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CHAPTER 7

CONVERGENCE PROPERTIES OF FOURIER MODE

REPRESENTATIONS OF QUASIPATTERNS

Alastair M. Rucklidge

Department of Applied Mathematics, University of Leeds,

Leeds LS2 9JT, UK

Spatial Fourier transforms of quasipatterns observed in Faraday wave
experiments suggest that the patterns are well represented by the sum
of 8, 10 or 12 Fourier modes with wavevectors equally spaced around
a circle. We show that nonlinear interactions of n such Fourier modes
generate new modes with wavevectors that approach the original circle
no faster than a constant times n

−2. These close approaches lead to small
divisors in the standard perturbation theory used to compute properties
of these patterns, and we show that the convergence of the standard
method is questionable in spite of the bound on the small divisors.

1. Introduction

One well studied example of a pattern-forming instability is the Faraday

wave problem of the formation of waves on the surface of a layer of fluid

as it is driven by vertical vibrations. This system has been subjected to in-

tensive scrutiny in laboratory experiments and has come to be regarded as

an archetypal pattern forming system. Clear examples of pattern formation

occur in a wide range of other systems, including Rayleigh–Bénard convec-

tion, liquid crystals in externally imposed electric fields, nonlinear optics,

directional solidification, vibrated granular media, chemical reactions and

catalytic oxidation.

The simplest patterns, stripes, squares and hexagons, have reflection,

rotation and translation symmetries. A comprehensive and very successful

theory has been developed to analyze the creation of these patterns from

an initial featureless state. This theory, which is based on computing the

amplitudes of the various waves (or modes) that make up the pattern, is

known as equivariant bifurcation theory, and is expounded in detail in a

series of texts (see, for example, [8]).

In order to apply rigorous mathematical theories to explain experimen-
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tal results and other occurrences of pattern formation in the natural world,

there are naturally a series of idealizations and approximations that must

be made. One supposes that in the absence of any driving force, the system

will remain featureless, and that if the forcing is turned up, it must reach a

critical level before it can overcome any inherent dissipation in the system.

If the level of forcing (which is a parameter under the control of the experi-

mentalist) exceeds this critical value, the featureless state will be unstable,

and any small disturbances will grow. These cannot grow for ever, and one

possible outcome is that the system will settle down to a steady state with

some degree of spatial structure: a pattern.

Two further idealizations are often made when computing the mathe-

matical properties of patterns. First, the experimental boundaries are ig-

nored, and so in effect the experiment is supposed to be taking place in

a container of infinite size; and second, the observed pattern is supposed

to have perfect spatial periodicity. By only considering patterns that are

periodic in space, rigorous theory can be applied to prove the existence

of stripe, square and hexagon (and other) solutions of the nonlinear par-

tial differential equations (PDEs) that model the experimental situation.

Given that in some highly controlled experiments the idealization of spa-

tial periodicity appears to hold over dozens of repeats of the pattern, these

assumptions are perfectly reasonable when the objective is to understand

the nature of these periodic patterns.

(a) (b) (c)

Fig. 1. Quasipatterns: (a) 12-fold quasipattern observed in a two-frequency forced Fara-
day wave experiment; (b) spatial Fourier transform, showing the 12-fold rotational order
in spite of the absence of any translation symmetry (both from [1], with permission).

(c) Synthetic quasipattern, constructed from the sum of 12 modes with wavevectors
spaced equally around a circle; see equation (8).

However, experiments that are carried out in large domains are quite
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capable of producing patterns that cannot be analyzed in this way. A no-

table example of this is quasipatterns, which are most readily found in

Faraday wave experiments in which a tray of liquid is subjected to vertical

vibrations with two commensurate forcing frequencies[6]. A recent survey

of experimental results can be found in [1], and one experimental exam-

ple of a quasipattern is shown in figure 1a. This pattern is quasiperiodic

in any horizontal direction, that is, the amplitude of the pattern (taken

along any direction in the plane) can be regarded as a sum of modes with

incommensurate spatial frequencies. In general, quasipatterns exhibit long

range rotational order, most evident in their spatial Fourier transform (fig-

ure 1b), but they lack spatial periodicity. In this respect, there are obvious

similarities with quasicrystals, which were discovered a decade earlier[11].

Models of quasipatterns have been developed by several researchers

without the theoretical background required to justify their use (see be-

low). These models are derived using a perturbation theory approach that

is successful for periodic patterns; however, when the method is applied to

the case of quasipatterns, a difficulty known as the problem of small divi-

sors arises. This problem appears whenever quasiperiodic behavior is found

in a nonlinear set of differential equations and attempts are made to use

perturbation theory to compute the quasiperiodic solution by a series of

approximations. In many cases, including the case of spatially periodic pat-

terns, it can be proved that this process, if carried to the limit, will indeed

converge to a true solution. However, in the case of quasiperiodic behavior,

the corrections turn out not to be uniformly small, owing to the appear-

ance of small numbers in the denominators, and convergence is called into

question.

This difficulty was faced first by Poincaré in the context of celestial

mechanics in the late 19th century. In the absence of any gravitational

interaction between planets, each planet in the solar system orbits the Sun

with its own period, and the system as a whole is quasiperiodic in time.

Poincaré considered the question of whether or not the solar system is

quasiperiodic given the presence of weak interactions between the planets.

Formally, the problem could be solved by perturbation theory, but Poincaré

realized that small divisors called convergence of the perturbation series into

question.

The small divisor issue was resolved for this type of problem by Kol-

mogorov, Arnol’d and Moser (KAM) in the 1950’s and 60’s, who showed

under what circumstances quasiperiodic behavior would be found (see, for
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Fig. 2. Trajectories in the standard map (1): (a) ε = 0.1; (b) ε = 0.8. For small ε, several

features are apparent: there are fixed points (at (θ, I) = (0, 0) and (π, 0)), periodic orbits
and two types of quasiperiodic orbit: those that have a bounded range of θ (in an island
centered on (π, 0)), and those for which θ increases or decreases monotonically. For

larger ε, more islands are visible, as well as chaotic dynamics between the islands, and
yet some quasiperiodic trajectories persist.

example, [15]). To take an example, consider the so-called standard map:

In+1 = In + ε sin(θn), θn+1 = θn + In+1 mod 2π, (1)

which models a freely rotating pendulum in the absence of gravity, sub-

jected to periodic impulsive forces. When ε = 0, all trajectories are of the

form (θn, In) = (θ0 + nI0, I0) mod 2π, and are periodic with period q if

I0/2π = p/q is rational (with p and q integers), and quasiperiodic oth-

erwise. Both periodic and quasiperiodic orbits lie on horizontal lines (in-

variant curves) in the (θ, I) plane, but the lines are made up of individual

periodic points in the first case, while a quasiperiodic orbit will eventually

visit a neighbourhood of each point on the line. When ε is perturbed away

from zero (see figure 2a), the question is which of these families of trajecto-

ries will persist as invariant curves of the map? The essential content of the

KAM theorem is that, for small enough perturbations, and for almost every

irrational value of I0/2π, there will be an invariant curve close to the un-

perturbed invariant curve, and the corresponding quasiperiodic trajectory

survives the perturbation. The curves that persist are those that satisfy a

Diophantine condition, that is, for which there are constants K > 0 and
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δ > 0 such that I0/2π satisfies

∣

∣

∣

∣

p − I0

2π
q

∣

∣

∣

∣

≥ K

(|p| + |q|)δ
(2)

for every pair of integers p and q, apart from (0, 0). The exponent δ is

an indication of the ‘irrationality’ of I0/2π, so, for example, (
√

5 − 1)/2

satisfies (2) with δ = 1. In general, curves with smaller values of δ persist

to larger values of the perturbation ε. Invariant curves with rational values

of I0/2π are immediately broken up into elliptic and hyperbolic periodic

points, with a web of chaotic trajectories near the hyperbolic equilibria (see

figure 2b).

KAM theory has been applied successfully to a variety of problems in

which small divisors arise, for instance quasiperiodicity in the solar sys-

tem and in the dynamics of charged particles in tokamak magnetic fields.

However, the methods of KAM (based around canonical coordinate trans-

formations) were developed for problems in which quasiperiodicity occurs

in only one direction (time), whereas quasipatterns are quasiperiodic in

two spatial directions. For this reason, KAM theory is not applicable to

quasipatterns, at least not directly, and either the theory must be extended

to cover this case, or alternative methods must be developed. In principle,

similar issues arise in solid-state quasicrystals, though the main theoreti-

cal approaches for these are developed around aperiodic Penrose tilings of

the plane or three dimensional space, and around projecting higher dimen-

sional periodic lattices down to three dimensions [10], whereas a wave-based

approach is more natural for the fluid dynamical quasipatterns.

The purpose of this paper is to draw attention to some of the theoretical

difficulties that are preventing progress in the development of a mathemat-

ical understanding of two-dimensional quasipatterns. We review progress

that has recently been made in coming to terms with the small divisor

problem [17]. Section 2 introduces a particularly simple pattern-forming

PDE (the Swift–Hohenberg equation) and indicates how the small divi-

sors arise. Limits on the magnitude of these small divisors are calculated

in Section 3, and the perturbation theory for the quasipattern solution of

the Swift–Hohenberg equation is concluded in Section 4, with an indica-

tion that the problem of small divisors does indeed cause the perturbation

theory to fail. We conclude with general remarks in the last section.
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2. Model Equations

One of the key mathematical questions concerning quasipatterns is one of

existence: do PDEs that model pattern-forming problems have solutions

that are quasiperiodic in space, along the lines of the experimentally ob-

served pattern in figure 1a? Rather than try to answer this question in

the context of a PDE that specifically models the Faraday wave problem, it

seems sensible to start with the simplest possible pattern forming PDE: the

Swift–Hohenberg equation [19]. In fact, considering the Swift–Hohenberg

equation is not such a simplification, since many pattern-forming problems

can be cast into this form, or variations [14]. The simplest variant is:

∂U

∂t
= µU − (1 + ∇2)2U − U3. (3)

The equation is posed on the plane, with x = (x, y) ∈ R
2, and U(x, y, t) ∈ R

supposed to be bounded as (x, y) → ∞. The parameter µ represents the

force that will drive the pattern formation.

In fact, stable quasipatterns are not observed in the Swift–Hohenberg

equation with standard cubic nonlinearities, although they have been seen

in numerical simulations with a modified linear term to allow marginally

stable modes at two wavenumbers [12], in model equations that are es-

sentially the Laplacian of the Swift–Hohenberg equation [3],[4], and in the

Zhang–Viñals model of the Faraday wave experiment [20]. However, the

issue here is one of existence of quasipatterns rather than their stability, so

we focus on (3) as a model problem.

This PDE has a spatially uniform trivial solution U(x, y, t) = 0, and

the stability of this solution can be investigated by linearizing (3). The

linearized equation has wave-like solutions: U = esteik·x, with growth rate s

and wavevector k, with the growth rate related to µ and |k| by s = µ −
(1 − |k|2)2. This relation is plotted in figure 3a in the case µ = 0: with

this value of µ, all modes are damped (have negative growth rate) apart

from those with wavenumber |k| equal to 1. With µ just above zero, modes

with |k| close to 1 will grow, until the nonlinear term in (3) causes the

amplitudes of these modes to saturate at a level related to the value of µ.

In many pattern forming problems, standard perturbation theory can

be used to compute how the amplitude saturates, with the assumption that

the parameter µ and the amplitude of the pattern are both very small. This

degree of smallness is explicitly introduced as a small parameter ε ≪ 1, and

U is written in the form:

U = εU1 + ε3U3 + ε5U5 + . . . (4)



August 28, 2004 16:33 WSPC / Master file for review volume with part divider — 9in x 6in volume

130 A.M. Rucklidge

(a) (b)

|k|
|k| = 1s

k1

k12

Fig. 3. (a) Schematic growth (decay) rate s of a mode eik·x , as a function of |k| at
µ = 0. Modes with |k| = 1 are marginally stable. (b) 12 wavevectors on the circle |k| = 1.
Adding equal amounts of 12 modes with these wavevectors (numbered k1 to k12) results
in the synthetic pattern in figure 1c.

The absence of even terms (ε2U2) is because of the symmetry U → −U

in equation (3). The connection between the small forcing µ and the small

parameter ε is made explicit by setting µ = ε2. The expansion (4) is inserted

into the Swift–Hohenberg equation (3) and like powers of ε are collected

together:

0 = εL(U1) + ε3
(

U1 + L(U3) − U3
1

)

+ ε5
(

U3 + L(U5) − 3U2
1 U3

)

+ . . . ,

where, to make the presentation simpler, only steady patterns are consid-

ered. The linear differential operator L(U) is −(1 + ∇2)2U .

In order for this equation to be satisfied for all parameter values, the

coefficient of each power of ε must separately be zero, and so the equation

can be solved formally by considering each power of ε in turn. The leading

order equation is

L(U1) = 0. (5)

The operator L acting on a mode eik·x yields −(1 − |k|2)2eik·x, which is

zero only when |k| = 1, so equation (5) has non-trivial solutions that are

made up of linear combinations of modes with wavevectors k on the unit

circle. Any set of such wavevectors is possible at this level, but a natural
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choice to make when studying quasipatterns is

U1(x, y) =

12
∑

j=1

Aje
ikj ·x,

where the 12 vectors k1 to k12 are equally spaced around the circle (fig-

ure 3b). This choice of modes is inspired by the evidence in the Fourier

transforms of experimentally observed quasipatterns (as in figure 1b). In

order for U to be real, the amplitudes must satisfy Aj+6 = Āj . Setting each

Aj to the same real value results in a quasipattern of the form depicted in

figure 1c.

At third order in ε, the equation to solve is:

L(U3) = −U1 + U3
1 = −

12
∑

j=1

Aje
ikj ·x +

12
∑

j=1

12
∑

k=1

12
∑

l=1

AjAkAle
i(kj+kk+kl)·x.

(6)

Notice that U3
1 contains cubic interactions between the modes in U1, which

take the form of modes with all possible combinations of three of the 12

original wavevectors (allowing repeats). Some combinations (for example,

k1 + k1 + k7 = k1) lie on the unit circle, but most (k1 + k2 + k3) do not.

Modes with different wavevectors are orthogonal, so the coefficients of each

mode on the left and the right of equation (6) must be equal. In particular,

the coefficient of modes with wavevectors on the unit circle is zero on the

left, since L acting on such a mode is zero. Setting the coefficient of (for

example) eik1·x to zero on the right results in an equation relating the

amplitudes of the modes:

0 = A1 − 3(|A1|2 + 2|A2|2 + 2|A3|2 + 2|A4|2 + 2|A5|2 + 2|A6|2)A1, (7)

with similar equations resulting from the other modes. One solution of

the amplitude equations is for all the amplitudes to be zero (the trivial

solution); setting all amplitudes to have the same non-zero modulus results

in a quasipattern. One particular solution is A1 = . . . = A12 = 1/
√

33, and

so, in terms of the original variables, the pattern is:

U(x, y) =

√

µ

33

12
∑

j=1

eikj ·x + . . . (8)

This result suggests that the quasipattern solution is created when µ in-

creases through zero, with an amplitude proportional to
√

µ.

This might appear to be the end of the story: the amplitude of the

quasipattern has been computed as a function of the driving force, and a
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little more effort leads to an estimate of the stability of the pattern. This

kind of calculation has been carried out in a variety of situations, starting

either from equations describing the Faraday wave experiment or other ex-

periments, or just using considerations of the symmetry of the quasipattern

[16],[7],[13],[2]. All these calculations result in amplitude equations similar

to (7), and all suffer from two severe drawbacks.

The first drawback is that equation (7) determines only the amplitudes

of the complex numbers Aj , and not their phase. In all, there are six free

phases: two of these are fixed by considering resonances that occur at fifth

order; two are genuinely free, and are associated with translating (but not

changing) the pattern; and two phases (called phason modes) are not de-

termined even by high-order resonances. In this context, the phason modes

describe relative translations of two hexagonal sublattices generated by k1,

k3, k5 and k2, k4, k6, and may play a role in long-wave instabilities of the

quasipattern [5]. However, as they have a marked effect on the appearance

of the pattern, they ought to be determined in a satisfactory theory without

long-wave considerations.

The second drawback becomes apparent only when an attempt is made

to compute higher order corrections to the pattern. Returning to equa-

tion (6), all modes with wavevectors on the unit circle have already been

taken into account by solving (7). The remaining modes all have wavevec-

tors off the unit circle (|k| 6= 1), and so the linear operator L can be inverted

to find U3:

U3 = −
∑

|kj+kk+kl|6=1

AjAkAl

(1 − |kj + kk + kl|2)2
ei(kj+kk+kl)·x,

since the operator L−1 acting on a mode eik·x yields −eik·x/(1 − |k|2)2,
defined as long as |k| 6= 1.

However, if |k| is close to one, L−1(eik·x) can be arbitrarily large. This

does not pose difficulties for computing U3, but continuing the calculation

to higher order results in combinations of vectors that can come arbitrarily

close to the unit circle. Specifically, U3 involves sums of three of the original

12 vectors, and UN will involve integer combinations of up to N of the 12

vectors k1 to k12. If the original choice of vectors had been two, four or six,

in an attempt to describe striped, square or hexagonal patterns, the integer

combinations of vectors arising at high order would not have come close to

the unit circle, instead forming a lattice. Choosing 12 evenly spaced vectors

leads to integer combinations of vectors that come arbitrarily close to the

unit circle. Small divisors arise when the operator L is inverted, which raises
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doubts as to whether or not the power series (4) for U will converge.

3. Small Divisors

Does the smallness of the small divisors arising from inverting L cause the

sum (4) for U(x, y, t) to diverge? To answer this question, the first stage

is to derive a Diophantine-like condition for integer combinations of up to

N of the 12 original vectors on the unit circle (such combinations arising

at order N in the power series for U). It turns out that, for a given N ,

the smallest nonzero distance from the unit circle of a combination of N

vectors is bounded above and below by a constant times N−2.

(a) (b) (c)

(d)

100 101 102 103 104 105
N

10−10
10−8

10−6

10−4

10−2
100

||k
|  −

 1
|

Fig. 4. Positions of combinations of up to N of the original 12 vectors on the unit circle,
with (a) N = 11, (b) N = 15; (c) detail of (b). The circle indicates the unit circle, |k| = 1,
the large dots are the original 12 wavevectors, and the small dots are integer combinations

of these. Note how the density of points increases with N , and the proximity of points
to the unit circle decreases with N . (d) Smallest nonzero distances from the unit circle
||km | − 1| as a function of the total number of modes |m| = N . Stars mark distances
calculated from equation (10), and straight lines indicate the scaling N−2. After [17].
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An explanation of how this is derived begins with figure 4a–c, illustrating

the locations of combinations of up to N = 11 and 15 wavevectors. Note

how the density of points increases with N , and how the minimum distance

between points and the unit circle goes down with N . Figure 4d shows

results for the smallest nonzero distance from the unit circle as a function of

the total number of vectors. The solid lines in figure 4d confirm numerically

that the scaling for the distance to the unit circle is order N−2, and the

stars represent explicit combinations of wavevectors close to the unit circle,

which were found as follows.

The vectors k1, k2, . . . , k12 are labelled anticlockwise around the circle

starting with k1 = (1, 0), with kj+6 = −kj (figure 3b). Integer combi-

nations of N of these vectors can be written as km =
∑12

j=1 mjkj , with

|m| =
∑

j |mj | = N . Including equal and opposite vectors kj and kj+6

will only increase N without coming any closer to the unit circle, so only

m1, . . . , m6 are considered, but these are allowed to be negative. With this

restriction, the squared length of a vector km is:

|km|2 = m2
1 + m2

2 + m2
3 + m2

4 + m2
5 + m2

6

+ m1m3 + m2m4 + m3m5 + m4m6 − m5m1 − m6m2

+
√

3(m1m2 + m2m3 + m3m4 + m4m5 + m5m6 − m6m1).

This is of the form |km|2 = 1+p−rq, where r =
√

3 is irrational and p and

q are integers. If p− rq is close to zero (that is, if r is well approximated by

the rational p/q), then |km|2 can come close to 1 (but can only be exactly 1

if p = q = 0).

It is clear that the theory of continued fraction approximations of irra-

tionals will be useful here. The continued fraction expression for r =
√

3

is:

r =
√

3 = 1 +
1

1 +
1

2 +
1

1 +
1

2 + · · ·

.

Since this irrational satisfies a quadratic equation with integer coefficients,√
3 is called a quadratic irrational.

If the fraction is truncated after l terms, the successive fractions pl/ql

that approximate r =
√

3 are given in table 7.9. The theory of continued
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Table 7.9. Continued fraction approximations to r =
√

3, as a function of the

order l of the truncation.

l = 0 1 2 3 4 5 6 7 8 9 10

r =
√

3 pl

ql
= 1

1
2
1

5
3

7
4

19
11

26
15

71
41

97
56

265
153

362
209

989
571

fractions for quadratic irrationals [9] shows that

K1

q2
l

<

∣

∣

∣

∣

pl

ql

− r

∣

∣

∣

∣

<
K2

q2
l

and

∣

∣

∣

∣

pl

ql

− r

∣

∣

∣

∣

<

∣

∣

∣

∣

p

q
− r

∣

∣

∣

∣

, (9)

where K1, K2 are constants, q an integer satisfying 0 < q < ql. These

inequalities mean that the truncated continued fraction expansions pl/ql

approximate r well, but not too well, as l becomes large, and that if pl/ql is

the truncation of the continued fraction approximation of an irrational r,

no other fraction with a smaller denominator comes closer to r.

Apart from those vectors km that fall exactly on the unit circle (which

would have p = q = 0), the relations in (9) can be used to show that |km|2
can approach 1 no faster than order N−2:

∣

∣|km|2 − 1
∣

∣ ≥ K

N2
,

where |m| = N and K is a constant – this lower limit is shown as a straight

line in figure 4d. See Rucklidge & Rucklidge (2003) for more details.

The order N−2 rate of approach is indeed achieved by special combi-

nations of vectors, which were found after a prolonged examination of the

distances plotted in figure 4d. Choosing

km = plk4 + (ql − 1)k9 + (ql + 1)k11 = (1, pl −
√

3ql), (10)

with |m| = N = pl+2ql and |km|2−1 = (pl−
√

3ql)
2. As N (or equivalently,

l or ql) increases, pl and ql are related by pl ∼
√

3ql+O(1/ql), so ql = O(N),

and |km|2 − 1 = O(N−2). These particular choices of km are plotted on

the graphs in figure 4d as stars.

In summary, given an integer N , the vector km with |m| = N that

comes closest to the unit circle (without being on the unit circle) satisfies

K

N2
≤

∣

∣|km|2 − 1
∣

∣ ≤ K ′

N2
,

for constants K and K ′, for 12 equally spaced original vectors. The numer-

ical evidence in figure 4d suggests values K = 0.56 and K ′ = 4.34.
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4. The Question of Convergence

The results of the previous two sections imply that when km is close to

the unit circle, L−1(eikm·x) can be as large as a constant times N4eikm·x,

with N = |m|. This is so large that it clearly could lead to divergence

of the power series (4) for U , particularly when nonlinear interactions of

these large contributions are taken into account. This problem of small

divisors is not just a feature of the particular Swift–Hohenberg equation (3)

used for illustration here, but arises in any calculation of the properties of

quasipatterns based on perturbation theory.

0.00 0.02 0.04
µ

0.0

0.1

0.2

A
(N

)

N = 31

N = 29 N = 17 N = 13

Fig. 5. Amplitude A(N) as a function of µ, for different levels of truncation N = 1, . . . ,

31. Increasing the order of truncation leads to graphs of A(N) that diverge for µ closer
and closer to zero as N becomes larger. The amplitude has been scaled to remove a
factor of 1/

√
33. From [17].

This failure of convergence can be illustrated dramatically in the partic-

ular Swift–Hohenberg example by carrying out the perturbation theory cal-

culation to high order (33rd order in this case). If the series (4) is truncated

to include powers of ε up to and including N + 2, the resulting expression

for U (N) is of the form

U (N) = A(N)
12
∑

j=1

eikj ·x + other modes,

so A(1) =
√

µ/33, from (8). The amplitude A(N) of the basic quasipattern

is shown as a function of µ in figure 5, for N = 1, . . . , 31. In this calculation,
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only modes with wavenumbers up to
√

5 were kept, to keep the total number

of modes within manageable limits. Even so, there were more than 15000

modes generated at the highest order – without this truncation, there would

have been almost 2 million. Since the modes that were dropped from the

calculation were the most heavily damped, their contribution to the total

amplitude was quite small (of the order of 1%), and restricting the number

of modes in this way had no effect on how close combinations of wavevectors

could get to the unit circle.

It is clear in figure 5 that, at each level of truncation N , the graph

of A(N) against µ diverges at a value of µ that decreases as N becomes

larger. The value of µ at which the sum up to order N diverges is related to

the smallest distance from the unit circle achieved by combinations of N of

the 12 original wavevectors. Since this distance goes to zero as N increases,

the sum A(N) will continue to diverge closer and closer to µ = 0. In contrast,

the equivalent calculation for spatially periodic patterns has a non-zero

radius of convergence [17].

5. Discussion and Speculation

The main conclusion of the calculation is that even if perturbation the-

ory does generate a convergent series approximation to the quasipattern

for small enough µ, the series certainly diverges if the parameter µ is big-

ger than about 0.01. It might be possible that the series does converge for

smaller µ, though there is a strong argument that this is not the case. How-

ever, even if the series does diverge for all nonzero µ, a low-order truncation

may still give a useful asymptotic approximation of the quasipattern, as-

suming that the equations do have a quasipattern solution. It is on this

basis that other researchers have proceeded.

There are two related issues at stake. First, existence: do pattern form-

ing PDEs (like the two-dimensional Swift–Hohenberg equation) have quasi-

pattern solutions? A more general formulation of this question, using the

Swift–Hohenberg equation as an example, becomes apparent by setting

µ = ε2 in (3), scaling U by ε and seeking a steady solution. The resulting

equation can be written as

L(U) = ε2(−U + U3),

which incidentally demonstrates that this is not a singularly perturbed

problem. When ε = 0, any linear combination of waves with wavevectors on

the unit circle solves this equation. The question is, which of these solutions
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persist to small but positive ε? Current theory can so far only answer this

question for those solutions that are spatially periodic. The limits on the

rate of approach of wavevectors to the unit circle will play a central role in

an eventual existence theory for quasipatterns.

The second issue is, given the small divisor problem, are there methods

that yield useful approximations to quasipattern solutions? Standard per-

turbation theory does not converge sufficiently rapidly (or slowly) to provide

an answer unequivocally one way or the other. However, if quasipattern so-

lutions exist, then the series ought to provide an asymptotic approximation

to those solutions. Nonetheless, this approach will be left with difficulties,

such as the undetermined phason modes, and so should not be regarded as

a reliable way of computing properties of quasipatterns.

What is needed is a method that converges more rapidly. Each order in

the standard theory gains a factor of ε2 as well as large factors from any

small divisors that arise. There are other methods, developed for proofs of

KAM theory, that converge more rapidly, and these may be required for

a rigorous treatment of quasipatterns as well. The difference between the

KAM situation and that of quasipatterns is that in the KAM case, the

solutions of interest are quasiperiodic in only one dimension (time), while

in the second, quasipatterns are quasiperiodic in two space directions.

There are alternative approaches to analysing quasipatterns, for in-

stance based on successive approximation of a quasipattern by a periodic

pattern with increasingly large periodicity, defined on square or hexagonal

lattices. For example, approximate 12-fold quasipatterns can be constructed

using modes with wavevectors (1, 0), (2plql/(p2
l + q2

l ), (p2
l − q2

l )/(p2
l + q2

l ))

and so on, where pl

ql
is a truncated continued fraction approximation to

√
3.

These generate patterns that are periodic on domains of size p2
l + q2

l times

the original wavelength: 5, 34, 65, . . . , for l = 1, 2, 3, . . . , and have an-

gles between their wavevectors of 36.9◦, 28.1◦, 30.5◦, . . . . The wavevectors

all have unit wavenumber, since (p2
l − q2

l , 2plql, p
2
l + q2

l ) form Pythagorean

triplets – see Dawes, Matthews & Rucklidge (2003) for more details. Sim-

ilarly, 12-dimensional representations of the group D6 × T 2 can be chosen

so that the modes are nearly equally spaced and yet they generate a hexag-

onal lattice ([18], and by allowing the wavevectors to have slightly different

lengths, there are even more possibilities. The drawback with approximat-

ing quasipatterns by periodic patterns in these ways is that the range of

validity of the normal forms derived shrinks to zero as the approximation

improves.
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