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Abstract: The pharmaceutical industry is undergoing a significant transition from batch to

continuous manufacturing, driven by increasing regulatory requirements and sustainability

pressures. Digital twins (DTs) play a pivotal role in facilitating this transition by enabling

real-time data visualisation, process optimisation, and predictive analytics. While substan-

tial progress has been made in the development and application of DTs, particularly in

industries such as energy and automotive, there remains a critical need for further research

and development focused on creating sustainability-oriented digital twins tailored to phar-

maceutical processes. In the pharmaceutical sector, DTs are being progressively utilised

not only for real-time monitoring and analysis but also as dynamic training platforms for

engineers and operators, enhancing both operational efficiency and workforce competency.

This paper examines the University of Sheffield’s Diamond Pilot Plant (DiPP), a facility

showcasing the future of pharmaceutical manufacturing through the integration of Industry

4.0 technologies and advanced sensors. This paper focuses on developing a data-driven

model to predict energy consumption in a twin-screw granulator (TSG) within the DiPP.

The model, based on second-degree polynomial regression, demonstrates strong predic-

tive accuracy with R-squared values exceeding 0.8. By optimising energy performance

indicators, this work aims to improve the sustainability of pharmaceutical manufactur-

ing processes. This research contributes to the field of pharmaceutical manufacturing by

providing a foundation for creating energy models and advancing the development of

comprehensive DT.

Keywords: twin-screw granulator; energy usage; continuous manufacturing; digital twin;

machine learning; Industry 4.0; sustainability; data-driven models; mechanistic models

1. Introduction

In recent years, the pharmaceutical industry has experienced pressure from pharma-

ceutical regulators, primarily the US FDA and the EU EMA, to implement Quality-by-

Design (QbD) principles in its manufacturing processes. The EMA defines Quality-by-

Design as follows: “An approach that aims to ensure the quality of medicines by employing

statistical, analytical, and risk-management methodology in the design, development, and

manufacturing of medicines” [1]. Furthermore, the pharmaceutical industry as well as all

other process manufacturing industries have experienced additional pressures to consider

the sustainability of their manufacturing processes more carefully [2]. The sustainability of

a manufacturing process can be measured in various ways, such as water usage, hazardous

waste produced, energy consumption, and others. The energy consumption of processes is

of particular importance, as the price of energy has increased rapidly due to geopolitical
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instability in Europe, and because governments have started legislating more strictly due to

climate change and emissions concerns [3,4]. To address these concerns, the pharmaceutical

industry is looking at a transition away from its tried-and-tested batch manufacturing

methods and towards continuous manufacturing. Continuous manufacturing in pharma

offers real-time data acquisition, enhanced process efficiency, and improved product consis-

tency due to less batch-to-batch variability [5–7]. However, no industry is willing to uproot

their existing manufacturing workflows to move to a new regime without being adequately

convinced that such a transition is worthwhile. The inertia that exists in the current batch

manufacturing regime is very large, and it is up to universities and research scientists to

produce the necessary research to convince pharmaceutical companies that a transition

to continuous manufacturing is worthwhile. The transition to continuous manufacturing

would not only help to address the main concerns about sustainability, but it would also

alleviate problems that arise during the scale-up stage from the lab towards large-scale

manufacturing and issues regarding batch-to-batch variability in the CQAs and KPIs of

medicines, as well as the particularly great need for human intervention between batch-

to-batch manufacturing, hence also reducing the possibility of human error. Continuous

manufacturing would also allow for a quicker time-to-market due to the lack of a need for

a scale-up stage. Continuous manufacturing would alleviate all of the above concerns and

would also allow for a quicker time-to-market due to the lack of a need for a scale-up stage.

This is important for increasing patient safety, as not only would a lesser batch-to-batch

variability in CQAs and KPIs mean more consistent medicines, but it would also allow

quicker development of new treatments for illnesses [8]. More importantly, continuous

manufacturing allows for the use of continuous unit operations, which are generally more

efficient than their batch counterparts. However, it was also noted that continuous unit

operations have generally higher capital costs, which means payback time would have to

be taken into consideration for a business’s transition [9].

The development of digital twins has the potential to play a key role in facilitating

the adoption of continuous manufacturing within the pharmaceutical industry. Building

on successes in energy and automotive sectors, digital twins are now making waves in

pharmaceuticals, enabling real-time process monitoring, optimisation through data anal-

ysis and visualisation, and training for engineers and operators by modelling process

parameter variations and KPIs [10–12]. With regards to the application of digital twins

for sustainability analysis, DTs are useful in that they can collect data in real time [13].

The data can then be processed and visualised offline, which means various simulated

runs can be executed, allowing engineers to model and optimise for the parameters that

yield the most efficient manufacturing process while still producing granules of the right

quality for pharmaceuticals. The connection between the digital twin’s computer model

and the real-world plant also means that model predictive control (MPC) can take place

and perform real-time optimisation of the process, allowing for live sustainability optimi-

sation [10–12,14]. This will allow engineers to model a real-world manufacturing process

using computer simulations and to monitor how the Critical Quality Attributes (CQAs)

react to changes in the input parameters to the process without the need to run costly

and laborious experiments. More importantly, it allows us to model the sustainability of

the manufacturing processes. The University of Sheffield’s Diamond Pilot Plant (DiPP) is

designed to be a world-leading Industry 4.0 demonstrator [15,16]. This means that it is

equipped with the necessary sensors and live data processing to demonstrate a fully digi-

talised manufacturing process [17]. The DiPP’s Industry 4.0 Technologies (I4.0T) make it

the perfect facility to be modelled by a DT, as the live data can be used to perform real-time

optimisation of the DT [18,19]. This work aims to take advantage of this technology and

develop a sustainable digital twin.
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Critical evaluation is of great importance when examining new Industry 4.0 technolo-

gies. This is due to the potential for commercial bias inherent in research conducted by

companies developing and promoting these technologies. Their focus may naturally be on

highlighting the benefits and downplaying the potential limitations. By critically evaluating

research, one can ensure a more balanced understanding of Industry 4.0 solutions and their

true value proposition for different stakeholders [18]. Consequently, a comprehensive study

is crucial to demonstrate the value proposition of continuous production to pharmaceutical

companies, particularly in the context of Industry 4.0 technologies [20].

Continuous pharmaceutical manufacturing utilises twin-screw granulators to produce

granulated solid particles for subsequent tableting. This process is currently implemented

in the DiPP (Diamond Pilot Plant) Consigma-25 pilot plant, a dedicated research facility.

By integrating a DT with the physical system, real-time control over process parameters

can be achieved, leading to enhanced product sustainability through reduced resource

waste. This research aims to address a critical gap in the literature by investigating how big

data, specifically concerning twin-screw energy consumption, can be effectively leveraged

using the granulator’s DT technology. In this research, the DiPP TSG’s energy usage

is predicted over time, a crucial step towards energy optimisation in next-generation

pharmaceutical manufacturing. gPROMS, a computational modelling software, acts as a

repository for mechanistic models, serving as a virtual representation of the plant. However,

the existing twin-screw granulator model within gPROMS lacks the capability to predict

energy consumption. This work enhances the existing gPROMS FormulatedProducts

mechanistic model for a TSG by integrating a torque model with it, a feature that is

currently absent. The data-driven model presented in this paper serves as a foundation

for developing robust mechanistic torque and energy models and providing a valuable

platform for validating future mechanistic simulations. This integration will improve the

accuracy of the gPROMS TSG model, enabling more realistic simulations. This research

will have significant implications for the pharmaceutical industry, facilitating the transition

to more efficient and sustainable continuous manufacturing processes.

This paper described the development process of an advanced digital twin of the twin-

screw granulator at the Diamond Pilot Plant (DiPP), capable of modelling and optimising

the TSG’s energy usage. The paper is structured as follows. Firstly, a description of DiPP’s

key powder process, twin-screw wet granulation is provided. Secondly, a data-driven

model of the DiPP’s twin-screw granulator model, capable of modelling the energy usage

of the TSG unit is presented and evaluated. Following an examination of the current

state of digital architecture in pharmaceuticals, this paper will explore the limitations

associated with developing and implementing the sustainable digital twin. Finally, the

paper concludes by discussing future directions and the overall impact of this technology.

2. Material and Methods

The creation of a digital twin for any manufacturing process is a huge endeavour.

Developing a comprehensive digital twin for the ConsiGma-25 (ConsiGmaTM, GEA, Kon-

tich, Belgium) system (at the Diamond Pilot Plant would necessitate significant additional

resources and extended development time to achieve full implementation [15]. To reduce

the vast scope that digital twin creation encompasses, some restrictions must be applied to

reduce the problem domain. Sustainability assessment considers a range of environmental

factors, including water use, energy consumption, and waste generation [21]. This paper’s

focus is to analyse the energy usage of the Diamond Pilot Plant. Developing a digital twin

solely focused on the DiPP’s energy usage would be a significant undertaking. To make

the analysis more manageable, this paper will narrow the scope by selecting a single unit

operation within the DiPP process for in-depth energy analysis. The DiPP consists of many
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unit operations, such as the MODUL P tablet pressing machine, the twin-screw granulator,

and the fluidised bed dryer [22–24]. This paper focuses its energy analysis solely on the

twin-screw granulator within the Diamond Pilot Plant. This selection is driven by two key

factors. Firstly, the twin-screw granulator is known for its significant energy consumption.

Secondly, a substantial body of scientific research exists on the fundamentals of twin-screw

granulation, which provides a strong foundation for our analysis [25–29].

Granulation is a fundamental process in the pharmaceutical industry when it comes to

the manufacturing of tablets, which is the reason why a lot of research into granulation has

taken place. It is the process of enlargement of dry particles via agglomeration techniques

and liquid addition. Granulation is a critical unit operation in the pharmaceutical industry

since it produces the necessary wet granules which can then be pressed into medicine

tablets for patients [30]. Ever since the introduction of Quality-by-Design by regulators,

the pharmaceutical industry has started transitioning away from batch granulation and

towards continuous granulation, and the way in which this has been achieved is with

twin-screw granulation [28].

Figure 1 shows a diagram of a TSG unit, with powder (i.e., dry granule) feeds, liquid

addition feeds, a temperature-control jacket, and conveying and kneading elements. The

fundamental design principles of the TSG are the addition of dry granules and liquid

lubricant through the feed ports, the conveying of the materials through the conveying

stages of the screws, the kneading elements that mix the liquid and the solid, and finally

the conveying out of the wet granules through to the outlet port.
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Figure 1. TSG unit at the Diamond Pilot Plant: (a) powder feed; (b) liquid feed; (c) motor unit;

(d) granule outlet; (e) temperature-control inlet; (f) temperature-control outlet; (g) TSG barrel.

To create a digital twin (DT) of the twin-screw granulator (TSG) for energy modelling,

this paper will first investigate the TSG’s operation and identify critical parameters in-
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fluencing its energy consumption. This understanding will inform the development of

a hybrid DT model. This model will combine data-driven and mechanistic approaches

to not only predict TSG energy usage but also perform optimisation analyses, ultimately

minimising energy consumption.

A data-driven model for energy usage estimation is proposed in this paper. This ap-

proach is chosen due to the mathematical complexity and computational burden associated

with traditional Population Balance Models (PBMs) for TSG simulation. The DT’s ability

to simulate the TSG allows for experimentation through Design of Experiments (DoE).

By varying input parameters within the DoE framework, one can effectively model the

relationship between these parameters and the TSG’s energy usage.

3. Results and Discussions

3.1. Energy Balance on the Twin-Screw Granulator

Before any modelling can take place, an energy balance must be performed around

the TSG, which involves listing all input and output energies and enthalpies. Combining

all the stream flow rates (F) and energies into an energy balance equation, the following

expression can be derived:

F1h1 + F2h2 + F3h3 + Q1 = F4h24 + Q2 (1)

An assumption will be made that the enthalpies (h) from the input streams are equal to

the enthalpy of the output stream, and no energy is transferred from the granule and liquid

streams into the barrel itself. This means that the energy that is provided to the system

by the motor is equal to the energy that is dissipated as heat into the barrel of the TSG.

Therefore, to model the energy usage of the TSG, it is enough to model the energy usage of

the motor only, as it will account for most of the energy being transferred into the system.

3.1.1. Energy Usage of the Motor

Accurate calculation of motor energy consumption requires the integration of instanta-

neous power measurements over a specific period (t) using Equation (2). This is necessary

because motors typically exhibit varying power demands throughout operation:

E(t) =
∫

−t

0
P (t) dt (2)

where P is the power and E is the energy usage. To build the P (t) curve, one can either collect

enough electrical power measurements through direct measurement or use Equation (3) to

calculate the instantaneous power for a given torque, with τ being the torque of the motor,

and ω being the speed of the motor.

P = ωτ (3)

The speed of the motor remains constant throughout a TSG run, while the torque varies

with time. To model the power usage of the motor based on the TSG input parameters, the

twin-screw granulator inputs need to be linked to a τ (t) curve.

3.1.2. Torque Profile Curve

The torque of the TSG’s motor does not stay constant. Rather, it gradually increases

with time, and follows a logarithmic-type curve.

To understand the relationship between TSG inputs and torque, using average or

rolling average techniques on the torque profile was avoided. Instead, a method that

captures the dynamic variations within the curve was employed in this paper. Taking
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the average would lead to a loss of information from this curve. The torque curve was

modelled as a y = k × ln (x + 1)-type function, where k is a constant factor. The model

should correlate the input parameters with the k-values.

It is crucial to note that continuous pharmaceutical processes do not run for a few

seconds. The curve shown in Figure 2 originates from an undergraduate lab experiment

with the TSG, where time limitations were restrictive, which is why the x-axis only stretches

up to approximately 350 s. A real-world continuous manufacturing process would run

for multiple days. The limitation of the y = k × ln (x + 1) model occurs when plugging in

large t values. This is because the model predicts unreasonably large torque values with

increasing t, which becomes unrealistic for practical applications. Therefore, caution is

advised when using this model for extrapolation, particularly at high t values.

                   
 

 

 
                                           
       

                       
                         

          
       −  
       −            
       −            

                               
                         
                               

       

             

     
  ω   

          −  
    λ   

                       

           

                             
                         
                             

Figure 2. Example of a TSG torque profile curve for the DiPP (at t = 0, there is no production and the

DiPP is at stoppage).

As shown on the ConsiGma-25 HMI (ConsiGmaTM, GEA, Kontich, Belgium), the TSG

has four key input parameters that can be set. These are as follows:

• Speed (rpm) of the motor;

• Powder feed rate (kg.h−1);

• Liquid feed rate (g.min−1) of the first liquid port;

• Liquid feed rate (g.min−1) of the second liquid port.

By adding together the two liquid flow rates and by dividing the liquid flow rate by

the solid flow rate (and converting units appropriately), the information can be condensed

down to a singular liquid-to-solid ratio, called the L/S ratio. Hence, Table 1 of the input

parameters is as follows:

Table 1. Table of TSG input parameters.

Parameter Symbol Unit

Speed ω rpm

Powder flow (feed) rate F kg.h−1

Liquid-to-solid ratio λ kg.kg−1

The energy modelling problem is summarised in the following diagram (Figure 3):
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Figure 3. Summary of proposed model.

The three key input parameters (speed, feed rate, and L/S ratio), are plugged into the

model to calculate the k-value corresponding to the equivalent torque profile curve. The

k-value is then used in conjunction with the motor’s speed to calculate the energy usage for

a given time. The speed in rpm was converted to an angular velocity value measured in

rad.s−1, with the below conversion:

ω(rad.s−1) = ω(rpm)×
2π

60
(4)

3.2. Data Analysis with Python

As shown in Figure 3, the key objective for the data-driven energy model is formulating

a function of f (x, y, z) that will relate ω, F, and λ with k. To relate these variables, past

campaign run data of the DiPP were collected and processed. Whenever the DiPP runs,

it uses its sensors to collect measurements in real time, and it exports these values in

the form of Microsoft Excel spreadsheets (Microsoft 365 Apps, Version 2411). A total of

ten campaign spreadsheets from past DiPP runs were used. These runs were from labs

conducting undergraduate teaching, as well as from test runs of the DiPP by the technicians

responsible for maintaining the DiPP.

For data analysis, Python (version 3.13.1) was employed, utilising libraries such as

pandas, SciPy, scikit-learn, and matplotlib to perform all necessary analyses and generate

the required plots. The Python energy model code in Python is structured as follows:

• Firstly, importing Excel spreadsheets from past DiPP runs (“campaigns”) into Python;

• Then, dropping unnecessary columns (e.g., measurements from unit operations that

are not needed during analysis);

• Concatenating all relevant data into a single large dataframe;

• Iterating through the large dataframe and filtering out all periods of TSG inactivity;

• Identifying all periods of TSG activity and slicing up the large dataframe into “slices”

of TSG activity containing all relevant data points;

• Taking the τ (t) curve from each slice, and performing y = k × ln (x + 1) regression on

every torque profile curve;

• Dropping all slices where their τ (t) curve does not have a satisfactory fit onto a

logarithmic regression model;

• Finally, collecting all (ω, F, λ) and (k) pairs for regression analyses.

This energy model structure is summarised in Figure 4. In the next section, machine

learning was used to relate these values to determine f (ω, F, λ).
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Figure 4. TSG energy modelling workflow in Python: It begins with importing and cleaning cam-

paign data from Excel spreadsheets, removing unnecessary measurements and combining relevant

information into a single data frame. Next, the code segments the data by identifying and extracting

“slices” representing TSG activity periods. From each slice, the τ(t) curve is extracted and analysed

using a y = k × ln (x + 1) regression. Slices where the regression fit is unsatisfactory are discarded,

highlighted in red. Finally, the remaining data containing (ω, F, λ) and (k) pairs are collected for

further regression analyses used in TSG energy modelling.

3.2.1. Machine-Learning Regression with Python

The Python library SciKit-Learn was used perform machine-learning regression using

a collection of refined slices of data. It is important to note that when performing regression
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analysis, a common fault is the overfitting of curves, where all the training data are

inputted into the regression solver, thereby resulting in the solver overfitting the inputs

and producing a model that may be very good at predicting its own training dataset values,

but poor at making correct predictions (in this case, torque predictions). Sklearn provides a

very useful function in the code that allows us to split the training dataset into “training”

and “testing” sections.

After splitting the dataset appropriately (taking sklearn’s recommended values of a

50/50 split for training and testing data), the data were inputted into various regression

solvers provided by sklearn as illustrated in Figure 5. The goal was to test a variety of

regression models to see which one would provide the best fit for the data. The full list

of regression models used is shown in Figure 4, and the results of the regression analysis

including RMSE (root-mean-square deviation) and R2 (R-squared) values are shown in

Table 2.

Table 2. Regression analyses results.

Regression Model Training R2 Training RMSE Testing R2 Testing RMSE

Linear 0.65681 0.35833 0.77118 0.32201

2nd-degree polynomial 0.91168 0.18178 0.81638 0.28847

3rd-degree polynomial 0.98270 0.08044 −133 7.81

Random forest [31] 0.93364 0.15756 0.71664 0.35835

Support vector regression (SVR) with
RBF kernel [32]

−0.11 0.64455 −0.097 0.70536

K-Nearest-Neighbour [33] 1.0 0.0 −0.29443 0.76591

Neural network [34] 0.95256 0.13321 0.25159 0.58238

As can be seen from Table 2, the best regression model produced was a second-degree

polynomial regression. It was expected that a higher-degree polynomial would result in a

better fit; however, that turned out to not be the case.

Some more advanced machine-learning techniques were also tested. Random forest,

K-Nearest-Neighbour, and SVR with an RBF (radial basis function) kernel were used in

the hope that the more sophisticated techniques would result in a better regression model.

Random forest produced quite good results; however, the other models proved to be worse

than simple linear regression based on their very high RMSE values. While the neural

network was able to train well on the data, it was unfortunately very poor at making

predictions on the testing data, being beaten by the linear regression model.

Defining a neural network layout requires large expertise in artificial intelligence and

neural network design, and it is something that would require input from people with

computer science expertise. Since the second-degree polynomial provides sufficient results,

it is deemed that the application of neural networks is not necessary, and the design of

neural networks is outside the scope of this research.

3.2.2. Final Energy Model

The best model was chosen to proceed with the digital twin creation, and this was

the 2nd-degree polynomial regression. A raw mathematical equation (Equation (5)) and

its coefficients (Table 3) were exported out of the Python environment, and the result are

as follows:

k = n1 ω + n2 F + n3 λ + n4ω
2 + n5 ωF + n6 ωλ + n7 F2 + n8 Fλ + n9λ

2 + C (5)
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Figure 5. Regression training logic: TSG energy modelling utilises a regression-based approach

to analyse torque profiles. To optimise the model, a regression analysis employing the equation

y = k × ln (x + 1) is performed on each individual curve. This step is followed by the evaluation of

various regression models, including support vector regression (SVR) with a radial basis function

(RBF) kernel, a neural network, and a polynomial regression. By comparing their performance, the

model that achieves the most accurate fit to the torque profile data is chosen, ultimately leading to

more accurate TSG energy modelling.

k-values can hence be calculated, and then used as shown in the equation in Figure 3.

It is important to note that this model cannot be extrapolated for all values of ω, F, and λ.

This model is only valid for the range it has been trained and tested on, which is as follows:

ω ∈ [100 rpm, 900 rpm] F ∈ [5 kgh−1, 20 kgh−1] λ ∈ [0.15,0.4]
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Table 3. Polynomial coefficients.

Coefficient Value

n1 −1.13097020 × 10−2

n2 3.27713175 × 10−1

n3 3.42615181 × 10+0

n4 6.17107414 × 10−6

n5 −3.71204881 × 10−4

n6 2.32487761 × 10−2

n7 1.84521172 × 10−3

n8 −1.53832945 × 10−1

n9 −1.42015029 × 10+1

C 7.83459685 × 10−1

3.3. Optimisation Testing with SciPy

To demonstrate the capability of the energy model, the optimisation of energy perfor-

mance indicator (EnPI) values was performed using our model and SciPy. First, an initial

guess for the SciPy minimisation solver based off prior standard DiPP values was defined

and then input into the gPROMS FormulatedProducts (Version 2023.2.0.55304) flowsheet to

obtain an estimate of the PSD. Then, minimisation of the EnPI value was performed using

SciPy’s minimise function and the solver’s results were copied into the gPROMS flowsheet

to compare the new PSD.

The EnPI value being optimised was as follows:

EnPI =
E(24h)

F
(6)

Twenty-four hours was chosen as a baseline for the optimisation time as it represents a

standard unit day for the industry. Here, EnPI is a crucial metric in this analysis. Minimising

energy usage alone would be misleading, as the solver would simply reduce the input feed

rate to the twin-screw granulator (TSG) to zero, resulting in no wet granules (and therefore

tablets) being produced. This EnPI value of the ratio of energy over feed rate means that

the solver will maximise the feed rate while minimising the energy.

An initial guess for the input parameters as follows:

ω = 725 rpm F = 7.5 kgh−1
λ = 0.4

These values were plugged into SciPy, and the results were as follows (Table 4):

Table 4. Minimisation of EnPI results.

Before Optimisation After Optimisation

ω 725 724.73

F 7.5 8.607

λ 0.4 0.291

EnPI 8.76 × 106 1.390
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3.4. gPROMS FormulatedProducts Mechanistic Model

To complete the hybrid digital twin, the next step is creating a mechanistic model of

the TSG with the help of gPROMS FormulatedProducts (Version 2023.2.0.55304). This is a

modelling software within the Siemens gPROMS suite specifically designed for modelling

the pharmaceutical industry manufacturing process. It contains various models that aid in

modelling and optimising pharmaceutical processes, including fluidised bed dryers, dry

mills, and various types of granulators, including twin-screw granulation. Furthermore, it

provides optimisation functionalities allowing for the minimisation of objective functions,

which will be useful in the next section.

With the help of FormulatedProducts and the example project files included in the

installation directory, a flowsheet of the process was developed (Figure 6). This flowsheet

can calculate the particle size distribution (PSD), and more importantly, thanks to the PSD

sensor unit included in the flowsheet, one can determine the median particle diameter

d50 value of the wet granules, which is used to describe the lognormal distribution of

the granules.

                   
 

 

         
                             

                         
                     

                     
                   
                   
                     

                 
                         
                         

                           
                           
                             

 

 
             

             
                                   

                           
                               

                           
                   

                       
                         

Figure 6. gPROMS FormulatedProducts (Version 2023.2.0.55304) flowsheet.

3.5. Integration of Python and FormulatedProducts Models

The goal of this digital twin is to be able to minimise the energy usage of the TSG

while maintaining the CQAs (i.e., particle size distribution, PSD) of the wet granules that
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are ejected from the TSG’s outlet, hence resulting in a lower overall energy usage. The

full integration between the Python model and the gPROMS model was not achieved in

this paper. The System Programmer Guide documentation indicates the possibility of

connecting external models through the Foreign Process Interface (FPI). However, this is

restricted to only FORTRAN and C/C++ foreign models, requiring that the user write

FORTRAN/C/C++ source code and compile it to an appropriate .dll library (for Microsoft

Windows). For the Python program to be correctly interfaced, it would be required that a C

“shim” layer be added on top of the Python code, so that the Python program could call the

gPROMS model to calculate the d50 value and optimise using that value as its boundary

condition. Due to time and resource constraints, this was not achieved in this paper.

The two sets of parameters (initial parameters and optimisation parameters) were

manually inputted into the gPROMS flowsheet to compare the difference in PSD between

the two, and the following results were produced in Figures 7 and 8.
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Figure 7. gPROMS PSD calculation of pre-optimisation parameters.

As illustrated in Figures 7 and 8, gPROMS FormulatedProducts enabled us to verify

that minimising EnPI had a negligible impact on the particle size distribution (PSD). The d50

value shifted by only +3 µm, demonstrating the robustness of the PSD to EnPI reduction.
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Figure 8. gPROMS PSD calculation of post-optimisation parameters.

4. Future Work

Despite the inability to achieve fully automated integration, this paper was able to

establish a workflow for data exchange between the Python and gPROMS models. The

documentation available by Siemens for gPROMS FormulatedProducts was very limited,

and the software itself was very restrictive, with the TSG model being a heavily protected

entity due to commercial interests. This paper successfully optimises the EnPI (24 h)

value using d50 as the boundary condition. Future work in this domain should focus on

optimisation with respect to additional parameters, such as the barrel temperature and the

moisture content of the granules. An optimisation model that can minimise EnPI (24 h)

with d50, temperature, and moisture content as its boundary conditions will be a great

improvement to the model that has been set out in this paper.

Finally, one of the key aspects of digital twins is their ability to learn and improve in

real time from the corresponding real-world process. The energy model currently relies on

a manual process of exporting ConsiGma-25 data files in CSV format and storing them in a

specific folder (“consigma25_spreadsheets”). This approach is prone to errors and lacks

automation. For the digital twin to be compliant with the ISO definition of a digital twin,

it would have to continuously learn and improve on its own without requiring human

input [35,36]. Another area of future work is fully integrating our digital twin with the

Diamond Pilot Plant so that it can automatically retrieve campaign data and learn from
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it and improve its models. Such a feature would be extremely useful as it would allow

for our model to learn from longer “slices” of TSG activity, as the current model was only

trained on shorter “slices” in the range of 50 to 400 s, while real-world processes run for

many hours if not days continuously.

This paper successfully performed manual optimisation of the k-value energy model

using SciPy and compared the pre- and post-optimisation PSD values by calculating them

with gPROMS. This resulted in a significant reduction in the EnPI (24 h) value while

maintaining the granules’ PSD and the d50 value. It is important to note that finding

optimal parameters to model the ConsiGma-25’s TSG unit will be important research

for the future. Detailed research of the components and parameters that make up the

mechanistic model are considered out of the scope of this paper, which is why they have

not been further researched.

5. Conclusions

The results above show a very accurate data-driven model for predicting the

ConsiGma-25’s torque profile curve, which can further be used for predicting the TSG’s

energy usage over time. This model is useful for the pharmaceutical industry as there is

little literature on the energy usage of twin-screw granulation. Furthermore, the Formu-

latedProducts model allows for the prediction of the particle size distribution of the wet

granules, which will be useful for future optimisation analysis of the TSG’s energy usage.

Utilising the SciPy optimisation solver, this paper achieved a significant 100% reduction in

the TSG’s EnPI (24 h) value. Subsequently, gPROMS FormulatedProducts was employed

to verify that this minimisation did not impact the product size distribution (PSD). The

analysis revealed a minimal change of only + 3 µm in the d50 value.

The analysis that was performed on prior campaign data of the DiPP resulted in

a high-accuracy model, capable of modelling the ConsiGma-25’s twin-screw granulator

torque profile curve. This paper was also able to use our k-value model for predicting the

TSG’s energy usage over time, which is important for research as it provides a first avenue

into energy optimisation for the next generation of pharmaceutical manufacturing. The

torque model is also useful in that it can improve on the already existing gPROMS Formu-

latedProducts model. The current gPROMS TSG model is unable to model either torque or

energy, and the work in this paper will help in making the gPROMS twin-screw granulator

model better in the future. Future engineers and developers can use this data-driven model

as a basis for the development of a robust mechanistic torque and energy model, and it can

also be used as a validation platform for future mechanistic models. This will be extremely

useful for the pharmaceutical industry, and it will aid greatly in the transition to continuous

pharmaceutical manufacturing.
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Nomenclature

Acronym Definition

DT Digital Twin

QbD Quality-by-Design

DiPP Diamond Pilot Plant

IoT Internet of Things

I4.0 Industry 4.0

I4.0T Industry 4.0 Technologies

ML Machine Learning

KPI Key Point Indicators

CQA Critical Quality Attributes

FDA Food and Drug Administration

EMA European Medicines Agency

PAT Process Analytical Technology

CM Continuous Manufacturing

BM Batch Manufacturing

PSD Particle Size Distribution

FPM First Principle Model

HMI Human–Machine Interface

RMSE Root-Mean-Square Deviation

API Active Pharmaceutical Ingredient

Symbols

Symbol Unit Parameter

ω rpm Speed

F kg/h Feed rate

λ - Liquid-to-solid ratio

Q J Energy

t s Time

τ Nm Torque

P W Power

h kJ/kg Enthalpy

d50 µm Median particle diameter

EnPI kWh2/kg Energy performance indicator

References

1. EMA. Quality by Design. May 2020. Available online: https://www.ema.europa.eu/en/human-regulatory/research-

development/quality-design (accessed on 7 January 2023).

2. Herrmann, C.; Schmidt, C.; Kurle, D.; Blume, S.; Thiede, S. Sustainability in manufacturing and factories of the future. Int. J.

Precis. Eng. Manuf.-Green Technol. 2014, 1, 283–292. [CrossRef]

3. BCC. Why Is There a Global Energy Crisis and Who Might Suffer Most from It? BBC, 30 October 2022.

4. UK Government. Government Report. 2010 to 2015 Government Policy: Energy Demand Reduction in Industry, Business and the

Public Sector. 2016. Available online: https://www.gov.uk/government/publications/2010-to-2015-government-policy-energy-

demand-reduction-in-industry-business-and-the-public-sector/2010-to-2015-government-policy-energy-demand-reduction-

in-industry-business-and-the-public-sector (accessed on 10 December 2024).

5. Rogers, A.J.; Hashemi, A.; Ierapetritou, M.G. Modeling of Particulate Processes for the Continuous Manufacture of Solid-Based

Pharmaceutical Dosage Forms. Processes 2013, 1, 67–127. [CrossRef]

6. Lee, S.L.; O’Connor, T.F.; Yang, X.; Cruz, C.N.; Chatterjee, S.; Madurawe, R.D.; Moore, C.M.V.; Yu, L.X.; Woodcock, J. Modernizing

Pharmaceutical Manufacturing: From Batch to Continuous Production. J. Pharm. Innov. 2015, 10, 191–199. [CrossRef]

7. Ierapetritou, M.; Muzzio, F.; Reklaitis, G. Perspectives on the continuous manufacturing of powder-based pharmaceutical

processes. AIChE J. 2016, 62, 1846–1862. [CrossRef]

8. Manzano, T.; Langer, G. Getting Ready for pharma 4.0. Data Integrity in Cloud and Big Data Applications. 2018. Available online:

https://www.ispe.gr.jp/ISPE/02_katsudou/pdf/201812_en.pdf (accessed on 10 December 2024).

9. Douglas, J.M. Conceptual Design of Chemical Processes; McGraw-Hill: New York, NY, USA, 1988; ISBN 978-0070177628.



Processes 2025, 13, 211 17 of 18

10. Chen, Y.; Yang, O.; Sampat, C.; Bhalode, P.; Ramachandran, R.; Ierapetritou, M. Digital Twins in Pharmaceutical and Biopharma-

ceutical Manufacturing: A Literature Review. Processes 2020, 8, 1088. [CrossRef]

11. Martin, S. What Is a Digital Twin? September 2022. Available online: https://blogs.nvidia.com/blog/2021/12/14/what-is-a-

digital-twin/ (accessed on 10 December 2024).

12. IBM. What Is a Digital Twin? December 2020. Available online: https://www.ibm.com/uk-en/topics/what-is-a-digital-twin

(accessed on 10 December 2024).

13. Barni, A.; Fontana, A.; Menato, S.; Sorlini, M.; Canetta, L. Exploiting the Digital Twin in the Assessment and Optimization of

Sustainability Performances. In Proceedings of the 2018 International Conference on Intelligent Systems (IS), Funchal, Portugal,

25–27 September 2018; pp. 706–713.

14. Veleva, V.; Hart, M.; Greiner, T.; Crumbley, C. Indicators for measuring environmental sustainability: A case study of the

pharmaceutical industry. Benchmarking Int. J. 2003, 10, 107–119. [CrossRef]

15. Ntamo, D.; Lopez-Montero, E.; Mack, J.; Omar, C.; Highett, M.I.; Moss, D.; Mitchell, N.; Soulatintork, P.; Moghadam, P.Z.; Zandi,

M. Industry 4.0 in Action: Digitalisation of a Continuous Process Manufacturing for Formulated Products. Digit. Chem. Eng. 2022,

3, 100025. [CrossRef]

16. Papadopoulos, I. A technical literature review on sustainability-oriented digital twin of the diamond pilot plant. In Internal

Research Report; University of Sheffield: Sheffield, UK, 2023; Unpublished.

17. Schume, P. Improve Product Quality and Yield with Intelligent, Secure, and Adaptable Manufacturing Operations. May 2020.

Available online: https://www.ibm.com/think/topics/ai-for-manufacturing (accessed on 10 December 2024).

18. Bai, C.; Dallasega, P.; Orzes, G.; Sarkis, J. Industry 4.0 technologies assessment: A sustainability perspective. Int. J. Prod. Econ.

2020, 229, 107776. [CrossRef]

19. He, B.; Bai, K.-J. Digital twin-based sustainable intelligent manufacturing: A review. Adv. Manuf. 2020, 9, 1–21. [CrossRef]

20. Vanhoorne, V.; Vervaet, C. Recent progress in continuous manufacturing of oral solid dosage forms. Int. J. Pharm. 2020, 579, 119194.

[CrossRef]

21. Grieves, M. SME Management Forum Completing the Cycle: Using PLM Information in the Sales and Service Functions. October

2002. Available online: https://www.researchgate.net/publication/356192963_SME_Management_Forum_Completing_the_

Cycle_Using_PLM_Information_in_the_Sales_and_Service_Functions (accessed on 10 December 2024).

22. GEA Group AG. Modul P Tablet Press. 2023. Available online: https://www.gea.com/en/products/tablet-presses/rd-tablet-

presses/modul-p-tablet-press/ (accessed on 10 December 2024).

23. GEA Group AG. ConsiGma® Granulation and Drying (GD) Modules. 2023. Available online: https://www.gea.com/en/

products/granulators/continuous-granulation-lines/consigma-granulation-drying-gd-modules.jsp (accessed on 9 May 2023).

24. Ryckaert, A.; Ghijs, M.; Portier, C.; Djuric, D.; Funke, A.; Vervaet, C.; Beer, T.D. The Influence of Equipment Design and

Process Parameters on Granule Breakage in a Semi-Continuous Fluid Bed Dryer after Continuous Twin-Screw Wet Granulation.

Pharmaceutics 2021, 13, 293. [CrossRef] [PubMed]

25. Vercruysse, J.; Córdoba, D.D.; Peeters, E.; Fonteyne, M.; Delaet, U.; Van, A.I.; De Beer, T.; Remon, J.; Vervaet, C. Continuous

twin screw granulation: Influence of process variables on granule and tablet quality. Eur. J. Pharm. Biopharm. 2012, 82, 205–211.

[CrossRef] [PubMed]

26. Ashish Kumar, I. Experimental and Model-Based Analysis of Twin-Screw Wet Granulation in Pharmaceutical Processes. Ph.D.

Thesis, Ghent University, Gent, Belgium, 2015. Available online: https://biblio.ugent.be/publication/6956586 (accessed on

10 December 2024).

27. Morrissey, J. A DEM Study of Wet Granulation in a Twin-Screw Granulator. 2022. Available online: https://www.research.ed.ac.

uk/en/activities/a-dem-study-of-wet-granulation-in-a-twin-screw-granulator (accessed on 10 December 2024).

28. Seem, T.C.; Rowson, N.A.; Ingram, A.; Huang, Z.; Yu, S.; Matas, M.D.; Gabbott, I.; Reynolds, G.K. Twin screw granulation—A

literature review. Powder Technol. 2015, 276, 89–102. [CrossRef]

29. McGuire, A.D.; Mosbach, S.; Lee, K.F.; Reynolds, G.; Kraft, M. A high-dimensional, stochastic model for twin-screw granulation—

Part 1: Model description. Chem. Eng. Sci. 2018, 188, 221–237. [CrossRef]

30. Shanmugam, S. Granulation techniques and technologies: Recent progresses. BioImpacts BI 2015, 5, 55. [CrossRef]

31. Mwiti, D. Random Forest Regression: When Does It Fail and Why? April 2023. Available online: https://neptune.ai/blog/

random-forest-regression-when-does-it-fail-and-why (accessed on 10 December 2024).

32. Sreenivasa, S. Radial Basis Function (RBF) Kernel: The Go-to Kernel. October 2020. Available online: https://towardsdatascience.

com/radial-basis-function-rbf-kernel-the-go-to-kernel-acf0d22c798a (accessed on 10 December 2024).

33. Teixeira-Pinto, A. Machine Learning for Biostatistics—k-Nearest Neighbours Regression. July 2022. Available online:

https://bookdown.org/tpinto_home/Regression-and-Classification/k-nearest-neighbours-regression.html (accessed on

10 December 2024).

34. Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Blondel, M.; Prettenhofer, P.; Weiss, R.; Dubourg, V.;

et al. Scikit-learn: Machine learning in Python. J. Mach. Learn. Res. 2011, 12, 2825–2830.



Processes 2025, 13, 211 18 of 18

35. VanDerHorn, E.; Mahadevan, S. Digital twin: Generalization, characterization and implementation. Decis. Support Syst. 2021,

145, 113524. [CrossRef]

36. BS ISO 23247-1:2021; Automation Systems and Integration. Digital Twin Framework for Manufacturing—Overview and General

Principles. International Organization for Standardization: Geneva, Switzerland, 2021.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual

author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to

people or property resulting from any ideas, methods, instructions or products referred to in the content.


	Introduction 
	Material and Methods 
	Results and Discussions 
	Energy Balance on the Twin-Screw Granulator 
	Energy Usage of the Motor 
	Torque Profile Curve 

	Data Analysis with Python 
	Machine-Learning Regression with Python 
	Final Energy Model 

	Optimisation Testing with SciPy 
	gPROMS FormulatedProducts Mechanistic Model 
	Integration of Python and FormulatedProducts Models 

	Future Work 
	Conclusions 
	References

