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Seondary instabilities of hexagons:a bifuration analysis of experimentallyobserved Faraday wave patternsA.M. Ruklidge, M. Silber, and J. FinebergAbstrat. We examine three experimental observations of Faraday waves gen-erated by two-frequeny foring, in whih a primary hexagonal pattern be-omes unstable to three di�erent superlattie patterns. We analyse the bifur-ations involved in reating the three new patterns using a symmetry-basedapproah. Eah of the three examples reveals a di�erent situation that anarise in the theoretial analysis.1. IntrodutionThe lassi Faraday wave experiment onsists of a horizontal layer of uid thatspontaneously develops a pattern of standing waves on its surfae as it is driven byvertial osillation with amplitude exeeding a ritial value. Reent experimentshave revealed a wide variety of omplex patterns, partiularly in the large aspetratio regime and with a foring funtion ontaining two ommensurate frequen-ies [1, 2, 3℄. Transitions from the at surfae to a primary, spatially periodi,pattern an be studied using equivariant bifuration theory [4℄. These group theo-reti tehniques may also be applied to seondary spatial period-multiplying tran-sitions to patterns with two distint spatial sales (so alled superlattie patterns)as demonstrated by Tse et al. [5℄.We apply the method of Tse et al. [5℄ to the analysis of three superlattie pat-terns observed when seondary subharmoni instabilities destroy the basi hexag-onal standing wave pattern in two-frequeny Faraday wave experiments. We anmake use not only of the general symmetry-based approah from [5℄ but also ofmany of the detailed results. The reason for this is that in their paper, Tse et al.onsidered instabilities of hexagonal patterns that broke the translation symmetryof the hexagons, but that remained periodi in a larger hexagonal domain om-prising twelve of the original hexagons. The instabilities under onsideration heresatisfy exatly the same onditions (though in fat they remain periodi in smallerdomains as well).In Bifurations, Symmetry and Patterns (eds. J. Buesu, S.B.S.D. Castro, A.P.S. Dias and I.S.Labouriau) Birkhauser: Basel (2003) 101{114.
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Figure 1. The oordinate system and ertain elements of thesymmetry group �. The origin of the oordinate system is at theentre of the diagram, and the point (1; 0) is indiated. The smallhexagons represent the primary pattern, whih is invariant underreetions (�x and �y), 60Æ rotations (�) and translations (�1and �2). The seondary patterns are all periodi in the largerhexagonal box. The three orner points labelled with solid irlesare identi�ed through the assumed periodiity.We begin by speifying the oordinate system and symmetries we will usein setion 2, then desribe the symmetries of the three experimental patterns insetion 3. In setion 4, we apply Tse et al.'s method of analysis to these threepatterns, and present normal forms and stability alulations in setion 5. Weonlude in setion 6.2. Coordinates and symmetriesThe primary pattern is made up of regular hexagons, whih are invariant underthe group D6 (made up of 60Æ rotations and reetions) ombined with translationfrom one hexagon to the next (see �gure 1). Tse et al. [5℄ studied experimental



Seondary instabilities of hexagonal Faraday waves 3patterns reported in [6℄, whih had the feature that after the seondary instability,the pattern remained periodi in the larger hexagonal box in �gure 1. The 144-element spatial symmetry group of the primary hexagonal pattern within this boxis �, generated by the following reetion �x, rotation � and translations �1 and �2:�x : (x; y)! (�x; y) �1 : (x; y)! (x; y) + 32 ; p32 ! (1)� : (x; y)!  12x� p32 y; p32 x+ 12y! �2 : (x; y)! (x; y) + �0;p3� (2)We also de�ne �y = �x�3, and note the following identities:�2x = �2y = �6 = �61 = �62 = �21 �22 = identity; (3)��x = �x�5; �1�x = �x�51 �2; �2�x = �x�2; (4)�1� = ��31 �2; �2� = ��1; �1�2 = �2�1: (5)The time translation �T advanes time by one period T of the foring funtion,whih is the same as the temporal period of the hexagonal pattern. This timetranslation is ombined with the spatial symmetries above to give spatio-temporalsymmetries.3. Experimental patternsThe three experimentally observed patterns are shown in �gure 2(a-), visualisedusing the tehniques desribed in [7℄. Patterns (a) and (b) are both obtainedusing Dow-Corning silione oil with visosity 47 St and layer depth 0:35 m, whilepattern () was found using a 23 St oil layer of depth 0:155 m. All three patternsare obtained with foring funtion ontaining two frequenies in the ratio 2 : 3;pattern (a) is found with frequenies 50 and 75Hz, pattern (b) with frequenies70 and 105Hz, and pattern () with 40 and 60Hz driving frequenies. Pattern() was reported previously in [7℄. Typially, the seondary bifurations our atforing amplitudes between 10 and 50% larger than the ritial aeleration forthe primary hexagonal state. Further experimental details an be found in [7, 8℄.For the purposes of the analysis, we onsider the idealised versions of theseexperimental patterns, shown in �gure 2(d-f). The �rst pattern in �gure 2(a,d)retains the D6 symmetry of the original hexagons but breaks ertain translationsymmetries. It is periodi in the medium-sized dashed hexagon in �gure 2(d),whih implies that the pattern is invariant under the translations �31 and �1�2.It has no spatio-temporal symmetries. The seond pattern is similar, althoughit possesses only triangular (D3) symmetry instantaneously. Moreover, it has thespatio-temporal symmetry given by a 60Æ rotation ombined with advane in timeby one period T of the foring, as in �gure 2(e,g). In fat, this spatio-temporalsymmetry was �rst suggested by the analysis below, and found to be onsistentwith the experimental observations. The third pattern in �gure 2(,f) is quite



4 A.M. Ruklidge, M. Silber, and J. Fineberg(a) (b) ()
(d) (e) (f)

(g) (h)
Figure 2. Experimental and idealised seondary patterns. (a-) Experimental patterns, visualised from above. (d-f) Idealisedversions of (a-). (g-h) patterns (e-f) but seen one foring period Tlater. The idealisations are all rotated by about 30Æ ompared withthe experimental pitures.



Seondary instabilities of hexagonal Faraday waves 5a b  d e f g h i j k l m n oid �x �y �1 �21 �31 �x�1 �x�2 �x� 31 �y� 31 � �2 �3 �2�1 �3� 311 6 18 6 2 3 12 12 6 18 24 8 3 16 91 1 1 1 1 1 1 1 1 1 1 1 1 1 1 12 1 �1 �1 1 1 1 �1 �1 �1 �1 1 1 1 1 13 1 1 �1 1 1 1 1 1 1 �1 �1 1 �1 1 �14 1 �1 1 1 1 1 �1 �1 �1 1 �1 1 �1 1 �15 2 0 0 2 2 2 0 0 0 0 1 �1 �2 �1 �26 2 0 0 2 2 2 0 0 0 0 �1 �1 2 �1 27 2 2 0 �1 �1 2 �1 �1 2 0 0 2 0 �1 08 2 �2 0 �1 �1 2 1 1 �2 0 0 2 0 �1 09 3 1 1 �1 3 �1 �1 1 �1 �1 0 0 3 0 �110 3 �1 1 �1 3 �1 1 �1 1 �1 0 0 �3 0 111 3 �1 �1 �1 3 �1 1 �1 1 1 0 0 3 0 �112 3 1 �1 �1 3 �1 �1 1 �1 1 0 0 �3 0 113 4 0 0 �2 �2 4 0 0 0 0 0 �2 0 1 014 6 �2 0 1 �3 �2 �1 1 2 0 0 0 0 0 015 6 2 0 1 �3 �2 1 �1 �2 0 0 0 0 0 0Table 1. Charater table of the group �, taken from Tse et al.,with orretions. A representative element is shown on the seondline for eah onjugay lass (see also �gure 3), and the numberof elements in the lass is on the third row. The next �fteen rowsgive the haraters assoiated with eah onjugay lass for eahof the �fteen representations.di�erent: the dark lozenges in �gure 2(f) represent the enlarged gaps betweenthe hexagons in �gure 2(). The pattern is periodi in the medium-sized dashedhexagon in �gure 2(f), so is invariant under translations �21 and �22 = �41 . It isalso invariant under the group of symmetries of a retangle D2, and possesses thespatio-temporal symmetry of the translation �2 ombined with advane in time byone period T of the foring, as in �gure 2(f,h).Using the information above, we write down the instantaneous (spatial) sym-metry groups of the three patterns from �gure 2(a-) in terms of their generators:�a = h�x; �; �31 ; �1�2i; �b = h�x; �2; �31 ; �1�2i; � = h�x; �y�2; �21 i: (6)These groups are of order 48, 24 and 12 respetively. For the full spatio-temporalsymmetry groups, we would also inlude ��T in the generators of �b, and �2�Tin the generators of �, but initially we will work with the spatial symmetrygroups. The reason for this is that the instantaneous (spatial) symmetries anbe determined reliably from a single experimental image, while extrating spatio-temporal symmetries from the experimental data is more involved.Eah of the three instabilities that generates the three di�erent patterns willbe assoiated with a set of marginally stable eigenfuntions; the new pattern, at



6 A.M. Ruklidge, M. Silber, and J. Finebergleast near onset, an be thought of as (approximately) a linear ombination ofthese marginal eigenfuntions and the original hexagonal pattern. Whih linearsuperpositions are onsistent with the nonlinearity inherent in the pattern for-mation proess is determined by our bifuration analysis. The symmetries in �all leave the primary hexagonal pattern unhanged, so they must send marginaleigenfuntions onto linear ombinations of marginal eigenfuntions, whih induesan ation on the amplitudes of these funtions. In other words, if there are n mar-ginal eigenfuntions f1, . . . , fn, with n amplitudes a = (a1; : : : ; an) 2 Rn , eahelement  2 � sends a to Ra, where the set of n�n orthogonal matries R formsa representation R� of the group �. For subharmoni instabilities of the type ofinterest here, this will generially be an irreduible representation (irrep) [4℄. Tseet al. [5℄ have omputed all the irreps of the group �; the harater table of theserepresentations is reprodued in table 1. Reall that the harater of a group el-ement  in a representation is the trae of the matrix R , and that onjugateelements (whih form a onjugay lass) have the same haraters.One the representation assoiated with eah of the three transitions is iden-ti�ed, we an write down the normal form, work out what other patterns arereated in the same bifuration, and ompute stability of the patterns in terms ofthe normal form oeÆients.4. MethodThe �rst task is to identify whih representation is relevant for eah bifuration.Tse et al. [5℄ outlined a two-stage method to aomplish this. First, any symmetryelement that is represented by the identity matrix in a partiular representationmust appear in the symmetry group of every branh of solutions reated in a bifur-ation with that representation. This an be used to eliminate from onsiderationany representation that has an element with harater equal to the harater ofthe identity that does not appear in the symmetry group of the observed pattern.Seond, we make use of the trae formula from [4℄, whih gives the dimension ofthe subspae of Rn that is �xed by a partiular isotropy subgroup � of � withrepresentation given by the matries R�:dim �x(�) = 1j�jX�2�TrR�; (7)where j�j is the number of elements in �. Spei�ally, we use the trae formulato eliminate those representations for whih the spatial symmetry group of thepattern �xes a zero-dimensional subspae (implying that the subgroup is not anisotropy subgroup); only the remaining representations need be examined in moredetail.We proeed by �rst ounting the number of elements in eah onjugay lassfor eah of the symmetry groups �a, �b and �. Figure 3 shows representativeelements from eah lass and is helpful for this ategorization. The result of this



Seondary instabilities of hexagonal Faraday waves 7(a) identity (1) (b) �x (6) () �y (18)
(d) �1 (6) (e) �21 (2) (f) �31 (3)

(g) �x�1 (12) (h) �x�2 (12) (i) �x�31 (6)
(j) �y�31 (18) (k) � (24) (l) �2 (8)
(m) �3 (3) (n) �2�1 (16) (o) �3�31 (9)

Figure 3. The 15 onjugay lasses of �. One element from andthe number of elements in eah lass are indiated. The letters(a){(o) orrespond to the olumns of table 1.



8 A.M. Ruklidge, M. Silber, and J. Finebergis: �a ontains:a : 1; b : 6;  : 6; f : 3; i : 6; j : 6; k : 8; l : 8; m : 1; o : 3 (8)(that is, one element from lass a, six from lass b et.); �b ontains:a : 1; b : 6; f : 3; i : 6; l : 8; (9)and � ontains: a : 1; b : 1;  : 3; e : 2; h : 2; o : 3: (10)The element �21 does not appear in the symmetry groups of patterns (a) and (b),whih eliminates representations 1{6 and 9{12 (sine �21 is represented by theidentity matrix in all these: see table 1). Similarly, �1�2 in lass f and �3 do notappear in �, whih eliminates representations 1{9, 11 and 13 from onsiderationfor that bifuration problem.Next, by applying (7), we �nd that pattern (a) has a non-zero dimensional�xed point subspae only in representation 7, as does pattern (b). The spatialsymmetry group of pattern (a) �xes a one-dimensional subspae, and that of pat-tern (b) �xes a two-dimensional subspae. Pattern () has a one-dimensional �xedpoint subspae in representations 10 and 12, and zero in other representations.We are therefore faed with three di�erent situations: the spatial symmetrygroup �a �xes a one-dimensional subspae in representation 7, so we expet bythe Equivariant Branhing Lemma (see [4℄) that suh a pattern will generially befound in a bifuration problem with that representation.Pattern (b), on the other hand, has a spatial symmetry group that �xes a two-dimensional subspae. However, we must take into aount that the pattern arisesin a subharmoni (period-doubling) instability, and extend the groups � and �b tothe spatio-temporal symmetry groups that arise by inluding time translations. Wemay then show that the spatio-temporal symmetry group of pattern (b) �xes a one-dimensional subspae, and so also arises generially in a subharmoni bifurationwith representation 7. This is the same representation as with pattern (a), obtainedfor similar experimental parameter values. Extending to inlude the subharmoninature of the instability does not a�et the branhing of pattern (a).The third situation arises with pattern (), whih on symmetry argumentsalone ould be assoiated with either representation 10 or representation 12. In-luding information about the spatio-temporal symmetry of the pattern does notdistinguish between these two representations. However, information on the Fouriertransform of the pattern does allow a hoie to be made between the two possibili-ties; in order to show this, we �rst need to work out whih ombinations of Fouriermodes are assoiated with eah pattern.It is useful to have sample Fourier modes for the basi hexagonal pattern:f0(x; y) = os 2��2x3 �+ os 2���x3 + yp3�+ os 2���x3 � yp3� ; (11)with wavevetor of length 4�3 , as well as sample Fourier modes for representa-tions 7, 10 and 12. The method desribed by Tse et al. [5℄ yields Fourier funtions



Seondary instabilities of hexagonal Faraday waves 9that would be inluded in the eigenfuntions assoiated with representation 7;representative funtions with the shortest wavevetors inlude:f1(x; y) = os 2��x3 + y3p3�+ os 2��x3 � y3p3�+ os 2�� 2y3p3� (12)f2(x; y) = sin 2��x3 + y3p3�+ sin 2���x3 + y3p3�+ sin 2��� 2y3p3� ; (13)whih is made up of wavevetors of length equal to 1p3 of that of the basi hexagonalpattern. Eigenfuntions for representation 10 are made up of Fourier funtions thatinlude:f1 = sin 2��x6 + y2p3� f2 = sin 2���x6 + y2p3� f3 = sin 2���x3 � ; (14)with wavevetor of length 12 the fundamental; and representation 12 has:f1 = sin 2��x2 + �y2p3� f2 = sin 2��x2 + y2p3� f3 = sin 2�� yp3� ; (15)with wavevetor of length p32 the fundamental. In eah ase, we have hosen theFourier modes with the shortest wavevetors, as these are easiest to identify in anexperimental Fourier transform.The images of the Fourier transform of pattern () in [7℄ show that the modereated in the instability ontains wavevetors that are a fator of 2 shorter thanthe shortest in the basi hexagonal pattern, whih is onsistent with representa-tion 10 but not 12. In this way, information about the power spetrum of thepattern is neessary to supplement the arguments based entirely on symmetriesand to distinguish between the two hoies.5. Normal formsUsing the funtions spei�ed above as a basis for representations 7 and 10, thematries that generate the two relevant representations are, for representation 7:R�x = I2; R� = �1 00 �1� ; R�1 = " � 12 p32�p32 � 12# ; R�2 = R2�1 ; R�T = �I2;(16)where In is the n� n identity matrix; and for representation 10:R�x = 24 0 1 01 0 00 0 �135 ; R� = 24 0 0 �11 0 00 1 035 ; (17)R�1 = 24�1 0 00 1 00 0 �135 ; R�2 = 24�1 0 00 �1 00 0 135 ; R�T = �I3: (18)



10 A.M. Ruklidge, M. Silber, and J. FinebergThe perturbation amplitude at time j + 1 times the foring period, given theperturbation at time j, is given by aj+1 = f(aj), where the equivariane onditionamounts to Rf(a) = f(Ra) for all  2 �. Using this, we an determine therelevant normal form assoiated with these two representations:zj+1 = �(1 + �)zj + P jzj j2zj +Qjzj j4zj +R�z5 (19)for representation 7 (trunated at quinti order), where the two amplitudes of f1and f2 in (12{13) are the real and imaginary parts of z, and P , Q and R are realonstants. For representation 10 we trunate at ubi order and obtain:aj+1 = �(1 + �)aj + Pa3j +Q(a2j + b2j + 2j )aj ; (20)bj+1 = �(1 + �)bj + Pb3j +Q(a2j + b2j + 2j )bj ; (21)j+1 = �(1 + �)j + P3j +Q(a2j + b2j + 2j )j ; (22)where P andQ are (di�erent) real onstants. In these two sets of equations, � repre-sents the bifuration parameter. The �1 Floquet multipliers at � = 0 arise beausethese are subharmoni bifurations. In representation 7, equivariane with respetto R�T = �I2 is a normal form symmetry, so even terms up to any order an beremoved from (19) by oordinate transformations [9℄. With representation 10, thematrix �I3 = R3� appears as a spatial symmetry, so the normal form symmetry isin fat exat, and every solution branh has the spatio-temporal symmetry �T �3,a rotation by 180Æ followed by time-translation by one period.The patterns are neutrally stable with respet to translations in the twohorizontal diretions, and so also have two Floquet multipliers equal to 1 assoiatedwith translation modes. We have negleted these as all the patterns we �nd arepinned by reetion symmetries that prohibit drifting.The �nal stages are to determine the solutions that are reated in eah ofthese bifurations, their symmetry and stability properties, and to ompare thesewith experimental observations.The �rst normal form (19) generially has two types of period-two points,found by solving f(z) = �z:za =r �P � 2�2Q+RP 3 ; zb = ir �P � 2�2Q�RP 3 : (23)The �rst of these has exatly the symmetry group �a of pattern (a), with no spatio-temporal symmetries, while the seond has exatly the spatial symmetry group �bof pattern (b), as well as spatio-temporal symmetries generated by ��T . Reon-strutions of these two are shown in �gure 4(a) for pattern (a) and �gure 4(b,) forpattern (b), using the Fourier funtions from above. Linearising the normal formabout these two period-two points readily yields stability information: if P > 0,then both patterns are superritial but only one is stable, while if P < 0, bothare subritial and neither is stable.



Seondary instabilities of hexagonal Faraday waves 11(a) (b) ()
Figure 4. Reonstruted patterns from the two solutions thatarise in representation 7, using the Fourier funtions (12{13)added to a funtion of the form of (11). (a) has the spatial symme-tries of pattern (a) and no spatio-temporal symmetries (f. 2a,d);(b) has the symmetry properties of pattern (b) ( is one period Tlater; f. �gure 2b,e,g)The seond normal form (20{22) generially has three types of period-twopoints (a; b; ):r �P +Q 0�1001A ; r �P + 2Q 0�1101A ; r �P + 3Q 0�1111A : (24)The middle branh has the spatio-temporal symmetries of pattern (), with 12 el-ements in the spatial part of the symmetry group (� = h�x; �y�2; �21 i). Fig-ure 5(a,b) illustrates this pattern (f. �gure 2,f,h). For omparison, the pat-tern that would have been obtained with modes from representation 12 is in �g-ure 5(,d): the symmetry group is the same, but the appearane of the patterndoes not math the experimental observation. The �rst branh has a 24 elementspatial symmetry group h�3�1; �x��51 �2; �21 i (�gure 5e,f), and the third branh hasan 18 element group h�y�2; �x�5; �21 i (�gure 5g,h). The three patterns also havethe spatio-temporal symmetry �3�T (sine R3� = �I3), so �3 will appear in thesymmetry group of the time-average of eah of the patterns, as disussed in [5℄.The �rst branh has Floquet multipliers �1 + 2� and �1 � PP+Q� (twie);the seond branh �1+ 2�, �1� PP+2Q� and �1 + 2PP+2Q�; and the third branh�1 + 2� and �1 + 2PP+3Q� (twie). As a result, if P + Q > 0 and P + 3Q > 0,then all branhes bifurate superritially, and either the �rst branh will be stable(when P < 0) or the last will be stable (when P > 0). If any branh bifuratessubritially, none are stable. The middle branh, whih is the one orrespondingto the experimentally observed pattern (), is always unstable at onset.



12 A.M. Ruklidge, M. Silber, and J. Fineberg(a) (b) () (d)
(e) (f) (g) (h)

Figure 5. Reonstruted patterns from irreps 10 and 12: (a,b)irrep 10, with amplitudes (a; b; ) = (1; 1; 0) (f. �gure 2,f,h);(,d) irrep 12: same amplitudes and same symmetries as (a,b);(e,f) irrep 10, with amplitudes (a; b; ) = (1; 0; 0); (g,h) irrep 10,with amplitudes (a; b; ) = (1; 1; 1).6. DisussionUsing the symmetry-based approah of Tse et al. [5℄, we have analysed three exper-imentally observed spatial period-multiplying transitions from an initial hexagonalpattern. The three patterns illustrate three situations that an arise in this kindof analysis. Pattern (a) was straight-forward, in that a single representation of �had a one-dimensional spae �xed by the spatial symmetry group of the pattern.The existene of a solution branh of the form of pattern (b) ould also be inferredusing the Equivariant Branhing Lemma, though in this ase it was neessaryto inlude the temporal symmetry assoiated with period-doubling bifuration.Spei�ally, the spatial symmetries seleted a two-dimensional �xed point spaewhih was further redued to a one-dimensional �xed point spae when spatio-temporal symmetries were taken into aount. Experimentally, these two patternswere found for the same uid parameters and same 2! : 3! foring funtion butfor di�erent frequenies !: ! = 25Hz for (a) and ! = 35Hz for (b). This suggeststhat the transition between these patterns, whih arise for instabilities assoiatedwith the same representation, might be observed by tuning the frequeny !.



Seondary instabilities of hexagonal Faraday waves 13Pattern (), on the other hand, had a spatial symmetry group that �xedone-dimensional subspaes in two di�erent representations, and we appealed tothe measured power spetrum of the pattern to hoose between the two possibil-ities. In this situation, symmetry onsiderations alone were not enough. Similarsituations arise in other bifuration problems, for example, knowing that a stableaxisymmetri pattern is found in a spherially symmetri bifuration problem doesnot provide enough information to determine whih is the relevant representation.The experimentally observed transition between hexagons and pattern ()ours by means of a propagating front that separates domains of hexagons andthe seondary pattern. The front is initiated at the lateral boundaries of the systemand emanates radially inward. There is little if any hysteresis, and the reversetransition also ours via the same senario. The ourrene of a front in thistransition suggests bistability of the hexagonal pattern and pattern (). This isertainly onsistent with the theoretial predition that pattern () is unstable atsmall amplitude, that is, at onset. However, we have not explored the possiblestabilization mehanisms for pattern ().It is worth emphasizing that an understanding of group representation the-ory is useful in lassifying and analysing seondary instabilities of patterns, notonly in the Faraday wave experiment as desribed here, but also in onvetion andother pattern formation problems (see [10℄). It is also worth mentioning that theexamples studied here indiate that spatio-temporal symmetries readily arise inseondary subharmoni instabilities, and that areful experimental harateriza-tion of these, either by still images taken one foring period apart or by time-averaging over two foring periods, an be helpful. Subsequent instabilities ofpatterns that have spatio-temporal symmetries an be analysed using methodsdesribed in [11, 12℄.The approah outlined in [5℄ and here is useful for taking an experimentalobservation of a seondary transition and asting it into its equivariant bifura-tion theory ontext, but it does not predit whih transitions should be expetedin an experiment. However, in these two-frequeny Faraday wave experiments,three-wave interations of the type desribed in [13℄ may selet a third wavevetorthat ould appear in the seondary transition. Eah of the representations in theproblem under onsideration is assoiated with a set of wavevetors, providing apossible mehanism for seleting between possibilities.Aknowledgements. This paper builds on earlier published results obtained withDawn Tse, Rebea Hoyle and Hagai Arbell. AMR is grateful for support fromthe EPSRC. The researh of MS is supported in part by NSF grant DMS-9972059and NASA grant NAG3-2364. JF is grateful for support from the Israel Aademyof Siene (grant 203/99).Referenes[1℄ Edwards, W.S. & Fauve, S., Patterns and quasi-patterns in the Faraday experiment,J. Fluid Meh., 278 (1994), 123{148.
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