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Se
ondary instabilities of hexagons:a bifur
ation analysis of experimentallyobserved Faraday wave patternsA.M. Ru
klidge, M. Silber, and J. FinebergAbstra
t. We examine three experimental observations of Faraday waves gen-erated by two-frequen
y for
ing, in whi
h a primary hexagonal pattern be-
omes unstable to three di�erent superlatti
e patterns. We analyse the bifur-
ations involved in 
reating the three new patterns using a symmetry-basedapproa
h. Ea
h of the three examples reveals a di�erent situation that 
anarise in the theoreti
al analysis.1. Introdu
tionThe 
lassi
 Faraday wave experiment 
onsists of a horizontal layer of 
uid thatspontaneously develops a pattern of standing waves on its surfa
e as it is driven byverti
al os
illation with amplitude ex
eeding a 
riti
al value. Re
ent experimentshave revealed a wide variety of 
omplex patterns, parti
ularly in the large aspe
tratio regime and with a for
ing fun
tion 
ontaining two 
ommensurate frequen-
ies [1, 2, 3℄. Transitions from the 
at surfa
e to a primary, spatially periodi
,pattern 
an be studied using equivariant bifur
ation theory [4℄. These group theo-reti
 te
hniques may also be applied to se
ondary spatial period-multiplying tran-sitions to patterns with two distin
t spatial s
ales (so 
alled superlatti
e patterns)as demonstrated by Tse et al. [5℄.We apply the method of Tse et al. [5℄ to the analysis of three superlatti
e pat-terns observed when se
ondary subharmoni
 instabilities destroy the basi
 hexag-onal standing wave pattern in two-frequen
y Faraday wave experiments. We 
anmake use not only of the general symmetry-based approa
h from [5℄ but also ofmany of the detailed results. The reason for this is that in their paper, Tse et al.
onsidered instabilities of hexagonal patterns that broke the translation symmetryof the hexagons, but that remained periodi
 in a larger hexagonal domain 
om-prising twelve of the original hexagons. The instabilities under 
onsideration heresatisfy exa
tly the same 
onditions (though in fa
t they remain periodi
 in smallerdomains as well).In Bifur
ations, Symmetry and Patterns (eds. J. Bues
u, S.B.S.D. Castro, A.P.S. Dias and I.S.Labouriau) Birkhauser: Basel (2003) 101{114.



2 A.M. Ru
klidge, M. Silber, and J. Fineberg

(1,0) x

y

τ1

τ2

κx

κy
ρ

Figure 1. The 
oordinate system and 
ertain elements of thesymmetry group �. The origin of the 
oordinate system is at the
entre of the diagram, and the point (1; 0) is indi
ated. The smallhexagons represent the primary pattern, whi
h is invariant underre
e
tions (�x and �y), 60Æ rotations (�) and translations (�1and �2). The se
ondary patterns are all periodi
 in the largerhexagonal box. The three 
orner points labelled with solid 
ir
lesare identi�ed through the assumed periodi
ity.We begin by spe
ifying the 
oordinate system and symmetries we will usein se
tion 2, then des
ribe the symmetries of the three experimental patterns inse
tion 3. In se
tion 4, we apply Tse et al.'s method of analysis to these threepatterns, and present normal forms and stability 
al
ulations in se
tion 5. We
on
lude in se
tion 6.2. Coordinates and symmetriesThe primary pattern is made up of regular hexagons, whi
h are invariant underthe group D6 (made up of 60Æ rotations and re
e
tions) 
ombined with translationfrom one hexagon to the next (see �gure 1). Tse et al. [5℄ studied experimental



Se
ondary instabilities of hexagonal Faraday waves 3patterns reported in [6℄, whi
h had the feature that after the se
ondary instability,the pattern remained periodi
 in the larger hexagonal box in �gure 1. The 144-element spatial symmetry group of the primary hexagonal pattern within this boxis �, generated by the following re
e
tion �x, rotation � and translations �1 and �2:�x : (x; y)! (�x; y) �1 : (x; y)! (x; y) + 32 ; p32 ! (1)� : (x; y)!  12x� p32 y; p32 x+ 12y! �2 : (x; y)! (x; y) + �0;p3� (2)We also de�ne �y = �x�3, and note the following identities:�2x = �2y = �6 = �61 = �62 = �21 �22 = identity; (3)��x = �x�5; �1�x = �x�51 �2; �2�x = �x�2; (4)�1� = ��31 �2; �2� = ��1; �1�2 = �2�1: (5)The time translation �T advan
es time by one period T of the for
ing fun
tion,whi
h is the same as the temporal period of the hexagonal pattern. This timetranslation is 
ombined with the spatial symmetries above to give spatio-temporalsymmetries.3. Experimental patternsThe three experimentally observed patterns are shown in �gure 2(a-
), visualisedusing the te
hniques des
ribed in [7℄. Patterns (a) and (b) are both obtainedusing Dow-Corning sili
one oil with vis
osity 47 
St and layer depth 0:35 
m, whilepattern (
) was found using a 23 
St oil layer of depth 0:155 
m. All three patternsare obtained with for
ing fun
tion 
ontaining two frequen
ies in the ratio 2 : 3;pattern (a) is found with frequen
ies 50 and 75Hz, pattern (b) with frequen
ies70 and 105Hz, and pattern (
) with 40 and 60Hz driving frequen
ies. Pattern(
) was reported previously in [7℄. Typi
ally, the se
ondary bifur
ations o

ur atfor
ing amplitudes between 10 and 50% larger than the 
riti
al a

eleration forthe primary hexagonal state. Further experimental details 
an be found in [7, 8℄.For the purposes of the analysis, we 
onsider the idealised versions of theseexperimental patterns, shown in �gure 2(d-f). The �rst pattern in �gure 2(a,d)retains the D6 symmetry of the original hexagons but breaks 
ertain translationsymmetries. It is periodi
 in the medium-sized dashed hexagon in �gure 2(d),whi
h implies that the pattern is invariant under the translations �31 and �1�2.It has no spatio-temporal symmetries. The se
ond pattern is similar, althoughit possesses only triangular (D3) symmetry instantaneously. Moreover, it has thespatio-temporal symmetry given by a 60Æ rotation 
ombined with advan
e in timeby one period T of the for
ing, as in �gure 2(e,g). In fa
t, this spatio-temporalsymmetry was �rst suggested by the analysis below, and found to be 
onsistentwith the experimental observations. The third pattern in �gure 2(
,f) is quite
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Figure 2. Experimental and idealised se
ondary patterns. (a-
) Experimental patterns, visualised from above. (d-f) Idealisedversions of (a-
). (g-h) patterns (e-f) but seen one for
ing period Tlater. The idealisations are all rotated by about 30Æ 
ompared withthe experimental pi
tures.
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 d e f g h i j k l m n oid �x �y �1 �21 �31 �x�1 �x�2 �x� 31 �y� 31 � �2 �3 �2�1 �3� 311 6 18 6 2 3 12 12 6 18 24 8 3 16 91 1 1 1 1 1 1 1 1 1 1 1 1 1 1 12 1 �1 �1 1 1 1 �1 �1 �1 �1 1 1 1 1 13 1 1 �1 1 1 1 1 1 1 �1 �1 1 �1 1 �14 1 �1 1 1 1 1 �1 �1 �1 1 �1 1 �1 1 �15 2 0 0 2 2 2 0 0 0 0 1 �1 �2 �1 �26 2 0 0 2 2 2 0 0 0 0 �1 �1 2 �1 27 2 2 0 �1 �1 2 �1 �1 2 0 0 2 0 �1 08 2 �2 0 �1 �1 2 1 1 �2 0 0 2 0 �1 09 3 1 1 �1 3 �1 �1 1 �1 �1 0 0 3 0 �110 3 �1 1 �1 3 �1 1 �1 1 �1 0 0 �3 0 111 3 �1 �1 �1 3 �1 1 �1 1 1 0 0 3 0 �112 3 1 �1 �1 3 �1 �1 1 �1 1 0 0 �3 0 113 4 0 0 �2 �2 4 0 0 0 0 0 �2 0 1 014 6 �2 0 1 �3 �2 �1 1 2 0 0 0 0 0 015 6 2 0 1 �3 �2 1 �1 �2 0 0 0 0 0 0Table 1. Chara
ter table of the group �, taken from Tse et al.,with 
orre
tions. A representative element is shown on the se
ondline for ea
h 
onjuga
y 
lass (see also �gure 3), and the numberof elements in the 
lass is on the third row. The next �fteen rowsgive the 
hara
ters asso
iated with ea
h 
onjuga
y 
lass for ea
hof the �fteen representations.di�erent: the dark lozenges in �gure 2(f) represent the enlarged gaps betweenthe hexagons in �gure 2(
). The pattern is periodi
 in the medium-sized dashedhexagon in �gure 2(f), so is invariant under translations �21 and �22 = �41 . It isalso invariant under the group of symmetries of a re
tangle D2, and possesses thespatio-temporal symmetry of the translation �2 
ombined with advan
e in time byone period T of the for
ing, as in �gure 2(f,h).Using the information above, we write down the instantaneous (spatial) sym-metry groups of the three patterns from �gure 2(a-
) in terms of their generators:�a = h�x; �; �31 ; �1�2i; �b = h�x; �2; �31 ; �1�2i; �
 = h�x; �y�2; �21 i: (6)These groups are of order 48, 24 and 12 respe
tively. For the full spatio-temporalsymmetry groups, we would also in
lude ��T in the generators of �b, and �2�Tin the generators of �
, but initially we will work with the spatial symmetrygroups. The reason for this is that the instantaneous (spatial) symmetries 
anbe determined reliably from a single experimental image, while extra
ting spatio-temporal symmetries from the experimental data is more involved.Ea
h of the three instabilities that generates the three di�erent patterns willbe asso
iated with a set of marginally stable eigenfun
tions; the new pattern, at
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klidge, M. Silber, and J. Finebergleast near onset, 
an be thought of as (approximately) a linear 
ombination ofthese marginal eigenfun
tions and the original hexagonal pattern. Whi
h linearsuperpositions are 
onsistent with the nonlinearity inherent in the pattern for-mation pro
ess is determined by our bifur
ation analysis. The symmetries in �all leave the primary hexagonal pattern un
hanged, so they must send marginaleigenfun
tions onto linear 
ombinations of marginal eigenfun
tions, whi
h indu
esan a
tion on the amplitudes of these fun
tions. In other words, if there are n mar-ginal eigenfun
tions f1, . . . , fn, with n amplitudes a = (a1; : : : ; an) 2 Rn , ea
helement 
 2 � sends a to R
a, where the set of n�n orthogonal matri
es R
 formsa representation R� of the group �. For subharmoni
 instabilities of the type ofinterest here, this will generi
ally be an irredu
ible representation (irrep) [4℄. Tseet al. [5℄ have 
omputed all the irreps of the group �; the 
hara
ter table of theserepresentations is reprodu
ed in table 1. Re
all that the 
hara
ter of a group el-ement 
 in a representation is the tra
e of the matrix R
 , and that 
onjugateelements (whi
h form a 
onjuga
y 
lass) have the same 
hara
ters.On
e the representation asso
iated with ea
h of the three transitions is iden-ti�ed, we 
an write down the normal form, work out what other patterns are
reated in the same bifur
ation, and 
ompute stability of the patterns in terms ofthe normal form 
oeÆ
ients.4. MethodThe �rst task is to identify whi
h representation is relevant for ea
h bifur
ation.Tse et al. [5℄ outlined a two-stage method to a

omplish this. First, any symmetryelement that is represented by the identity matrix in a parti
ular representationmust appear in the symmetry group of every bran
h of solutions 
reated in a bifur-
ation with that representation. This 
an be used to eliminate from 
onsiderationany representation that has an element with 
hara
ter equal to the 
hara
ter ofthe identity that does not appear in the symmetry group of the observed pattern.Se
ond, we make use of the tra
e formula from [4℄, whi
h gives the dimension ofthe subspa
e of Rn that is �xed by a parti
ular isotropy subgroup � of � withrepresentation given by the matri
es R�:dim �x(�) = 1j�jX�2�TrR�; (7)where j�j is the number of elements in �. Spe
i�
ally, we use the tra
e formulato eliminate those representations for whi
h the spatial symmetry group of thepattern �xes a zero-dimensional subspa
e (implying that the subgroup is not anisotropy subgroup); only the remaining representations need be examined in moredetail.We pro
eed by �rst 
ounting the number of elements in ea
h 
onjuga
y 
lassfor ea
h of the symmetry groups �a, �b and �
. Figure 3 shows representativeelements from ea
h 
lass and is helpful for this 
ategorization. The result of this
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ondary instabilities of hexagonal Faraday waves 7(a) identity (1) (b) �x (6) (
) �y (18)
(d) �1 (6) (e) �21 (2) (f) �31 (3)

(g) �x�1 (12) (h) �x�2 (12) (i) �x�31 (6)
(j) �y�31 (18) (k) � (24) (l) �2 (8)
(m) �3 (3) (n) �2�1 (16) (o) �3�31 (9)

Figure 3. The 15 
onjuga
y 
lasses of �. One element from andthe number of elements in ea
h 
lass are indi
ated. The letters(a){(o) 
orrespond to the 
olumns of table 1.



8 A.M. Ru
klidge, M. Silber, and J. Finebergis: �a 
ontains:a : 1; b : 6; 
 : 6; f : 3; i : 6; j : 6; k : 8; l : 8; m : 1; o : 3 (8)(that is, one element from 
lass a, six from 
lass b et
.); �b 
ontains:a : 1; b : 6; f : 3; i : 6; l : 8; (9)and �
 
ontains: a : 1; b : 1; 
 : 3; e : 2; h : 2; o : 3: (10)The element �21 does not appear in the symmetry groups of patterns (a) and (b),whi
h eliminates representations 1{6 and 9{12 (sin
e �21 is represented by theidentity matrix in all these: see table 1). Similarly, �1�2 in 
lass f and �3 do notappear in �
, whi
h eliminates representations 1{9, 11 and 13 from 
onsiderationfor that bifur
ation problem.Next, by applying (7), we �nd that pattern (a) has a non-zero dimensional�xed point subspa
e only in representation 7, as does pattern (b). The spatialsymmetry group of pattern (a) �xes a one-dimensional subspa
e, and that of pat-tern (b) �xes a two-dimensional subspa
e. Pattern (
) has a one-dimensional �xedpoint subspa
e in representations 10 and 12, and zero in other representations.We are therefore fa
ed with three di�erent situations: the spatial symmetrygroup �a �xes a one-dimensional subspa
e in representation 7, so we expe
t bythe Equivariant Bran
hing Lemma (see [4℄) that su
h a pattern will generi
ally befound in a bifur
ation problem with that representation.Pattern (b), on the other hand, has a spatial symmetry group that �xes a two-dimensional subspa
e. However, we must take into a

ount that the pattern arisesin a subharmoni
 (period-doubling) instability, and extend the groups � and �b tothe spatio-temporal symmetry groups that arise by in
luding time translations. Wemay then show that the spatio-temporal symmetry group of pattern (b) �xes a one-dimensional subspa
e, and so also arises generi
ally in a subharmoni
 bifur
ationwith representation 7. This is the same representation as with pattern (a), obtainedfor similar experimental parameter values. Extending to in
lude the subharmoni
nature of the instability does not a�e
t the bran
hing of pattern (a).The third situation arises with pattern (
), whi
h on symmetry argumentsalone 
ould be asso
iated with either representation 10 or representation 12. In-
luding information about the spatio-temporal symmetry of the pattern does notdistinguish between these two representations. However, information on the Fouriertransform of the pattern does allow a 
hoi
e to be made between the two possibili-ties; in order to show this, we �rst need to work out whi
h 
ombinations of Fouriermodes are asso
iated with ea
h pattern.It is useful to have sample Fourier modes for the basi
 hexagonal pattern:f0(x; y) = 
os 2��2x3 �+ 
os 2���x3 + yp3�+ 
os 2���x3 � yp3� ; (11)with waveve
tor of length 4�3 , as well as sample Fourier modes for representa-tions 7, 10 and 12. The method des
ribed by Tse et al. [5℄ yields Fourier fun
tions



Se
ondary instabilities of hexagonal Faraday waves 9that would be in
luded in the eigenfun
tions asso
iated with representation 7;representative fun
tions with the shortest waveve
tors in
lude:f1(x; y) = 
os 2��x3 + y3p3�+ 
os 2��x3 � y3p3�+ 
os 2�� 2y3p3� (12)f2(x; y) = sin 2��x3 + y3p3�+ sin 2���x3 + y3p3�+ sin 2��� 2y3p3� ; (13)whi
h is made up of waveve
tors of length equal to 1p3 of that of the basi
 hexagonalpattern. Eigenfun
tions for representation 10 are made up of Fourier fun
tions thatin
lude:f1 = sin 2��x6 + y2p3� f2 = sin 2���x6 + y2p3� f3 = sin 2���x3 � ; (14)with waveve
tor of length 12 the fundamental; and representation 12 has:f1 = sin 2��x2 + �y2p3� f2 = sin 2��x2 + y2p3� f3 = sin 2�� yp3� ; (15)with waveve
tor of length p32 the fundamental. In ea
h 
ase, we have 
hosen theFourier modes with the shortest waveve
tors, as these are easiest to identify in anexperimental Fourier transform.The images of the Fourier transform of pattern (
) in [7℄ show that the mode
reated in the instability 
ontains waveve
tors that are a fa
tor of 2 shorter thanthe shortest in the basi
 hexagonal pattern, whi
h is 
onsistent with representa-tion 10 but not 12. In this way, information about the power spe
trum of thepattern is ne
essary to supplement the arguments based entirely on symmetriesand to distinguish between the two 
hoi
es.5. Normal formsUsing the fun
tions spe
i�ed above as a basis for representations 7 and 10, thematri
es that generate the two relevant representations are, for representation 7:R�x = I2; R� = �1 00 �1� ; R�1 = " � 12 p32�p32 � 12# ; R�2 = R2�1 ; R�T = �I2;(16)where In is the n� n identity matrix; and for representation 10:R�x = 24 0 1 01 0 00 0 �135 ; R� = 24 0 0 �11 0 00 1 035 ; (17)R�1 = 24�1 0 00 1 00 0 �135 ; R�2 = 24�1 0 00 �1 00 0 135 ; R�T = �I3: (18)



10 A.M. Ru
klidge, M. Silber, and J. FinebergThe perturbation amplitude at time j + 1 times the for
ing period, given theperturbation at time j, is given by aj+1 = f(aj), where the equivarian
e 
onditionamounts to R
f(a) = f(R
a) for all 
 2 �. Using this, we 
an determine therelevant normal form asso
iated with these two representations:zj+1 = �(1 + �)zj + P jzj j2zj +Qjzj j4zj +R�z5 (19)for representation 7 (trun
ated at quinti
 order), where the two amplitudes of f1and f2 in (12{13) are the real and imaginary parts of z, and P , Q and R are real
onstants. For representation 10 we trun
ate at 
ubi
 order and obtain:aj+1 = �(1 + �)aj + Pa3j +Q(a2j + b2j + 
2j )aj ; (20)bj+1 = �(1 + �)bj + Pb3j +Q(a2j + b2j + 
2j )bj ; (21)
j+1 = �(1 + �)
j + P
3j +Q(a2j + b2j + 
2j )
j ; (22)where P andQ are (di�erent) real 
onstants. In these two sets of equations, � repre-sents the bifur
ation parameter. The �1 Floquet multipliers at � = 0 arise be
ausethese are subharmoni
 bifur
ations. In representation 7, equivarian
e with respe
tto R�T = �I2 is a normal form symmetry, so even terms up to any order 
an beremoved from (19) by 
oordinate transformations [9℄. With representation 10, thematrix �I3 = R3� appears as a spatial symmetry, so the normal form symmetry isin fa
t exa
t, and every solution bran
h has the spatio-temporal symmetry �T �3,a rotation by 180Æ followed by time-translation by one period.The patterns are neutrally stable with respe
t to translations in the twohorizontal dire
tions, and so also have two Floquet multipliers equal to 1 asso
iatedwith translation modes. We have negle
ted these as all the patterns we �nd arepinned by re
e
tion symmetries that prohibit drifting.The �nal stages are to determine the solutions that are 
reated in ea
h ofthese bifur
ations, their symmetry and stability properties, and to 
ompare thesewith experimental observations.The �rst normal form (19) generi
ally has two types of period-two points,found by solving f(z) = �z:za =r �P � 2�2Q+RP 3 ; zb = ir �P � 2�2Q�RP 3 : (23)The �rst of these has exa
tly the symmetry group �a of pattern (a), with no spatio-temporal symmetries, while the se
ond has exa
tly the spatial symmetry group �bof pattern (b), as well as spatio-temporal symmetries generated by ��T . Re
on-stru
tions of these two are shown in �gure 4(a) for pattern (a) and �gure 4(b,
) forpattern (b), using the Fourier fun
tions from above. Linearising the normal formabout these two period-two points readily yields stability information: if P > 0,then both patterns are super
riti
al but only one is stable, while if P < 0, bothare sub
riti
al and neither is stable.
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)
Figure 4. Re
onstru
ted patterns from the two solutions thatarise in representation 7, using the Fourier fun
tions (12{13)added to a fun
tion of the form of (11). (a) has the spatial symme-tries of pattern (a) and no spatio-temporal symmetries (
f. 2a,d);(b) has the symmetry properties of pattern (b) (
 is one period Tlater; 
f. �gure 2b,e,g)The se
ond normal form (20{22) generi
ally has three types of period-twopoints (a; b; 
):r �P +Q 0�1001A ; r �P + 2Q 0�1101A ; r �P + 3Q 0�1111A : (24)The middle bran
h has the spatio-temporal symmetries of pattern (
), with 12 el-ements in the spatial part of the symmetry group (�
 = h�x; �y�2; �21 i). Fig-ure 5(a,b) illustrates this pattern (
f. �gure 2
,f,h). For 
omparison, the pat-tern that would have been obtained with modes from representation 12 is in �g-ure 5(
,d): the symmetry group is the same, but the appearan
e of the patterndoes not mat
h the experimental observation. The �rst bran
h has a 24 elementspatial symmetry group h�3�1; �x��51 �2; �21 i (�gure 5e,f), and the third bran
h hasan 18 element group h�y�2; �x�5; �21 i (�gure 5g,h). The three patterns also havethe spatio-temporal symmetry �3�T (sin
e R3� = �I3), so �3 will appear in thesymmetry group of the time-average of ea
h of the patterns, as dis
ussed in [5℄.The �rst bran
h has Floquet multipliers �1 + 2� and �1 � PP+Q� (twi
e);the se
ond bran
h �1+ 2�, �1� PP+2Q� and �1 + 2PP+2Q�; and the third bran
h�1 + 2� and �1 + 2PP+3Q� (twi
e). As a result, if P + Q > 0 and P + 3Q > 0,then all bran
hes bifur
ate super
riti
ally, and either the �rst bran
h will be stable(when P < 0) or the last will be stable (when P > 0). If any bran
h bifur
atessub
riti
ally, none are stable. The middle bran
h, whi
h is the one 
orrespondingto the experimentally observed pattern (
), is always unstable at onset.
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Figure 5. Re
onstru
ted patterns from irreps 10 and 12: (a,b)irrep 10, with amplitudes (a; b; 
) = (1; 1; 0) (
f. �gure 2
,f,h);(
,d) irrep 12: same amplitudes and same symmetries as (a,b);(e,f) irrep 10, with amplitudes (a; b; 
) = (1; 0; 0); (g,h) irrep 10,with amplitudes (a; b; 
) = (1; 1; 1).6. Dis
ussionUsing the symmetry-based approa
h of Tse et al. [5℄, we have analysed three exper-imentally observed spatial period-multiplying transitions from an initial hexagonalpattern. The three patterns illustrate three situations that 
an arise in this kindof analysis. Pattern (a) was straight-forward, in that a single representation of �had a one-dimensional spa
e �xed by the spatial symmetry group of the pattern.The existen
e of a solution bran
h of the form of pattern (b) 
ould also be inferredusing the Equivariant Bran
hing Lemma, though in this 
ase it was ne
essaryto in
lude the temporal symmetry asso
iated with period-doubling bifur
ation.Spe
i�
ally, the spatial symmetries sele
ted a two-dimensional �xed point spa
ewhi
h was further redu
ed to a one-dimensional �xed point spa
e when spatio-temporal symmetries were taken into a

ount. Experimentally, these two patternswere found for the same 
uid parameters and same 2! : 3! for
ing fun
tion butfor di�erent frequen
ies !: ! = 25Hz for (a) and ! = 35Hz for (b). This suggeststhat the transition between these patterns, whi
h arise for instabilities asso
iatedwith the same representation, might be observed by tuning the frequen
y !.
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), on the other hand, had a spatial symmetry group that �xedone-dimensional subspa
es in two di�erent representations, and we appealed tothe measured power spe
trum of the pattern to 
hoose between the two possibil-ities. In this situation, symmetry 
onsiderations alone were not enough. Similarsituations arise in other bifur
ation problems, for example, knowing that a stableaxisymmetri
 pattern is found in a spheri
ally symmetri
 bifur
ation problem doesnot provide enough information to determine whi
h is the relevant representation.The experimentally observed transition between hexagons and pattern (
)o

urs by means of a propagating front that separates domains of hexagons andthe se
ondary pattern. The front is initiated at the lateral boundaries of the systemand emanates radially inward. There is little if any hysteresis, and the reversetransition also o

urs via the same s
enario. The o

urren
e of a front in thistransition suggests bistability of the hexagonal pattern and pattern (
). This is
ertainly 
onsistent with the theoreti
al predi
tion that pattern (
) is unstable atsmall amplitude, that is, at onset. However, we have not explored the possiblestabilization me
hanisms for pattern (
).It is worth emphasizing that an understanding of group representation the-ory is useful in 
lassifying and analysing se
ondary instabilities of patterns, notonly in the Faraday wave experiment as des
ribed here, but also in 
onve
tion andother pattern formation problems (see [10℄). It is also worth mentioning that theexamples studied here indi
ate that spatio-temporal symmetries readily arise inse
ondary subharmoni
 instabilities, and that 
areful experimental 
hara
teriza-tion of these, either by still images taken one for
ing period apart or by time-averaging over two for
ing periods, 
an be helpful. Subsequent instabilities ofpatterns that have spatio-temporal symmetries 
an be analysed using methodsdes
ribed in [11, 12℄.The approa
h outlined in [5℄ and here is useful for taking an experimentalobservation of a se
ondary transition and 
asting it into its equivariant bifur
a-tion theory 
ontext, but it does not predi
t whi
h transitions should be expe
tedin an experiment. However, in these two-frequen
y Faraday wave experiments,three-wave intera
tions of the type des
ribed in [13℄ may sele
t a third waveve
torthat 
ould appear in the se
ondary transition. Ea
h of the representations in theproblem under 
onsideration is asso
iated with a set of waveve
tors, providing apossible me
hanism for sele
ting between possibilities.A
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