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Abstract: These days, as the application of permanent magnet synchronous machines
(PMSMs) and drive systems becomes popular, the reliability issue of PMSMs gains more
and more attention. To improve the reliability of PMSMs, fault detection is one of the
practical techniques that enables the early interference and mitigation of the faults and
subsequently reduces the impact of the faults. In this paper, the state-of-the-art fault
detection methods of PMSMs are systematically reviewed. Three typical faults, i.e., the
inter-turn short-circuit fault, the PM partial demagnetization fault, and the eccentricity fault,
are included. The existing methods are firstly classified into signal-, model-, and data-based
methods, while the focus of this paper is laid on the signal sources and the signatures
utilized in these methods. Based on this perspective, this paper intends to provide a new
insight into the inherent commonalities and differences among these detection methods and
thus inspire further innovation. Furthermore, comparison is conducted between methods
based on different signatures. Finally, some issues in the existing methods are discussed,
and future work is highlighted.

Keywords: demagnetization; eccentricity; fault detection; fault signature; inter-turn short-
circuit; permanent magnet; permanent magnet synchronous machine

1. Introduction

Permanent magnet synchronous machines (PMSMs) are becoming increasingly popu-
lar in industries due to their high efficiency and high torque density [1]. However, reliability
has been one of the major concerns that precludes the further promotion of PMSMs in
many safety-critical applications, such as aerospace, electrical vehicles, and wind power
generation. To improve the reliability of PMSMs, a lot of effort has been put into this subject
from the perspective of the topology and design of PMSMs, the condition monitoring, as
well as the fault mitigation and fault-tolerant control. It has been found that condition
monitoring could play a vital role in protecting the PMSM drive system from the catas-
trophic consequences of the faults [2]. In the area of condition monitoring, fault detection is
an important subject, which aims at detecting the faults after their occurrence, thus pro-
viding information about the type, location, and scale of faults for subsequent emergency
operations. On most occasions of online fault detection, the rapidness of detection is also
required to reserve enough reaction time.

An extensive body of literature has been published about the fault detection of PMSMs,
covering a wide range of faults. In general, the faults in PMSMs could be classified into
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three categories based on the failure parts, including electrical faults, mechanical faults,
and magnet faults [3], as shown in Figure 1. Electrical faults can be further classified
according to the faulty components as winding faults, inverter faults, and sensor faults.
Mechanical faults include rotor eccentricity, rotor misalignment, bearing faults, etc. Magnet
faults consist of magnet mechanical damage, uniform and partial demagnetization, etc.
Winding faults can be further classified according to the failure modes, including inter-turn
short-circuit (ITSC) faults, phase-to-phase and phase-to-ground faults, open circuit faults,
high-resistance connection (HRC) faults, etc.

Faults in PMSM system

Mechanical faultsElectrical faults Magnet faults

Partial demagnetization

Uniform 
demagnetization

Others

Inter-turn short-circuit 

Phase-to-phase short 
circuit

Ground short circuit

Open circuit fault

High-resistance 
connection

Others

Rotor eccentricity

Bearing faults

Rotor misalignment

Others

Winding faultsInverter 
faults

Sensor 
faults
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ff
ff
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Figure 1. Classification of faults in the PMSM drive system. The detailed explanation of inter-
turn short-circuit fault, partial demagnetization fault, and rotor eccentricity fault is shown in
Sections 2.1, 3.1 and 4.1.

Several review papers about fault detection have been published. A very comprehen-
sive review is presented in [3] about the fault detection methods. The detection methods
are generally classified into three categories: signal-based, model-based, and artificial
intelligence (AI)-based methods. Diverse kinds of faults are covered in [3] including ITSC
faults, magnet faults, and several kinds of mechanical faults. Special attention is paid to
the application of advanced signal processing and AI algorithms; nevertheless, there is a
lack of analysis about the signal sources. This could be vital because the available signals
might vary dramatically among different applications, and thus, the corresponding fault
signatures and the analysis methods might be completely different from each other. In [4],
the focus is laid on the detection methods, whereas the corresponding fault signatures are
not summarized. Several detailed surveys are accomplished about the detection of ITSC [5],
demagnetization [6], and eccentricity [7] faults. However, these papers concentrate more
on one fault, thus failing to reveal the common features and differences among these faults,
which is critical for distinguishing among these faults. In summary, existing review papers
are not systematic and detailed enough. Hence, the target of this paper is to provide a more
comprehensive review about fault detection of PMSMs in the perspective of the signals
and their signatures.

In this paper, the detection methods of three typical faults in PMSMs are reviewed,
i.e., the ITSC fault, PM partial demagnetization (PD) fault, and eccentricity fault, because
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they are very common while difficult to detect. The detection methods of each fault are
classified into three major categories, i.e., the signal-based, model-based, and data-based
methods [3,4,8], as illustrated in Figure 2. Signal-based methods mainly concentrate on
extracting the fault-related features of signals directly or indirectly. Model-based methods
treat the fault as a variation of the model of the motor, hence using various ways to
observe the variation of the model. Data-based methods utilize the algorithms of machine
learning, trying to extract high-dimensional hidden information about fault features from
the data. Figure 3 concludes the basic principles of signal-, model-, and data-based methods
from the perspective of the general fault detection procedure, i.e., feature extraction and
decision-making processes.

ffi
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Figure 2. Classification of detection methods for ITSC, PD, and eccentricity faults.
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Figure 3. Illustration of fault detection procedure of signal-, model-, and data-based methods.

Furthermore, this paper specifically classifies the papers in the literature according
to their signal sources and fault signatures, intending to provide a unique insight into the
state-of-the-art techniques for the fault detection of PMSMs and their general issues, as
shown in Figure 2.

The contributions of this paper lie in the following aspects:

(1) Classifying and analyzing existing fault detection methods from the perspective of
the fault signatures. This paper attempts to dive deeper into the essentials of fault
detection methods by focusing on the adopted fault signatures. For example, the
model-based methods are divided into methods based on the estimation residual and
the estimated fault parameters. In comparison, existing review papers usually make
the classification at the level of signal-, model-, and data-based methods. Thus, this
paper can provide more detailed guidance for the selection of detection methods in
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applications and also provide a clearer landscape about the principles, advantages,
and challenges of all these methods.

(2) Mixed collection of newly published papers and classic papers. Fault detection has
become one of the hottest topics in recent years, with an increasingly large number of
related publications each year. It is important to keep the researchers following the
current trends, meanwhile revising the development paths of this area. This paper
discusses 46 papers about fault detection published in 2024 and 41 papers published
in 2023, while also covering some of the classic papers, such as [9], published in 2006.

This paper is organized as follows. Sections 2–4 discuss the detection methods of the
ITSC fault, PD fault, and eccentricity fault, respectively. Section 5 evaluates and compares
the reviewed methods. Section 6 discusses some differences in the detection methods of
these three faults. Section 7 concludes the paper and presents the future work.

2. Inter-Turn Short-Circuit Fault Detection

2.1. Background

The ITSC fault is the short circuit between one or a few turns of a winding due to
the inter-turn insulation degradation and breakdown. The ITSC fault may be the result
of various factors including a high winding temperature, mechanical stress, transient
overvoltage, etc. When the ITSC fault occurs, the broken insulation part forms a short-
circuit path shown in Figure 4a. The residual resistance on the short-circuit path can be
modeled as a resistance Rf parallel to the short-circuit part of the winding. The equivalent
circuit of PMSMs with the ITSC fault is shown in Figure 4b, where the ITSC fault is assumed
in phase A without losing generality.
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algorithms
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signatures

Machine learning 
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Figure 4. Illustration of ITSC fault. (a) Illustration; (b) equivalent circuit.

As shown in Figure 4b, a large circulating current if will flow through the short-circuit
resistance Rf, as well as the shorted coil Laf, causing an extremely high temperature in the
local area. High temperature can further accelerate insulation degradation, which may lead
to the development of an ITSC fault in the manner of an avalanche, resulting in a more
serious fault such as a phase-to-phase or phase-to-ground shor circuit [2]. Hence, it is vital
to detect the ITSC fault as soon as possible.

However, ITSC fault detection is not easy. The high circulating current does not flow
through the regular phase current sensors so that phase currents only contain insignificant
fault-related features. Thus, numerous methods are developed to extract and magnify the
fault-related features from all types of signals in electrical machines.
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2.2. Signal-Based Methods

The signal-based methods refer to those concentrating on extracting explicit signatures
from specific signals with time or frequency analysis techniques. The signals adopted for
fault detection can be either common electrical signals available in a PMSM drive system or
signals obtained with extra sensors such as Hall sensors or search coils. Generally speaking,
the signal-based methods can be grouped as electrical signal-based and magnetic signal-
based. Obviously, the signatures in electrical signals and magnetic signals are different.
Thus, they have different SNR, advantages, and disadvantages. The detailed classification
is shown in Figure 5.
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Figure 5. Classification of signal-based methods for ITSC detection.

2.2.1. Electrical Signals

Electrical signals generally include voltage and current signals. Sampled current
signals are commonly available in PMSM drive systems due to the need for close-loop
control. As for voltage signals, usually the reference voltage signals are used, while extra
voltage sensors are usually required to sample the zero-sequence voltage component
(ZSVC). In general, the methods based on electrical signals can be grouped according to
the type of signatures:

(a) Symmetrical component

Symmetrical component analysis is one of the common ways to detect asymmetry
in machines [2,10], where a negative sequence component (NSC) and a zero sequence
component (ZSC) emerge in addition to a positive sequence component (PSC). Obviously,
an ITSC fault introduces asymmetry in stator winding, and thus, a ZSC and NSC can be
found in either machine voltages or currents. A method based on the ZSC in voltage (for
wye-connected machines) and current (for delta-connected machines) is proposed in [11].
The location of an ITSC fault can be decided by examining the phase angle information
of a ZSC, which is also found able to discriminate between HRC and ITSC faults [12].
These methods are further integrated with mitigation methods in [13,14]. The similar
idea is applied in brushless DC (BLDC) machines with a simple fault severity evaluation
method [15], reducing the impact of working conditions on fault detection. Laadjal et al. [16]
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propose a fault index defined as the ratio between ZSC, NSC, and PSC so that the ITSC
fault can be distinguished from unbalanced supply voltage. The algorithm is improved by
introducing short-time least-squares Prony’s algorithm to track the fundamental frequency
component [17,18]. In [19], the ZSC in voltage is found to have a better signal-to-noise ratio
(SNR) and sensitivity to faults than the second harmonics in q-axis current and the speed
harmonics.

Similar to ZSC, NSC will emerge in the voltage or current of machines [20]. Jeong
et al. [21] successfully utilize the NSC in machine voltages to detect the ITSC fault of
PMSMs. It has also been found that NSC in voltage is more sensitive to ITSC faults and
is more general compared to ZSC in voltage because the amplitude of ZSC in voltage is
dependent on the leakage inductance of the machine. Meanwhile, NSC in current can
also be utilized to detect ITSC faults [22]. A fault indicator is further proposed in [23] by
combining the NSC and PSC in current. The phase angle between NSC and PSC in current
is used to locate the ITSC fault. Furthermore, NSC in voltage and current can be utilized at
the same time. A novel fault indicator is proposed in [24], which is the phase shift between
NSC in the machine voltage and current. The indicator can discriminate the unbalanced
load of the PM synchronous generator (PMSG) and the ITSC fault; meanwhile, the location
of the ITSC fault is revealed by the phase angle of the NSC in voltage. Similarly, the NSC in
voltage can also be combined with ZSC and PSC to detect ITSC faults [16,25].

(b) Low frequency (LF) pattern

On the other hand, the frequency pattern of signals usually also contains effective
signatures for ITSC detection. From the perspective of the way to obtain frequency patterns,
diverse frequency analysis techniques are adopted in the existing literature, such as fast
Fourier transform (FFT) [26–29], orthogonal phase-lock-loop (PLL) [30,31], empirical model
decomposition (EMD) [32,33], wavelet transform [34], etc.

Meanwhile, existing methods also cover a wide range of fault signatures. For example,
third harmonics in phase currents are found feasible for detection [32], thus being tracked
with quadratic time–frequency techniques, targeting fault detection in non-stationary
situations. Dogan et al. [33] extract third harmonics in phase currents using Gabor transform
and ensemble EMD. Lee et al. [28] made a conclusion that the negative frequency part of
third harmonics is free from supply imbalance and inherent structural asymmetry, leading
to its high robustness. The ITSC fault signatures are selected as (2k − 1)th harmonics in [27],
which is a more general fault signature. Naderi et al. [26] obtain the fault-related frequency
signatures in the currents of PMSM through comprehensive theoretical analysis, concluding
the capability of each frequency component to distinguish among different faults.

The frequency pattern in dq-axis quantities is also widely applied. It is discovered that
ITSC fault introduces second harmonics in dq-axis voltage and currents [35], which can be
treated as an alternate perspective of the same fault signatures with NSC [2]. However,
the variation in controller bandwidth will cause re-distribution of the second harmonics
between voltage and current [36]. Huang et al. [31] introduce a fault index called the
Rayleigh quotient so that the second harmonics in voltages and currents can be sponta-
neously synthesized to reduce the influence of current controller bandwidth. The second
harmonics extraction method can be improved by applying a short-time Adaline neural
network [37], variational mode decomposition (VMD) [38], and wavelet transform [39]. The
transient false alarm is mitigated in [40] through estimated compensation signals calculated
according to the mechanical closed-loop transfer function. There are also methods using
the second harmonics in the extended Park’s vector approach (EPVA) [41].

Power, which is essentially the multiple of voltage quantities and current quantities,
combines both the signatures from voltage and current. The second harmonic is found
to appear in instantaneous reactive power (IRP) when an ITSC fault occurs in a PMSM
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working in the motoring mode, while it appears in instantaneous active power (IAP) in the
generating mode [29]. The analysis results show the amplitude of the second harmonics in
IRP or IAP is sensitive to working conditions. Consequently, the look-up table (LUT) is
adopted to make a fault decision. A similar detection method is proposed in [42], where
the second harmonics are observed in the instantaneous power of a synchronous generator.

Information in the amplitude and phase angle of the fundamental frequency compo-
nent in phase voltages or currents, i.e., the DC components in dq-axis quantities, are utilized
in some papers for ITSC fault detection and discrimination from other faults. The voltage
vector variation in the dq-axis is used as the fault indicator in [43]. The static eccentricity
fault, PM and PD faults, and ITSC fault cause the voltage vector to deviate from a healthy
vector toward a different direction. Meanwhile the deviation of the current angle is found
to increase when an ITSC fault occurs while demagnetization causes the current angle
to decrease [44]. Similarly, the torque angle is utilized in [45], which is essentially the
angle between the voltage vector and the d-axis. The amplitude and phase differences
among αβ fundamental frequency currents are considered together in [46]. It is worth
mentioning that, recently, the fundamental frequency components in the xy subspace of
dual three-phase PMSM (DTPPMSM) were found to be feasible for detecting and locating
an ITSC fault [30,47–49].

(c) High-frequency (HF) pattern

Previously mentioned papers mainly concentrate on frequency patterns in the LF
range. As for patterns in the HF range, two types of methods are developed, i.e., methods
based on the switching of frequency components and those based on the HF injection.

Switching frequency components exist in a switching inverter-based drive system. It
is a naturally embedded excitation source providing useful information for fault detection.
Sen et al. [50] observe that the admittance of phase winding increases in the HF region after
an ITSC fault happens. Hence, switching frequency ripple is adopted as the HF test signal
to obtain the HF impedance of winding. A similar idea is also investigated in [51]. Hu
et al. [52] model and analyze the pulse-width modulation (PWM) signals in a PMSM and
obtain the analytical expression of the PWM ripple current. The analytical expression, as
well as the simulation, shows that the amplitude of the PWM ripple current of the faulty
phase increases when the ITSC fault occurs. A fault index is further proposed, defined as the
ratio of the 2fswitching component in adjacent phases. The same principle is adopted in [53],
while its capability to distinguish between a high-resistance connection (HRC) and an ITSC
fault is discovered. An HRC fault only causes resistance asymmetry, hence it is insensitive
to HF voltage, while ITSC causes inductance variation, hence the discrimination of two
kinds of faults. The method is improved by the combination of the ZSVC and switching
frequency component analysis [54]. The fundamental component of ZSVC is used to detect
asymmetry in the stator while the HF component in ZSVC is used to distinguish between
the HRC and ITSC faults. Meanwhile, Gao et al. [55] combined the NSVC and switching
frequency component analysis. Wang et al. [56] compare interior PMSMs (IPMSMs) and
surface-mounted PMSMs (SPMSMs), where the saliency ratio is proved to be insignificant
to the switching frequency and its sideband in the current spectrum.

Switching frequency components in voltage rely on the modulation index, thus being
influenced by working conditions. On the other hand, by injecting HF voltage or current, the
excitation source becomes independent from working conditions, making fault signatures
much more consistent across different working conditions. A method based on the HF
rotating current is proposed to distinguish between HRC and ITSC faults [57]. The injected
frequency component is extracted from ZSVC. Xu et al. [58] inject specially designed HF
currents so that the injected currents only flow through two phases at one time. The line
voltage difference when injecting different pairs of phases is selected as the fault indicator.
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Other than the current injection, rotating square wave voltage is injected in [59,60] and the
differences of the HF response in three phases are selected as the fault features. Different
kinds of signal injection methods, including rotational voltage, static pulsating voltage,
rotational pulsating voltage, and rotational current, are systematically compared in [61].
The rotational voltage injection with constant amplitude is found to have more significant
fault features while having a simpler injection structure than the others. The HF injection
method is improved in [62] by replacing the zero voltage vector in the output of space
vector PWM (SVPWM), which results in a spatially asymmetrically distributed rotating HF
voltage. The capability of locating ITSC and HRC faults with a high-frequency injection is
further extended in [63].

Impedance can be calculated based on signal injection. It can be seen as another
perspective to evaluate the ITSC fault. Qi et al. [64] find that ITSC faults and eccentricity
have different influences on the impedance over the whole region of magnetic working
points, which can be used to distinguish these two faults. Another different way of utilizing
impedance information is presented in [65], where the resistance of phase winding is used
as the fault indicator. When ITSC fault occurs, the resistance of the corresponding phase
reduces, leading to a reduction in d-axis resistance, which is estimated by injecting DC
voltage under the standstill condition.

(d) Others

Apart from the aforementioned methods, there are various ways of extracting fault
signatures from current and voltage. Hang et al. [66] provide a novel method that uses
the differences among the three-phase current amplitudes as the fault indicator. Obeid
et al. [67] manage to detect the distortion in phase current or voltage waveforms caused
by intermittent ITSC faults using adaptive wavelet transform. The cost function of the
model predictive control system is utilized as a fault signal source in [68]. Discrete wavelet
transform (DWT) is adopted to analyze the cost function signal since it is a non-stationary
signal. ITSC fault is detected by monitoring the normalized energy-related feature vector
calculated from the wavelet transform coefficients. Skewness of currents [69], current
envelope [70], and the model signal of phase currents [71] are also found to be effective for
the detection of ITSC faults.

2.2.2. Magnetic Signals

Unlike electrical signal-based methods, magnetic signal-based fault detection methods
extract fault signatures through the magnetic field. These methods provide a different view
of the ITSC fault. As shown in Figure 6, different mounting places of sensors require differ-
ent levels of modification to the machine. According to the significance of the modification,
magnetic signal-based methods can be classified into two kinds, i.e., invasive methods and
less-invasive methods. Since the flux distribution varies in space, the signals captured in
different places are certainly different, and thus, different fault features are discovered with
these two kinds of methods.

(a) Invasive methods

Invasive methods place the sensors on the main flux path of the machine, as shown
in Figure 6a. Thus, sensors are usually placed in the slots [72,73], stator yoke [74], around
the tooth coils [75], etc., meaning that significant modification of the machine is required.
Da et al. [72] utilized the search coils on all teeth for the detection of various faults. The
polar diagram is then drawn to see the distortion of the airgap flux linkage due to an ITSC
fault. Similarly, Zeng et al. [76] also use search coils wound on a tooth. The frequency
components (2hk ± 1)fe (hk is the carrier wave ratio) are found to have high SNR, and a
fault index based on these two components is proposed.



Energies 2025, 18, 534 9 of 44

On the other hand, only six search coils are required in [73] by setting the coil pitch
of the search coils the same as the coil pitch of the phase windings. The NSC, with
a frequency of 2fs ± fe, component is extracted as the fault indicator, where fs is the
switching frequency. Furthermore, a universal design method for search coil structure is
developed in [77], considering the reliability, sensitivity, SNR, and positioning capability of
the induced voltage.

Sensors in 
slots

Sensors 
in airgap

Sensors in 
slot opening

 

Sensors at stator 
back side

Sensors at 
end region

(a) (b) 

tt

ffi

ff

ff

ff

Figure 6. Illustration of typical mounting placing of flux sensors for fault detection. (a) Invasive
methods; (b) less-invasive methods.

(b) Less invasive methods

Compared with the invasive methods, less-invasive methods make less significant
modifications to the machine. The sensors are usually placed at the end region or outer
side of the stator back iron, as shown in Figure 6b. Liu et al. [78] build and analyze the
magnetic equivalent circuit model of a PMSM and find that the stray flux at the stator
back side changes with the magnetomotive force (MMF) of the windings. Thus, tunneling
magneto-resistive (TMR) sensors are placed at the stator back side to obtain the stray flux
density. A polar diagram is drawn to discover the distortion in spatial distribution. A
similar method using only two search coils at symmetrical positions of the stator back side
is proposed in [79]. The Pearson correlation coefficient is adopted to analyze the induced
voltage in two search coils. Gurusamy et al. [80] specifically use the third harmonics in
stray flux to detect ITSC faults in PMSMs because the fundamental frequency component
may lead to a false negative error. Eldeeb et al. [81] propose a different method by utilizing
the switching frequency components in the stray flux, where an antenna placed relatively
far away from the machine is used to extract the switching frequency and its odd number
multiple components.

The housing of the machine may affect the stray flux distribution at the stator back
side. In such cases, placing sensors at the end region is an alternative way. Assaf et al. [82]
analyze the spectrum of the axial stray flux as well as the sensitivity of different frequency
components to ITSC faults and unbalanced supply. Lamim et al. [83] place two stray flux
sensors at the end region, which are orthogonal to each other. An orbit diagram is used to
illustrate the distortion of the leakage flux linkage. Kumar et al. [84] combine temperature
and the leakage flux density together for ITSC faults.

2.2.3. Other Signals

Other signals are also utilized for ITSC fault detection, such as mechanical signals [85]
and temperature signals [84,86]. For example, since the ITSC fault leads to harmonics in
currents, it can be expected that these will excite corresponding mechanical responses.
Hence, the fourth harmonics in speed signals [38,87,88] and vibration signals [85] are
investigated for ITSC fault detection.
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2.2.4. Summary

Table 1 concludes the general advantages and disadvantages of different kinds of
signal methods discussed in this section. Table 2 summarizes some of the typical research,
its contributions, and aspects for further improvements.

Table 1. Comparison among signal-based methods of ITSC detection.

Signal Types Fault Indicator Types Advantages Disadvantages

Electrical signals

Symmetrical
components

ZSC
+ Suitable for online detection
+ Irrelevant to winding topology

and pole-slot combination

- Troublesome to measure ZSC
voltage

NSC

+ Irrelevant to winding topology
and pole-slot combination

+ Higher amplitude than ZSC
+ Easier to obtain

- Affected by unbalanced input

LF pattern

Three-phase
harmonics + Easy to obtain

+ Readily integrated in the control
system

- Difficult for transient process
- Usually high computational

burden
- Influenced by winding topology

dq-axis
harmonics

Impedance
+ Less influenced by controller

bandwidth
- Influenced by

saturation/temperature

Instantaneous
power

+ Less influenced by controller
bandwidth

- Sensitive to load and speed
- Low sensitivity at no-load

condition

Others + Easy to obtain - Not suitable for transient process

HF pattern

Injection
+ Steady sensitivity
+ Suitable for a wide range of loads

and speeds

- Vibration and noise
- Influence on control performance

PWM related + High SNR

- Low sensitivity at no-load
condition

- Difficult to sample PWM ripple
current

Magnetic signals

Invasive + High SNR - Invasive
- Usually need many sensors

Less invasive

Stator back
side

+ Less invasive
- Influenced by housing

End region - Low SNR

Table 2. Typical research among signal-based methods for ITSC detection.

Typical Works Solved Problems Unsolved Problems Primarily Challenges

Electrical
signals

Symmetrical
components [11] Detection and localization of

fault using ZSC signal
Model is only applicable for
SPMSM

Monitoring faults in
non-stationary conditions

LF pattern [40] Mitigation of transient process
impact

Compensation is dependent
on machine parameters

Saturation can affect
performance of compensation

HF pattern [52] Consistent fault indicator
irrelevant to modulation index

The required sampling
frequency is very high

Reduction in the cost of extra
sampling board

Magnetic
signals

Invasive [72] Distinguish between different
kinds of faults Large amount of search coils Reduction in number of search

coils
Less invasive [78] Analytical analysis of stray flux Large amount of TMR sensors Reduction in number of sensors
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2.3. Model-Based Methods

Instead of explicitly extracting certain time or frequency domain features from signals,
model-based methods utilize the mathematical or finite element method (FEM) models
of PMSMs to estimate fault-related quantities. Compared with signal-based methods,
model-based methods rely more on the machine parameters but are usually more suitable
for transient conditions.

To better reveal the essential differences between these methods, in this paper model-
based methods are classified according to their observed signatures. For ITSC fault detec-
tion, the commonly used signatures include the estimation residual, estimated shorted turn
ratio, etc., as shown in Figure 7.

tt
ff

tt

ff

tt ff

Model-based methods

Estimation 
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Estimated shorted 
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Estimated machine 
parameters

 

ff

αβ

tt

ff

Figure 7. Classification of model-based methods for ITSC detection.

2.3.1. Estimation Residual

Healthy PMSM models are commonly used in this category of detection methods.
When the ITSC fault occurs, the model of the real machine becomes different from the
assumed healthy model, causing errors in the estimation results. Hence, the estimation
errors can be used as a fault indicator.

Three-phase current residuals are estimated with open-loop calculation in [89]. Mean-
while, an αβ current observer with feedback is adopted in [90] to calculate current residuals
considering the non-linearity of the inverter model and unbalanced inductance. Mazzoletti
et al. [91] further consider the influence of parameter errors. It is proved that NSC in the current
estimation residual is independent of parameter errors, hence being used as a fault indicator
to reduce the influence of the parameter variation. The NSC of the residual is also selected as
the fault indicator in [92], but the current estimation is achieved with the assistance of FEM so
that the saturation effect can be considered. The FEM model provides the relationship between
dq-axis flux linkages and currents. A similar principle is adopted in [93] while the influence of
working conditions is mitigated with a LUT. Mahmoudi et al. [94] use the Luenberger observer
to estimate the dq-axis currents. The NSC in the estimation residual is still used as the fault
indicator. A full-order Luenberger observer [95] and the extended Kalman filter [96] have also
been investigated for residual calculation. To better account for parameter uncertainty and
nonlinearity, digital twin models are used to obtain the current residuals [97].

Similar to current residuals, voltage residuals are also utilized. Hang et al. [98] model the
PMSM under the ITSC fault condition with two terms of voltage disturbances at the dq-axis,
and use the Luenberger observer to estimate the voltage disturbances. The sum of two voltage
disturbances is taken as the fault characteristics signal, and the 2nd harmonics in it is used as the
fault indicator. Similarly, Du et al. [99] estimate the disturbance in back-EMF with an extended
state observer and extract the 2nd PSC in the disturbance as the fault indicator. A five-phase
PMSM is investigated in [100], where the voltage disturbances in all phases are estimated.

Other than currents and voltages, various physical quantities can also be estimated to
monitor the deviation of the machine model due to the occurrence of a fault. Sarikhani et al.
[SAR13] estimate the back-EMF of PMSM and, similarly, take the residual of estimation as the
fault indicator. However, the fault index is set to the linear average of residual normalized
against speed. Cui et al. [101] estimate the electromagnetic torque using the torque equation
under the healthy condition. The estimation error is obtained by subtracting the estimation
value from the real value measured with the torque transducer. Through theoretical analysis,
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the DC component in the residual is found to only exist when the ITSC fault occurs, thus
being used as the fault indicator. Xu et al. [102] analyze the model of a sensorless SPMSM
with an ITSC fault considering the inverter nonlinearity and the current measurement error.
The residual voltages in the estimated dq-axis contain various harmonics when an ITSC fault
happens. With a proper harmonics elimination algorithm, the eighth harmonics in the voltage
estimation residual are selected for ITSC fault detection.

Upadhyay et al. [103] estimate the flux linkage in the dq-axis and draw the XY diagram
to observe the trace of flux linkage. By extracting the DC component in the flux linkage
trace variation, the fault can be detected and located.

For DTPPMSM, Yang et al. [104] utilize the difference of voltage vectors of two sets of
windings to detect the ITSC fault.

Furthermore, the model-based method can be combined with the high-frequency injec-
tion method for better SNR by estimating the high-frequency injection residual [105,106].

2.3.2. Estimated Shorted Turn Ratio

This kind of method utilizes the PMSM model with ITSC fault. The faulty model
contains the shorted turn ratio as a parameter. Thus, the short-circuit ratio can be esti-
mated with the information in machine voltages or currents, either through open-loop
expressions [107], or closed-loop observers [108,109].

Aubert et al. [108] build a PMSM model consisting of the standard PMSM voltage
equations and the short-circuit loop voltage equation. The Kalman filter is adopted to
estimate the shorted-turn ratio of each phase. Sayed et al. [109] take a similar approach, but
also compare the performance of the extended Kalman filter and the unscented Kalman
filter. Furthermore, a hidden Markov model is adopted in [110] to estimate the range of the
shorted turn ratio and short-circuit resistance.

2.3.3. Estimated Machine Parameters

ITSC faults lead to changes in machine parameters such as inductances and back-
EMFs. Hence, detection of ITSC faults can be achieved with parameter estimation meth-
ods [8,111,112]. In comparison of methods based on estimation residuals, these kinds of
methods estimate the parametric quantities instead of machine variances, meaning that the
estimated parameters should be time-invariant under constant working conditions. In [113],
the inductances, the turn numbers of the phase windings, and the phase resistances are
estimated to detect ITSC faults. In [114], the probability distribution function of estimated
machine parameters is used as the fault indicator.

Except for the aforementioned methods, several other fault indicators have also been
investigated, such as estimated torque [115], speed estimation residual [116], etc.

2.3.4. Summary

Table 3 concludes the general advantages and disadvantages of different kinds of
model-based methods discussed in this section. Table 4 summarizes some of the typical
research, its contributions, and aspects for further improvements.

Table 3. Comparison among model-based methods of ITSC detection.

Signatures Advantages Disadvantages

Estimation residual + Less computational
burden

+ Suitable for
non-stationary
conditions

- Dependent on
machine parameters

Estimated shorted turn
ratio

+ Easy to evaluate
fault severity

- More estimated
variables

Estimated machine
parameters
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Table 4. Typical works among model-based methods for ITSC detection.

Typical
Works

Solved Problems Unsolved Problems
Primarily
Challenges

Estimation
residual [92]

Reduction in the
influence of
saturation effect

LUT is required for
different working
conditions

Large memory
consumption of
storing LUT

Estimated shorted
turn ratio [108]

Direct estimation of
SC ratio in each
phase

Assuming the SC
resistance is about
0 Ω

Feasibility when SC
resistance is not near
0 Ω

Estimated machine
parameters [114]

Combining
parameter estimation
with probabilistic
fault detection

Cannot tolerate a
large difference
between Ld and Lq.

Accounting for large
saliency machine

2.4. Data-Based Methods

Compared with signal- and model-based methods, data-based methods generally use
a significantly larger amount of machine operating data. Fault signatures in the data are
extracted and analyzed implicitly through the machine learning process, while the machine
model and explicit fault signatures are usually less important.

Data-based methods can be classified according to the signals they used: electrical
signals, magnetic signals, and other signals, as shown in Figure 8.

Data-based methods

Electrical signals Magnetic signals

Symmetrical 
components Others InvasiveFrequency 

pattern

FFT

Bispectrum

Wavelet

Less-
invasive

Stator back 
side

End region

Other signals

Search coils 
on tooth

Time series 
data

CNN

RNN

Others
 

ff

Figure 8. Classification of data-based methods for ITSC detection.

2.4.1. Electrical Signals

Machine learning algorithms put no limit on the input data forms. Some algorithms,
such as CNN or recurrent neural networks (RNNs), can directly process the time series data,
and the implicit fault features are automatically learnt from the training data. In contrast,
fault signatures in the time series data can also be processed with signal analysis tools such
as FFT, and the fault-related information in the results can be subsequently extracted with
machine learning algorithms. Thus, the methods are further classified according to the
forms of input data of machine learning algorithms.

(a) Time series data

Data in the form of time sequence can be directly fed into the machine learning
algorithms. Thus, the fault signatures are automatically determined and extracted with
machine learning processes and then are analyzed and classified. In [117], three-phase
voltage and current signals are directly input into the proposed framework. Multiple
feature extraction methods, as well as multiple classifications, are used in parallel and
synergized with Fisher’s ratio. Wang et al. [118] manage to detect an ITSC fault with two
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of the three phase currents and the deep autoencoder. Furthermore, only one phase current
is required in [119].

A wide range of existing methods apply the convolutional neural network (CNN) for
fault detection. The convolution layer usually plays a role as the feature extraction method
in the machine learning structure. Compared with traditional spectrum analysis tools, such
as FFT, the corresponding features are identified and extracted with the convolution layer
self-adaptively according to the training data, because the convolution core is obtained
through a training process. In [120], a method based on CNN is proposed, where time
series of three-phase currents compose a 3 × n array as the input of CNN. Shih et al. [121]
compare the performance of SVM and CNN on ITSC fault detection. Time series of q-
axis voltage and current are used as the input of SVM, while the waveforms of them are
converted into 2D images and fed into CNN. A conclusion is made that SVM, which is
assisted with a mathematical model of PMSM, requires much less data. On Bayesian
optimization-based residuals, CNN is applied in [122] to reduce network depth and avoid
the degradation effect when feeding time series data into CNN. A residual dilated CNN is
applied in [123], combined with transfer learning techniques. Some other applied methods,
such as deep Q-network [124] and stacked autoencoder [125], also have one or multiple
convolutional layers.

Apart from CNNs, transformer neural networks [126], RNNs [127], etc., can also learn
the features from time series data.

Furthermore, it is worth noting that traditional artificial intelligence algorithms are
also widely applied to select certain features for fault detection [128] or estimate fault-
related quantities [129], such as genetic algorithms (GAs) [113,130,131], particle swarm
optimization (PSO) algorithms [128,129], and fuzzy logic algorithms [132–134]. In [113], a
GA is adopted to estimate the inductance parameters whose variation contains fault-related
information. Similarly, PSO is adopted in [129]. In [131], a PSO algorithm, GA, and a whale
optimization algorithm, as well as the stochastic parallel gradient descent algorithm, are
successfully applied to detect ITSC faults under different non-ideal conditions. It was also
found that the stochastic parallel gradient descent algorithm is more stable than the others.
The fuzzy logic algorithm is adopted in [132] to straightforwardly map the nonlinear
relationship between machine currents and speed to the state of the machine. This method
is improved by combining ANN with fuzzy logic in [135], called an adaptive neural fuzzy
inference system.

(b) Symmetrical components

Instead of directly feeding three-phase current signals, NSC and PSC are used as the
input for a neural network in [136]. Similarly, an attention-based RNN is adopted in [127]
to analyze the NSC, PSC, and speed. Meanwhile, Pietrzak et al. [137] take NSC and PSC as
the input of the k-nearest neighbor (KNN) algorithm.

In [138], an efficient method based on stacked sparse autoencoders and Siamese
networks is proposed to reduce the amount of data required for training. Seven kinds of
signals and features are integrated into the dataset, including a three-phase current, NSC
and PSC in current, NSC impedance, and electronic torque.

(c) Frequency pattern

Machine learning algorithms can also process the spectrum of three-phase cur-
rents [139,140] or dq currents [141]. Specifically, Pietrzak et al. [142] use bispectrum anal-
ysis to pre-process three-phase currents. The result of the bispectrum analysis is a 2D
image, which is then fed into a CNN for further feature extraction. Meanwhile, other
time-frequency analysis techniques, such as the wavelet transform [143], are also adopted.

(d) Other features
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The image of Park’s vector trajectory is used as the input of a neural network in [144].
In [145], 15 features are extracted from current signals to build up the dataset, including
mean value, maximum value, root-mean-square (RMS) value, etc. In [146], the differences
between two of three phase currents are obtained to enhance the fault signatures.

The estimation residual of a q-axis current based on a Luenberger observer is used
in [147] so that the information of the PMSM model can be incorporated into the machine
learning process.

It is worth noting that the hybrid methods of signal-based methods and data-based
methods become more and more popular due to their special advantages. The signatures
extracted with signal-based methods, such as harmonics and sequence components, are
fed into AI algorithms so that the hidden information in the multiple signatures can be
learned and used for the improvement of detectability. Compared with solely signal-based
methods or data-based methods, the hybrid methods [136–138] rely less on the process of
learning the implicit features and also show an improvement in detection accuracy.

2.4.2. Magnetic Signals

Search coils are placed on a tooth to capture the abnormality in airgap flux density
distribution due to the ITSC, eccentricity, and partial demagnetization fault in [148], where
the induced voltage is processed into an image using a short-time Fourier transform.
Meanwhile, the stray flux density in the end region [149] and at the stator back side [150]
are also investigated.

2.4.3. Other Signals

Apart from the electrical and magnetic signals, many other signals are also used for
ITSC detection. For example, torque signal is combined with currents in [124]. Speed signal
is combined with dq voltage and currents in [141] to reduce the influence of controller
bandwidth. Furthermore, the input current on the power side [151] and the vibration
signals [152] are also investigated.

2.4.4. Summary

Table 5 concludes the general advantages and disadvantages of different kinds of
model-based methods discussed in this section. Table 6 summarizes some of the typical
research, its contributions, and aspects for further improvements.

Table 5. Comparison among data-based methods of ITSC detection.

Input Data Types Advantages Disadvantages

Electrical signals

Time series

+ Non-invasive
+ No need for

choosing signal
analysis tools

- Difficult to integrate the
information about
widely adopted fault
harmonics

Symmetric components + Non-invasive
+ High sensitivity

- May be limited by the
information in the
extracted featuresSpectrum

Magnetic signals
Airgap flux density

+ High sensitivity - Invasive
Stray flux density - Relatively low SNR

Table 6. Typical works among data-based methods for ITSC detection.

Typical Works Solved Problems Unsolved Problems Primarily Challenges

[147] Integrating known information about
faulty models into AI Influenced by parameter errors

Enhance the robustness against
parameter mismatch and immunity
against transient process

[122] Simplify hyperparameter tuning
process Influenced by working conditions Robustness against variation of

working conditions
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3. Partial Demagnetization Detection

3.1. Background

Demagnetization of a magnet means the magnetic property of this magnet degrades. Once
the applied field strength exceeds the knee point of the B-H curve of a PM, as shown in Figure 9,
the working point of the PM will not recover following the original B-H curve but will follow
the recoil line [153]. This means that the remanence is reduced from Br to Br

’; in other words, the
PM is demagnetized. Generally, a high temperature and large armature field are the main causes
of demagnetization faults [154]. The demagnetization severity of a PM is usually reflected in its
remanence Br, which decreases as the severity of demagnetization increases.

Br
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Figure 9. Illustration of demagnetization curve of a PM.

In the area of fault detection, PM demagnetization faults are usually classified into
two categories: uniform demagnetization (UD) and PD. UD means all PMs in a PMSM
are demagnetized uniformly, while PD means only one or a few PMs are demagnetized,
and the severity of demagnetization can be non-uniform. In recent research, PD detection
gains more attention due to its commonness and difficulties in detection. Hence, this paper
concentrates most on PD detection rather than UD detection.

PD causes unwanted harmonics in the back-EMF and currents, as well as torque ripple,
unbalanced magnetic pull, and vibration [3], leading to a deterioration in the performance
and efficiency of the PMSM drive system.

Detection of PD has been widely investigated in the past few decades. The proposed
methods can be classified into signal-based, model-based, and data-based, similar to the
ITSC detection methods.

3.2. Signal-Based Methods

Classification of signal-based methods for PD detection is shown in Figure 10.
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Figure 10. Classification of signal-based methods for PD detection.
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3.2.1. Electrical Signals

(a) Symmetrical components

Similar to ITSC fault detection, symmetrical component analysis can also be applied
in PD detection. The mostly used symmetrical component in PD detection is ZSC. Urresty
et al. [155] discuss the influence of winding configurations on the spectra of currents and
ZSVC of a PMSM with a demagnetization fault. It is proved that harmonics appear in both
the current spectrum and ZSVC spectrum in fractional-slot PMSM in the case of PD. But
in integral-slot PMSM, new harmonics may not emerge in the current or ZSVC spectrum,
depending on the specific winding configuration. It is also discovered in [156] that fractional
harmonics in the current spectrum related to PD might be cancelled in the phase current
with certain winding configurations. However, the ZSVC will not be eliminated in such
a winding configuration, hence it being eligible for PD detection. Furthermore, Zhan
et al. [157] extend the ZSC-based methods to DTPPMSM. The drop of the third harmonics
in the difference of ZSVC in two sets of windings is chosen as the fault indicator for an
integer-slot machine, while, for other types of machines, the fractional harmonics are used.

(b) LF pattern

Fractional harmonics are very frequently used in demagnetization fault detection.
When PD occurs, the frequencies of harmonics that emerge in three-phase currents can be
expressed as [158]

fPD = fe

(

1 ±
k

p

)

, k = 1, 2, 3, · · · , (1)

where fe is the electrical frequency, p is the pole-pair number, and k is any positive integer.
According to the pole number of a certain machine, the corresponding fault harmon-

ics can be obtained FFT [159]. However, under the transient condition, the fundamental
frequency components interact with fault-related harmonics [160], causing a false alarm.
Thus, advanced signal processing techniques are adopted to track and analyze the harmon-
ics, such as wavelet transform [161], the box-counting algorithm [162], the Vold–Kalman
filter [163], T-f decomposition [160,164], HHT [165], etc. Other than harmonics in the phase
currents, harmonics in dq currents are also evaluated for PD detection in [166].

The capability of certain harmonics to distinguish PD from eccentricity is paid special
attention. In [159], the 2/3rd and 4/3rd harmonics emerge in the stator spectrum of a
six-poles SPMSM under both the PD and dynamic eccentricity fault conditions, thus being
unable to distinguish them. On the other hand, the 1/4th and 1/2nd harmonics are found
able to distinguish PD from static eccentricity [167] in a nine-slot, eight-pole SPMSM.
Amplitude and phase angle of the (1-1/p)fe harmonics are used together to distinguish
the PD and eccentricity faults. Furthermore, Naderi et al. [26] systematically analyze the
homopolar frequency components in the stator current and conclude the components with
the capability to distinguish between PD, eccentricity, and the ITSC fault.

The PD-related frequency components are studied comprehensively in [158,168], con-
sidering pole-slot combination, double-layer and single-layer winding, as well as skew
angle. It is found that the harmonics at a triple multiple of mechanical frequency may
disappear due to the winding configuration. Specifically, in the case when the following
criteria are satisfied:

nlayer ×
nslot

2p
= 3k, k = 1, 2, 3, · · · ,

PD does not create harmonics in stator currents, where nlayer, nslot, and p are the number
of winding layers, slots, and pole-pairs, respectively. A systematic analysis is presented
in [169] about the harmonics in back-EMF under the PD and eccentricity conditions.
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Apart from harmonics, the variation of the current angle [44] and torque angle [45] are
found feasible to distinguish PD and ITSC faults, and, furthermore, the torque angle can
be combined with the voltage vector amplitude to further discriminate PD, SE, and ITSC
faults [43].

Methods based on current spectrum, Park’s vector approach (PVA), and extended
Park’s vector approach (EPVA) are compared in [170] and the EPVA is found superior in
terms of high sensitivity and robustness.

Furthermore, the signatures in the fifth harmonics subspace voltage vector of the
DTPPMSM are investigated [171].

(c) HF pattern

Generally, very few papers utilize the HF pattern in voltages or currents for PD
detection. However, it is found in [172] that the demagnetization can change the saturation
level of the machine, and thus, it can be detected by inspecting the d-axis incremental
inductance. It is also claimed that this method can detect PD faults in the case where
machine current signature analysis (MCSA) cannot.

(d) Others

Instead of using spectrum analysis, Hong et al. [173] use the waveform of currents
to detect PD at a standstill condition, essentially utilizing the impact of PD on the satu-
ration level of the iron core. It is also worth mentioning that Fernandez et al. [174] and
Reigosa et al. [175] managed to utilize the magnetoresistance effect of PM to estimate the
magnetization state of PM.

3.2.2. Magnetic Signals

(a) Invasive methods

As discussed previously [158], some PD signatures in currents or voltages may not
emerge depending on the topology of PMSM. Magnetic signal-based methods can get
around that limitation by extracting the fault signatures directly from the flux or flux density.

The radial airgap flux density is analyzed at different working conditions in [176],
and Hall sensors are placed in the airgap to obtain the corresponding signatures. Search
coils wound on each tooth are adopted in [72], and the first-order harmonics amplitudes in
each search coil are used. This method is improved in [177] by introducing a more robust
fault index, which subtracts the average value of induced voltage in the range of a 120◦

mechanical angle from the original induced voltage waveforms. Multiple harmonics are
used to evaluate the severity of PD in [178]. The abovementioned methods require search
coils with only one tooth pitch wound on each tooth, which might be too complicated for a
PMSM with many slots.

A method [179] is proposed by using two search coils placed on the tooth and facing
the airgap. Four search coils are placed at the slot opening in [180]. In [181], six search
coils with one pole pitch are placed in stator slots of a 36-slot, 4-pole machine. The induced
voltage in the search coils is found to contain (2k + 1 ± 2/p)th order harmonics when PD
occurs. Rafaq et al. [182] find out that, for PD detection, only one search coil on the tooth is
essentially enough because the demagnetized PM can be continually scanned by the search
coils when the rotor is rotating. Skarmoutsos et al. [183] place a search coil in slots with
the coil pitch being exactly a four-pole pitch. Consequently, the induced voltage will be
zero under the healthy condition, resulting in a better signal-to-noise ratio (SNR). When
PD occurs, the peak-to-peak value of induced voltage is used to calculate the fault index.

In addition, in [184], the search coils are wound at the stator yoke. Two search coils
are placed at the bottom of two slots, whose distance is exactly one pole-pitch, and connect
with each other in a way to make sure the ideal output is zero under the healthy condition.
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Chen et al. [185] improved this method by adding another search coil, which is also one
pole-pitch away. In total, eight search coils on the stator yoke are used in [74] to achieve
discrimination between the PD and ITSC faults. Furthermore, the search coil on the rotor is
also investigated in [186].

In [187], a special type of demagnetization was discussed, where the trailing edge of
PM is demagnetized. It is demonstrated that monitoring airgap flux has the detectability of
this type of demagnetization.

(b) Less invasive methods

The stray flux at the stator back side contains similar harmonics and signatures as
the airgap flux [80,188]. Goktas et al. [189] apply two flux-gate sensors located behind the
tooth and behind the slots, respectively. A circumferentially equidistant array of eight
TMR sensors are placed outside the stator in [190]. The time domain fault index based on
the envelope and the average of the stray flux density is calculated, which shows better
performance than methods based on machine current signatures.

The stray flux in the end region can also be utilized. Hall sensors placed at the end
region close to the PM are used to detect demagnetization [191]. The method is improved
in [192] using the ZSC flux in the end region, which presents higher sensitivity. Park
et al. [193,194] reduce the number of Hall sensors to one and further discuss the feasibility
of fault detection with digital Hall sensors. The basic principle is that, if the rotor PMs are
not symmetrical due to local demagnetization or damage, the flux measurement of the Hall
sensor will be smaller when the demagnetized PM passes the Hall sensor.

3.2.3. Other Signals

PD causes harmonics in the spectrum of currents and voltages, consequently causing
harmonics in torque, i.e., torque ripple. In [195], the amplitude of (λ ± ξ/p)th harmonic
in torque is chosen as the fault index, where λ and ξ are integers and p is the pole-pair
number. Furthermore, the 0.25th harmonic in the vibration signal is used in [196].

3.2.4. Summary

Table 7 concludes the general advantages and disadvantages of different kinds of
signal-based methods discussed in this section. Table 8 summarizes some of the typical
research, its contributions, and aspects for further improvements.

Table 7. Comparison among signal-based methods of PD detection.

Signal Types Fault Signature Types Advantages Disadvantages

Electrical signals

Symmetrical
components ZSC

+ Irrelevant to winding topology
or machine topology - Difficult to measure

Frequency
pattern

Spectrum + Non-invasive
- Highly dependent on winding

topology and machine
topology

Impedance + High SNR - Highly influenced by
temperature

Others Waveform pattern + Intuitive and simple - Highly influenced by
saturation
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Table 7. Cont.

Signal Types Fault Signature Types Advantages Disadvantages

Magnetic signals

Invasive

All tooth mounted
+ Distinguishable among

different faults
+ Intuitive

- Large amount of sensors

Few teeth mounted

+ Fewer sensors
- Relatively difficult to

distinguish PD from other
faults

Pole-specific search
coils

Less invasive

Stator back side

+ Less invasive

- Affected by housing

End region - Difficult to accurately mount
the sensors

Table 8. Typical works among signal-based methods for PD detection.

Typical
Works

Solved Problems Unsolved Problems Primarily Challenges

Electrical
signals [168] Analysis considering machine

topologies Lacking universal detection methods Extending the generalizability of
electrical harmonics-based methods

Magnetic
signals [182] Reduction in number of search coils Non-stationary working conditions Non-stationary working conditions

3.3. Model-Based Methods

The classification of model-based methods for PD detection is shown in Figure 11.
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Figure 11. Classification of model-based methods for PD detection.

3.3.1. Estimation Residual

In [197], the airgap flux density is estimated in real-time through the analytical equa-
tions assisted with an offline FEM model and compared with the measured signal obtained
with Hall sensors. The deviation is then processed with a wavelet transform to extract the
target frequency, followed by a classifier. Bisschop et al. [198,199] managed to build up the
analytical expression of the induced voltage in search coils. Then, the predicted induced
voltage is compared with the measured value, and the deviation is used to evaluate the
severity of PD.

3.3.2. Estimated Rotor Flux

Roux et al. [200] estimated d-axis flux linkage with the voltage equation of PMSM
and monitored the decreases in the estimated value. Moon et al. [201] present a method
to estimate the PM flux and the Ld and Lq at the same time. The variation in PM flux
is combined with the deviation of Ld and Lq to detect PD. Zhu et al. [202] estimate the
rotor flux by using torque ripple as the input of the rotor flux estimation algorithm. Liu
et al. [203] also estimate the rotor flux while simultaneously monitoring the HF d-axis
inductance to discriminate the eccentricity and the PD faults. Han et al. [204] further take
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the variation of parameters into consideration and successfully separated the estimated
quantity irrelevant to parameter error. Rotor flux linkage can also be estimated with PWM
voltage measurements [205] to exclude the influence of inverter nonlinearity.

For DTPPMSM, PD detection can be achieved by monitoring the flux linkage in the
fifth harmonics subspace [206].

3.3.3. PM Magnetization State Estimation

Demagnetization is essentially the change of the PM magnetization state. Hence,
monitoring the PM magnetization state can detect the PD fault. FEM is one of the most
common techniques to evaluate the magnetization state of the PMs [207–209]. However,
the high computational burden of FEM makes it almost impossible for online detection.
Therefore, a magnetic equivalent circuit is adopted in [168,210,211] to replace the FEM.

3.3.4. Summary

Table 9 concludes the general advantages and disadvantages of different kinds of
model-based methods discussed in this section. Table 10 summarizes some of the typical
research, its contributions, and aspects for further improvements.

Table 9. Comparison among model-based methods of PD detection.

Signal Sources Signatures Advantages Disadvantages

Voltage/Current Estimated rotor flux + Non-intrusive
+ Suitable for

transient
condition

- Unable to locate fault
- Low sensitivity
- Essentially influenced by machine

topology

Flux signal +
Voltage/current Estimation residual + High sensitivity - High cost of flux sensors

- Invasive

Voltage/Current PM magnetization
state estimation

+ Non-intrusive - Generally high computational
burden

Table 10. Typical works among model-based methods for PD detection.

Typical Works Solved Problems Unsolved Problems Primarily Challenges

[203] Distinguish between PD
and eccentricity

Influence of saturation level
is not thoroughly analyzed

Elimination of load
conditions

3.4. Data-Based Methods

The classification of data-based methods for PD detection is shown in Figure 12.
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Figure 12. Classification of data-based methods for PD detection.
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3.4.1. Electrical Signals

Skowron et al. [212] target detecting the ITSC fault and the PD fault at the same time.
The raw current signals are constructed as a 20 × 25 × 3 array and fed into a CNN. A
similar principle is adopted in [213], while a transfer learning technique is integrated into
the diagnosis framework. Chen et al. [147] also adopted CNN to distinguish ITSC and PD
but processed the current and voltage signals with a model-based method and fed the CNN
with a q-axis current residual. Other than CNN, linear discriminant analysis and principal
component analysis are combined with a variational autoencoder in [74] to extract implicit
features in current signals.

The method proposed in [214] converts both voltage and current signals into images
and then processes them with a local binary pattern texture analysis. The extracted features
are then classified using a KNN algorithm. Bispectrum is adopted to convert the three-
phase currents into images in [215] to detect eccentricity and PD faults. Continuous wavelet
transform (CWT) is combined with ResNet in [119], and the short-time Fourier transform
(STFT) is combined with KNN and a multilayer perceptron in [216]. The combination
of signal-based methods and data-based methods enhances the robustness of detection
methods against transient processes.

It is worth noting that, because of the strong capability of machine learning algo-
rithms, a lot of papers investigate the discrimination among different fault types based on
voltage and current signals, such as ITSC and PD [119,143,147,217,218], eccentricity and
PD [215,217,219,220], etc.

Since the demagnetization of PM is sensitive to temperature, the influence of PD on
machine temperature is analyzed in [221], and the temperatures of the shell and winding
are used in addition to current, torque, and speed signals.

3.4.2. Magnetic Signals

In [222–224], airgap flux density is measured with three gauss meter probes located
in different positions in the airgap of a double-side linear PMSM. In [222], complex CWT
and the Teager–Kaiser energy operator are used to extract the fault feature, while in [223], a
time–time transform is used. Random forest and an extreme learning machine are adopted
as classifiers, respectively. Other than using flux density measuring sensors, search coils
wound on tooth [148] and yoke [225] are also adopted to capture the distortion in the airgap
flux density.

In [226], a stray flux signal sampled outside the stator back-iron is converted into a
symmetric dot pattern image and analyzed by a wavelet scattering convolution network
and semi-supervised deep rule-based classifier. Similar stray flux sensors are placed in [227],
while the sampled signals are processed with the local outlier filter and deep Q-network.

3.4.3. Summary

Table 11 concludes the general advantages and disadvantages of different kinds of
data-based methods discussed in this section. Table 12 summarizes some of the typical
research, its contributions, and aspects for further improvements.

Table 11. Comparison among data-based methods of PD detection.

Signal Sources Advantages Disadvantages

Electrical signals Voltages and currents + Non-invasive

+ Suitable for
multi-sensor
fusion

+ High sensitivity

- Influenced by machine topology

- High
computational
burden

Magnetic signals
Airgap flux + Universal

- Need extra sensors
Stray flux + Less invasive

Others
Torque

+ Non-invasive
Acoustic noise
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Table 12. Typical works among data-based methods for PD detection.

Typical Works Solved Problems Unsolved Problems Primarily Challenges

[216]
Combination of signal-based and data-based
methods and improvement in transient
conditions

Influence of noise and
sampling rate

Improve robustness against
noise in collected data

4. Eccentricity Detection

4.1. Background

Eccentricity refers to the misalignment of the geometrical center of the rotor and stator,
resulting in an unevenly distributed airgap. Many factors can cause eccentricity, such as
manufacturing tolerance, bearing faults, rotor deformation, etc. Generally, there are three
types of eccentricity, including static eccentricity (SE), dynamic eccentricity (DE), and mix
eccentricity (ME).

SE occurs when the rotating center of a rotor is not aligned with the center of stator
Os while being aligned with the geometric center of rotor Or. As shown in Figure 13a, SE
results in an unevenly distributed but time-invariant airgap.

Os

Or

 

Os

Or

 

(a) (b) 

Figure 13. Illustration of eccentricity. (a) SE; (b) DE.

On the other hand, DE means the rotating center of a rotor is aligned with the center
of stator Os but misaligned with the geometric center of rotor Or. It can be seen from
Figure 13b that the position of the minimum airgap rotates with the rotor, but the average
airgap length is still the nominal airgap length.

ME is essentially the mixture of SE and DE.
With an uneven airgap, eccentricity causes harmonics in back-EMF [228] and currents,

torque ripple, the unbalanced magnetic pull (UMP) [229], and vibration [230]. It is also
reported in [231] that eccentricity has a very significant influence on cogging torque in
machines having 2p = Ns ± 1, where p is the pole-pair number and Ns is the number of
stator slots.

4.2. Signal-Based Methods

The classification of signal-based methods for eccentricity detection is shown in
Figure 14.
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Figure 14. Classification of signal-based methods for eccentricity detection.

4.2.1. Electrical Signals

(a) LF pattern

Fractional harmonics are commonly observed in stator currents and voltages when an
eccentricity fault occurs. The harmonics caused by DE can be expressed as [159,232]

fde = fe

(

1 ±
2k − 1

p

)

, k = 1, 2, 3, · · · . (2)

Meanwhile, the (1 + 2k/p)th harmonics are found related to SE in [232] for the stud-
ied machine.

For DE detection, the 2/3rd and 4/3rd harmonics of a six-poles BLDC are analyzed
and tracked with a windowed Fourier transform [9], analytical wavelet transform [233],
and the quadratic time-frequency representation method [234]. Meanwhile, frequency
components with even multiples of mechanical frequency harmonics are selected as fault
indicators for DE in [27] and are found to be able to distinguish DE from ITSC faults.
Discrimination of DE from PD is accomplished in [235] based on the amplitudes and
phase angles of monitored harmonics. IPMSMs and SPMSMs are compared in [236] and
found no impact on the existence of the harmonics. Similar frequency components are
obtained in [237] through synchronous resampling to obtain better consistency at various
operation conditions.

For SE detection, the 1/4th harmonics is selected of a nine-slot, eight-pole SPMSM
in [167]. Skarmoutsos et al. [238] propose an algorithm to analytically calculate the fractional
harmonics that exist in phase voltage and point out that the coil and pole number can
influence the harmonic existence expressed in (2). It is also discovered in [228] that the
back-EMF is not affected by eccentricity in rotationally symmetrical machines, leading to a
reduction in fault harmonics.

Integer harmonics also emerge when an eccentricity fault occurs. In [200], the NSC of
the seventh harmonic in currents is chosen as the fault indicator for SE. The fundamental
frequency component in the ZSVC difference between two sets of windings in a DTPPMSM
is used for SE detection in [239], while the sideband (1 ± 1/p)th harmonics are used for
DE detection.

As mentioned in the methods of ITSC and PD faults, the variation of fundamental
frequency components is used in [43] to discriminate ITSC, PD, and SE. Back-EMF at
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various speeds and speed-fluctuation conditions is collected and used for DE detection
in [240].

(b) HF pattern

HF pattern can reflect the changes of inductance due to the fault. It is pointed out that
variation in the PM flux results in the saturation degree in the d-axis and thus changes the
d-axis inductance [241]. A pulsating voltage at the d-axis is injected under the standstill
condition to calculate the d-axis inductance and, consequently, to detect SE. The method
is further extended [172] to non-standstill conditions and enabled to discriminate demag-
netization and DE. A DC voltage in the d-axis is further injected, superimposed with a
pulsating HF voltage, and incremental inductance is calculated with the response current.
The increase and decrease in inductance compared with a healthy machine are used as
features for demagnetization and eccentricity faults. Furthermore, Liu et al. [203] utilize the
mechanical frequency fluctuation of d-axis inductance to detect DE. Similarly, Aggarwal
et al. [242] propose an off-line test method based on incremental inductance, while another
criterion is added, that is, the hump height of the inductance curve versus the current.

4.2.2. Magnetic Signals

Similar to the PD fault, the eccentricity fault features may be influenced by the ma-
chine topology [228,238]. In comparison, the magnetic signals directly monitor the field
distribution without relying on the signals filtered by the phase windings. Thus, magnetic
signals have a significant advantage of universality in the detection of eccentricity.

(a) Invasive methods

Search coils wound on each tooth are feasible for detecting both SE and DE and also
able to distinguish them from each other [72,177,182]. In [177], two specially designed
fault indicators are calculated from the induced voltages to separately distinguish PD and
eccentricity faults. Meanwhile, the nominal peak values of the induced voltages are used
as fault indicators in [182]. Furthermore, only one search coil in [243] is placed in the slots,
whose coil pitch is about the even multiple of the pole-pitch, so that the induced voltage
can be eliminated under the healthy condition. In [244], Hall sensors are placed at the slot
opening. The NSC and the single side-band components in the flux density are used as the
fault signatures of the SE and DE, respectively.

(b) Less invasive methods

Sensors are mounted onto the stator back side of a synchronous generator to capture
the stray field [245,246] and manage to distinguish the SE and DE. An analytical method is
developed in [247] to predict the stray flux at the stator back side under the SE condition.
Hall sensors are mounted at the end region in [194,248] to capture the distortion due to
eccentricity. In [248], the RMS of induced voltages is compared among the four search coils.
It is proved that the digital Hall sensor is also feasible as a cheaper alternative to the analog
Hall sensor [194].

4.2.3. Other Signals

Cogging torque is found to contain signatures of eccentricity in [249,250]. It is also
stated in [251] that, by measuring the UMP, discrimination can be achieved between SE and
DE. Furthermore, the vibration and acoustic noise caused by eccentricity is investigated
in [252] and [253], respectively.

In [254], the temperature asymmetry of the whole machine is utilized for SE detection.
The asymmetry in iron loss distribution is discovered when SE exists, resulting in the
asymmetry of temperature.



Energies 2025, 18, 534 26 of 44

4.2.4. Summary

Table 13 concludes the general advantages and disadvantages of different kinds of
signal-based methods discussed in this section. Table 14 summarizes some of the typical
research, its contributions, and aspects for further improvements.

Table 13. Comparison among signal-based methods of eccentricity detection.

Fault Signature Types Advantages Disadvantages

Electrical signals

Voltage/Current
spectrum

+ Non-invasive
- Dependent on winding

topology/machine topology

Impedance
+ Less influenced by

machine topology
- Highly sensitive to working

conditions

Magnetic signals
Invasive

All tooth wound + High sensitivity
- Need a lot of sensors
- Invasive

Fewer sensors + Relatively low cost

Less invasive
Stator back side

+ Less invasive
- Influenced by housing

End region
- Need accurate position of

search coils

Table 14. Typical research among signal-based methods for eccentricity detection.

Typical Works Solved Problems Unsolved Problems Primarily Challenges

Electrical signals [241]
Improvement in simplicity
and generalizability

Unable to online monitor
Continuous monitoring
accounting for variation of
working conditions

Magnetic signals [72]
Generalizability among
different kinds of PMSMs

Large number of sensors
Reduction in the number of
search coils

4.3. Model-Based Methods

According to the criteria adopted in this paper, very few methods for eccentricity
detection are classified as model-based methods. Thus, this category of methods is omit-
ted here.

4.4. Data-Based Methods

Classification of data-based methods for eccentricity detection is shown in Figure 15.
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Figure 15. Classification of data-based methods for eccentricity detection.

4.4.1. Electrical Signals

Ebrahimi et al. [232] extract the sideband frequency components from stator currents,
and the KNN classifier is cascaded with an artificial neural network (ANN) to distinguish
SE, DE, and ME. Furthermore, in [255], the fault features of SE and DE are extracted from the
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harmonics around the fundamental frequency component and classified with SVM. Similar
harmonics are used in [256], while the harmonics are obtained with wavelet analysis. The
classification is achieved with KNN, and the evaluation of severity is achieved with SVM.
In [215], three-phase currents are processed with bispectrum analysis and converted into
images. Specifically, the information in different frequency ranges is separately extracted
and transformed into images to minimize the invalid information for ME detection.

In [217], the time and frequency indices are calculated with dq currents and fed into
different outlier detection methods, including isolation forest, SVM, and robust covariance
ellipse. The results of these methods are ensembled by majority voting ensemble techniques.

The eccentricity fault in DTPPMSM is analyzed in [220]. The voltage angle increases
under SE conditions compared with healthy conditions. Thus, the voltage angle is then
processed with a multivariate regression analysis and ANNs for fault classification.

A method is proposed in [257] using a generative adversarial network (GAN) to
solve the problem of data lacking for data-based eccentricity detection methods. GAN is
employed to generate back-EMF data similar to the actual data, based on the data calculated
from the analytical model. Furthermore, in [258], a new fault diagnosis framework is
proposed where only healthy data is required. The GAN is used to combine the data
provided by ideal mathematical and FEM models of PMSM with eccentricity and the
actual data and eventually provides the accurate prediction of back-EMF at different
eccentricity degrees.

4.4.2. Magnetic Signals

In [148], the ITSC, PD, SE, and DE can be successfully detected and separated based
on the search coils wound on a tooth. The SqueezeNet is adopted to capture those fault
features in the induced voltages that can distinguish these faults from each other.

In [219], six search coils placed in slots are used as the signal sources, and the ampli-
tudes of the fractional harmonics in the induced voltage are classified based on random
forest, achieving an accurate detection of DE and discrimination from PD.

In [259], the stray flux in the end region of a linear PMSM is collected with TMR
sensors. The Gramian angular field and Markov transition field are used to convert 1D
data into 2D images, which is then processed with fusion feature extraction algorithms and
neural networks.

4.4.3. Summary

Table 15 concludes the general advantages and disadvantages of different kinds of
data-based methods discussed in this section. Table 16 summarizes some of the typical
research, its contributions, and aspects for further improvements.

Table 15. Comparison among data-based methods of eccentricity detection.

Fault Signature Types Advantages Disadvantages

Electrical signals + Non-invasive
- Dependent on winding

topology/machine topology

Magnetic signals
Invasive

All tooth wound + High sensitivity
+ Able to distinguish SE, DE, PD, and ITSC

- Need a lot of sensors
- Invasive

Fewer sensors + Relatively low cost
+ Able to distinguish DE from PD - Invasive

Less invasive End region + Less invasive - Low SNR

Table 16. Typical research among data-based methods for eccentricity detection.

Typical Works Solved Problems Unsolved Problems Primarily Challenges

[257] Generation of data to fulfill the requirement of
the training dataset Accounting for transient process Generation of data considering transient

conditions
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5. Evaluation of Existing Methods

5.1. General Evaluation

Various kinds of detection methods are discussed in this paper. Table 17 evaluates
these methods from four different perspectives, including the complexity, computational
burden, accuracy, and generalizability.

Table 17. Evaluation of detection methods based on different metrics.

Categories Signature Types Complexity
Computational
Burden

Accuracy Generalizability

Signal-based

Sequence components Low Low Low ITSC: High
PD, SE, DE: LowLF harmonics-based Low Low~Medium Medium

HF patterns Medium Low Medium Medium
Main flux signals High Low High High
Stray flux signals Medium~High Low Medium Medium

Model-based
Estimation residuals Medium Medium Low~Medium Medium
Estimated fault parameters
(SC ratio, rotor flux, etc.) Medium Medium Low ITSC: Medium

PD, SE, DE: Low

Data-based - Medium~High High High Medium

Combining the information shown in Table 17 and the discussion in previous sections,
generally speaking, the strengths and the weaknesses of different methods can be concluded
as follows:

Signal-based methods have the advantages of simplicity and low computational
burden. Meanwhile, compared with model-based methods, their dependency on the
machine parameters is relatively minor. However, they struggle with the non-stationary
conditions, which can be mitigated with specific analysis tools such as EMD or HHT at the
cost of higher complexity and computational burden.

Model-based methods are naturally suitable for monitoring under non-stationary
conditions. However, its dependency on the accuracy of machine parameters has been
a challenge.

On the other hand, data-based methods can achieve very high sensitivity and accuracy
compared to the other two categories of methods. Meanwhile, the self-adaptive learning
feature enables the automatic diagnosis process [3], reducing interference from humans.
Furthermore, the capability of representing high-dimensional nonlinear relationships be-
tween the fault features and practical conditions provides better performance in various
operating conditions. However, the requirement of historical data is very difficult to fulfill
in some cost-sensitive cases, as well as the high computational resources needed.

It is also worth noting that, for ITSC faults, the machine topologies have little effect
on the harmonics in electrical signals. However, for rotor faults, i.e., PD, SE, and DE, the
information in electrical signals is highly related to machine topologies. On the other hand,
magnetic signals, especially the flux signals on the main flux path, can contain signatures
related to ITSC, PD, SE, and DE. Consequently, magnetic signal-based methods can have
the best generalizability. Also, the airgap flux profile provides fault-related information
without the influence of machine topologies. Hence, by analyzing the airgap flux profile,
such as methods based on search coils wound on all the teeth [72,148] and Hall sensors
placed in the airgap [222–224], the scalability of these methods can be promisingly ensured.

5.2. Challenges and Gaps in Existing Methods

5.2.1. Signal-Based Methods

For the method using low-frequency patterns in electrical signals, one of the major
challenges lies in avoiding the false alarm caused by the transient process. This problem can
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be mitigated by adopting non-stationary signal analysis tools during transient processes or
even simply disabling the detection algorithms during transient processes.

Meanwhile, the HF frequency patterns can also resist the influence of transient pro-
cesses. But to obtain HF patterns, HF signals must be extracted, which usually means
undesirable noises and a reduction in efficiency. The methods using PWM ripple currents
further require additional sampling boards because the switching frequency patterns must
be sampled at a very high sampling rate, resulting in extra costs and complexity.

The magnetic signal-based methods generally have a better SNR, but they have to
confront a problem, i.e., the placement of flux sensors. The sensors in the airgap, slots,
or yoke can have very good sensitivity to faults, but they may also be damaged by the
faults in the machine. On the other hand, the stray flux sensors in the end region or stator
back side suffer from the noise and uncertainty from other components such as end plates
and housings.

5.2.2. Model-Based Methods

It is known that the accuracy of model-based methods is highly dependent on the
accuracy of the adopted model. However, PMSM drive systems are highly nonlinear due
to the magnetic properties of the iron cores and the characteristics of the switching devices.
Hence, when applied to practical systems, the model-based methods must take into account
the variation of the PMSM model at different working conditions.

In most existing model-based methods, the proposed fault indicators are derived
with the assumption of only one fault. This leads to another challenge of model-based
methods, which is that they generally lack the capability to distinguish between different
kinds of faults. In particular, the model-based methods estimating the fault parameters,
e.g., the short-circuit ratio or the rotor flux, require the faulty PMSM models, and thus the
complexity and the computational burden increase drastically when considering multiple
faults. On the other hand, the methods based on estimation residuals only need the healthy
PMSM model, and hence, in theory, they can be easily adapted to detect and distinguish
multiple faults, according to the patterns in the residuals. Nevertheless, for now the
capability of model-based methods on identifying multiple faults has not been widely
investigated yet.

5.2.3. Data-Based Methods

In practical applications, data-based methods mainly face two challenges, i.e., the
need for historical data and the high demand for computational resources. For most of the
machine learning algorithms, the quality of the collected data is very important, whereas
those deep learning algorithms further require a sufficient amount of historical data. A
large number of experiments must be accomplished to obtain enough historical data, which
is very challenging for cost-sensitive or high-power occasions. Meanwhile, to ensure the
quality of collected data, pre-processing progress is also vital. As referred to in this review,
some researchers are attempting to tackle this problem by using GAN as well as FEM
models, but further investigation is still required to address this problem.

The demand for computational resources is high because data-based methods usually
need many parameters to take part in the calculation to account for the high-dimensional
information in historical data. Hence, the calculation process takes a lot of time, and the
storage of these parameters consumes a large amount of memory. This can be extremely
challenging when applied to embedded systems.

Furthermore, the generalizability, i.e., the feasibility, of applying certain data-based
methods to different kinds of PMSMs is questionable. In most existing research, the
historical data is collected and tested on one or several typical prototypes while lacking
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testing on other kinds of prototypes. This problem is usually minor in signal- and model-
based methods because the fault modeling techniques are very mature, with which it is
normally predictable whether the fault signatures will emerge in certain kinds of PMSMs.
However, the lack of interpretable information in machine learning algorithms, especially
deep learning algorithms, prevents users from predicting the generalizability of data-
based methods.

5.3. Applicability in Industrial Applications

In industrial applications, the feasibility of a fault detection method is related to multi-
ple factors, including their capability, cost, hardware requirements, etc. Obviously, different
industrial settings have different thresholds for these factors, and therefore it is important
to evaluate them case by case when selecting the detection methods. Here, two typical
industrial applications are discussed, i.e., electrical vehicles and wind power generation.

5.3.1. Electric Vehicle Applications

Electric vehicles are known for their high demand for enhancing safety and reducing
cost. In electrical vehicles, the speed of the drive machine is usually varying during most
of its operation time. In such cases, it is difficult to collect a period of stationary data,
limiting the capability of traditional signal-based methods such as sequence-component-
based methods.

On the one hand, offline tests can be a universal solution, but they cannot meet the
instant interference requirement, and thus they usually cannot prevent an escalation during
the operation. On the other hand, this difficulty can be mitigated with non-stationary signal
analysis tools, such as EMD and STFT, or with model-based methods. Compared to the
signal-based methods with non-stationary signal analysis tools, one of the advantages
of model-based methods is that they can easily evaluate the fault severity on which the
fault-tolerant control is based. As for data-based methods, balancing between the required
computational resources and the additional costs is troublesome for now. Hence, the
model-based methods seem more preferable in electrical vehicle applications. However,
with the growth of computational resources in electrical vehicles, data-based methods will
become more and more feasible in the future due to their high sensitivity and capability of
detecting multiple faults.

It is worth noting that high-frequency injection is also capable of eliminating the
influence of varying speeds, but the harsh noise and extra vibration it brings are generally
unwanted in electrical vehicles.

5.3.2. Wind Power Generation Applications

Due to the fact that wind power generators usually have high-rated power, a huge
number of poles and slots, and a high number of parallel branches, the fault signatures of
an early-stage fault are usually very small. For wind power generation applications, the
major concern when choosing fault detection methods becomes the sensitivity to the faults
as well as the cost, and it is vital to find the balance between high detection sensitivity and
the cost.

Computational resources are usually more adequate for wind power generators com-
pared to electrical machines in electrical vehicles, considering that the wind power genera-
tors are fixed in one position and with adequate electricity input from the mains. Hence,
in such cases, data-based methods are usually preferred. Obviously, data-based methods
can achieve a very high sensitivity with the proper amount of historical data. Also, these
methods have very strong capabilities to detect and identify different kinds of faults. Thus,
compared with other kinds of methods, data-based methods are easier to be integrated into
a systematic fault diagnosis system.
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From the perspective of signal sources, it should be noted that the magnetic-signal-
based methods are very difficult to implement in a wind power generator because the
generators usually have large amounts of poles and slots, causing numerous extra sensors
and enormous complexity. However, it is worth noting that the methods using a stray
flux at the stator back side, such as in [245,246], have been applied to large synchronous
generators, showing their potential to be applied to wind power generators.

6. Discussion

6.1. Signal-Based Methods

The ITSC, PD, SE, and DE all introduce unwanted harmonics in currents but with
different frequencies. However, the PD, SE, and DE fault-related harmonics are much
more sensitive to the machine topology compared to the ITSC fault. This is because
the windings act as filters to the harmonics introduced by rotor faults. In contrast, it is
more difficult for the windings to filter through the harmonics caused by the faults in
themselves. Consequently, it can be observed that magnetic signals have higher SNR and
better universality for rotor fault detection.

6.2. Model-Based Methods

The model-based methods are much more popular in the area of ITSC fault detection
than the other two. This could be due to the phenomenon stated before, that is, in some
cases the information in the stator currents and voltages is not enough.

6.3. Data-Based Methods

Data-based methods have gained more and more attention in recent years. It can
be observed that the recent trend in data-based methods is integrating multiple types of
signals, i.e., sensor fusion, and distinguishing different kinds of faults. These tasks are very
difficult for traditional techniques due to the highly non-linear and uncertain relationship
between the fault signatures and the faults, especially in practical applications. However,
since machine learning algorithms, especially those deep learning algorithms, have very
strong representation capabilities, this relationship can possibly be learned with enough
data and the appropriate algorithms.

7. Conclusions and Future Work

The state-of-the-art techniques of the fault detection methods of PMSMs are com-
prehensively reviewed in this paper. Three major faults are covered, i.e., the ITSC fault,
the PD fault, and the eccentricity fault. The existing methods are classified into signal-,
model-, and data-based methods and further categorized according to the signal types they
used. Then, the existing methods are discussed in detail, and special attention is paid to
the fault signatures they use. Subsequently, a comparison is conducted between methods
with different signal sources and fault signatures, as well as the methods for the three
types of faults. Generally speaking, signal-based methods are relatively simple and have a
low computational burden, though they find it difficult to suppress transient false alarms.
Model-based methods are more suitable for transient working conditions, but at the cost of
a higher computational burden and lower SNR. Data-based methods are the hottest topic in
recent years. They have advantages of a high SNR and strong capabilities in distinguishing
different faults. But the computational burden is usually very high.

According to the discussions and analyses in this paper, various directions for future
work can be pointed out, as shown in Figure 16.
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Figure 16. Illustration of existing challenges and future work.

In particular, future research can be initiated in the following directions, which are
difficult but very promising:

(1) Implementation of data-based methods in real-time systems and embedded systems.
This means that sufficient improvements need to be accomplished in the computa-
tional efficiency of the data-based methods.

(2) Sensor fusions. Sensor fusion can be an important approach to enhance the sensitivity
and generalizability of fault detection methods, but it must overcome difficulties in
processing large amounts of data with various specifications, such as sampling rate
and data range, etc.

(3) Improving the capability of distinguishing different faults. It has been widely in-
vestigated how to distinguish different faults, while very few methods with good
universality are developed.

(4) Detection of faults in DTPPMSM. Compared with traditional three-phase PMSMs,
DTPPMSMs have more control degrees, and also more sampled current signals. Thus,
potentially higher SNR can be achieved.

Author Contributions: Conceptualization, Z.-Q.Z. and H.L.; methodology, Z.-Q.Z. and H.L.; formal
analysis, H.L.; investigation, H.L.; resources, Z.-Q.Z.; writing—original draft preparation, H.L.;
writing—review and editing, Z.-Q.Z., Z.A., R.C. and Z.W.; supervision, Z.-Q.Z., Z.A., R.C. and Z.W.;
project administration, Z.-Q.Z.; funding acquisition, Z.-Q.Z. and Z.A. All authors have read and
agreed to the published version of the manuscript.

Funding: This work was supported by the Siemens Gamesa Renewable Energy A/S, Denmark, under
Grant No. R/173973-11-1.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare that they have no conflicts of interest. The funder had no
role in the design of the study; in the collection, analyses, or interpretation of data; in the writing of
the manuscript; or in the decision to publish the results.



Energies 2025, 18, 534 33 of 44

Acronyms

AI Artificial intelligence MMF Magnetomotive force
ANN Artificial neural network NSC Negative sequence component
BLDC Brushless DC PD Partial demagnetization
CNN Convolutional neural network PLL Phase lock loop
CWT Continuous wavelet transform PM Permanent magnet
DE Dynamic eccentricity PMSG PM synchronous generator
DTPPMSM Dual three-phase PMSM PMSM PM synchronous machine
DWT Discrete wavelet transform PSC Positive sequence component
EMD Empirical mode decomposition PVA Park’s vector approach
EMF Electromotive force PWM Pulse width modulation
EPVA Extended Park’s vector approach RMS Root mean square
FEM Finite element method RNN Recurrent neural network
FFT Fast Fourier transform SE Static eccentricity
GAN Generative adversarial network SNR Signal-to-noise ratio
HF High frequency SPMSM Surface-mounted PMSM
HRC High resistance connection STFT Short-time Fourier transform
IPMSM Interior PMSM SVPWM Space vector PWM
IRP Instantaneous reactive power TMR Tunnelling magneto-resistive
ITSC Inter-turn short-circuit UD Uniform demagnetization
KNN K-nearest neighbor UMP Unbalanced magnetic pull
LF Low frequency VMD Variational mode decomposition
LUT Look-up table ZSC Zero sequence component
MCSA Machine current signature analysis ZSVC Zero sequence voltage component
ME Mixed eccentricity

References

1. Zhu, Z.Q.; Howe, D. Electrical Machines and Drives for Electric, Hybrid, and Fuel Cell Vehicles. Proc. IEEE 2007, 95, 746–765.
[CrossRef]

2. Zhang, P.; Du, Y.; Habetler, T.G.; Lu, B. A Survey of Condition Monitoring and Protection Methods for Medium-Voltage Induction
Motors. IEEE Trans. Ind. Appl. 2011, 47, 34–46. [CrossRef]

3. Orlowska-Kowalska, T.; Wolkiewicz, M.; Pietrzak, P.; Skowron, M.; Ewert, P.; Tarchala, G.; Krzysztofiak, M.; Kowalski, C.T. Fault
Diagnosis and Fault-Tolerant Control of PMSM Drives–State of the Art and Future Challenges. IEEE Access 2022, 10, 59979–60024.
[CrossRef]

4. Pengbo, Z.; Renxiang, C.; Xiangyang, X.; Lixia, Y.; Mengyu, R. Recent Progress and Prospective Evaluation of Fault Diagnosis
Strategies for Electrified Drive Powertrains: A Comprehensive Review. Measurement 2023, 222, 113711. [CrossRef]

5. Jiang, Y.; Ji, B.; Zhang, J.; Yan, J.; Li, W. An Overview of Diagnosis Methods of Stator Winding Inter-Turn Short Faults in
Permanent-Magnet Synchronous Motors for Electric Vehicles. WEVJ 2024, 15, 165. [CrossRef]

6. Faiz, J.; Bazrafshan, M.A.; Tabarniarami, Z. Demagnetisation Fault Analysis and Diagnosis Based on Different Methods in
Permanent Magnet Machines—An Overview. IET Electr. Power Appl. 2024, 18, 1860–1893. [CrossRef]

7. Faiz, J.; Nejadi-Koti, H. Eccentricity Fault Diagnosis Indices for Permanent Magnet Machines: State-of-the-art. IET Electr. Power

Appl. 2019, 13, 1241–1254. [CrossRef]
8. Solís, R.; Torres, L.; Pérez, P. Review of Methods for Diagnosing Faults in the Stators of BLDC Motors. Processes 2022, 11, 82.

[CrossRef]
9. Rajagopalan, S.; Aller, J.M.; Restrepo, J.A.; Habetler, T.G.; Harley, R.G. Detection of Rotor Faults in Brushless DC Motors Operating

Under Nonstationary Conditions. IEEE Trans. Ind. Appl. 2006, 42, 1464–1477. [CrossRef]
10. Grubic, S.; Aller, J.M.; Bin, L.; Habetler, T.G. A Survey on Testing and Monitoring Methods for Stator Insulation Systems of

Low-Voltage Induction Machines Focusing on Turn Insulation Problems. IEEE Trans. Ind. Electron. 2008, 55, 4127–4136. [CrossRef]
11. Hang, J.; Zhang, J.; Cheng, M.; Huang, J. Online Interturn Fault Diagnosis of Permanent Magnet Synchronous Machine Using

Zero-Sequence Components. IEEE Trans. Power Electron. 2015, 30, 6731–6741. [CrossRef]
12. Zhu, Y.; Cai, S.; Li, B. Detection and Discrimination of Interturn Fault and High-Resistance Connection Fault in PMSM Based on

Deviation Angle of Zero Sequence Voltage. IEEE Trans. Transp. Electrif. 2024, 10, 7623–7632. [CrossRef]



Energies 2025, 18, 534 34 of 44

13. Hang, J.; Ding, S.; Ren, X.; Hu, Q.; Huang, Y.; Hua, W.; Wang, Q. Integration of Interturn Fault Diagnosis and Torque Ripple
Minimization Control for Direct-Torque-Controlled SPMSM Drive System. IEEE Trans. Power Electron. 2021, 36, 11124–11134.
[CrossRef]

14. Hang, J.; Sun, W.; Hu, Q.; Ren, X.; Ding, S. Integration of Interturn Fault Diagnosis and Fault-Tolerant Control for PMSM Drive
System. IEEE Trans. Transp. Electrif. 2022, 8, 2825–2835. [CrossRef]

15. Wang, H.; Wang, J.; Wang, X.; Lu, S.; Hu, C.; Cao, W. Detection and Evaluation of the Interturn Short Circuit Fault in a BLDC-Based
Hub Motor. IEEE Trans. Ind. Electron. 2023, 70, 3055–3068. [CrossRef]

16. Laadjal, K.; Antunes, H.R.P.; Sahraoui, M.; Bento, F.; Marques Cardoso, A.J. On-Line Diagnosis and Discrimination of Stator
Faults in Six-Phase Induction Motors, Based on Voltage Symmetrical Components. IEEE Trans. Transp. Electrif. 2022, 9, 3115–3126.
[CrossRef]

17. Laadjal, K.; Bento, F.; Serra, J.; Cardoso, A.J.M. An Integrated Strategy for the Real-Time Detection and Discrimination of Stator
Inter-Turn Short-Circuits and Converter Faults in Asymmetrical Six-Phase Induction Motors. IEEE Trans. Ind. Appl. 2023, 60,
377–387. [CrossRef]

18. Alloui, A.; Laadjal, K.; Sahraoui, M.; Marques Cardoso, A.J. Online Interturn Short-Circuit Fault Diagnosis in Induction Motors
Operating Under Unbalanced Supply Voltage and Load Variations, Using the STLSP Technique. IEEE Trans. Ind. Electron. 2023,
70, 3080–3089. [CrossRef]

19. Wu, Y.; Zhang, J.; Xu, Z.; Wang, S.; Fu, H. Feature Extraction and Applicability Comparisons for Fault Detection of Inter-Turn
Short-Circuited PMSM. IEEE Trans. Instrum. Meas. 2024, 73, 3523810. [CrossRef]

20. Williamson, S.; Mirzoian, K. Analysis of Cage Induction Motors with Stator Winding Faults. IEEE Trans. Power Appar. Syst. 1985,
PAS-104, 1838–1842. [CrossRef]

21. Jeong, H.; Moon, S.; Kim, S.W. An Early Stage Interturn Fault Diagnosis of PMSMs by Using Negative-Sequence Components.
IEEE Trans. Ind. Electron. 2017, 64, 5701–5708. [CrossRef]

22. Dorrell, D.G.; Makhoba, K. Detection of Inter-Turn Stator Faults in Induction Motors Using Short-Term Averaging of Forward
and Backward Rotating Stator Current Phasors for Fast Prognostics. IEEE Trans. Magn. 2017, 53, 1700107. [CrossRef]

23. Ge, Y.; Song, B.; Pei, Y.; Mollet, Y.A.B.; Gyselinck, J.J.C. Analytical Expressions of Isolation Indicators for Permanent-Magnet
Synchronous Machines under Stator Short-Circuit Faults. IEEE Trans. Energy Convers. 2019, 34, 984–992. [CrossRef]

24. Bahloul, I.; Bouzid, M.B.K.; Khil, S.K.E.; Champenois, G. Robust Novel Indicator to Distinguish between an Inter-Turn Short
Circuit Fault and Load Unbalance in PMSG. IEEE Trans. Ind. Appl. 2023, 59, 3200–3209. [CrossRef]

25. Laadjal, K.; Bento, F.; Henriques, K.; Marques Cardoso, A.J.; Sahraoui, M. A Novel Indicator-Based on-Line Diagnostics Technique
of Inter-Turn Short-Circuit Faults in Synchronous Reluctance Machines. IEEE J. Emerg. Sel. Top. Power Electron. 2023, 11, 3492–3501.
[CrossRef]

26. Naderi, P.; Fathi, A. Fault Diagnosis/Separation of Surface Mounted Permanent Magnet Synchronous Machine by Current and
Its Homopolar Orders Analysis. IEEE Trans. Energy Convers. 2022, 38, 1246–1256. [CrossRef]

27. Park, J.-K.; Hur, J. Detection of Inter-Turn and Dynamic Eccentricity Faults Using Stator Current Frequency Pattern in IPM-Type
BLDC Motors. IEEE Trans. Ind. Electron. 2016, 63, 1771–1780. [CrossRef]

28. Lee, S.-T.; Hur, J. Detection Technique for Stator Inter-Turn Faults in BLDC Motors Based on Third-Harmonic Components of
Line Currents. IEEE Trans. Ind. Appl. 2017, 53, 143–150. [CrossRef]

29. Wang, B.; Wang, J.; Griffo, A.; Sen, B. Stator Turn Fault Detection by Second Harmonic in Instantaneous Power for a Triple-
Redundant Fault-Tolerant PM Drive. IEEE Trans. Ind. Electron. 2018, 65, 7279–7289. [CrossRef]

30. Duan, R.; Wu, L.; Lyu, Z.; Zhan, H.; Song, P. Harmonic Subspace Signature-Based Detection and Localization of Inter-Turn Short
Circuit Fault for Dual Three-Phase PMSM with VSD Scheme. IEEE Trans. Transp. Electrif. 2024, 10, 9652–9664. [CrossRef]

31. Huang, S.; Aggarwal, A.; Strangas, E.G.; Li, K.; Niu, F.; Huang, X. Robust Stator Winding Fault Detection in PMSMs with Respect
to Current Controller Bandwidth. IEEE Trans. Power Electron. 2021, 36, 5032–5042. [CrossRef]

32. Rosero, J.A.; Romeral, L.; Ortega, J.A.; Rosero, E. Short-Circuit Detection by Means of Empirical Mode Decomposition and
Wigner–Ville Distribution for PMSM Running under Dynamic Condition. IEEE Trans. Ind. Electron. 2009, 56, 4534–4547.
[CrossRef]

33. Dogan, Z.; Tetik, K. Diagnosis of Inter-Turn Faults Based on Fault Harmonic Component Tracking in LSPMSMs Working under
Nonstationary Conditions. IEEE Access 2021, 9, 92101–92112. [CrossRef]

34. Chen, C.-S.; Lin, C.-J.; Yang, F.-J.; Lin, F.-C. Model Design of Inter-Turn Short Circuits in Internal Permanent Magnet Synchronous
Motors and Application of Wavelet Transform for Fault Diagnosis. Appl. Sci. 2024, 14, 9570. [CrossRef]

35. Boileau, T.; Leboeuf, N.; Nahid-Mobarakeh, B.; Meibody-Tabar, F. Synchronous Demodulation of Control Voltages for Stator
Interturn Fault Detection in PMSM. IEEE Trans. Power Electron. 2013, 28, 5647–5654. [CrossRef]

36. Bellini, A.; Filippetti, F.; Franceschini, G.; Tassoni, C. Closed-Loop Control Impact on the Diagnosis of Induction Motors Faults.
IEEE Trans. Ind. Appl. 2000, 36, 1318–1329. [CrossRef]



Energies 2025, 18, 534 35 of 44

37. Wei, D.; Liu, K.; Hu, W.; Peng, X.; Chen, Y.; Ding, R. Short-Time Adaline Based Fault Feature Extraction for Inter-Turn Short
Circuit Diagnosis of PMSM via Residual Insulation Monitoring. IEEE Trans. Ind. Electron. 2023, 70, 3103–3114. [CrossRef]

38. Wei, D.; Liu, K.; Huang, J.; Wang, J.; Zhou, S.; Cai, H.; Chen, J. Instantaneous Phase Estimation Based Single-Signal Diagnosis for
Inter-Turn Short Circuit Fault in PMSMs. IEEE Trans. Energy Convers. 2024, [Online early access]. [CrossRef]

39. Ghods, M.; Tabarniarami, Z.; Faiz, J.; Bazrafshan, M.A. Turn-to-Turn and Phase-to-Phase Short Circuit Fault Detection of Wind
Turbine Permanent Magnet Generator Based on Equivalent Magnetic Network Modelling by Wavelet Transform Approach. IET

Electr. Power Appl. 2024, 18, 1005–1020. [CrossRef]
40. Niu, F.; Xu, M.; Zhou, F.; Huang, S.; Xu, Z.; Zhang, L.; Aggarwal, A. Accurate Interturn Short-Circuit Faults Diagnosis in PMSMs

under Variable Operating Conditions by Signal Compensation. IEEE Trans. Power Electron. 2024, 40, 3530–3542. [CrossRef]
41. Fonseca, D.S.B.; Santos, C.M.C.; Cardoso, A.J.M. Stator Faults Modeling and Diagnostics of Line-Start Permanent Magnet

Synchronous Motors. IEEE Trans. Ind. Appl. 2020, 56, 2590–2599. [CrossRef]
42. Qiao, J.; Yin, X.; Wang, Y.; Lu, Q.; Tan, L.; Zhu, L. A Stator Internal Short-Circuit Fault Protection Method for Turbo-Generator

Based on Instantaneous Power Oscillation Ratio. IEEE Trans. Energy Convers. 2023, 38, 1903–1912. [CrossRef]
43. Haddad, R.Z.; Lopez, C.A.; Foster, S.N.; Strangas, E.G. A Voltage-Based Approach for Fault Detection and Separation in

Permanent Magnet Synchronous Machines. IEEE Trans. Ind. Appl. 2017, 53, 5305–5314. [CrossRef]
44. Moon, S.; Jeong, H.; Lee, H.; Kim, S.W. Detection and Classification of Demagnetization and Interturn Short Faults of IPMSMs.

IEEE Trans. Ind. Electron. 2017, 64, 9433–9441. [CrossRef]
45. Ullah, Z.; Lee, S.-T.; Hur, J. A Torque Angle-Based Fault Detection and Identification Technique for IPMSM. IEEE Trans. Ind. Appl.

2020, 56, 170–182. [CrossRef]
46. Tabarniarami, Z.; Ghods, M.; Faiz, J.; Abedini, M. Online Diagnosis of Short Circuit Faults of Permanent Magnet Synchronous

Generator by Short-Time Analysis of the Three Phase Amplitude-Phase Signal Based on Analytical Modeling. IEEE Trans. Transp.

Electrif. 2024, 10, 10029–10042. [CrossRef]
47. Hang, J.; Wang, X.; Li, W.; Ding, S. Interturn Short-Circuit Fault Diagnosis and Fault-Tolerant Control of DTP-PMSM Based on

Subspace Current Residuals. IEEE Trans. Power Electron. 2024, 40, 3395–3404. [CrossRef]
48. Wang, H.; Hu, J.; Li, Y. Fault Phase Location for Interturn Short Circuit Faults in Symmetrical Six-Phase PMSMs Based on

Subspace Current Residual. IEEE Trans. Transp. Electrif. 2024, 10, 8336–8345. [CrossRef]
49. Hu, J.; Wang, H.; Li, Y. Model-Based Severity Monitoring for Interturn Short Circuit Faults in Symmetrical Six-Phase PMSMs

Using Subspace Current Residuals. IEEE Trans. Power Electron. 2023, 38, 16142–16152. [CrossRef]
50. Sen, B.; Wang, J. Stator Interturn Fault Detection in Permanent-Magnet Machines Using PWM Ripple Current Measurement.

IEEE Trans. Ind. Electron. 2016, 63, 3148–3157. [CrossRef]
51. Wang, B.; Hu, J.; Wang, G.; Hua, W. A Novel Stator Turn Fault Detection Technique by Using Equivalent High Frequency

Impedance. IEEE Access 2020, 8, 130540–130550. [CrossRef]
52. Hu, R.; Wang, J.; Sen, B.; Mills, A.R.; Chong, E.; Sun, Z. PWM Ripple Currents Based Turn Fault Detection for Multiphase

Permanent Magnet Machines. IEEE Trans. Ind. Appl. 2017, 53, 2740–2751. [CrossRef]
53. Hu, R.; Wang, J.; Mills, A.; Chong, E.; Sun, Z. Detection and Classification of Turn Fault and High-resistance Connection Fault in

Inverter-fed Permanent Magnet Machines Based on High-frequency Signals. J. Eng. 2019, 2019, 4278–4282. [CrossRef]
54. Hu, R.; Wang, J.; Mills, A.R.; Chong, E.; Sun, Z. Detection and Classification of Turn Fault and High Resistance Connection Fault

in Permanent Magnet Machines Based on Zero Sequence Voltage. IEEE Trans. Power Electron. 2020, 35, 1922–1933. [CrossRef]
55. Gao, F.; Zhang, G.; Li, M.; Gao, Y.; Zhuang, S. Inter-Turn Fault Identification of Surface-Mounted Permanent Magnet Synchronous

Motor Based on Inverter Harmonics. Energies 2020, 13, 899. [CrossRef]
56. Wang, B.; Luo, L.; Fu, W.; Hua, W.; Wang, G.; Wang, Z. Study on the PWM Ripple Current Based Turn Fault Detection for Interior

PM Machine. IEEE Trans. Transp. Electrif. 2021, 7, 1537–1547. [CrossRef]
57. Zhang, J.; Xu, Z.; Wang, J.; Zhao, J.; Din, Z.; Cheng, M. Detection and Discrimination of Incipient Stator Faults for Inverter-Fed

Permanent Magnet Synchronous Machines. IEEE Trans. Ind. Electron. 2021, 68, 7505–7515. [CrossRef]
58. Xu, Z.; Zhang, J.; Zhang, Y.; Zhao, J. Winding Condition Monitoring for Inverter-Fed PMSM Using High-Frequency Current

Injection. IEEE Trans. Ind. Appl. 2021, 57, 5818–5828. [CrossRef]
59. Hu, R.; Wang, J.; Mills, A.R.; Chong, E.; Sun, Z. High-Frequency Voltage Injection Based Stator Interturn Fault Detection in

Permanent Magnet Machines. IEEE Trans. Power Electron. 2021, 36, 785–794. [CrossRef]
60. Wang, H.; Wu, Z.; Zhou, F.; Cao, W.; Hu, C.; Lu, S. Diagnosis of Interturn Short Circuit Fault in BLDCM Based on Coupled

High-Frequency Signal Injection. IEEE Trans. Instrum. Meas. 2024, 73, 3532310. [CrossRef]
61. Xu, Z.; Zhang, J.; Cheng, M. Investigation of Signal Injection Methods for Fault Detection of PMSM Drives. IEEE Trans. Energy

Convers. 2022, 37, 2207–2216. [CrossRef]
62. Xu, Z.; Zhang, J.; Xiong, J.; Wu, Y.; Cheng, M. An Improved High Frequency Voltage Injection Method for Inter-Turn Short-Circuit

Fault Detection in PMSMs. IEEE Trans. Transp. Electrif. 2022, 9, 3228–3239. [CrossRef]



Energies 2025, 18, 534 36 of 44

63. Fang, X.; Gao, J.; Lu, J.; Zhang, J.; Li, H. Early Fault Detection of Stator Inter-Turn Short Circuit of Asynchronous Motor Based on
Rotating High Frequency Voltage Injection. IEEE Trans. Transp. Electrif. 2024; Online early access. [CrossRef]

64. Qi, Y.; Zafarani, M.; Akin, B.; Fedigan, S.E. Analysis and Detection of Inter-Turn Short-Circuit Fault through Extended Self-
Commissioning. IEEE Trans. Ind. Appl. 2017, 53, 2730–2739. [CrossRef]

65. Baruti, K.H.; Gurusamy, V.; Erturk, F.; Akin, B. A Robust and Practical Approach to Estimate the Number of Shorted Turns in
PMSM with ITSC Faults. IEEE J. Emerg. Sel. Top. Power Electron. 2021, 9, 2839–2849. [CrossRef]

66. Hang, J.; Ding, S.; Zhang, J.; Cheng, M.; Chen, W.; Wang, Q. Detection of Interturn Short-Circuit Fault for PMSM with Simple
Fault Indicator. IEEE Trans. Energy Convers. 2016, 31, 1697–1699. [CrossRef]

67. Haje Obeid, N.; Battiston, A.; Boileau, T.; Nahid-Mobarakeh, B. Early Intermittent Interturn Fault Detection and Localization for
a Permanent Magnet Synchronous Motor of Electrical Vehicles Using Wavelet Transform. IEEE Trans. Transp. Electrif. 2017, 3,
694–702. [CrossRef]

68. Hang, J.; Zhang, J.; Xia, M.; Ding, S.; Hua, W. Interturn Fault Diagnosis for Model-Predictive-Controlled-PMSM Based on Cost
Function and Wavelet Transform. IEEE Trans. Power Electron. 2020, 35, 6405–6418. [CrossRef]

69. Ray, D.K.; Roy, T.; Chattopadhyay, S. Skewness Scanning for Diagnosis of a Small Inter-Turn Fault in Quadcopter’s Motor Based
on Motor Current Signature Analysis. IEEE Sens. J. 2021, 21, 6952–6961. [CrossRef]

70. Park, C.H.; Lee, J.; Kim, H.; Suh, C.; Youn, M.; Shin, Y.; Ahn, S.-H.; Youn, B.D. Drive-Tolerant Current Residual Variance (DTCRV)
for Fault Detection of a Permanent Magnet Synchronous Motor under Operational Speed and Load Torque Conditions. IEEE

Access 2021, 9, 49055–49068. [CrossRef]
71. Jafari, A.; Faiz, J.; Jarrahi, M.A. A Simple and Efficient Current-Based Method for Interturn Fault Detection in BLDC Motors. IEEE

Trans. Ind. Inform. 2021, 17, 2707–2715. [CrossRef]
72. Da, Y.; Shi, X.; Krishnamurthy, M. A New Approach to Fault Diagnostics for Permanent Magnet Synchronous Machines Using

Electromagnetic Signature Analysis. IEEE Trans. Power Electron. 2013, 28, 4104–4112. [CrossRef]
73. Huang, W.; Du, B.; Li, T.; Sun, Y.; Cheng, Y.; Cui, S. Interturn Short-Circuit Fault Diagnosis of Interior Permanent Magnet

Synchronous Motor for Electric Vehicle Based on Search Coil. IEEE Trans. Power Electron. 2023, 38, 2506–2515. [CrossRef]
74. Gao, C.; Miao, Z.; Sang, X.; Xu, X.; Si, J.; Alkahtani, M. A Multi-Faults Online Detection and Identification Method for Concentrated

Winding PMSM Using Search Coil Array. IEEE Trans. Transp. Electrif. 2024, Online early access. [CrossRef]
75. Mühlthaler, J.; Lehner, B.; Reeh, A. Detection of Inter-Turn Short-Circuits in Permanent Magnet Machines Based on Rogowski &

Search Coil Based Monitoring. In Proceedings of the 2024 International Conference on Electrical Machines (ICEM), Torino, Italy,
1–4 September 2024; IEEE: Piscataway, NJ, USA, 2024; pp. 1–8.

76. Zeng, C.; Huang, S.; Yang, Y.; Wu, D. Inter-turn Fault Diagnosis of Permanent Magnet Synchronous Machine Based on Tooth
Magnetic Flux Analysis. IET Electr. Power Appl. 2018, 12, 837–844. [CrossRef]

77. Li, R.; Fang, H.; Li, D.; Qu, R.; Yang, S.; Wang, R. A Search Coil Design Method of PMSM for Detection of Inter-Turn Short-Circuit
Fault. IEEE Trans. Ind. Electron. 2023, 71, 3964–3974. [CrossRef]

78. Liu, X.; Miao, W.; Xu, Q.; Cao, L.; Liu, C.; Pong, P.W.T. Inter-Turn Short-Circuit Fault Detection Approach for Permanent Magnet
Synchronous Machines through Stray Magnetic Field Sensing. IEEE Sens. J. 2019, 19, 7884–7895. [CrossRef]

79. Irhoumah, M.; Pusca, R.; Lefevre, E.; Mercier, D.; Romary, R. Detection of the Stator Winding Inter-Turn Faults in Asynchronous
and Synchronous Machines through the Correlation between Harmonics of the Voltage of Two Magnetic Flux Sensors. IEEE

Trans. Ind. Appl. 2019, 55, 2682–2689. [CrossRef]
80. Gurusamy, V.; Bostanci, E.; Li, C.; Qi, Y.; Akin, B. A Stray Magnetic Flux-Based Robust Diagnosis Method for Detection and

Location of Interturn Short Circuit Fault in PMSM. IEEE Trans. Instrum. Meas. 2021, 70, 3500811. [CrossRef]
81. Eldeeb, H.H.; Berzoy, A.; Mohammed, O. Stator Fault Detection on DTC-Driven IM via Magnetic Signatures Aided by 2-D FEA

Co-Simulation. IEEE Trans. Magn. 2019, 55, 8101505. [CrossRef]
82. Assaf, T.; Henao, H.; Capolino, G.A. Simplified Axial Flux Spectrum Method to Detect Incipient Stator Inter-Turn Short-Circuits

in Induction Machine. In Proceedings of the 2004 IEEE International Symposium on Industrial Electronics, Ajaccio, France, 4–7
May 2004; Volume 2, pp. 815–819.

83. Lamim Filho, P.C.M.; Rabelo Baccarini, L.M.; Batista, F.B.; Araujo, A.C. Orbit Analysis from a Stray Flux Full Spectrum for
Induction Machine Fault Detection. IEEE Sens. J. 2021, 21, 16152–16161. [CrossRef]

84. Kumar, P.S.; Xie, L.; Halick, M.S.M.; Vaiyapuri, V. Stator End-Winding Thermal and Magnetic Sensor Arrays for Online Stator
Inter-Turn Fault Detection. IEEE Sens. J. 2021, 21, 5312–5321. [CrossRef]

85. Bai, W.; Zhou, X.; Wang, Y.; Zeng, Q.; Zhan, S.; Hua, X.; Bao, G. Vibration Analysis of the Electric Drive System with Inter-Turn
Short-Circuit and Gear Spalling Faults. J. Vib. Eng. Technol. 2023, 11, 3595–3605. [CrossRef]

86. Wu, Y.-H.; Liu, M.-Y.; Song, H.; Li, C.; Yang, X.-L. A Temperature and Magnetic Field-Based Approach for Stator Inter-Turn Fault
Detection. IEEE Sens. J. 2022, 22, 17799–17807. [CrossRef]

87. Wei, D.; Liu, K.; Zhu, Z.-Q.; Zhou, S.; Wang, J.; Chen, Y. Rotor Speed Signature Analysis-Based Inter-Turn Short Circuit Fault
Detection for Permanent Magnet Synchronous Machines. IET Electr. Power Appl. 2024, 18, 1187–1199. [CrossRef]



Energies 2025, 18, 534 37 of 44

88. Wei, D.; Liu, K.; Wang, J.; Zhou, S.; Cai, H.; Chen, J. Detection of Inter-Turn Short Circuit Fault in Permanent Magnet Synchronous
Machine under Phase Current Reconstruction Control. In Proceedings of the 2023 26th International Conference on Electrical
Machines and Systems (ICEMS), Zhuhai, China, 5–8 November 2023; IEEE: Piscataway, NJ, USA, 2023; pp. 2164–2168.

89. Liu, C.; Xiao, L.; Zou, J.; Xu, Y.; Li, S. Analysis and Monitoring Method for Inter-Turn Short-Circuit Fault for PMSM. IEEE Trans.

Magn. 2023, 59, 8103106. [CrossRef]
90. Leboeuf, N.; Boileau, T.; Nahid-Mobarakeh, B.; Clerc, G.; Meibody-Tabar, F. Real-Time Detection of Interturn Faults in PM Drives

Using Back-EMF Estimation and Residual Analysis. IEEE Trans. Ind. Appl. 2011, 47, 2402–2412. [CrossRef]
91. Mazzoletti, M.A.; Bossio, G.R.; De Angelo, C.H.; Espinoza-Trejo, D.R. A Model-Based Strategy for Interturn Short-Circuit Fault

Diagnosis in PMSM. IEEE Trans. Ind. Electron. 2017, 64, 7218–7228. [CrossRef]
92. Hu, R.; Wang, J.; Mills, A.R.; Chong, E.; Sun, Z. Current-Residual-Based Stator Interturn Fault Detection in Permanent Magnet

Machines. IEEE Trans. Ind. Electron. 2021, 68, 59–69. [CrossRef]
93. Castro Palavicino, P.; Sarlioglu, B. Estimation of Position and Shorted Turns Percentage of an Inter-Turn Short Circuit in Interior

Permanent Magnet Synchronous Machines Based on a Current Observer and Stationary Reference Frame Tracking. IEEE Trans.

Ind. Appl. 2023, 59, 4066–4075. [CrossRef]
94. Mahmoudi, A.; Jlassi, I.; Cardoso, A.J.M.; Yahia, K.; Sahraoui, M. Inter-Turn Short-Circuit Faults Diagnosis in Synchronous

Reluctance Machines, Using the Luenberger State Observer and Current’s Second-Order Harmonic. IEEE Trans. Ind. Electron.

2022, 69, 8420–8429. [CrossRef]
95. Qin, Y.; Li, G.J.; Zhu, Z.Q.; Foster, M.P.; Stone, D.A.; Jia, C.J.; McKeever, P. Model-Based Luenberger State Observer for Detecting

Interturn Short-Circuits in PM Machines. IEEE Trans. Transp. Electrif. 2024, Online early access. [CrossRef]
96. Belkhadir, A.; Pusca, R.; Romary, R.; Belkhayat, D.; Zidani, Y. Detection of External Rotor PMSM Inter-Turn Short Circuit Fault

Using Extended Kalman Filter. In Proceedings of the 2023 IEEE 14th International Symposium on Diagnostics for Electrical
Machines, Power Electronics and Drives (SDEMPED), Chania, Greece, 28–31 August 2023; IEEE: Piscataway, NJ, USA, 2023;
pp. 491–497.

97. Chen, Z.; Liang, D.; Jia, S.; Yang, L.; Yang, S. Incipient Interturn Short-Circuit Fault Diagnosis of Permanent Magnet Synchronous
Motors Based on the Data-Driven Digital Twin Model. IEEE J. Emerg. Sel. Top. Power Electron. 2023, 11, 3514–3524. [CrossRef]

98. Hang, J.; Hu, Q.; Sun, W.; Ren, X.; Ding, S.; Huang, Y.; Hua, W. A Voltage-Distortion-Based Method for Robust Detection and
Location of Interturn Fault in Permanent Magnet Synchronous Machine. IEEE Trans. Power Electron. 2022, 37, 11174–11186.
[CrossRef]

99. Du, B.; Wu, S.; Han, S.; Cui, S. Interturn Fault Diagnosis Strategy for Interior Permanent-Magnet Synchronous Motor of Electric
Vehicles Based on Digital Signal Processor. IEEE Trans. Ind. Electron. 2016, 63, 1694–1706. [CrossRef]

100. Chen, Q.; Han, X.; Liu, G.; Zhao, W.; Shi, H. Inter-Turn Fault Diagnosis and Control for Five-Phase PMSMs by Disturbance
Observer. IEEE Trans. Ind. Electron. 2024, 71, 13901–13909. [CrossRef]

101. Cui, R.; Fan, Y.; Li, C. On-Line Inter-Turn Short-Circuit Fault Diagnosis and Torque Ripple Minimization Control Strategy Based
on OW Five-Phase BFTHE-IPM. IEEE Trans. Energy Convers. 2018, 33, 2200–2209. [CrossRef]

102. Xu, Y.; Wang, Y.; Zou, J. An Inter-Turn Short-Circuits Fault Detection Strategy Considering Inverter Nonlinearity and Current
Measurement Errors for Sensorless Control of SPMSM. IEEE Trans. Ind. Electron. 2022, 69, 11709–11722. [CrossRef]

103. Upadhyay, A.; Alakula, M. A Theoretical Study of Stator Flux Linkage DC Offset Based Stator Fault Detection for PMSM Drive
Systems. In Proceedings of the 2022 IEEE Vehicle Power and Propulsion Conference (VPPC), Merced, CA, USA, 1–4 November
2022; pp. 1–6.

104. Yang, Y.; Chen, Y.; Hao, W. Online Detection of Inter-turn Short-circuit Fault in Dual-redundancy Permanent Magnet Synchronous
Motor. IET Electr. Power Appl. 2020, 15, 104–113. [CrossRef]

105. Feng, X.; Wang, B.; Liu, C.; Zeng, J.; Wang, Z. Research on Inter-Turn Short-Circuit Fault Diagnosis Method Based on High
Frequency Voltage Residual for PMSM. Trans. Electr. Mach. Syst. 2023, 7, 256–265. [CrossRef]

106. Wang, H.; Hu, J.; Li, Y. Interturn Fault Severity Monitoring in Symmetrical Six-Phase PMSMs Using Subspace Negative-Sequence
High-Frequency Current Residuals. IEEE Trans. Power Electron. 2024, 39, 3613–3622. [CrossRef]

107. Fan, P.; Zhang, Y. A Detection Method for Interturn Short-Circuit Fault of Five-Phase Surface Mounted PMSM. In Proceedings of
the 2023 26th International Conference on Electrical Machines and Systems (ICEMS), Zhuhai, China, 5–8 November 2023; IEEE:
Piscataway, NJ, USA, 2023; pp. 68–73.

108. Aubert, B.; Regnier, J.; Caux, S.; Alejo, D. Kalman-Filter-Based Indicator for Online Interturn Short Circuits Detection in
Permanent-Magnet Synchronous Generators. IEEE Trans. Ind. Electron. 2015, 62, 1921–1930. [CrossRef]

109. El Sayed, W.; Abd El Geliel, M.; Lotfy, A. Fault Diagnosis of PMSG Stator Inter-Turn Fault Using Extended Kalman Filter and
Unscented Kalman Filter. Energies 2020, 13, 2972. [CrossRef]

110. Zhang, J.; Zhan, W.; Ehsani, M. Diagnosis and Fault-Tolerant Control of Permanent Magnet Synchronous Motors with Interturn
Short-Circuit Fault. IEEE Trans. Control Syst. Technol. 2023, 31, 1909–1916. [CrossRef]



Energies 2025, 18, 534 38 of 44

111. Moseler, O.; Isermann, R. Model-Based Fault Detection for a Brushless DC Motor Using Parameter Estimation. In Proceedings of
the IECON ’98 24th Annual Conference of the IEEE Industrial Electronics Society (Cat. No.98CH36200), Aachen, Germany, 31
August–4 September 1998; IEEE: Piscataway, NJ, USA, 1998; Volume 4, pp. 1956–1960.

112. Moseler, O.; Isermann, R. Application of Model-Based Fault Detection to a Brushless DC Motor. IEEE Trans. Ind. Electron. 2000,
47, 1015–1020. [CrossRef]

113. Aswad, R.A.K.; Jassim, B.M.H. Detection and Localization of the Stator Winding Inter-Turn Fault in Induction Motors Based on
Parameters Estimation Using Genetic Algorithm. J. Inst. Eng. India Ser. B 2022, 103, 405–414. [CrossRef]

114. Zezula, L.; Kozovsky, M.; Blaha, P. Diagnostics of Interturn Short Circuits in PMSMs with Online Fault Indicators Estimation.
IEEE Trans. Ind. Electron. 2024, 71, 15001–15011. [CrossRef]

115. He, Q.; Pan, J.; Lyu, X. Early Performance Degradation Detecting Method for PMSM Based on Change in Frequency Domain
Features of Three-Phase Stator Current. IEEE Access 2023, 11, 123361–123372. [CrossRef]

116. Kang, Y.; Yao, L. Fault Isolation and Estimation for Turn-to-Turn Short Circuit in Permanent Magnet Synchronous Motor. IEEE

Trans. Instrum. Meas. 2024, 73, 3000811. [CrossRef]
117. Xu, Z.; Hu, C.; Yang, F.; Kuo, S.-H.; Goh, C.-K.; Gupta, A.; Nadarajan, S. Data-Driven Inter-Turn Short Circuit Fault Detection in

Induction Machines. IEEE Access 2017, 5, 25055–25068. [CrossRef]
118. Wang, B.; Shen, C.; Xu, K.; Zheng, T. Turn-to-turn Short Circuit of Motor Stator Fault Diagnosis in Continuous State Based on

Deep Auto-encoder. IET Electr. Power Appl. 2019, 13, 1598–1606. [CrossRef]
119. Mahmoud, M.S.; Huynh, V.K.; Senanyaka, J.S.L.; Robbersmyr, K.G. Robust Multiple-Fault Diagnosis of PMSM Drives Under

Variant Operations and Noisy Conditions. IEEE Open J. Ind. Electron. Soc. 2023, 4, 762–772. [CrossRef]
120. Maraaba, L.S.; Milhem, A.S.; Nemer, I.A.; Al-Duwaish, H.; Abido, M.A. Convolutional Neural Network-Based Inter-Turn Fault

Diagnosis in LSPMSMs. IEEE Access 2020, 8, 81960–81970. [CrossRef]
121. Shih, K.-J.; Hsieh, M.-F.; Chen, B.-J.; Huang, S.-F. Machine Learning for Inter-Turn Short-Circuit Fault Diagnosis in Permanent

Magnet Synchronous Motors. IEEE Trans. Magn. 2022, 58, 8204307. [CrossRef]
122. Song, Q.; Wang, M.; Lai, W.; Zhao, S. On Bayesian Optimization-Based Residual CNN for Estimation of Inter-Turn Short Circuit

Fault in PMSM. IEEE Trans. Power Electron. 2023, 38, 2456–2468. [CrossRef]
123. Wang, M.; Song, Q.; Lai, W. On Model-Based Transfer Learning Method for the Detection of Inter-Turn Short Circuit Faults in

PMSM. Sensors 2023, 23, 9145. [CrossRef] [PubMed]
124. Li, Y.; Wang, R.; Mao, R.; Zhang, Y.; Zhu, K.; Li, Y.; Zhang, J. A Fault Diagnosis Method Based on an Improved Deep Q-Network

for the Interturn Short Circuits of a Permanent Magnet Synchronous Motor. IEEE Trans. Transp. Electrif. 2024, 10, 3870–3887.
[CrossRef]

125. Li, H.; Shen, J.; Shi, C.; Shi, T. Hybrid Learning Model-Based Inter-Turn Short Circuit Fault Diagnosis of PMSM. In Proceedings of
the 2023 IEEE Transportation Electrification Conference and Expo, Asia-Pacific (ITEC Asia-Pacific), Chiang Mai, Thailand, 28
November–1 December 2023; IEEE: Piscataway, NJ, USA, 2023; pp. 1–6.

126. Parvin, F.; Faiz, J.; Qi, Y.; Kalhor, A.; Akin, B. A Comprehensive Inter-Turn Fault Severity Diagnosis Method for Permanent
Magnet Synchronous Motors Based on Transformer Neural Networks. IEEE Trans. Ind. Inform. 2023, 19, 10923–10933. [CrossRef]

127. Lee, H.; Jeong, H.; Koo, G.; Ban, J.; Kim, S.W. Attention Recurrent Neural Network-Based Severity Estimation Method for
Interturn Short-Circuit Fault in Permanent Magnet Synchronous Machines. IEEE Trans. Ind. Electron. 2021, 68, 3445–3453.
[CrossRef]

128. Xue, B.; Zhang, M.; Browne, W.N. Particle Swarm Optimization for Feature Selection in Classification: A Multi-Objective
Approach. IEEE Trans. Cybern. 2013, 43, 1656–1671. [CrossRef]

129. Grouz, F.; Sbita, L.; Boussak, M. Particle Swarm Optimization Based Fault Diagnosis for Non-Salient PMSM with Multi-Phase
Inter-Turn Short Circuit. In Proceedings of the 2012 2nd International Conference on Communications, Computing and Control
Applications CCCA’12, Marseilles, France, 6–8 December 2012; IEEE: Piscataway, NJ, USA, 2012; pp. 1–6.

130. Tomczyk, M.; Mielnik, R.; Plichta, A.; Gołdasz, I.; Sułowicz, M. Application of Genetic Algorithm for Inter-Turn Short Circuit
Detection in Stator Winding of Induction Motor. Energies 2021, 14, 8523. [CrossRef]

131. Chen, X.; Qin, P.; Chen, Y.; Zhao, J.; Li, W.; Mao, Y.; Zhao, T. Inter-Turn Short Circuit Fault Diagnosis of PMSM. Electronics 2022,
11, 1576. [CrossRef]

132. Goode, P.V.; Chow, M.-Y. Using a Neural/Fuzzy System to Extract Heuristic Knowledge of Incipient Faults in Induction Motors.
Part I-Methodology. IEEE Trans. Ind. Electron. 1995, 42, 131–138. [CrossRef]

133. Benbouzid, M.E.H.; Nejjari, H. A Simple Fuzzy Logic Approach for Induction Motors Stator Condition Monitoring. In Proceedings
of the IEMDC 2001 IEEE International Electric Machines and Drives Conference (Cat. No.01EX485), Cambridge, MA, USA, 17–20
June 2001; IEEE: Piscataway, NJ, USA, 2001; pp. 634–639.

134. Yan, H.; Xu, Y.; Cai, F.; Zhang, H.; Zhao, W.; Gerada, C. PWM-VSI Fault Diagnosis for a PMSM Drive Based on the Fuzzy Logic
Approach. IEEE Trans. Power Electron. 2019, 34, 759–768. [CrossRef]



Energies 2025, 18, 534 39 of 44

135. Ballal, M.S.; Khan, Z.J.; Suryawanshi, H.M.; Sonolikar, R.L. Adaptive Neural Fuzzy Inference System for the Detection of
Inter-Turn Insulation and Bearing Wear Faults in Induction Motor. IEEE Trans. Ind. Electron. 2007, 54, 250–258. [CrossRef]

136. Tallam, R.M.; Habetler, T.G.; Harley, R.G. Stator Winding Turn-Fault Detection for Closed-Loop Induction Motor Drives. IEEE

Trans. Ind. Appl. 2003, 39, 720–724. [CrossRef]
137. Pietrzak, P.; Wolkiewicz, M. On-Line Detection and Classification of PMSM Stator Winding Faults Based on Stator Current

Symmetrical Components Analysis and the KNN Algorithm. Electronics 2021, 10, 1786. [CrossRef]
138. Zhang, J.; Wang, Y.; Zhu, K.; Zhang, Y.; Li, Y. Diagnosis of Interturn Short-Circuit Faults in Permanent Magnet Synchronous

Motors Based on Few-Shot Learning under a Federated Learning Framework. IEEE Trans. Ind. Inform. 2021, 17, 8495–8504.
[CrossRef]

139. Haddad, R.Z.; Strangas, E.G. On the Accuracy of Fault Detection and Separation in Permanent Magnet Synchronous Machines
Using MCSA/MVSA and LDA. IEEE Trans. Energy Convers. 2016, 31, 924–934. [CrossRef]

140. Maraaba, L.S.; Al-Hamouz, Z.M.; Milhem, A.S.; Abido, M.A. Neural Network-Based Diagnostic Tool for Detecting Stator
Inter-Turn Faults in Line Start Permanent Magnet Synchronous Motors. IEEE Access 2019, 7, 89014–89025. [CrossRef]

141. Wei, D.; Liu, K.; Wang, J.; Zhou, S.; Li, K. ResNet-18 Based Inter-Turn Short Circuit Fault Diagnosis of PMSMs with Consideration
of Speed and Current Loop Bandwidths. IEEE Trans. Transp. Electrif. 2023, 10, 5805–5818. [CrossRef]

142. Pietrzak, P.; Wolkiewicz, M.; Orlowska-Kowalska, T. PMSM Stator Winding Fault Detection and Classification Based on
Bispectrum Analysis and Convolutional Neural Network. IEEE Trans. Ind. Electron. 2023, 70, 5192–5202. [CrossRef]

143. Li, L.; Liao, S.; Zou, B.; Liu, J. Mechanism-Based Fault Diagnosis Deep Learning Method for Permanent Magnet Synchronous
Motor. Sensors 2024, 24, 6349. [CrossRef]

144. Zsuga, Á.; Dineva, A. Data-Driven Onboard Inter-Turn Short Circuit Fault Diagnosis for Electric Vehicles by Using Real-Time
Simulation Environment. IEEE Access 2023, 11, 145447–145466. [CrossRef]

145. Kumar, R.R.; Randazzo, V.; Cirrincione, G.; Cirrincione, M.; Pasero, E.; Tortella, A.; Andriollo, M. Induction Machine Stator Fault
Tracking Using the Growing Curvilinear Component Analysis. IEEE Access 2021, 9, 2201–2212. [CrossRef]

146. Wu, X.; Geng, Y.; Li, M.; Wang, W.; Tu, M. Inter-Turn Short Circuit Diagnosis of Permanent Magnet Synchronous Motor Based on
Siamese Convolutional Neural Network Under Small Fault Samples. IEEE Sens. J. 2024, 24, 26982–26993. [CrossRef]

147. Chen, Z.; Liang, D.; Jia, S.; Yang, S. Model-Based Data Normalization for Data-Driven PMSM Fault Diagnosis. IEEE Trans. Power

Electron. 2024, 39, 11596–11612. [CrossRef]
148. Lv, K.; Wang, D.; Huang, W.; Hu, J. Research on Fault Indicator for Integrated Fault Diagnosis System of PMSM Based on Stator

Tooth Flux. IEEE J. Emerg. Sel. Top. Power Electron. 2024, 12, 985–996. [CrossRef]
149. Rafiei, V.; Khoshlessan, M.; Caicedo-Narvaez, C.; Fahimi, B. Detection of Inter-Turn Short Circuit in Stator Windings of Electric

Machines Using Magnetic Symmetry Index and Machine Learning Methods. IEEE Trans. Energy Convers. 2024, Online early access.
[CrossRef]

150. Cao, W.; Huang, R.; Wang, H.; Lu, S.; Hu, Y.; Hu, C.; Huang, X. Analysis of Inter-Turn Short-Circuit Faults in Brushless DC
Motors Based on Magnetic Leakage Flux and Back Propagation Neural Network. IEEE Trans. Energy Convers. 2023, 38, 2273–2281.
[CrossRef]

151. Li, H.; Shi, T. Diagnosis of Inter-Turn Short-Circuit Incipient Fault in Permanent Magnet Synchronous Motors Using Input
Current on the Power Side. IEEE Trans. Ind. Inform. 2024, 20, 13741–13752. [CrossRef]

152. Ibrahim, R.; Zemouri, R.; Kedjar, B.; Merkhouf, A.; Tahan, A.; Al-Haddad, K.; Lafleur, F. Non-Invasive Detection of Rotor
Inter-Turn Short Circuit of a Hydrogenerator Using AI-Based Variational Autoencoder. IEEE Trans. Ind. Appl. 2023, 60, 28–37.
[CrossRef]

153. Du, Y.; Wu, L.; Zhan, H.; Fang, Y. Influence of Dimensional Parameters on Three-Phase Short Circuit and Demagnetization in
Surface-Mounted PM Machines. IEEE Trans. Energy Convers. 2021, 36, 2514–2523. [CrossRef]

154. Li, G.J.; Ren, B.; Zhu, Z.Q.; Foster, M.P.; Stone, D.A. Demagnetization Withstand Capability Enhancement of Surface Mounted PM
Machines Using Stator Modularity. IEEE Trans. Ind. Appl. 2018, 54, 1302–1311. [CrossRef]

155. Urresty, J.-C.; Riba, J.-R.; Romeral, L. A Back-Emf Based Method to Detect Magnet Failures in PMSMs. IEEE Trans. Magn. 2013, 49,
591–598. [CrossRef]

156. Urresty, J.-C.; Riba, J.-R.; Delgado, M.; Romeral, L. Detection of Demagnetization Faults in Surface-Mounted Permanent Magnet
Synchronous Motors by Means of the Zero-Sequence Voltage Component. IEEE Trans. Energy Convers. 2012, 27, 42–51. [CrossRef]

157. Zhan, H.; Wu, L.; Lyu, Z.; Du, Y.; Fang, Y. Uneven Demagnetization Fault Diagnosis in Dual Three-Phase Permanent Magnet
Machines Based on Electrical Signal Difference. IEEE Trans. Transp. Electrif. 2022, 9, 3026–3039. [CrossRef]

158. Zafarani, M.; Goktas, T.; Akin, B.; Fedigan, S.E. An Investigation of Motor Topology Impacts on Magnet Defect Fault Signatures.
IEEE Trans. Ind. Electron. 2017, 64, 32–42. [CrossRef]

159. Rajagopalan, S.; le Roux, W.; Habetler, T.G.; Harley, R.G. Dynamic Eccentricity and Demagnetized Rotor Magnet Detection
in Trapezoidal Flux (Brushless DC) Motors Operating under Different Load Conditions. IEEE Trans. Power Electron. 2007, 22,
2061–2069. [CrossRef]



Energies 2025, 18, 534 40 of 44

160. Garcia-Calva, T.A.; Gyftakis, K.N.; Skarmoutsos, G.A.; Mueller, M.; Morinigo-Sotelo, D.; Romero-Troncoso, R.D.J. Advanced
Signal Processing Techniques for Demagnetization Detection in PM Generators at Variable Speed. IEEE Trans. Ind. Appl. 2023, 60,
174–183. [CrossRef]

161. Ruiz, J.R.R.; Rosero, J.A.; Espinosa, A.G.; Romeral, L. Detection of Demagnetization Faults in Permanent-Magnet Synchronous
Motors under Nonstationary Conditions. IEEE Trans. Magn. 2009, 45, 2961–2969. [CrossRef]

162. Prieto, M.D.; Espinosa, A.G.; Ruiz, J.R.R.; Urresty, J.C.; Ortega, J.A. Feature Extraction of Demagnetization Faults in Permanent-
Magnet Synchronous Motors Based on Box-Counting Fractal Dimension. IEEE Trans. Ind. Electron. 2011, 58, 1594–1605.
[CrossRef]

163. Wang, C.; Delgado Prieto, M.; Romeral, L.; Chen, Z.; Blaabjerg, F.; Liu, X. Detection of Partial Demagnetization Fault in PMSMs
Operating under Nonstationary Conditions. IEEE Trans. Magn. 2016, 52, 8105804. [CrossRef]

164. Gyftakis, K.N.; Garcia-Calva, T.A.; Skarmoutsos, G.A.; Morinigo-Sotelo, D.; Mueller, M.; Romero-Troncoso, R.D.J. Demagnetiza-
tion Monitoring and Identification in PM Generators with Concentrated Windings during Transient Conditions. IEEE Trans. Ind.

Appl. 2022, 59, 1510–1518. [CrossRef]
165. Espinosa, A.G.; Rosero, J.A.; Cusido, J.; Romeral, L.; Ortega, J.A. Fault Detection by Means of Hilbert–Huang Transform of the

Stator Current in a PMSM with Demagnetization. IEEE Trans. Energy Convers. 2010, 25, 312–318. [CrossRef]
166. Chen, Z.; Liang, Z.; Liang, D.; Jia, S. Partial Demagnetization Fault Analysis and Diagnosis for Fractional Slot Concentrated

Winding PMSMs Based on DQ-Axis Components. IEEE Trans. Energy Convers. 2024, Online early access. [CrossRef]
167. Goktas, T.; Zafarani, M.; Akin, B. Discernment of Broken Magnet and Static Eccentricity Faults in Permanent Magnet Synchronous

Motors. IEEE Trans. Energy Convers. 2016, 31, 578–587. [CrossRef]
168. Zafarani, M.; Goktas, T.; Akin, B. A Comprehensive Analysis of Magnet Defect Faults in Permanent Magnet Synchronous Motors.

IEEE Trans. Ind. Appl. 2015, 52, 1331–1339. [CrossRef]
169. Radwan-Pragłowska, N.; Wegiel, T. Diagnostics of Interior PM Machine Rotor Faults Based on EMF Harmonics. Energies 2024, 17,

2198. [CrossRef]
170. Rasid, S.A.; Gyftakis, K.N.; Mueller, M. Comparative Investigation of Three Diagnostic Methods Applied to Direct-Drive

Permanent Magnet Machines Suffering from Demagnetization. Energies 2023, 16, 2767. [CrossRef]
171. Gritli, Y.; Rossi, C.; Rizzoli, G.; Mengoni, M.; Tani, A.; Casadei, D. Robust Online Magnet Demagnetization Diagnosis in

Asymmetrical Six-Phase AC Permanent Magnet Motor Drives. IEEE Access 2023, 11, 50769–50780. [CrossRef]
172. Hong, J.; Park, S.; Hyun, D.; Kang, T.; Lee, S.B.; Kral, C.; Haumer, A. Detection and Classification of Rotor Demagnetization and

Eccentricity Faults for PM Synchronous Motors. IEEE Trans. Ind. Appl. 2012, 48, 923–932. [CrossRef]
173. Jongman, H.; Doosoo, H.; Sang Bin, L.; Ji-Yoon, Y.; Kwang-Woon, L. Automated Monitoring of Magnet Quality for Permanent-

Magnet Synchronous Motors at Standstill. IEEE Trans. Ind. Appl. 2010, 46, 1397–1405. [CrossRef]
174. Fernandez, D.; Reigosa, D.D.; Guerrero, J.M.; Zhu, Z.-Q.; Briz, F. Permanent-Magnet Magnetization State Estimation Using

High-Frequency Signal Injection. IEEE Trans. Ind. Appl. 2016, 52, 2930–2940. [CrossRef]
175. Diaz Reigosa, D.; Fernandez, D.; Zhu, Z.-Q.; Briz, F. PMSM Magnetization State Estimation Based on Stator-Reflected PM

Resistance Using High-Frequency Signal Injection. IEEE Trans. Ind. Appl. 2015, 51, 3800–3810. [CrossRef]
176. He, W.; Hang, J.; Ding, S.; Sun, L.; Hua, W. Robust Diagnosis of Partial Demagnetization Fault in PMSMs Using Radial Air-Gap

Flux Density under Complex Working Conditions. IEEE Trans. Ind. Electron. 2024, 71, 12001–12010. [CrossRef]
177. Zeng, C.; Huang, S.; Lei, J.; Wan, Z.; Yang, Y. Online Rotor Fault Diagnosis of Permanent Magnet Synchronous Motors Based on

Stator Tooth Flux. IEEE Trans. Ind. Appl. 2021, 57, 2366–2377. [CrossRef]
178. Orviz, M.; Laborda, D.F.; Reigosa, D.; Lee, H.-J.; Rafaq, M.S.; Lee, S.B.; Briz, F. Demagnetization Detection and Severity Assessment

in PMSMs Using Search Coils Exploiting Machine’s Symmetry. IEEE Trans. Ind. Appl. 2023, 59, 4021–4034. [CrossRef]
179. Im, J.-H.; Kang, J.-K.; Heo, J.-H.; Hur, J. Utilization of Multiple Planar Search Coils for Diagnosing Imbalance Irreversible

Demagnetization Faults in PMSMs Along the Z-Axis. IEEE Trans. Ind. Appl. 2024, 60, 5988–5997. [CrossRef]
180. Huang, W.; Chen, J.; Su, W.; Liu, H.; Lv, K.; Hu, J. A Period Energy Method for Demagnetization Detection in Surface Permanent

Magnet Motors with Search Coils. Electronics 2023, 12, 3514. [CrossRef]
181. Naderi, P. Magnetic-Equivalent-Circuit Approach for Inter-Turn and Demagnetisation Faults Analysis in Surface Mounted

Permanent-Magnet Synchronous Machines Using Pole Specific Search-Coil Technique. IET Electr. Power Appl. 2018, 12, 916–928.
[CrossRef]

182. Rafaq, M.S.; Lee, H.; Park, Y.; Lee, S.-B.; Orviz Zapico, M.; Fernandez, D.; Diaz-Reigosa, D.; Briz, F. Airgap Search Coil Based
Identification of PM Synchronous Motor Defects. IEEE Trans. Ind. Electron. 2022, 69, 6551–6560. [CrossRef]

183. Skarmoutsos, G.A.; Gyftakis, K.N.; Mueller, M. Detecting Partial Demagnetization in AFPM Generators by Monitoring Speed and
EMF Induced in a Supplemental Winding. IEEE Trans. Ind. Inform. 2022, 18, 3295–3305. [CrossRef]

184. Gao, C.; Li, B.; Chen, H.; Xu, Y.; Xu, X.; Si, J.; Hu, Y. A Less-Invasive Method for Accurately Diagnosing of Demagnetization Fault
in PMSM Using Rotor Partition. IEEE Trans. Transp. Electrif. 2022, 9, 2356–2366. [CrossRef]



Energies 2025, 18, 534 41 of 44

185. Chen, H.; Fang, C.; Dong, J.; Lu, S.; Pires, V.; Martins, J.; Aguirre, M.P. Diagnosis of Inter-Turn Short-Circuit of SRM Based on
Ratio of Current Components. IEEE Trans. Transp. Electrif. 2022, 9, 3319–3327. [CrossRef]

186. Skarmoutsos, G.A.; Gyftakis, K.N.; Mueller, M.A. A New Approach to PM Machine Fault Diagnostics Using Two Magnetically-
Coupled Search-Coils. In Proceedings of the 2022 International Conference on Electrical Machines (ICEM), Valencia, Spain, 5–8
September 2022; pp. 1616–1621.

187. Jeong, J.; Lee, H.; Orviz, M.; Lee, S.B.; Reigosa, D.; Briz, F. Detection of Trailing Edge PM Demagnetization in Surface PM
Synchronous Motors. IEEE Trans. Ind. Appl. 2023, 59, 3390–3399. [CrossRef]

188. Goktas, T.; Arkan, M.; Mamis, M.S.; Akin, B. Broken Rotor Bar Fault Monitoring Based on Fluxgate Sensor Measurement of
Leakage Flux. In Proceedings of the 2017 IEEE International Electric Machines and Drives Conference (IEMDC), Miami, FL, USA,
21–24 May 2017; IEEE: Piscataway, NJ, USA, 2017; pp. 1–6.

189. Goktas, T.; Zafarani, M.; Lee, K.W.; Akin, B.; Sculley, T. Comprehensive Analysis of Magnet Defect Fault Monitoring through
Leakage Flux. IEEE Trans. Magn. 2017, 53, 8201010. [CrossRef]

190. Xu, Q.; Liu, X.; Miao, W.; Pong, P.W.T.; Liu, C. Online Detecting Magnet Defect Fault in PMSG with Magnetic Sensing. IEEE Trans.

Transp. Electrif. 2021, 7, 2775–2786. [CrossRef]
191. Reigosa, D.; Fernandez, D.; Park, Y.; Diez, A.B.; Lee, S.B.; Briz, F. Detection of Demagnetization in Permanent Magnet Synchronous

Machines Using Hall-Effect Sensors. IEEE Trans. Ind. Appl. 2018, 54, 3338–3349. [CrossRef]
192. Reigosa, D.; Fernandez, D.; Martinez, M.; Park, Y.; Lee, S.B.; Briz, F. Permanent Magnet Synchronous Machine Non-Uniform

Demagnetization Detection Using Zero-Sequence Magnetic Field Density. IEEE Trans. Ind. Appl. 2019, 55, 3823–3833. [CrossRef]
193. Park, Y.; Yang, C.; Lee, S.B.; Lee, D.-M.; Fernandez, D.; Reigosa, D.; Briz, F. Online Detection and Classification of Rotor and Load

Defects in PMSMs Based on Hall Sensor Measurements. IEEE Trans. Ind. Appl. 2019, 55, 3803–3812. [CrossRef]
194. Park, Y.; Fernandez, D.; Lee, S.B.; Hyun, D.; Jeong, M.; Kommuri, S.K.; Cho, C.; Diaz Reigosa, D.; Briz, F. Online Detection of

Rotor Eccentricity and Demagnetization Faults in PMSMs Based on Hall-Effect Field Sensor Measurements. IEEE Trans. Ind. Appl.

2019, 55, 2499–2509. [CrossRef]
195. Ebrahimi, B.M.; Faiz, J. Demagnetization Fault Diagnosis in Surface Mounted Permanent Magnet Synchronous Motors. IEEE

Trans. Magn. 2013, 49, 1185–1192. [CrossRef]
196. Yang, C.; Wang, Y.; Qiu, H.; Chen, S.; Lian, Z. Electromagnetic Vibration of High-Voltage Line-Start Permanent Magnet

Synchronous Motor with Demagnetization Fault. J. Electr. Eng. Technol. 2024, 19, 4143–4158. [CrossRef]
197. Ai, Q.; Wei, H.; Li, T.; Dou, H.; Zhao, W.; Zhang, Y. Online Demagnetization Fault Recognition for Permanent Magnet Motors

Based on the Hall-Effect Analog Sampling. IEEE Trans. Power Electron. 2023, 38, 3600–3611. [CrossRef]
198. De Bisschop, J.; Abdallh, A.; Sergeant, P.; Dupre, L. Identification of Demagnetization Faults in Axial Flux Permanent Magnet

Synchronous Machines Using an Inverse Problem Coupled with an Analytical Model. IEEE Trans. Magn. 2014, 50, 8104804.
[CrossRef]

199. De Bisschop, J.; Vansompel, H.; Sergeant, P.; Dupre, L. Demagnetization Fault Detection in Axial Flux PM Machines by Using
Sensing Coils and an Analytical Model. IEEE Trans. Magn. 2017, 53, 8203404. [CrossRef]

200. le Roux, W.; Harley, R.G.; Habetler, T.G. Detecting Rotor Faults in Low Power Permanent Magnet Synchronous Machines. IEEE

Trans. Power Electron. 2007, 22, 322–328. [CrossRef]
201. Moon, S.; Lee, J.; Jeong, H.; Kim, S.W. Demagnetization Fault Diagnosis of a PMSM Based on Structure Analysis of Motor

Inductance. IEEE Trans. Ind. Electron. 2016, 63, 3795–3803. [CrossRef]
202. Zhu, M.; Hu, W.; Kar, N.C. Torque-Ripple-Based Interior Permanent-Magnet Synchronous Machine Rotor Demagnetization Fault

Detection and Current Regulation. IEEE Trans. Ind. Appl. 2017, 53, 2795–2804. [CrossRef]
203. Liu, Z.; Huang, J.; Li, B. Diagnosing and Distinguishing Rotor Eccentricity from Partial Demagnetisation of Interior PMSM Based

on Fluctuation of High-frequency d -axis Inductance and Rotor Flux. IET Electr. Power Appl. 2017, 11, 1265–1275. [CrossRef]
204. Han, Y.; Chen, S.; Gong, C.; Zhao, X.; Zhang, F.; Li, Y. Accurate SM Disturbance Observer-Based Demagnetization Fault Diagnosis

with Parameter Mismatch Impacts Eliminated for IPM Motors. IEEE Trans. Power Electron. 2023, 38, 5706–5710. [CrossRef]
205. Yi, C.-P.; Lin, Y.-J.; Ho, P.-J.; Yang, S.-C. Magnet Fault Diagnosis for Permanent Magnet Synchronous Motor Based on Flux

Estimation With PWM Voltage Measurement. IEEE Trans. Ind. Electron. 2024, 72, 2100–2110. [CrossRef]
206. Vancini, L.; Mengoni, M.; Rizzoli, G.; Zarri, L.; Tani, A. Local Demagnetization Detection in Six-Phase Permanent Magnet

Synchronous Machines. IEEE Trans. Ind. Electron. 2024, 71, 5508–5518. [CrossRef]
207. Kim, K.-T.; Lee, Y.-S.; Hur, J. Transient Analysis of Irreversible Demagnetization of Permanent-Magnet Brushless DC Motor With

Interturn Fault Under the Operating State. IEEE Trans. Ind. Appl. 2014, 50, 3357–3364. [CrossRef]
208. Seo, M.-K.; Lee, T.-Y.; Ko, Y.-Y.; Kim, Y.-J.; Jung, S.-Y. Irreversible Demagnetization Analysis with Respect to Winding Connection

and Current Ripple in Brushless DC Motor. IEEE Trans. Appl. Supercond. 2018, 28, 5203604. [CrossRef]
209. Khan, M.S.; Okonkwo, U.V.; Usman, A.; Rajpurohit, B.S. Finite Element Modeling of Demagnetization Fault in Permanent Magnet

Direct Current Motors. In Proceedings of the 2018 IEEE Power & Energy Society General Meeting (PESGM), Portland, OR, USA,
5–10 August 2018; IEEE: Piscataway, NJ, USA, 2018; pp. 1–5.



Energies 2025, 18, 534 42 of 44

210. Li, S.; Li, Y.; Sarlioglu, B. Partial Irreversible Demagnetization Assessment of Flux-Switching Permanent Magnet Machine Using
Ferrite Permanent Magnet Material. IEEE Trans. Magn. 2015, 51, 8106209. [CrossRef]

211. Kim, K.-C.; Kim, K.; Kim, H.J.; Lee, J. Demagnetization Analysis of Permanent Magnets According to Rotor Types of Interior
Permanent Magnet Synchronous Motor. IEEE Trans. Magn. 2009, 45, 2799–2802. [CrossRef]

212. Skowron, M.; Orlowska-Kowalska, T.; Kowalski, C.T. Detection of Permanent Magnet Damage of PMSM Drive Based on Direct
Analysis of the Stator Phase Currents Using Convolutional Neural Network. IEEE Trans. Ind. Electron. 2022, 69, 13665–13675.
[CrossRef]

213. Skowron, M. Transfer Learning-Based Fault Detection System of Permanent Magnet Synchronous Motors. IEEE Access 2024, 12,
135372–135389. [CrossRef]

214. Minaz, M.R.; Akcan, E. An Effective Method for Detection of Demagnetization Fault in Axial Flux Coreless PMSG with Texture-
Based Analysis. IEEE Access 2021, 9, 17438–17449. [CrossRef]

215. Zhou, S.; Ma, C.; Ji, Z.; Feng, Q.; Zhao, Y.; Wang, Y.; Shen, Z.; Wang, D. A New Data-Driven Diagnosis Method for Compound
Fault of Mixed Eccentricity and Demagnetization in External Rotor Permanent Magnet Motors. IEEE Trans. Ind. Inf. 2024, 20,
11794–11805. [CrossRef]

216. Pietrzak, P.; Wolkiewicz, M. Demagnetization Fault Diagnosis of Permanent Magnet Synchronous Motors Based on Stator Current
Signal Processing and Machine Learning Algorithms. Sensors 2023, 23, 1757. [CrossRef] [PubMed]

217. Koutrakos, K.; Mitronikas, E. Outlier Detection for Permanent Magnet Synchronous Motor (PMSM) Fault Detection and Severity
Estimation. Appl. Sci. 2024, 14, 4318. [CrossRef]

218. Kumar, L.; Nadarajan, S.; Vaiyapuri, V.; Gupta, A.; Soong, B.-H.; Nguyen, H.D. Decoupling of Demagnetization Characteristics to
Improve the Turn-to-Turn Fault Detection in PMSM Using Machine Learning Methods. In Proceedings of the IECON 2023 49th
Annual Conference of the IEEE Industrial Electronics Society, Singapore, 16–19 October 2023; IEEE: Piscataway, NJ, USA, 2023;
pp. 1–6.

219. Du, B.; Huang, W.; Cheng, Y.; Chen, J.; Tao, R.; Cui, S. Fault Diagnosis and Separation of PMSM Rotor Faults Using Search Coil
Based on MVSA and Random Forests. IEEE Trans. Ind. Electron. 2024, 71, 15089–15099. [CrossRef]

220. Kang, J.-K.; Yoo, D.-W.; Hur, J. Application and Verification of Voltage Angle-Based Fault Diagnosis Method in Six-Phase IPMSM.
IEEE Trans. Ind. Appl. 2023, 60, 426–438. [CrossRef]

221. Meiwei, Z.; Weili, L.; Haoyue, T. Demagnetization Fault Diagnosis of the Permanent Magnet Motor for Electric Vehicles Based on
Temperature Characteristic Quantity. IEEE Trans. Transp. Electrif. 2023, 9, 759–770. [CrossRef]

222. Song, J.; Zhao, J.; Zhang, X.; Dong, F.; Zhao, J.; Xu, L.; Yao, Z. Accurate Demagnetization Faults Detection of Dual-Sided Permanent
Magnet Linear Motor Using Enveloping and Time-Domain Energy Analysis. IEEE Trans. Ind. Inform. 2020, 16, 6334–6346.
[CrossRef]

223. Song, J.; Zhao, J.; Dong, F.; Zhao, J.; Xu, L.; Yao, Z. A New Demagnetization Fault Recognition and Classification Method for
DPMSLM. IEEE Trans. Ind. Inform. 2020, 16, 1559–1570. [CrossRef]

224. Song, J.; Liu, S.; Duan, Z.; Wu, X.; Ding, W.; Wang, X.; Lu, S. DPMSLM Demagnetization Fault Detection Based on Texture Feature
Analysis of Grayscale Fusion Image. IEEE Trans. Instrum. Meas. 2023, 72, 3510512. [CrossRef]

225. Gao, C.; Gao, B.; Xu, X.; Si, J.; Hu, Y. Automatic Demagnetization Fault Location of Direct-Drive Permanent Magnet Synchronous
Motor Using Knowledge Graph. IEEE Trans. Instrum. Meas. 2024, 73, 3502312. [CrossRef]

226. Huang, F.; Zhang, X.; Qin, G.; Xie, J.; Peng, J.; Huang, S.; Long, Z.; Tang, Y. Demagnetization Fault Diagnosis of Permanent
Magnet Synchronous Motors Using Magnetic Leakage Signals. IEEE Trans. Ind. Inform. 2022, 19, 6105–6116. [CrossRef]

227. Attestog, S.; Senanayaka, J.S.L.; Khang, H.V.; Robbersmyr, K.G. Robust Active Learning Multiple Fault Diagnosis of PMSM
Drives with Sensorless Control under Dynamic Operations and Imbalanced Datasets. IEEE Trans. Ind. Inform. 2022, 19, 9291–9301.
[CrossRef]

228. Zhu, Z.Q.; Wu, L.J.; Mohd Jamil, M.L. Distortion of Back-EMF and Torque of PM Brushless Machines Due to Eccentricity. IEEE

Trans. Magn. 2013, 49, 4927–4936. [CrossRef]
229. Dorrell, D.G.; Hsieh, M.-F.; Guo, Y. Unbalanced Magnet Pull in Large Brushless Rare-Earth Permanent Magnet Motors With Rotor

Eccentricity. IEEE Trans. Magn. 2009, 45, 4586–4589. [CrossRef]
230. Wei, Q.; Zeng, D.; Sun, Z.; Qiu, W.; Shuai, Z.; Li, W. An Improved Conformal Mapping Method for Electromagnetic Vibration

Analysis in PMSMs With Rotor Eccentricity. IEEE Trans. Appl. Supercond. 2024, 34, 5204305. [CrossRef]
231. Zhu, Z.Q.; Wu, L.J.; Mohd Jamil, M.L. Influence of Pole and Slot Number Combinations on Cogging Torque in Permanent-Magnet

Machines with Static and Rotating Eccentricities. IEEE Trans. Ind. Appl. 2014, 50, 3265–3277. [CrossRef]
232. Ebrahimi, B.M.; Faiz, J.; Roshtkhari, M.J. Static-, Dynamic-, and Mixed-Eccentricity Fault Diagnoses in Permanent-Magnet

Synchronous Motors. IEEE Trans. Ind. Electron. 2009, 56, 4727–4739. [CrossRef]
233. Rajagopalan, S.; Aller, J.M.; Restrepo, J.A.; Habetler, T.G.; Harley, R.G. Analytic-Wavelet-Ridge-Based Detection of Dynamic

Eccentricity in Brushless Direct Current (BLDC) Motors Functioning under Dynamic Operating Conditions. IEEE Trans. Ind.

Electron. 2007, 54, 1410–1419. [CrossRef]



Energies 2025, 18, 534 43 of 44

234. Rajagopalan, S.; Restrepo, J.A.; Aller, J.M.; Habetler, T.G.; Harley, R.G. Nonstationary Motor Fault Detection Using Recent
Quadratic Time–Frequency Representations. IEEE Trans. Ind. Appl. 2008, 44, 735–744. [CrossRef]

235. Koura, M.B.; Boudinar, A.H.; Aimer, A.F.; Bendiabdellah, A.; Gherabi, Z. Diagnosis and Discernment between Eccentricity and
Demagnetization Faults in PMSM Drives. J. Power Electron. 2021, 21, 563–573. [CrossRef]

236. Ebrahimi, B.M.; Faiz, J. Configuration Impacts on Eccentricity Fault Detection in Permanent Magnet Synchronous Motors. IEEE

Trans. Magn. 2012, 48, 903–906. [CrossRef]
237. Jin, X.; Qiao, W.; Peng, Y.; Cheng, F.; Qu, L. Quantitative Evaluation of Wind Turbine Faults Under Variable Operational

Conditions. IEEE Trans. Ind. Appl. 2016, 52, 2061–2069. [CrossRef]
238. Skarmoutsos, G.A.; Gyftakis, K.N.; Mueller, M. Analytical Prediction of the MCSA Signatures under Dynamic Eccentricity in PM

Machines with Concentrated Non-Overlapping Windings. IEEE Trans. Energy Convers. 2022, 37, 1011–1019. [CrossRef]
239. Zhan, H.; Wu, L.; Lyu, Z.; Du, Y.; Duan, R. Detecting Eccentricity Fault in Permanent Magnet Synchronous Machines by Means of

Zero-Sequence Voltage Component. IEEE Trans. Ind. Appl. 2024, 60, 6761–6774. [CrossRef]
240. Zhou, S.; Ma, C.; Zhu, C.; Wang, J.; Gao, Y.; Wei, Y.; Liu, Z.; Feng, Q. A New Dynamic Eccentricity Diagnosis Method for

Permanent Magnet Motors Considering Variable-Speed and Speed Fluctuation Conditions. IEEE Trans. Instrum. Meas. 2024, 72,
3501012. [CrossRef]

241. Hong, J.; Lee, S.B.; Kral, C.; Haumer, A. Detection of Airgap Eccentricity for Permanent Magnet Synchronous Motors Based on
the D-Axis Inductance. IEEE Trans. Power Electron. 2012, 27, 2605–2612. [CrossRef]

242. Aggarwal, A.; Allafi, I.M.; Strangas, E.G.; Agapiou, J.S. Off-Line Detection of Static Eccentricity of PMSM Robust to Machine
Operating Temperature and Rotor Position Misalignment Using Incremental Inductance Approach. IEEE Trans. Transp. Electrif.

2021, 7, 161–169. [CrossRef]
243. Kang, K.; Song, J.; Kang, C.; Sung, S.; Jang, G. Real-Time Detection of the Dynamic Eccentricity in Permanent-Magnet Synchronous

Motors by Monitoring Speed and Back EMF Induced in an Additional Winding. IEEE Trans. Ind. Electron. 2017, 64, 7191–7200.
[CrossRef]

244. Wang, Y.; Liu, K.; Hua, W.; Zhang, C.; Wu, Z.; Zhang, H. Analysis and Detection of Rotor Eccentricity in Permanent Magnet
Synchronous Machines Based on Linear Hall Sensors. IEEE Trans. Power Electron. 2022, 37, 4719–4729. [CrossRef]

245. Ehya, H.; Nysveen, A.; Antonino-Daviu, J.A. Advanced Fault Detection of Synchronous Generators Using Stray Magnetic Field.
IEEE Trans. Ind. Electron. 2022, 69, 11675–11685. [CrossRef]

246. Ehya, H.; Nysveen, A.; Nilssen, R.; Liu, Y. Static and Dynamic Eccentricity Fault Diagnosis of Large Salient Pole Synchronous
Generators by Means of External Magnetic Field. IET Electr. Power Appl. 2021, 15, 890–902. [CrossRef]

247. Cui, H.; Ma, C.; Wang, Y.; Li, X.; He, Y.; Shen, Z.; Ji, Z.; Wang, P. Analytical Calculation of Stray Magnetic Field in Interior
Permanent Magnet Synchronous Motor Under Static Eccentricity Considering Nonlinear and Non-Uniform Magnetic Saturation.
IEEE Trans. Magn. 2024, 61, 8200411. [CrossRef]

248. He, Y.-L.; Zhang, Z.-J.; Tao, W.-Q.; Wang, X.-L.; Gerada, D.; Gerada, C.; Gao, P. A New External Search Coil Based Method to
Detect Detailed Static Air-Gap Eccentricity Position in Nonsalient Pole Synchronous Generators. IEEE Trans. Ind. Electron. 2021,
68, 7535–7544. [CrossRef]

249. Park, J.-C.; Park, S.-H.; Kim, J.-H.; Lee, S.-G.; Lee, G.-H.; Lim, M.-S. Diagnosis and Robust Design Optimization of SPMSM
Considering Back EMF and Cogging Torque Due to Static Eccentricity. Energies 2021, 14, 2900. [CrossRef]

250. Hsieh, M.-F.; Yeh, Y.-H. Rotor Eccentricity Effect on Cogging Torque of PM Generators for Small Wind Turbines. IEEE Trans.

Magn. 2013, 49, 1897–1900. [CrossRef]
251. Chen, Z.; Wang, F.; Fan, C.; Ling, Z.; Li, Z.; Wang, Q. Analysis of Rotor Eccentricity Fault in IPMSM With Different Armature

Winding Structures. IEEE Trans. Magn. 2023, 59, 8100410. [CrossRef]
252. Du, J.; Zhong, R.; Wu, Z.; Hua, W.; Wu, Z.; Zhang, C. Effect of Eccentricity on Vibration and Noise of External-Rotor PMSM.

In Proceedings of the 2024 International Conference on Electrical Machines (ICEM), Torino, Italy, 1–4 September 2024; IEEE:
Piscataway, NJ, USA, 2024; pp. 1–6.

253. Ma, C.; Zuo, S. Black-Box Method of Identification and Diagnosis of Abnormal Noise Sources of Permanent Magnet Synchronous
Machines for Electric Vehicles. IEEE Trans. Ind. Electron. 2014, 61, 5538–5549. [CrossRef]

254. Kang, J.-K.; Hur, J. Static Eccentric Fault Diagnosis of IPMSM Using Thermocouple Sensor. In Proceedings of the 2023 IEEE
Energy Conversion Congress and Exposition (ECCE), Nashville, TN, USA, 29 October–2 November 2023; IEEE: Piscataway, NJ,
USA, 2023; pp. 4465–4468.

255. Ebrahimi, B.M.; Faiz, J.; Araabi, B.N. Pattern Identification for Eccentricity Fault Diagnosis in Permanent Magnet Synchronous
Motors Using Stator Current Monitoring. IET Electr. Power Appl. 2010, 4, 418–430. [CrossRef]

256. Ebrahimi, B.M.; Javan Roshtkhari, M.; Faiz, J.; Khatami, S.V. Advanced Eccentricity Fault Recognition in Permanent Magnet
Synchronous Motors Using Stator Current Signature Analysis. IEEE Trans. Ind. Electron. 2014, 61, 2041–2052. [CrossRef]

257. Sun, W.; Wang, H.; Qu, R. A Novel Data Generation and Quantitative Characterization Method of Motor Static Eccentricity with
Adversarial Network. IEEE Trans. Power Electron. 2023, 38, 8027–8032. [CrossRef]



Energies 2025, 18, 534 44 of 44

258. Wang, H.; Sun, W.; Jiang, D.; Liu, Z.; Qu, R. Rotor Eccentricity Quantitative Characterization Based on Physics-Informed
Adversarial Network and Health Condition Data Only. IEEE Trans. Ind. Electron. 2024, 71, 6738–6752. [CrossRef]

259. Song, J.; Wu, X.; Qian, L.; Lv, W.; Wang, X.; Lu, S. PMSLM Eccentricity Fault Diagnosis Based on Deep Feature Fusion of Stray
Magnetic Field Signals. IEEE Trans. Instrum. Meas. 2024, 73, 3506012. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.


	Introduction 
	Inter-Turn Short-Circuit Fault Detection 
	Background 
	Signal-Based Methods 
	Electrical Signals 
	Magnetic Signals 
	Other Signals 
	Summary 

	Model-Based Methods 
	Estimation Residual 
	Estimated Shorted Turn Ratio 
	Estimated Machine Parameters 
	Summary 

	Data-Based Methods 
	Electrical Signals 
	Magnetic Signals 
	Other Signals 
	Summary 


	Partial Demagnetization Detection 
	Background 
	Signal-Based Methods 
	Electrical Signals 
	Magnetic Signals 
	Other Signals 
	Summary 

	Model-Based Methods 
	Estimation Residual 
	Estimated Rotor Flux 
	PM Magnetization State Estimation 
	Summary 

	Data-Based Methods 
	Electrical Signals 
	Magnetic Signals 
	Summary 


	Eccentricity Detection 
	Background 
	Signal-Based Methods 
	Electrical Signals 
	Magnetic Signals 
	Other Signals 
	Summary 

	Model-Based Methods 
	Data-Based Methods 
	Electrical Signals 
	Magnetic Signals 
	Summary 


	Evaluation of Existing Methods 
	General Evaluation 
	Challenges and Gaps in Existing Methods 
	Signal-Based Methods 
	Model-Based Methods 
	Data-Based Methods 

	Applicability in Industrial Applications 
	Electric Vehicle Applications 
	Wind Power Generation Applications 


	Discussion 
	Signal-Based Methods 
	Model-Based Methods 
	Data-Based Methods 

	Conclusions and Future Work 
	References

