free-running
model because of different approaches to the invariant subspaces after each
switch; however this is misleading as for example if we choose a value of 7
for the phase-resetting shelf that has a non-generic orbit this could lead to
atypical behaviour for arbitrarily long periods on the cycle.

3.5. SMOOTH MAP WITH PHASE-RESETTING

The map introduced in (Ashwin et al., 2002) and discussed in the previous
section could be criticized as being degenerate in the phase-resetting case;
it has a flat discontinuous ‘shelf’ introduced to force the growing phase onto
a specific trajectory. We show here that it is a straightforward matter to
create a similar map that is arbitrarily smooth. For the growing phase we
replace the logistic function f(z) within the interval [e, f(€)] by a function
which joins on as smoothly as possible at both z = € and z = f(¢), but
which has as small a derivative as possible for as much as possible of the
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Figure 11.  The functions g(z) and f(z) for p = 9. This is a smoothed version of the
‘shelf’ resetting in Figure 5.

interval. To create such a function consider the polynomial
9(z) = —a(l + ") (1 = a7y

for integer values of p. This has zero derivative at x = £1, and derivative
—1 at z = 0. Next we combine g(z) with the logistic map to form a function
h(z), valid in the interval [e, f (¢)], such that h(e) = f(€), h(f(€)) = f(f(€)),
and also all the first p derivatives of h and f match up at € and f(e):

h(z) = f(z) + Bg(¢(z))-

The function ¢(z) is chosen to rescale € and f(€) to —1 and +1 respectively
(that is, ¢(z) = mz + ¢, where m = 2/(f(e) — €), and ¢ = —1 — me), and
B is chosen to ensure h'((e + f(€))/2) = 0, to give a flat shelf. The higher
the value of p chosen, the longer and flatter the shelf. Finally, the phase-
resetting function f(z) is created by combining f(x) and h(x) according
to

- f(xn) T, < €oOr «Tn>f(€)
f(zn) { h(z) T € [€, f(€)].

The behaviour in this continuous version of the phase-resetting model
combines properties from both the free-running and the original phase-
resetting maps. Again the critical value of v marking the onset of stability
of cycling chaos can be found as before. Decreasing v through 7. we find
that cycling chaos gives way to stuck-on chaos, just as in the free-running
example above. However, decreasing  results in the stuck-on chaos being
replaced by stable periodic orbits, as found in the phase-resetting example.
Figure 12 illustrates these transitions by showing (as in figure 10) the rate
of increase of switching times R,, = T},11/T,. First in graph (a) for v = 3.87
(far from 7, ~ 4.0116), R,, tends to unity after quite a long transient. This
indicates presence of a periodic orbit that closes after a single circuit of
the cycle (in this case the period is N = 35). Increasing to v = 4.0 leaves
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Figure 12. The ratio Ry, = Trh41/T» of number of iterations T, between switches n for

the smooth phase-resetting model. All graphs have p =79 and r = 3.75. The top graph
a) shows the ratio converging to unity, as a periodic orbit is reached for v = 3.87. The
middle graph b) shows the irregularity of stuck-on chaos obtained from v = 4.0. Finally
the bottom graph c) shows the geometric increase of cycling chaos beyond the resonance
for v = 4.15.

the system in a state of stuck-on chaos, shown in graph (b) by the ratio
fluctuating about an average of unity. Finally in graph (c¢) the ratio tends
to 1.0437 giving, for the post-resonance case v = 4.2, the exponent of the
geometric increase of switching times associated with cycling chaos.

4. Conclusions

In this work we have briefly reviewed some effects of symmetries on dy-
namics of coupled cell networks and synchronization. We have also extended
(Ashwin et al., 2002) in a number of ways: firstly by considering the ratio of
geometric slowing-down for the phase-resetting and free-running cases; and
secondly by adapting the phase-resetting case to show that the discontinuity
is not essential to give phase-resetting effects.
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The model in itself can be interpreted as a ring of mutually-inhibiting
cells, and exhibits non-ergodic and intermittent attracting behaviour fa-
miliar for robust cycles (Krupa, 1997) and ‘cycling chaos’ (Dellnitz et al.,
1995).

The scenario for loss of stability of a cycle in a flow as investigated
in (Ashwin and Rucklidge, 1998) has addition problems in that there is
no global section to the attractor and the equilibria are contained within
the subspaces that contain the chaotic attractors but nonetheless the maps
with singularities appear not to be a bad approximation. In the former
model the cycle is formed between alternating saddle equilibria and chaotic
saddles, and the phase resetting is caused by the fact that the connection
from equilibrium to chaos was along a one-dimensional unstable manifold.
This can clearly be robust within an invariant subspace. If we try to make
a global section to the flow, near the cycling chaos this will give rise to, at
best, a return map that has infinite time of return near the cycle itself and
a singularity in the map near the stable manifold of the equilibrium.

In conclusion, there seems to be a lot of promise to understand a wide
variety of very complicated but robust intermittent dynamical states in
networks of coupled cells by exploiting and adapting tools from dynamical
systems with symmetries.
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