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A technique, volumetric power optimization, is presented for enhancing the power output of magnetic

confinement fusion devices. Applied to a tokamak, this approach involves shifting the burning plasma region

to a larger plasma volume while introducing minimal perturbations to the plasma boundary shape. This edge

perturbation—squareness—is analogous to pinching and stretching the edge boundary. Stability calculations

confirm that this edge alteration is compatible with maintaining plasma stability. This optimization method for

optimizing fusion power output could improve the performance of magnetic confinement fusion power plants.

DOI: 10.1103/PhysRevResearch.7.013139

I. INTRODUCTION

The variation of fusion power in a power plant is a complex

issue, and is one of the primary, if not the primary, cost drivers

of a fusion power plant [1]. In this article, we introduce a

technique for optimizing fusion power through the volumetric

distribution of the magnetic equilibrium [2,3]. This approach

substantially increases the power output of magnetic con-

finement systems while enabling variable-power operation,

addressing challenges in the practical deployment of fusion

energy.

The relationship between total thermal fusion power and

net power output in fusion power plants is highly nonlinear:

increases in thermal power lead to disproportionately large

increases in net power output due to recirculating power to

plant systems [4–6]. As such, strategies that increase total

fusion power without raising recirculating power are highly

desirable. Furthermore, as electric grids increasingly integrate

variable renewable energy sources, the ability of baseload

power plants to provide variable power output becomes in-

creasingly valuable [7–9]. This trend is reflected in modern

fission reactor designs, which offer variable output options

despite their historical reliance on fixed operation [10–13].
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In this work, we focus on tokamaks, the leading can-

didate for commercial fusion energy. Tokamaks confine

deuterium-tritium (DT) plasma within a magnetic cage. We

show that small adjustments to the magnetic cage shape

can significantly increase total fusion power. This capabil-

ity not only enhances the flexibility of tokamaks but could

also substantially reduce the capital cost of fusion power

plants [1]. While various methods for varying power output

have been proposed—such as adjusting the fuel mix [14–16],

density profiles [17], or total plasma volume—each presents

significant physics and engineering challenges. For example,

increasing fueling rates can impact plasma performance in

several ways: exceeding density limits can trigger instabil-

ities [18–20], modifying the bootstrap current profiles can

alter confinement properties [21–23], and reshaping heating

and fueling deposition profiles can affect energy distribution

[24–26]. Similarly, adjusting the DT fuel mix [14,27] can de-

grade plasma performance due to isotope effects, which influ-

ence transport and stability properties [28–31]. The approach

we present offers a promising alternative solution with lower

complexity.

We demonstrate the potential of volumetric optimization

in an example with plasma squareness. By varying the plasma

edge squareness, ζ0, we demonstrate simultaneous achieve-

ment of high maximum fusion power and flexibility to control

the fusion burn with minimal disruption to the overall plasma

configuration. Increasing ζ0 redistributes plasma volume to re-

gions of higher power density, leading to significant increases

in fusion power. This approach is operationally advanta-

geous as it allows key plasma parameters, such as elongation

and triangularity, to remain unchanged while squareness is

2643-1564/2025/7(1)/013139(9) 013139-1 Published by the American Physical Society
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adjusted. Although this work focuses on plasma squareness,

it represents just one application of volumetric optimization.

II. VOLUMETRIC POWER OPTIMIZATION

Magnetic confinement schemes must confine plasma at

sufficient pressure for a high fusion power density pf . How-

ever, high pf is insufficient for substantial fusion power; it

must also persist over a large fraction of the total plasma

volume Vtot. The largest contributions to the total fusion power

Pf =

∫
pf dV, (1)

come from the burn volume

Vburn ≡

∫
burn

dV, (2)

the volume over which pf exceeds a value pf,c required for

substantial fusion power. We use pf,c = 1 MW/m3, which is

justified later. In this work, we control Pf by changing the

fraction of the total plasma volume Vtot packed into Vburn,

given by the packing number

� ≡ Vburn/Vtot. (3)

Plasmas with � = 1 are volume efficient, packing the full vol-

ume into power dense regions. In contrast, � = 0 is volume

inefficient since Vburn = 0. Thus, at fixed Vtot,

Pf ∼ � 〈pf〉burn, (4)

where the burn average 〈·〉burn is

〈pf〉burn ≡ (1/Vburn )

∫
burn

pf dV. (5)

The key idea of this work is that total fusion power can be

significantly increased by maximizing � in Eq. (3), corre-

sponding to an efficient use of the plasma volume. In this

paper, we demonstrate how to vary � using plasma square-

ness. Adjusting the plasma edge squareness [32],

ζ0 = arcsin (Zm/κ0a) − π/4, (6)

changes �, and thus Pf , while 〈pf〉burn is approximately

constant according to infinite-n ballooning stability [33–35],

which we explain in a later section. Here, Zm is the Z value

indicated by crosses in Fig. 1 inset and κ0 = h/2a is the edge

plasma elongation where h is the maximum plasma height

and a is the minor radius. By maximizing � in Eq. (4) using

squareness, the fusion power increases significantly.

Dedicated studies of plasma squareness are limited com-

pared with other shape parameters, but benefits to increased

ζ0 have been identified. Squareness control is established

[32,36–39] and less disruptive than other shape parameters

because plasma x points and maximum width and height can

be fixed. Ion-scale turbulence simulations found that higher ζ0

improves heat confinement [40], and DIII-D and MAST-U ex-

periments show ζ0 values typically allow higher edge plasma

pressure [41–45] and give improved core confinement [46].

Spherical tokamak design studies found positive moderate ζ0

stabilized kink modes, allowing a 10% increase in core plasma

pressure [32,47,48]. This benefit was discounted because of

the required increase in poloidal field coil current [48,49], but

FIG. 1. Main: three flux surfaces ψ = [0.33, 0.67, 1.0] with

varying edge squareness ζ0 and �. Red arrows show stretching of

inner flux surfaces by increasing ζ0. Inlet: outer flux surfaces for three

ζ0 values.

the benefits outlined in this work could change that tradeoff

assessment. Furthermore, the poloidal coil currents required

for the equilibria in this study are probably easier to handle

since we examine significantly lower ζ0 values. It should be

noted that changes to parameters like κ0 or ζ0 may require

changes in other plasma parameters, such as internal induc-

tance [4]. The work in this study is based on a representative

burning spherical tokamak [50] design point, referred to as

GST. The main GST parameters are on-axis toroidal field

BT,0 = 5T, plasma current Ip = 9.8MA, major radius R0 =

3.4m, a = 1.5m, κ0 = 2.73, and triangularity δ0 = 0.43.

III. SQUARENESS

Increasing squareness of the plasma edge stretches the

magnetic surfaces in the plasma core. An equilibrium with

ζ0 = 0.03 has core flux surfaces that are twice as elongated

as a lower ζ0 equilibrium with ζ0 = −0.15. This is illustrated

in Fig. 1—we plot surfaces of constant normalized poloidal

flux ψ with different ζ0 and almost constant plasma vol-

ume. Comparison of the inner ψ = 0.33 flux surfaces for

ζ0 = −0.15 and ζ0 = 0.03 shows that higher ζ0 elongates the

plasma core.

Increased core elongation more efficiently uses the core

volume for fusion power by increasing Vburn and hence � ∼

〈κ〉burn. The total power is therefore determined mainly by pf

013139-2
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FIG. 2. Burn control scheme using plasma squareness for GST:

Fusion power density (a)–(c) and enclosed fusion power (d)–(f) in in-

creasingly square plasmas. The pf = 1 MW/m3 and Pf = 200 MW

surfaces are indicated with a dashed black contour. The total fusion

power is 215 MW, 311 MW, and 403 MW for ζ = −0.15, −0.03,

and 0.03.

and κ in the burn region,

Pf ∼ 〈κ〉burn 〈pf〉burn, (7)

for fixed Vtot. Therefore, ζ0, mainly through 〈κ〉burn, deter-

mines � and thus the fusion burn.

The physical mechanism for ζ0 increasing � exploits

plasma properties at the low-field side (LFS), indicated in

Fig. 1. With increasing plasma squareness, � increases from

0.25 to 0.39, shown in Fig. 1. The strong poloidal field at the

LFS causes LFS flux surfaces to be closely spaced, measured

by large |dψ/dr|LFS values, where r is the plasma minor ra-

dial coordinate. When ζ0 increases, flux surfaces in the plasma

core are stretched vertically in order to keep |dψ/dr|LFS large,

indicated by red arrows in Fig. 1. This effect increases for

spherical tokamaks where the LFS poloidal field is particu-

larly strong [50] and for high Shafranov shift [51], which both

increase |dψ/dr|LFS.

The total power Pf doubles from the minimum to maximum

ζ0 values, from Pf = 215 MW to 403 MW. The corresponding

pf is plotted for plasmas with three ζ0 values in Figs. 2(a)–

2(c). The highest ζ0 equilibrium has pf surfaces that are

much more elongated [Fig. 3(b)] and it therefore has a

high � value (� = 0.39 compared with � = 0.25, 0.32 for

ζ0 = −0.15,−0.03). Thus, higher ζ0 equilibria efficiently dis-

tribute volume to regions of high pf (ψ ), which increases Pf ,

FIG. 3. GST radial profiles of power density (a), elongation (b),

enclosed power (c), enclosed volume (d), and enclosed power deriva-

tive [Eq. (9)] (e), and Stretch [Eq. (10)] (f).

despite similar pf (ψ ) profiles [Fig. 3(a)]. For example, for

ζ0 = 0.03 the flux surface ψ = 0.2 has an enclosed power

Pf,enc(ψ ) ≡

∫ V (ψ )

0

p f dV ′ (8)

of 231 MW, but ζ0 = −0.15 has only 98 MW

[Figs. 2(d)–2(f) and 3(c)]. In Fig. 3(a), vertical lines indicate

the surface ψburn where pf,c = 1 MW/m3; for all equilibria,

Pf,enc(ψburn )/Pf > 90%, indicating a good choice of pf,c.

Higher ζ0 equilibria enclose more fusion power by grow-

ing volume relatively quickly in the burn region but slowly

outside. The Jacobian J = dVenc/dψ measures flux-surface

growth for enclosed volume Venc(ψ ) ≡
∫ V (ψ )

0
dV ′ [Fig. 3(d)].

J enters the derivative of Pf,enc,

dPf,enc/dψ = pfJ , (9)

so larger J indicates faster flux-surface volume growth, con-

tributing more to Pf . Average contributions to Pf in the burn

region are double for the highest ζ0 than the lowest ζ0, shown

by pfJ in Fig. 3(e). This explains how the highest ζ0 has

double the Pf of the lowest ζ0. The Stretch S is the normalized

rate of volume growth,

S = J /Vtot, (10)

satisfying
∫ 1

0
Sdψ = 1. Surfaces with S > 1 increase vol-

ume faster than the average flux surface and those with
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×

FIG. 4. Initial and final ion density and temperature for GST [(a),

(b)], and equilibria (c) for ζ0 = −0.01. In (a) and (b), dotted lines

are intermediate iterations. The final profile is infinite-n ballooning

stable.

S < 1 increase volume slower than average. Because S ∼

(κ/κ0)(r/a)(Bp,0/Bp), where Bp,0 is the edge poloidal field,

we expect S ≪ 1 near the core but S ≫ 1 at the edge. This is

true for low ζ0 equilibria, shown in Fig. 3(f), but for high ζ0

equilibria, S ≈ 1 in Vburn, and increases slowly near the edge.

Therefore, high ζ0 equilibria expand plasma volume relatively

quickly in the burn region, whereas low ζ0 equilibria expand

plasma volume relatively quickly in the edge where pf is low.

IV. EQUILIBRIUM GENERATION

While this paper’s focus is on geometry insights and

not integrated modeling, we ensure that the equilibria pre-

sented here clear a minimum threshold for viability: infinite-n

ballooning stability [33–35], which is an approximation

for kinetic-ballooning-mode stability [52,53]. We found that

changing the equilibrium magnetic geometry by varying ζ0

but keeping the profiles fixed caused some equilibria to be

ballooning unstable. Therefore, for a fair comparison across

ζ0 values, we use an iterative scheme that generates equilibria

close to the infinite-n ballooning stability boundary. For each

iteration, at ten radial locations the density and temperature

gradients for thermal species are brought to the ballooning

stability boundary. The fixed-boundary equilibrium is recalcu-

lated using CHEASE [54] according to the new pressure and

current profiles (with consistent bootstrap current [55,56]),

subject to keeping the total plasma current Ip fixed. Increasing

ζ0 also increases the bootstrap fraction fbs from fbs = 0.72

to fbs = 0.96 for the lowest to the highest ζ0. The strong

increase in fbs results from increased core elongation at higher

ζ0 [57]. The equilibria have five thermal species—deuterium,

tritium, lithium, helium, and electrons—and a fast helium

population. In Fig. 4(a) and 4(b), we plot the deuterium

FIG. 5. Vertical stability growth rates γ τw across squareness for

GST for nominal li (circles) and rescaled li (pluses).

temperature and density at each iteration step, and in Fig. 4(c)

flux surfaces for the initial and final equilibria. To simplify

analysis, we present results with fixed pressure in the pedestal

edge region. Because of the effect of shape on pedestal

performance [41,58–60], we performed sensitivity analysis

that showed the trends in this work still held with different

pedestal heights.

V. VERTICAL STABILITY

High plasma elongation can make a plasma more verti-

cally unstable and trigger violent plasma termination events

[61–66]. Thus, it is important to determine how ζ0 and its

strong effects on 〈κ〉burn [Fig. 3(b)] affect vertical stability

(VS). To assess VS, we use Tokamaker [67] to find VS

growth rates for equilibria with different ζ0 values. Free-

boundary equilibria were generated and the VS growth rate

γ τw calculated for the n = 0 mode, where the growth rate γ

is normalized to the wall resistive time τw and n is the toroidal

mode number. Shown in Fig. 5, at the nominal inductance

li values, 0.57 < li < 0.63, increasing ζ0 is stabilizing. We

rescaled li by factors of 0.7, 1.3, and 2.0, finding that slightly

higher li was stabilizing, but much higher and lower li became

destabilizing. We hypothesize ζ0 stabilization at nominal li
values is due to a larger Shafranov shift at higher squareness,

leading to stronger plasma-wall coupling. At higher li, the

Shafranov shift is comparable for all ζ0 values, and the effect

of increased 〈κ〉burn with higher ζ0 dominates. At lower li,

the core surfaces are much more elongated for all ζ0 val-

ues, driving vertical instability. For each ζ0 value, the plasma

wall was conformal to the plasma boundary shape. While

detailed studies are required, these results suggest that the

ζ0 values investigated here are compatible with VS stabiliza-

tion methods [68–71], which in current machines can control

τw � 6, although control may be somewhat degraded in future

devices [72].

VI. EXPERIMENTAL EQUILIBRIA

While tokamaks have not yet produced burning plasmas,

core volume packing using squareness has been observed on

current devices. In Fig. 6, we plot the plasma elongation,

013139-4
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FIG. 6. Plasma elongation (a), enclosed volume (b), and flux

surfaces (c) for two companion NSTX discharges (139482 @547ms,

139484 @556ms) with differing edge squareness (ζ = −0.01 and

ζ = 0.10).

enclosed volume, and flux surfaces for two companion na-

tional spherical torus experiment (NSTX) discharges [37],

which differ mainly by edge squareness (ζ0 = −0.01 and ζ0 =

0.10). For the larger ζ0 discharge, the elongation increases

up to the magnetic axis [Fig. 6(a)] and the enclosed plasma

volume is much larger in the core [Fig. 6(b)]. Three flux

surfaces with ψ = [0.33, 0.67, 1.00] are plotted in Fig. 6(c).

While the fusion power is negligible in these NSTX dis-

charges, they show that increased core volume via ζ0 has been

realized on current day experiments. Experimental consider-

ation of this effect could continue in NSTX-Upgrade [73],

which is designed to produce a wide range of squareness

shapes [74].

VII. TRIANGULARITY SCAN

Extending the concept of controlling � and 〈κ〉burn with

ζ0, we show that edge triangularity δ0 further redistributes the

volume and hence changes Pf . Starting from ζ0 = −0.03, we

reconstruct equilibria with varying ζ0 and δ0 for fixed pressure

and current profiles. Notably, in contrast to the earlier section,

we have fixed pf (ψ ) for these equilibria, illustrating a purely

geometric effect on Pf .

Due to strong flux expansion, negative triangularity (NT)

[75–77] gives a higher packing number �. NT elongates

the LFS edge flux surface, consequently elongating core flux

surfaces. Increasing ζ0 and reducing δ0 expands the avail-

able core volume for fusion power, shown in Fig. 7(a). This

leads to a higher Pf,enc, plotted in Figs. 7(b)–7(d) for three

δ0 values, each with the ζ0 value yielding the highest Pf . The

δ0 = −0.5 case yields Pf = 520 MW, while δ0 = 0.5 yields

Pf = 420 MW.

From the practical perspective of a plant operator, varying

δ0 is more challenging than ζ0 [32]. As Fig. 7(a) shows, while

FIG. 7. (a) packing number � values for triangularity δ0 and

squareness ζ0 scan for GST at fixed pf (ψ ). (b)–(d) Pf,enc for δ0 =

−0.5, 0.0, 0.5 for ζ0 with the highest Pf .

NT increases � at fixed pf , varying ζ0 for NT does not vary �

by nearly as much than at higher δ0 values. Thus, designers of

a variable power tokamak seeking a large Pf range might opt

for higher δ0 at the cost of reduced maximum Pf .

VIII. GENERALIZED VOLUMETRIC OPTIMIZATION

In this work we focused on increasing � in tokamaks using

a combination of Shafranov shift, squareness, and triangular-

ity. There are other ways to achieve high �. For example,

analytic forms of d2V/dψ2 for quasisymmetric stellarators

[78] could be included in stellarator optimization calculations

[79–82]. There is some operational flexibility in the current

profiles of stellarators [83], which could be used for further

optimization. Volumetric optimization could also be achieved

in magnetic mirrors by optimizing the field strength along

magnetic field lines [84–86].

IX. DISCUSSION

This work demonstrates a volumetric power optimization

method capable of doubling the fusion power in a tokamak

burning plasma with only a 15% increase in total plasma

volume, all while preserving plasma stability, plasma height,

and plasma width. This not only enhances the achievable

maximum fusion power but also introduces flexibility for

variable power output, which could be useful for future en-

ergy demands. Furthermore, this optimization framework is

adaptable and could be extended to other advanced techniques
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and alternative fusion confinement concepts beyond those

explored here, with broader applications in fusion energy re-

search. This may offer an accelerated route to fusion energy

in magnetic confinement devices.

The concept introduced here of redistributing plasma vol-

ume is also an interesting way to think about tokamak “size.”

The two main pathways for modifying “size” in modern toka-

maks are the major radius R and the magnetic field strength

B [87–90]. Total fusion power can increase with R since total

plasma volume since scales as V ∼ R3. Total fusion power

can increase with B since power density scales as p f ∼ B4 at

fixed plasma β ∼ p/B2 where p is the plasma pressure. In this

paper, we have shown a complementary third way, which is

the efficiency of the burn volume —[see Eq. (3)]—at roughly

fixed V and B.

Finally, while we have introduced the concept of volumet-

ric power optimization, there are many important physics and

engineering areas that we have not analyzed. Fully integrated

physics and engineering studies and dedicated experiments

are required to determine how best to employ volumetric

power optimization.
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