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ABSTRACT 
In public health, risk experts often define acceptable risk targets without community input. 
We developed a novel method for applying behavioral microeconomics to integrate individ
uals’ risk preferences into risk assessment. To demonstrate this methodology, we explored a 
risk-risk tradeoff case scenario: increased asthma risk from increased cleaning and disinfec
tion (C&D) and increased infection risk from decreased C&D for healthcare staff. Utilizing a 
risk-risk tradeoff (RRTO) framework, two datasets were informed with RRTO survey data 
describing the risks individuals would accept for one outcome to offset risk in another (i.e., 
“risk target”). A quantitative microbial risk assessment (QMRA) was deployed to output 
“critical concentrations,” viral concentrations on surfaces that yield risk targets for a single 
contaminated surface touch and a work shift. Critical concentrations were over four orders 
of magnitude larger for single-touch scenarios. Critical concentrations across risk target data
sets were similar. Using the RRTO framework to inform QMRA advances the incorporation of 
individuals’ risk preferences in risk analyses outside economics.

KEYWORDS 
Asthma; behavioral 
economic; disinfection; 
occupational health   

Introduction

Quantitative microbial risk assessment (QMRA)

Quantitative microbial risk assessment (QMRA) is a 
framework that includes four components: hazard iden
tification, exposure assessment, dose-response assess
ment, and risk characterization (Haas et al. 2014) and is 
used to estimate a “risk” (i.e., probability of a negative 
health outcome) for a variety of public health and 
engineering purposes, including informing environ
mental monitoring strategies, treatment goals, and 
comparing intervention outcomes (Ryan et al. 2014; 
Hamilton et al. 2019; Wilson et al. 2021a; Gerrity et al. 
2023). QMRAs often utilize environmental microbiol
ogy data from literature or experimental or field studies; 
mathematical relationships regarding the fate and 
transport of microbes in environments; the role of 

human behaviors in fate, transport, and exposure; and 
dose-response relationships to relate an environmental 
concentration of a pathogen with an anticipated health 
risk (Hamilton et al. 2019; King et al. 2022; Heida et al. 
2024). While “risk” can be used in a variety of ways 
(e.g., as solely a probability of a negative health out
come or as a more complex concept including values 
and perceptions (Slovic 2000)), the terms “risk thresh
old” and “acceptable risk” were used herein as terms 
referring to a threshold or acceptable probability of a 
negative health outcome, namely infection with the 
chosen index pathogen.

Risk targets

Historically, a variety of “acceptable” risk targets, also 
referred to in the literature as “levels,” or “goals,” 
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have been determined by experts in the areas of 
microbial and chemical risk assessment (Slovic 2000) 
in environmental health contexts. In quantitative 
microbial risk assessment (QMRA), specifically, these 
risk targets guide environmental monitoring strategies 
and treatment goals by defining the log10 reductions 
in environmental concentrations needed to achieve a 
specific risk target. Risk characterizations from 
QMRAs inform necessary controls and monitoring 
strategies for protecting public health. The most com
mon risk target in microbial risk assessment is 
1/10,000, an annual risk target for infection from 
ingesting drinking water and a threshold used for 
comparisons in other QMRA contexts, such as expos
ure to contaminated fomites or contamination of 
hands from handwashing with unclean water (Table 1; 
Verbyla et al. 2019). In the context of drinking water, 
this target informs by how many log10 microbial con
centrations in surface water sources used for drinking 
water must be reduced to achieve this goal. 
Interventions offering a specific log10 reduction can 
then be combined and are assumed to have an addi
tive effect. The needed reductions to meet a risk target 
are referred to as “log reduction targets” (LRTs), or 
the number of “log credits” needed in sum to achieve 
a risk target (Jahne et al. 2023). A similar approach 
was taken with direct potable reuse (DPR) standards 
(Salveson and Soller 2019), using a 1/10,000 annual 
infection risk target and/or a 2.7� 10−7 daily infection 
risk target (Table 1; State Water Resources Control 
Board 2019). Other examples of risk targets, scenarios 
in which they have been applied, and associated refer
ences can be found in Table 1.

While some risk targets are firm, others are more 
flexible. For example, during the COVID-19 pan
demic, risk scores were used in the Google Apple 
Exposure Notification (GAEN) API for digital 
contact tracing to determine whether an individual 
needed to quarantine or not if exposed to someone 
with illness. One proposed method was to use 
flexible risk targets, giving more individualized deci
sion-making to specific communities utilizing the 
application (app) and offering the ability of the app 
to change risk targets given differentials in the preva
lence of disease in the population (Wilson et al. 
2022a). Other studies have used various risk targets 
to compare estimated infection risks that are less 
conservative (e.g., 1/1,000) than the U.S. EPA annual 
drinking water threshold of 1/10,000, using real- 
world risks that the public has usually internalized, 
such as through consuming food with the potential 
to be contaminated to inform a risk comparison 
(Lim and Jiang 2013). In recreational water exposure 
contexts, illness risk targets are set at 36/1,000 or 32/ 
1,000 (Office of Water 2012).

Some use a QMRA approach to (1) environmental 
microbial concentrations are defined that relate to a 
risk threshold (termed “critical concentrations” 
(Hamilton et al. 2019; Rasheduzzaman et al. 2019) or 
“threshold concentrations” (Dean and Mitchell 2020)) 
or (2) treatment goals that achieve critical concentra
tions and a risk threshold (Schoen and Garland 2017; 
Rasheduzzaman et al. 2019; Dean and Mitchell 2020). 
The outcome variable is simulated over a range of 
input values to examine the parameter space of itera
tions associated with a greater-than-target risk. The 
focus of this work is on estimating “critical 

Table 1. Examples of QMRA risk targets and associated scenarios and references.
Risk Threshold Scenario Details References

Annual Risk 1/10,000 annual risk � Used in drinking water contexts, 
including DPR in Arizona, California, 
Texas, and Colorado 

� US EPA, WHO, Health Canada, 
USDS-ARS

(Burch et al. 2022; Environmental Protection 
Agency (EPA)) 2002; Hamilton et al. 2006; 
Health Canada 2019; Hynds et al. 2014; 
Leschevallier and Buckley 2007; Owens 
et al. 2020; Regli et al. 1991; World Health 
Organization 2011)

Per Event 1/100 � Exploring contamination of hands by 
handwashing water, using a risk 
threshold of 1/1,000 for the main 
analysis and additional comparison 
thresholds of 1/100 and 1/10,000

(Verbyla et al. 2019)
1/1,000

1/10,000 � Used in QMRAs as a reference point 
for single fomite touch 

� Used in CDC communication about 
COVID-19 risks posed by fomites 
relative to other transmission routes

(Harvey et al. 2021; Wilson et al. 2021b)

1/1,000,000 per event risk � Risk associated with contaminated 
fomites in healthcare – used to 
determine level of cleaning needed

(Ryan et al. 2014; Wilson et al. 2021b; 
Reynolds et al. 2022)

Per Day 2.7� 10−7 Daily infection risk � Used in California to inform log 
removal values for direct potable 
reuse water

(State Water Resources Control Board 2019)
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concentrations” with a Monte Carlo approach for 
relating microbial concentrations to defined risk 
thresholds.

A vital component to the ongoing discourse on 
QMRA is how to inform the choice of risk target val
ue(s) for infectious disease decision-makers. 
Traditionally informed by experts or epidemiological 
observations, there is a need to improve the engage
ment of the general public in risk decision-making for 
ethical reasons (i.e., people in positions of power and 
privilege deciding acceptable risks for marginalized 
and underrepresented communities and inherent bias 
in all human judgment, even those of experts 
(Shrader-Frechette 1995)), but also to guide efficient 
and fair resource allocation (i.e., ensuring sufficient 
financial resources are directed toward maintaining or 
achieving a desired risk level for an environmental 
hazard). The choice of risk benchmarks/targets is 
inherently a value-based policy judgment that is con
text- and population-specific. However, involving the 
public in these deliberations can introduce heuristics 
and biases (Kahneman et al. 1982) that may, for 
example, suggest a desired outcome from risk man
agement efforts that is unachievable, such as setting a 
risk target of zero. Nevertheless, while engaging the 
public in the risk management process can be chal
lenging, Slovic (2000) argues it is worth pursuing, as 
experts who set risk targets are not immune to the 
heuristics and biases to which the public often fall vic
tim, and those in positions of power, such as experts, 
may have higher risk tolerance than those facing the 
risks on a frequent or even everyday basis (Slovic 
2000). This is especially true if the demographics of 
decision-makers do not reflect the actual proportions 
of females or underrepresented minorities, who may 
be more risk-averse relative to White males (Slovic 
2000). Additionally, including communities in the risk 
management process can better inform resource allo
cation, especially in the face of competing risks, dis
cussed below in the Risk-risk Tradeoffs in Public 
Health section.

In the field of healthcare, the idea of involving 
individuals in decisions regarding their risks is more 
acceptable and indeed is growing, helped by the use 
of patient decision aids (Breslin et al. 2008; Stacey 
et al. 2011; Sepucha et al. 2013; Bonner et al. 2021) 
that support shared decision-making in which patients 
collaborate with healthcare providers to make health
care decisions that are in their best interest. Exploring 
methodologies in public health contexts for involving 
individuals in identifying their acceptable risk level, 
and further, to better understand these decisions, is 

needed to advance diversity and equity in microbial 
risk assessment.

Behavioral economics and decision-making 
psychology

One way in which to elicit tolerable risks from indi
viduals to assess tolerable risk distributions across a 
population is through methods rooted in behavioral 
economics and decision-making psychology (Viscusi 
et al. 1991; Krueger 2013; Fischhoff and Broomell 
2020). A common method is a willingness-to-pay 
(Jordan and Elnagheeb 1993; Steigenberger et al. 
2022) approach which elicits the monetary value indi
viduals place on the outcome, i.e., an increased or 
decreased risk of an adverse event. However, when 
there are competing outcomes related to an interven
tion or policy or where populations are income-con
strained, a risk-risk tradeoff (RRTO) approach may be 
more appropriate, as weighing outcomes monetarily 
may increase the cognitive burden for participants 
relative to comparing the risks, themselves (Van 
Houtven et al. 2008; Nielsen et al. 2019). Choosing on 
one single dimension (risk) also reduces the likelihood 
of scope insensitivity (that is, being unresponsive to 
changes in the size of the good or service being val
ued), compared to the use of two dimensions (money 
and risk) (Carson and Mitchell 1995; Jones-Lee et al. 
1995; Fetherstonhaugh et al. 1997; Beattie et al. 1998). 
Using this methodology, tolerance for one risk out
come to maintain a lower risk in another outcome 
can be quantified and used to inform further analyses, 
without the need to use a monetary approach that 
elicits, for example, willingness to pay. It should be 
noted that RRTOs have been shown to work in non
standard settings, such as in the context of climate 
risk in the UK (Mussio et al. 2024) and heatwave- 
related mortality risks in India (Chilton et al. 2024). 
In the context of fatal risks, the value of a statistical 
life (VSL) (McDonald et al. 2016; Nielsen et al. 2019) 
(i.e., a willingness of a society to pay for a given indi
vidual’s small reduction in risk of mortality) (Colmer 
2020) can be calculated through an indirect approach 
based on risk-risk tradeoffs. This contrast with a dir
ect approach, which uses willingness to pay to calcu
late VSL, has been used within more familiar contexts 
of transportation safety (Nielsen et al. 2019) and risks 
of other outcomes, such as cancer and other illnesses 
(McDonald et al. 2016), and environmental risks 
(Mussio et al. 2024). The indirect approach uses the 
outcome of the RRTO which elicits the relative value 
of two risks to an individual. This can be considered 
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as a context premium that summarizes how much 
more or less individuals value specific changes in one 
risk compared to another risk and can be used to cal
culate a context-specific VSL.

There are two current approaches to conducting 
an RRTO study, both having their own advantages 
and disadvantages depending on the risks, the 
population targeted, and statistical efficiency con
siderations. In the first approach, a series of single 
sets of risk tradeoffs are used (Wilson et al. 
2022b) while in the second a multiple risk list is 
used (Nielsen et al. 2019). In the former, informa
tion can be obtained to infer the range of accept
able risks across individuals in a population 
through a subset of randomly chosen questions, 
while in the latter, information can be gathered 
about the actual risk target of the individual dir
ectly by asking participants to move through a list 
of risk tradeoffs where one of the risks increases, 
until the point at which they choose to accept the 
other risk (their “switch point” or “indifference 
point”) is found. Responses can then be aggregated 
to estimate an average switching point, which 
could be used to protect the population at a risk 
threshold that satisfies a given proportion of indi
viduals’ acceptable risks.

Risk-risk tradeoffs in public health

RRTOs could, in principle, be introduced into risk 
assessments aimed to inform public health interven
tions, for example in cases whereby an intervention 
decreases a risk for a health outcome of concern 
while increasing a risk for another (Heida et al. 
2022; Wilson et al. 2022b). An example of this is 
seen in cleaning and disinfection in healthcare, 
where increased frequency or intensity of cleaning, 
especially with certain products, can increase 
asthma-related risks for healthcare workers (Caridi 
et al. 2019; Starke et al. 2021) and decreased clean
ing and disinfection could translate to increased 
risks for healthcare-associated infections (Aw et al. 
2017). While cleaning can theoretically reduce 
asthma-associated symptoms by removing dust that 
could later be resuspended affecting indoor air qual
ity, cleaning and disinfection in healthcare often 
creates an unavoidable tradeoff for those conducting 
the cleaning and disinfection due to the frequency 
and intensity necessary to protect patients from 
healthcare-associated infections. Other tradeoffs 
include pathogen inactivation with chlorine and 
chloramine disinfection in the treatment of 

wastewater for water reuse and subsequent disinfec
tion by-product formation and tradeoffs between 
chemical and microbial contaminants in building 
plumbing systems (Furst et al. 2018; Tolofari et al. 
2022). There may be multiple competing outcomes 
introduced by an intervention, such as increased 
water heater temperature settings to decrease 
Legionella growth potential but posing higher 
energy costs and scalding risks (Heida et al. 2022). 
Another example includes the use of residential 
water reuse systems for sustainability benefits but 
potentially increased microbial infection risks 
(Schoen et al. 2014).

Study objective

To handle these complex RRTO setups that usually 
do not involve money (and where it traditional 
economic and monetary valuation methods may be 
less useful or equitable), new methodologies in 
QMRA are needed. Using indifference points, 
described above, to inform risk targets would 
allow for the inclusion of individuals’ acceptable 
risks in QMRAs used to inform a risk threshold 
and, subsequently, critical concentrations and/or 
intervention performance goals. Exposure and 
dose-response assessment from the QMRA frame
work can be used to elucidate critical concentra
tions that yield risk thresholds informed directly 
by RRTO study output. This advances the current 
state-of-the-art of risk assessment in several ways. 
(1) It creates a way in which individuals can 
quantitatively inform risk thresholds based on 
their values and willingness to accept risk. (2) It 
frames risk thresholds within the context of com
peting risks, where an acceptable risk is not eli
cited in isolation from potential negative 
consequences of decreasing this risk through inter
vention. Rather, it addresses a larger system in 
which addressing one risk may come at the “cost” 
of increasing risk in another health outcome. 
These improvements are vital to the advancement 
of QMRA, to address increasingly complex micro
bial exposures and intervention decision-making 
(Heida et al. 2022) and to protect the health of 
those who bear the “cost” of interventions that, 
while aimed to reduce microbial risks, could be 
associated with other negative health outcomes 
(Wilson et al. 2023a).

The objective of this study was to demonstrate how 
results from RRTO surveys (namely, indifference 
points) could be used to incorporate individuals’ 
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tolerable risks into the setting of risk targets for risk 
assessments and subsequent intervention design. The 
focus of this demonstration is on an occupational 
RRTO for healthcare professionals: increased risk of 
infection due to decreased cleaning and disinfection 
versus increased risk of asthma development due to 
increased cleaning and disinfection. Respiratory health 
disease related to cleaning and disinfection exposures 
for healthcare workers has been documented for over 
30 years, with some evidence of a dose-response rela
tionship (i.e., increased cleaning frequency posing 
increased respiratory health risk) (Wilson et al. 
2023b). In healthcare environments, however, consist
ent cleaning and disinfection is imperative for reduc
ing healthcare-associated infections, including the 
potential for occupational infections among healthcare 
workers (Aw et al. 2017). This introduces an impor
tant tradeoff and a need for strategic cleaning and dis
infection interventions aimed at balancing these 
opposing risks.

Methods

This study involved, first, the fitting of distributions 
to RRTO survey data to randomly sample from the 
distributions to generate two simulated data sets of 
indifference points. Summary statistics were then used 
to calculate different potential risk targets from these 
indifference point data sets. QMRA was conducted to 
calculate what concentrations of the virus on surfaces 
would yield these risk targets (herein, “critical concen
trations") assuming either a single contact with a con
taminated surface or an entire shift worth of contact 
with contaminated surfaces. The overall workflow is 
summarized in Figure 1.

First, a scenario was used from a prior occupational 
health RRTO study involving 69 nurses, which 
explored increased infection risk from contaminated 
surfaces due to decreased cleaning/disinfection and 
increased asthma risk from increased cleaning/disin
fection (Wilson et al. 2022b). Due to a lack of data on 
the scenario of interest, data from a prior RRTO sur
vey given to UK students (n¼ 162) were also used to 
apply to the occupational health RRTO scenario 
(Nielsen et al. 2019), accessible through collaborators 
of the research team. Data from two scenarios in this 
survey data were used to demonstrate a proof of con
cept for using the RRTO framework in microbial risk 
assessment.

In the first stage, distributions were fit to RRTO 
survey data so that large datasets (n¼ 10,000) could 
be generated to simulate indifference points yielded 

from a survey of a large cohort. Second, summary sta
tistics of these generated points were used to set risk 
targets. These risk targets were used in a QMRA to 
calculate critical concentrations. In the case of the 
RRTO scenario for this study, the critical concentra
tion of interest was a concentration of SARS-CoV-2 
virus (viral particles/cm2) on contaminated surfaces in 
the workplace. These steps are visually summarized in 
Figure 1.

The pathogen of interest was SARS-CoV-2 since 
this was used in a previous RRTO survey to inform 
estimated infection risks from contaminated surfaces 
(Wilson et al. 2022b). While fomites do not pose the 
greatest transmission risk for SARS-CoV-2 (Jones 
2020; Centers for Disease Control and Prevention 
2021; Miller et al. 2021; Pitol and Julian 2021; 
Wilson et al. 2021a, 2021b), COVID-19 transmission 
via fomites (hand-to-contaminated surface contact 
followed by hand-to-mouth contact) has been docu
mented (Xie et al. 2020) with potential for transmis
sion through contact with the eyes (Eriksen et al. 
2021) and nose (Ahn et al. 2021) and has spurred 
recent increases in cleaning and disinfection expos
ure (Kuehn 2020; Wilson et al. 2023a). Other patho
gens could be substituted to investigate how specific 
pathogens or their associated health outcomes drive 
RRTO indifference points and critical concentrations.

Risk-risk tradeoff scenario

In RRTO scenarios, participants are presented with 
baseline risks (probabilities of the competing out
comes), usually associated with a geographical area 
(Nielsen et al. 2019) or place (e.g., a given hospital 
facility (Wilson et al. 2022b)). The specific risk values 
and data used in this example come from a study of 
UK students for a different contextual RRTO scenario. 
These data were used to inform simulated indifference 
points given the lack of data for occupational health 
RRTO that could inform a more representative distri
bution of indifference points.

The data used to inform simulated RRTO survey 
data originated from a survey that asked participants to 
imagine living in an area that posed road accident inju
ries and the competing risks of these outcomes in other 
areas: risks (probabilities) of non-fatal injuries (non- 
serious vs. serious) and fatal injuries (Nielsen et al. 
2019), with more details described in the following sec
tion. Potential responses to a survey were simulated in 
which respondents would hypothetically asked to 
imagine working in a healthcare environment with 
given baseline risks (probability of occupational 
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infection and probability of occupational asthma) and 
presented with three options: (1) choosing another 
healthcare work environment that increases the risk of 
occupational infection risk while maintaining a risk of 
occupational asthma; (2) choosing another healthcare 
environment that increases the risk of occupational 
asthma while maintaining a risk of occupational infec
tion; and (3) indicating that they are equally happy 
with either option (i.e., working in either healthcare 
environment). If they choose option 1 or 2, they are 
then asked how much risk of occupational asthma 
onset or infection they would be willing to accept in 

one healthcare environment to maintain their risk in 
the other outcome in that same work location before 
deciding to choose the alternative option (working at 
the other healthcare environment). If none of these risk 
options were high enough, a participant could indicate 
the risk they would be willing to take on before switch
ing healthcare work environments (Table 2).

The RRTO survey data used to simulate a distribu
tion of indifference points is similar to the hypothet
ical scenario in the following ways. (1) Participants 
were presented with two competing outcomes and 
had to choose between an increase in one outcome or 

Figure 1. Study flow. This shows the use of an occupational health scenario and data from a prior RRTO study to inform the simu
lation of indifference points, the calculation of summary statistics with simulated indifference points to generate thresholds, and 
the use of exposure assessment and dose-response assessment to determine the viral exposure levels necessary to yield deter
mined risk target.
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the other to avoid an increase in the competing out
come. (2) Participants then chose a maximum prob
ability of the outcome for which they are willing to 
increase their risk to avoid an increase in the compet
ing outcome. The RRTO survey data are different 
from the hypothetical scenario in that the probabilities 
would likely be vastly different (i.e., microbial infec
tion risks for our scenario would be much lower than 
road accident injuries) and the spatial framing is dif
ferent (i.e., imagining oneself working in different 
healthcare environments that pose varying occupa
tional infection or occupational asthma risks is differ
ent than imagining being in different cities with 
varying road accident injury rates). However, the 
most important similarity that makes these RRTO 
data useful for modeling distributions of indifference 
points is the fact that the indifference points reflect a 
probability of an outcome that one will accept to 
maintain risk in a competing outcome, useful for this 
study in setting a risk threshold in a microbial risk 
assessment.

Simulation data set generation & target setting

Indifference point data for three tradeoff scenarios 
were explored: Area 1 vs. Area 2, Area 1 vs. Area 3, 
and Area 2 vs. Area 3. Data from two scenarios that 
yielded similar distributions of indifference points 
were used to generate two different sets of simulated 
indifference points, which will be called “distribution 
1” (using data from the “Area 1 vs. Area 2” scenario) 
and “distribution 2” (using data from the “Area 1 vs. 
Area 3” scenario). More than one distribution was 
used to explore how slight distribution differences 
may translate to risk targets and subsequent critical 
concentration differences.

Lognormal, Weibull, Exponential, and Gamma dis
tributions were fit to each of two data sets, separately, 
using the “fitdist” function from the fitdistrplus pack
age in R (Delignette-Muller and Dutang 2015). These 
candidate distributions were chosen based on a visual 
inspection of the indifference points and literature 
describing the right-skewness anticipated for accept
able risks since people tend to be risk-averse as 
opposed to being risk-seeking (Bougherara et al. 
2021). To identify a superior distribution, distribution 
fits were visually compared over histograms of the 
data; goodness-of-fit statistics for Kolmogorov- 
Smirnov, Cramer-von Mises, and Anderson-Darling 
tests were compared (where a smaller statistic is favor
able); and Akaike’s Information Criterion (AIC) and 
Bayesian Information Criterion (BIC) were compared 
(where smaller AICs and BICs are favorable).

The superior distributions for each of the three 
data sets were used to generate 10,000 indifference 
points (total of 20,000 points, 10,000 points per distri
bution), right-truncated at 1 since probabilities cannot 
exceed 1. Within the code, a seed was set to ensure 
the same 10,000 points were selected per run of the 
model to make the results replicable for those running 
the code. The 1st and 5th percentiles, median, and 
mean of these randomly generated points were calcu
lated to inform acceptable risk targets. Exposure and 
dose-response models were then run to estimate 
10,000 infection risks given 10,000 different potential 
microbial concentrations on surfaces, incorporating 
variability and uncertainty in exposure factors. For a 
set of 10,000 infection risks, the smallest concentration 
that yielded a risk below the risk threshold was identi
fied. This was then done 50,000 times (50,000 sets of 
10,000 infection risk data points) to yield 50,000 criti
cal concentrations per risk threshold. The mean 

Table 2. Example of indifference points in risk-risk tradeoff (RRTO) survey.a

Healthcare Environment 1 Healthcare Environment 2

Occupational asthma from increased 
cleaning and disinfection

5,005 in 100,000 Occupational asthma from increased 
cleaning and disinfection

5,000 in 100,000

Infection from contaminated surface 600 in 100,000 Infection from contaminated surface 605 in 100,000
Indifference point choices (risk of 

occupational asthma), where one 
option is selected with a check 
mark

� 5,005 in 100,000  
(original choice) 

� 5,355 in 100,000 
� 5,730 in 100,000 
� 6,561 in 100,000 
� 7,511 in 100,000 
� 9,201 in 100,000 
� 11,272 in 100,000 
� 14,776 in 100,000 
� 19,368 in 100,000 
� 27,164 in 100,000 
� 38,099 in 100,000 
� ______ in 100,000

Indifference point choices (risk of 
infection from contaminated 
surfaces), where one option is 
selected

� 605 in 100,000  
(original choice) 

� 641 in 100,000 
� 721 in 100,000 
� 858 in 100,000 
� 1,083 in 100,000 
� 1,450 in 100,000 
� 2,057 in 100,000 
� 3,093 in 100,000 
� 4,929 in 100,000 
� 8,328 in 100,000 
� 14,913 in 100,000 
� _____ in 100,000

aParticipants do not see this full table in the survey. Rather, they are presented with scenarios of competing risks and then presented with a list of indif
ference point choices after specifying a preference (Healthcare Environment 1 or Healthcare Environment 2). If they indicate they are happy with either 
option, indifference points are not presented.
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critical concentration per risk threshold was calcu
lated. An example of one set of 10,000 infection risks 
and the identification of the critical concentration can 
be seen in Figure 2.

Exposure and dose-response models

The exposure scenario of interest for the RRTO scen
ario is that of contact with a contaminated surface 
with subsequent hand contact with the face. Two 
ways in which fomite transmission has been explored 
in QMRA include risks from a single fomite touch 
(Ryan et al. 2014; Wilson et al. 2018, 2021b) and risks 
throughout a longer exposure period, such as a day or 
work shift (Beamer et al. 2015; Contreras et al. 2020; 
King et al. 2022). These two approaches were explored 
to investigate how exposure scenarios drive differences 
in a critical concentration that meets a given risk 
target.

Single fomite touch

A single fomite touch model using equations originally 
informed by Julian et al. (2009) was used to estimate the 

dose from a single hand-to-surface contact followed by 
a hand-to-face (mucosa of the mouth, eyes, or nose) 
contact. To calculate the concentration of the pathogen 
on the hand (Chand, viral particles=cm2 of skin) follow
ing a single fomite touch, Equation 1 was used to 
account for fomite-to-hand transfer efficiency:

Chand ¼ CsurfaceTEFHSH (1) 

where fomite-to-hand transfer efficiency is 
TEFH ðunitless fraction), the fraction of the hand used 
for a hand-to-fomite contact is SH ðunitless fraction), 
and the concentration of the pathogen on the surface 
is Csurface ðviral particles=cm2). Because this contact is 
assumed to occur on the scale of seconds to microsec
onds (with a transfer efficiency for a single non-pro
longed touch), time is not included as a parameter.

For pathogen concentrations on the surface,  a 
wide distribution was used for log10 concentration 
(Uniform, min¼−5, max ¼ 5) to evaluate which con
centrations yielded risks above set thresholds. The 
range of this distribution was informed by iterative 
runs evaluating a log10 range of concentrations that 
would yield risks below and above the defined risk 
thresholds. Surface-to-hand transfer efficiency (TEHS) 

Figure 2. Example of one set of 10,000 infection risks to identify a critical concentration given a specific risk threshold (in this 
case, 0.19 probability of infection) for (A) single fomite exposure and (B) daily fomite exposure.
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was informed by parameters from a Beta distribution 
fit to transfer efficiencies for enveloped virus from 
Anderson and Boehm (2021). Fraction of the hand 
used for the hand-to-fomite contact (SH) was 
informed by AuYeung et al. (2008), using the min
imum of the front partial fingers divided by 5 (0.04/ 
5¼ 0.008, capturing the size of a fingertip) and the 
maximum of the full front palm with fingers configur
ation (0.25).

To then calculate the number of viral particles 
ingested during a hand-to-mouth contact (Dose, num
ber of viral particles), Equation 2 was used to account 
for hand-to-mouth transfer efficiency:

Dose ¼ ChandAhandTEHFSF (2) 

where hand-to-mouth transfer efficiency is (TEHM 
(unitless fraction), the fraction of the hand used for a 
hand-to-mouth contact is SM , ðunitless fraction), and 
total hand surface area is Ahand ðcm2Þ) of a single 
hand.

Total hand surface area (Ahand) was informed by the 
U.S. Exposure Factors Handbook (U.S. Environmental 
Protection Agency Exposure Factors Handbook 2011), 
which has been utilized to inform total hand surface 
area parameters in other QMRA models for adults in 
the general U.S. population (Beamer et al. 2015). 
Distribution minimum and maximum used by Beamer 
et al. (2015) for combined hand surface area was div
ided by two to represent surface area of a single hand. 
Transfer efficiency for hand-to-facial mucosal mem
brane contact (TEHF) was informed by viral transfer 

efficiency data from Rusin et al. (2002), using a mean 
from Rusin et al. (2002) and a standard deviation for 
this same data later reported by Abney et al. (2022), as 
it was missing from the original data reported by Rusin 
et al. (2002). Fraction of the hand used for hand-to- 
face contact (SF) was informed by AuYeung et al. 

(2008), assuming a single finger touch (AuYeung et al. 
2008), where minimum and maximum fractions for the 
front partial fingers were divided by 5 to estimate frac
tion of hand surface area used for a single fingertip. 
Information for all parameters can be found in 
Table 3.

Daily fomite touch

A model developed by Beamer et al. (2015) and 
utilized by Contreras et al. (2020) was utilized to 
estimate a dose from an entire day of hand-to-sur
face and hand-to-mouth, -eyes, and -nose contacts 
(assumed duration of 12 hr corresponding to a 
common duration of a healthcare worker’s shift) 
(Equation 3; Stimpfel and Aiken 2013). The 
Beamer et al. (2015) model included similar 
parameters as that for the single fomite touch with 
additional parameters including hand-to-surface 
transfer efficiency, surface area of a facial mucosal 
membrane touch (Amouth, Aeyes, Anose), inactivation 
of virus over time (k, min−1), and the frequency 
of hand-to-fomite touches (Hsurf ) and hand-to-face 
touches (Hmouth, Heyes, Hnose, contacts/min). A steady 
state concentration on the hand is first estimated 
with Equation 3a, where gains to the hand result 
from transfer of virus from the fomite to the hand 
during contacts and losses from the hand result 
from inactivation of virus on the hands, transfer of 
virus from the hands during fomite and face 
contacts.  

For ease of reading, the fraction of the hand used 
for the contact can be simplified (e.g., SM ¼

Amouth=AhandÞ (Equation 3b). However, Equation 3a is 
provided since parameters were informed for specific 
surface areas of the hand used for the mouth, eyes, 
and nose contacts (Table 3).

Chand ¼
Hsurf TESHCsurfaceSH

kþ ðHsurf TEHSSHÞ þ TEHFðHmouthðAmouth=AhandÞ þ HeyesðAeyes=AhandÞ þHnoseðAnose=AhandÞÞ
(3a) 

Chand ¼
Hsurf TESHCsurfaceSH

kþ ðHsurf TEHSSHÞ þ TEHFðHmouthðSmouthÞ þHeyesðSeyesÞ þ HnoseðsnoseÞÞ
(3b) 
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A dose was then estimated based on the amount of 
virus transferred to facial mucosal membranes over 
the modeled duration (T, min) (Equation 4). The 
assumed duration was 12 hr, representing a 12-hr shift 
for a healthcare worker, informed by Stimpfel and 
Aiken (2013).

Dose ¼ ðHmouthAmouthð Þ þ HeyesAeyesð Þ

þ ðHnoseAnoseÞÞChandTEHFT (4) 

Distributions for transfer efficiency for surface con
tacts (TESH and TEHS) distributions were informed by 

the Beta fit for the enveloped virus from Anderson 
and Boehm (2021). Transfer efficiency for hand-to- 
mouth, -eyes, or -nose contacts is assumed to be the 
same as transfer efficiency for hand-to-mouth contacts 
used in the single fomite model, due to lack of data 
describing transfer efficiencies for hand-to-nose and 
-eye contacts. Hand-to-surface contact rate (Hsurf ) was 
informed by a distribution used by Beamer et al. 
(2015), using a maximum informed by Contreras 
et al. (2020). Contact rates with the mouth, eyes, and 
nose were informed by Wilson et al. (2021c) using 

Table 3. Model parameters.

Parameter Variable Units
Distribution/Point 

Value Source

Single-Touch and Daily 
Dose Models

Fraction of total hand 
surface area for surface- 
to-hand or hand-to- 
surface contact

SH Unitless (fraction 
of cm2=cm2)

Uniform (min ¼ 0.008, 
max ¼ 0.25)

(AuYeung et al. 2008)

Fraction of total hand 
surface area for hand-to- 
face contact

SF Unitless (fraction 
of cm2=cm2)

Uniform (min ¼ 0.008, 
max ¼ 0.012)

(AuYeung et al. 2008)

Total hand surface area Ahand cm2 Uniform (min ¼
445, 535)

(U.S. Environmental 
Protection Agency 
Exposure Factors 
Handbook 2011; Beamer 
et al. 2015)

Transfer efficiency for fomite- 
to-hand contact

TEFH Unitless (fraction 

of 
organisms=cm2
organisms=cm2

)

Beta (a¼ 0.64, b¼ 3.1) (Anderson and Boehm 2021)

Transfer efficiency for hand- 
to-facial mucosal 
membrane contact 
(mouth, eyes, nose)

TEHF Unitless (fraction 

of 
organisms=cm2
organisms=cm2

)

Normal (m ¼ 0.3390, r 
¼ 0.1318), range 
0-1

(Rusin et al. 2002; Abney 
et al. 2022)

Log10 pathogen 
concentration on surface

Csurface log10 organisms=cm2 Uniform (min ¼ −5, 
max ¼ 5)

a

Dose-response parameter k Probability of initiating 
infection/organism

2.46� 10−3 (Pitol and Julian 2021)

Daily Dose Models 
Only

Inactivation rate k hr−1 Uniform (min ¼ 0.05, 
max ¼ 0.198)

(Kwon et al. 2021)

Transfer efficiency for hand- 
to-surface contact

TEHS Unitless (fraction 

of 
organisms=cm2
organisms=cm2

)

Beta (a¼ 0.64, b¼ 3.1) (Anderson and Boehm 2021)

Hand-to-surface contact rate Hsurface Contacts/min Lognormal (geomean 
¼ 4.1, geosd ¼
1.6), range 0–9.8

(Beamer et al. 2015; 
Contreras et al. 2020)

Hand-to-mouth contact rate Hmouth Contacts/hr Normal (m ¼ 2.9, r ¼
2.5), range 0-10

(Wilson et al. 2021c)

Hand-to-eyes contact rate Heyes Contacts/hr Normal (m ¼ 2.4, r ¼

1.9), range 0-6
(Wilson et al. 2021c)

Hand-to-nose contact rate Hnose Contacts/hr Normal (m ¼ 2.5, r ¼
2.2), range 0–10.4

(Wilson et al. 2021c)

Area of hand-to-mouth 
contact

Amouth cm2 Uniform (min ¼ 3.56, 
max ¼ 6.42)

(AuYeung et al. 2008; U.S. 
Environmental Protection 
Agency Exposure Factors 
Handbook 2011)b

Area of hand-to-eyes contact Aeyes cm2 Uniform (min ¼ 3.56, 
max ¼ 6.42)

(AuYeung et al. 2008; U.S. 
Environmental Protection 
Agency Exposure Factors 
Handbook 2011)b

Area of hand-to-nose contact Anose cm2 Uniform (min ¼ 3.56, 
max ¼ 6.42)

(AuYeung et al. 2008; U.S. 
Environmental Protection 
Agency Exposure Factors 
Handbook 2011)b

Shift duration T hr 12 (Stimpfel and Aiken 2013)
aAssumed a large range in order to identify which concentrations yield acceptable risks.
bMin and max were informed by the smallest and largest assumed fraction of total hand surface area used multiplied by the smallest and largest total 

hand surface areas assumed, respectively.

10 A. M. WILSON ET AL.



mean, standard deviation, minimum, and 99th per
centile (used to inform the maximum) contact fre
quencies reported for adults during non-eating 
behaviors to inform truncated Normal distributions. 
The surface area of the hand used for mouth, eye, and 
nose contacts was informed by information on frac
tions of the hand used for single fingertip contacts 
and the anticipated range of hand surface area: The 
smallest fraction of the hand used for a fingertip con
tact multiplied by the smallest single hand surface 
area to inform the minimum (0.008� 445 cm2 ¼

3.56 cm2) and the largest fraction of the hand used for 
a fingertip contact multiplied by the largest single- 
hand surface area to inform the maximum 
(0.012� 535 cm2 ¼ 6.42 cm2). Inactivation rate (k) 
was informed by the minimum and maximum half- 
lives listed for indoor conditions on surfaces across 
seasons (3.5 to 12.86 hr), assuming first-order decay to 
calculate decay rate (hr−1) (0.693/12.86 hr ¼ 0.05 hr−1, 
0.693/3.5 hr ¼ 0.198 hr−1). Information for all parame
ters can be found in Table 3.

Estimating infection risk

Estimated doses were then related to estimated infec
tion risks (Pinfection) using an exponential dose- 
response curve (Equation 5), where the dose-response 
curve parameter, k, was informed by Watanabe et al. 
(2010), using an exponential model fit to a pooled 
data set (Data sets 1 and 2) from rSARS-CoV 
(DeDiego et al. 2008) and murine hepatitis virus 
strain 1 (MHV-1) (De Albuquerque et al. 2006) infec
tion in mice (Watanabe et al. 2010). The k parameter 
represented the probability that an organism will sur
vive and arrive at a site where an infection can be ini
tiated. While a more updated k value was available 
that was informed by outbreak data (Parhizkar et al. 
2022), this outbreak was likely driven by inhalation of 
bioaerosols and therefore likely is an overestimate for 
fomite-mediated risks which are generally lower and 
not the driver of COVID-19 outbreaks. The k value 
utilized here has been used in other QMRAs of 
COVID-19 transmission from fomites (Pitol and 
Julian 2021).

Pinfection ¼ 1 − e−k∙Dose (5) 

Data from the literature was used to compare 
expected concentrations on surfaces to the critical 
concentrations to calculate what log10 reduction would 
be needed with a cleaning or disinfection protocol to 
achieve a critical concentration that yields the risk 

target. These data came from real-world measured 
concentrations on public surfaces, including a gym 
water fountain (6.78� 10−3 gc/cm2) (Zhang et al. 
2022), an office surface (1.48� 10−1 gc/cm2) (Zhang 
et al. 2022), a classroom desk (7.95� 10−2 gc/cm2) 
(Zhang et al. 2022), a bus surface (1.68� 10−1 gc/cm2) 
(Zhang et al. 2022), a liquor store handle (102.43 gc/ 
cm2) (Harvey et al. 2021), and a grocery store handle 
(11.55 gc/cm2) (Harvey et al. 2021). Reported units 
were in genome copies (gc)/cm2, however, so a ratio 
of infectious viral particles: gc of 1/1,000 was assumed, 
in range with those assumed in other SARS-CoV-2 
fomite transmission models (Harvey et al. 2021). Data 
from healthcare environments, specifically, exist but 
are in units of gc/sample (Guo et al. 2020), with 
uncertainties in the surface area that was swabbed. 
Other modeling studies have used these data with 
assumptions regarding potential distributions of 
sampled surface areas (King et al. 2022), but those 
assumptions are not made in this study as the goal is 
for simple point value comparisons for demonstration 
purposes.

Results

Distribution fitting and indifference point 
generation

For all datasets, the Lognormal distribution was iden
tified visually as a superior fit and was superior across 
all goodness-of-fit tests and in comparisons of AICs 
and BICs (Figures S1–S3). Distribution parameters for 
these Lognormal distributions can be found in supple
mental materials. The 1st and 5th percentiles, mean, 
and median per distribution can be seen in Table 4. 
The risk targets using the 1st and 5th percentiles were 
identical between indifference point distributions 1 
and 2. The median and mean of indifference points 
were both larger for distribution 2 (Distribution 1: 
median – 0.10, mean – 0.11; Distribution 2: median – 
0.15, mean – 0.19). Summary statistics from the simu
lated data were comparable to those of the original 
data sets (Table 4), but it should be noted that limited 
options were available for participants (Table 2), 
reflected in the original data, whereas simulated data 
included continuous risk values. This is addressed fur
ther in the limitations section.

Critical concentration results

Critical concentrations were greatest for single fomite 
contacts, and more than four orders of magnitude 
larger in some cases than those for the daily fomite 
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contact model: 45 to 330 viral particles/cm2 for the 
single fomite model and 5.8� 10−4 to 4.9� 10−3 viral 
particles/cm2 for the daily contact model (Table 5). 
For both the single fomite contact and daily fomite 
contact models, critical concentrations that yielded 
risk targets informed by the 1st and 5th percentiles of 
individual indifference points were just under 1 log10 

smaller than the critical concentration that yielded the 
risk target informed by the mean indifference point 
(Table 4). In comparing distributions 1 and 2, critical 
concentrations across risk targets were similar. For 
example, using a risk target of 0.11 (mean of indiffer
ence points for distribution 1) vs. 0.19 (mean of indif
ference points for distribution 2) yielded a critical 
concentration of 2.8� 10−3 vs. 4.9� 10−3 viral par
ticles/cm2, respectively, for the daily exposure and 186 
vs. 330 viral particles/cm2 for the single exposure 
scenario, respectively. Because microbial concentration 
data tend to be Lognormally distributed (Canales 
et al. 2018), these critical concentration differences 
between the two indifference point data sets were neg
ligible. However, this difference could become impor
tant when dealing with more virulent pathogens.

In comparison to concentrations reported in the lit
erature (with the assumption that there is a ratio of 
1,000 gc to infectious particles), all single-touch criti
cal concentrations were above all real-world concen
tration comparison points, implying that the risk 
targets for single-touch scenarios are already being 
achieved without additional cleaning or disinfection. 
For daily exposure critical concentrations, all critical 
concentrations were smaller than some concentrations 

reported in the literature after the ratio adjustment, 
such as those for the liquor store handle and the gro
cery store handle (Table 5). This implies that some 
high-touch surfaces in public environments may be 
posing daily exposure risks above the risk targets asso
ciated with the daily exposure critical concentrations 
we yield in this RRTO experiment. For example, the 
most conservative risk target (using the 1st percentile 
of indifference point distribution 1) would require a 
2.2 log10 reduction on a liquor store handle to achieve 
a risk target of 0.03 for daily infection risk, assuming 
all other contact surfaces throughout the day had a 
similar viral burden. However, it should be noted that 
the infection risk targets informed by our simulated 
indifference point distributions are much larger than 
those typically used in QMRAs (e.g., 1/10,000 or 
1/1,000,000 as comparison points for infection risks 
from single or daily touch scenarios) (Ryan et al. 
2014; Wilson et al. 2018; Contreras et al. 2020; Wilson 
et al. 2021b). It is unknown whether the public’s or 
occupational groups’ acceptable risks for contact with 
contaminated fomites are on the order of 1/10,000 or 
1/1,000,000, or if they are on the order of those 
in this demonstration (closer to 1/100 and 1/10, 
Table 4). Therefore, these results do not inform clean
ing protocols but, rather, demonstrate how indiffer
ence point data could be used for such a purpose.

Discussion

To the knowledge of the authors, this study represents 
the first application of RRTO surveys to inform 

Table 4. Simulated risk targets for critical concentration demonstration.a

Indifference Point Data Source 1st Percentile 5th Percentile Median Mean

Distribution 1 (Area 1 vs Area 2 scenario) Simulated 0.03 0.04 0.10 0.11
Observed 0.05 0.06 0.09 0.12

Distribution 2 (Area 1 vs. Area 3 scenario) Simulated 0.03 0.04 0.15 0.19
Observed 0.05 0.05 0.11 0.21

aIndifference point distributions are points at which an individual switches from accepting a given risk in one outcome to offset the 
increase in another. In this case, these points represent an accepted risk of occupational infection to avoid increased risk of occupa
tional asthma.

Table 5. Critical concentrations (viral particles/cm2) per risk target and exposure scenario.a

Risk target

Daily Infection Risk Scenario Single-Touch Infection Risk Scenario

Indifference Point 
Distribution 1

Indifference Point 
Distribution 2

Indifference Point 
Distribution 1

Indifference Point 
Distribution 2

1st Percentile of Indifference 
Points

6.8� 10−4 viral 
particles/cm2

5.8� 10−4 viral 
particles/cm2

45 viral particles/cm2 39 viral particles/cm2

5th Percentile of Indifference 
Points

9.7� 10−4 viral 
particles/cm2

9.9� 10−4 viral 
particles/cm2

65 viral particles/cm2 66 viral particles/cm2

Median of Indifference 
Points

2.4� 10−3 viral 
particles/cm2

3.7� 10−3 viral 
particles/cm2

161 viral particles/cm2 247 viral particles/cm2

Mean of Indifference Points 2.8� 10−3 viral 
particles/cm2

4.9� 10−3 viral 
particles/cm2

186 viral particles/cm2 330 viral particles/cm2

aGreen cells indicate critical concentrations above all real-world concentration comparison points and orange indicates critical concentrations below some 
real-world concentration comparison points after adjusting for anticipated infectious viral particle to genome copy ratios.
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QMRAs. This study demonstrates that utilization of 
RRTO methodologies previously used in behavioral, 
environmental, and health economics holds promise 
for incorporating individual and community perspec
tives into QMRAs, ultimately driving community- 
based intervention goals in public health settings. 
Increasing methodologies for incorporating voices in 
risk analysis offers opportunities to address inequities 
in power that have traditionally been inherent in the 
risk analysis process: experts making risk target 
choices on behalf of individuals with relatively little to 
no say in the microbial infection risks they accept 
daily.

RRTO surveys in microbial risk contexts are 
underutilized compared to other contexts, such as 
risks from cancer or transportation (McDonald et al. 
2016; Nielsen et al. 2019). As RRTO methodologies 
are translated to study microbial risk perceptions, the 
opportunity for incorporating RRTO survey outputs 
in QMRAs, as well as increasing the diversity of voi
ces in these surveys will increase. However, risks typ
ically estimated by QMRAs and currently utilized 
thresholds (Table 1) can be as small as 1/1,000,000. 
Imagining risks on this level may increase the poten
tial for heuristics and biases, making indifference 
points from RRTO surveys less reliable than for scen
arios with larger risks (e.g., 1/100). Priming and train
ing individuals on probabilities and risk is a successful 
strategy for understanding small risks (Nielsen et al. 
2019). Another consideration is variability in risk 
acceptability based on imagining risk for oneself vs. 
for others (Lu et al. 2018; Batteux et al. 2019) or the 
framing of the competing risks methodologically 
(Holzmeister and Stefan 2021). In this scenario, the 
focus was on how healthcare workers would view risks 
or themselves, but acceptable risks may change based 
on considerations of occupational risks for others or 
healthcare-associated infections for patients. As a 
novel area of study, future work needs to evaluate 
how to incorporate multiple framings of competing 
risks into acceptable risk elicitation for informing risk 
assessment methodologies.

Limitations

While the translation of methodologies from other 
disciplines for eliciting acceptable risks holds promise, 
this study also demonstrates some challenges, includ
ing a lack of RRTO survey data for microbial risk 
tradeoffs. Additionally, it is possible that framing 
effects in RRTO surveys (Anderson et al. 2007; 
Nielsen et al. 2019) could influence distributions of 

indifference points and, subsequently, greatly impact 
risk targets that guide QMRA. Because the indiffer
ence points in this study are simulated, they cannot 
be applied directly to informing cleaning and disinfec
tion protocols to maintain infection risks at a given 
acceptable level and are continuous, while survey data 
may give a limited set of acceptable risk options 
(Table 2). More real-world data are needed to inform 
distributions of indifference points for informing risk 
thresholds, which is a promising avenue of research. 
Both RRTO methodological advancements and large 
data sets from RRTO surveys are needed to increase 
the reliability and accessibility of indifference points 
for use in QMRA.

Additionally, the issue of heuristics and biases 
aside, critical concentrations that would likely yield 
extremely small risks would likely be immeasurable, 
necessitating a reliance on the assumed performance 
of interventions that could provide “log credits” 
toward achieving a theoretical concentration that 
would yield a small risk target, an approach utilized 
in the context of drinking water and direct potable 
reuse (Soller et al. 2018). This introduces an increased 
need for data regarding ranges of performance for a 
variety of controls at our disposal to decrease micro
bial exposures.

Conclusions

Microbial risk targets informed by both individuals’ 
acceptable risks and framing of risk-risk tradeoffs 
hold promise in giving a larger voice to commun
ities in the development of future QMRAs and sub
sequent policies. The reliance on expert judgment 
alone in risk assessment has been criticized, given 
that these judgments hold bias and may not reflect 
the values of the communities that face the risks 
being addressed (Resnik 2021). This study demon
strated an approach that holds promise for incorpo
rating the community’s voices into QMRA, but this 
demonstration was with a limited and simulated 
data set that does not reflect acceptable risks for our 
scenario of interest (infection risk in the face of 
cleaning and disinfection tradeoffs). More data and 
methodology advancement are needed to improve 
the reliability of risk targets gleaned from RRTO 
surveys for informing QMRAs. Methods by which 
individuals can voice their acceptable risk levels can 
empower communities that otherwise would be pro
tected at risk levels defined by non-community 
members.
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