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SUMMARY

Repeat expansions in the C9orf72 gene are the most common genetic cause of (ALS) and frontotemporal de-

mentia (FTD). Like other genetic forms of neurodegeneration, pinpointing the precise mechanism(s) by which

this mutation leads to neuronal death remains elusive, and this lack of knowledge hampers the development

of therapy for C9orf72-related disease. We used an agnostic approach based on genomic data (n = 41,273

ALS and healthy samples, and n = 1,516 C9orf72 carriers) to overcome these bottlenecks. Our drug-repur-

posing screen, based on gene- and expression-pattern matching and information about the genetic variants

influencing onset age among C9orf72 carriers, identified acamprosate, a g-aminobutyric acid analog, as a

potentially repurposable treatment for patients carrying C9orf72 repeat expansions. We validated its neuro-

protective effect in cell models and showed comparable efficacy to riluzole, the current standard of care. Our

work highlights the potential value of genomics in repurposing drugs in situations where the underlying path-

omechanisms are inherently complex.

INTRODUCTION

A repeat expansion within the C9orf72 gene is a common cause

of amyotrophic lateral sclerosis (ALS) and frontotemporal de-

mentia (FTD), two neurological disorders that result in the deaths

of �17,000 Americans and Europeans annually.1–4 This genetic

disease accounts for 1 in 10 ALS and FTD cases of European

descent, and many carriers in the general population have a

near-complete chance ofmanifesting symptoms during their life-

time.5,6 The exact processes by which this repeat expansion

leads to neuronal death are not fully understood, although

several mechanisms, such as dipeptide production, RNA
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toxicity, disruption of nucleocytoplasmic transport, and haploin-

sufficiency, have been suggested.7 This lack ofmolecular knowl-

edge is a common theme across neurodegenerative disorders,

where there is often a complex interplay among multiple path-

ways and cellular processes.8–11

The molecular complexity underlying neurodegenerative dis-

eases also hampers drug discovery; ameliorating a single aspect

of a cellular network may not be beneficial as it does not address

the other pathological processes co-occurring within the cell.12

Traditional linear drug-discovery efforts, where millions of com-

pounds are tested against a single target, are likely to fail in the

face of such multidimensional conditions, and this disconnect

alone may account for the high failure rate observed among clin-

ical trials in neurodegenerative diseases.13 Genomic and tran-

scriptomic data offer a potential solution, as these data types

inherently capture the multifaceted nature of neurological dis-

eases.We can exploit this information tomatch drugs that restore

entire networks and systems, even when the target pathways or

the mechanism of action of the drug are not fully understood.14,15

Compounds supported by genetic evidence are also more likely

to succeed in clinical trials and to gain drug approval.16,17

In this context, we have used a massive genomic dataset to

identify the genetic variants influencing age at onset among

patients carrying the C9orf72 repeat expansion. Building on

this genomic information, we have leveraged gene- and expres-

sion-pattern matching and pathway modeling to nominate

potentially repurposable drugs for C9orf72-related ALS/FTD.

We focused on onset age because of the wide range observed

in this common genetic form of neurodegeneration, spanning

from the fourth to the tenth decade of life, representing a natural

experiment within the ALS population.5,18 Genetic factors are

known to play a role in this variable age-at-onset presentation,19

and research in other neurological diseases shows that the

phenotypic manifestations of high-risk pathogenic variants are

influenced byminor effect variants elsewhere in the genome.20,21

Our pipeline nominated acamprosate, an oral medication used

to manage alcohol use disorder, as a potential repurposable

drug for slowing progression among symptomatic individuals

and delaying disease onset among C9orf72 carriers. In vitro

data demonstrated a neuroprotective effect of acamprosate in

motor neurons derived from these patients. Crucially, our dis-

covery approach evolved from the notion that genomics can

nominate specific medications in an agnostic, data-driven

manner, even when precise knowledge about disease mecha-

nisms or drug pharmacodynamics is lacking.

RESULTS

Figure 1 shows a graphical representation of our genetic work-

flow and drug-repurposing pipeline.
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Sporadic ALS risk variants modify the onset age among

C9orf72-related ALS/FTD

We built a polygenic risk profile for general ALS using 7,037

cases not carrying the C9orf72 repeat expansion and 34,236

healthy controls. The best-fit model included 161 SNPs (odds ra-

tio for the model = 1.125, 95% confidence interval [CI] = 1.093–

1.156, p = 1.5 3 10�16). Figure 2 and Table S1 describe the ge-

netic variants andmapped genes thatmake up the polygenic risk

score for general ALS.

Next, using the 161 SNPs, we investigated the association of

the general ALS genetic risk score with age at onset in a cohort

of 1,516 ALS/FTD C9orf72 expansion carriers. We found the

risk of general ALS (i.e., independent of the C9orf72 repeat

expansion) was significantly associated with onset age among

the C9orf72 expansion carriers (meta-analysis p = 1.5 3 10�3,

b = �0.781, 95% CI = �1.263 to �0.299; Figures 3A–3C;

Table S2). We observed similar results when analyzing ALS

C9orf72 and FTD C9orf72 carrier patients alone (Figure S1). In

contrast, the general ALS genetic risk score did not influence

the age at onset among patients without C9orf72 repeat expan-

sions (p = 0.437, b = 0.115, 95%CI =�0.175 to 0.404; Figures 3C

and S2; Table S2).

A subset of 16 SNPs drives the early-onset age among

C9orf72-related ALS/FTD

Having established that the general ALS risk influenced the age

at onset among C9orf72 patients, we next determined which of

the 161 SNPs in the model was driving the effect.21 To do this,

we performed a leave-one-out analysis to evaluate the contri-

bution of each SNP to the onset age. This enabled us to rank

the 161 SNPs and group the variants into 10 deciles

(Table S3). We recalculated the genetic risk scores using the

SNPs from each decile and used a linear regression model to

test these refined genetic risk scores for association with age

at onset.22–27 Figure S3 shows a schematic representation of

this approach.

Decile 10 contained the 16 SNPs with the most significant

association with earlier onset age (Figures 4A and 4B). A

Figure 1. Schematic illustration of the analytical workflow

The genetic risk score for sporadic ALS was generated using large cohorts as the reference and training sets. This general ALS genetic risk score was then

calculated for a sizable cohort ofC9orf72 carriers. Follow-up analyses included pathway analysis and the identification of individual loci with a major contribution

to the age at onset. Using the information obtained from these genetic analyses, we performed drug repurposing based on gene-gene-pattern matching and

expression-pattern matching to identify drugs that may delay symptom onset among C9orf72 carriers. In vitro drug validation confirmed the neuroprotective

effect of the drug nominated by this approach.
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1-SD increase in the genetic risk score of the decile 10 SNPs

corresponded to a decrease of 2.17 years (95% CI = 1.52–

2.81) in the age at onset, and there was a 4-SD difference be-

tween C9orf72 carriers at the extremes of the genetic risk

score distribution. This difference implies that individuals at

the highest end of the genetic risk score distribution devel-

oped the disease, on average, 8 years (8.68 years, 95%

CI = 6.08–11.24; Figure 4B) earlier than their counterparts at

the lowest end. In contrast, these loci did not alter the onset

age among ALS patients not carrying the C9orf72 repeat

expansion (Figure S4).

Cytoskeletal and axonal transport pathways influence

C9orf72 age at onset

Enrichment analysis of the SNPs in decile 10 revealed that the

cytoskeletal and axonal transport pathways influenced the age

at onset among patients carrying the C9orf72 repeat expansion

(Figures 4C and S5; Table S4). These data suggested that these

biological processes are essential in determining the onset of

C9orf72-related disease.

The two-step design of our drug-repurposing pipeline

We used our genetic data to perform a drug-repositioning anal-

ysis to discover medications that may delay the age at disease

onset among C9orf72 patients. This approach harnesses our in-

sights into the genetic factors influencing the variable age at

onset in C9orf72-related disease and existing databases con-

taining information on drug effects.28 A critical advantage of

our pipeline is that it identifies drugs with broad, heterogeneous

effects for use in complex human diseases like neurodegenera-

tive conditions. Crucially, this approach is not based on a single

change within the cell but instead relies on gene-pattern and

expression-pattern matching to select medications that correct

the disrupted networks.

The pipeline comprises two complementary parts (see Fig-

ure 1 for a graphical representation of these steps). In the first

step, we performed gene-drug-pattern matching. To do this,

we used the g:SNPense function of g:Profiler229 to identify

the genes related to the SNPs in decile 10. These genes

were then used as search terms (defined as seed genes in

Table S5) in the Geneshot web server (accessed October

Figure 2. Genetic variants influencing symptom onset age among ALS/FTD patients carrying the C9orf72 repeat expansion

The ideograms show the 161 ALS genetic risk loci making up the general ALS polygenic risk score. Labels with red text denote the 16 SNPs making up decile 10.

The nearest genes to the variants are displayed. The colors of the circles correspond to the gene type: dark blue, RNA gene; light blue, protein-coding gene; red,

pseudogene; black, intergenic. The numbers at the top indicate the chromosome. Interg, intergenic.

See also Table S1.
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2021) to identify a broader list of functionally related genes.30

This database identifies genes associated with the search

term based on their co-occurrence in publications and gene-

gene similarity from human RNA sequencing (RNA-seq) data

(ARCHS4).30 The resulting list of genes plus the seed genes

(Table S5) was then used as input for the Genome for REPosi-

tioning drugs (GREP) analysis (version 1.0.0), which is a soft-

ware package designed to identify drugs that target the gene

set based on their enrichment in clinical indication categories.31

The gene-drug software used Fisher’s exact test to perform

pharmacological enrichment and output the names of drugs

associated with the gene set.

In the second step of our pipeline, we used gene expression-

pattern matching to refine and narrow the candidate drug list. In

essence, this approach identifies compounds that reverse the

transcription patterns observed in brain tissue obtained from

C9orf72 patients (n = 44 cases and 76 healthy controls). This

method is widely used in drug repositioning to assess how

well drugs can counteract disease-related gene expression

patterns by comparing their effects to a disease gene signa-

ture.32 To do this, the drug perturbations were queried using

the Library of Integrated Network-Based Cellular Signatures

database,33 containing the differential expression analysis of

12,328 genes from 8,140 compound treatments of 30 cell lines.

A bidirectional weighted Kolmogorov-Smirnov enrichment sta-

tistic test of gene expression ranks in the disease and the

expression values of the drug signatures was used to assign

a connectivity map (CMap) score to each drug, reflecting the

degree to which the drug ‘‘flips’’ the gene expression signature

of the disease.

Step 1: Drug prioritization using gene-drug-pattern

matching

The genomic-based GREP analysis nominated 52 medications

approved for human use that could be repurposed to delay onset

among C9orf72 carriers (Figure 5A; Table S6). To investigate the

targets of the nominated medications, we explored the signifi-

cant biomedical terms associated with these drugs in the Drug-

monizome database (accessed October 12, 2022).34 These ther-

apies were enriched for CNS targets and are typically prescribed

for anxiety disorders and epilepsy; exploring their mechanisms

A B

C

Figure 3. The ALS genetic risk score significantly influences onset age in C9orf72 carriers

(A and B) The regression lines show the association of the ALS genetic risk scores and age at onset in (A) the test dataset (n = 817 ALS/FTD C9orf72 carriers, p =

0.024, b = �0.765, 95% CI = �1.429 to �0.101) and (B) the replication dataset (n = 699, p = 0.026, b = �0.799, 95% CI = �1.499 to �0.099). The shadow areas

represent the 90% confidence interval of the regression model.

(C) The forest plot shows the results of the meta-analysis of the test and replication datasets (p = 1.5 3 10�3, b = �0.781, 95% CI = �1.263 to �0.299).

See also Figures S1 and S2 and Table S2.
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Figure 4. Contribution of individual SNPs to age at symptom onset among C9orf72 patients

(A) The forest plot shows the effect size of each decile obtained by ranking the 161 individual SNPs based on their effect on age at onset in C9orf72 patients.

(B) The regression lines show the association between the ALS genetic risk scores and age at onset in 817 ALS/FTD C9orf72 carriers based on the 16 SNPs of

decile 10 (n = 817 ALS/FTD C9orf72 carriers, p = 8.973 10�11, b =�2.17, 95%CI =�2.81 to�1.52). The shadow area represents the 90% confidence interval of

the regression model.

(C) Sankey diagram showing the functional enrichment of decile 10 genes, based on Gene Ontology terms. Only gene lists that contain between 5 and 500 genes

were selected for the analysis. The significant threshold was an false discovery rate (FDR)-corrected p < 0.05.

See also Figures S3–S5 and Tables S3, S4, and S7.
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of action revealed the g-aminobutyric acid (GABA) receptor as

potentially relevant (Figure 5B).

Step 2: Drug prioritization using expression-pattern

matching

The drug-disease expression-pattern matching Library of Inte-

grated Network-Based Cellular Signatures (LINCS) analysis

found that 3 of our 52 selected drugs demonstrated reversal of

the C9orf72 transcriptomic disease signature across multiple

cell lines: acamprosate, chlordiazepoxide, and alprazolam

(Figures 5C and 5D). Acamprosate was chosen from this list

for the following reasons. First, acamprosate demonstrated neu-

roprotective properties in a SOD1G93A rat spinal cord model of

A C

B D

Figure 5. Repurposing drugs to delay onset among C9orf72 carriers

The figure shows the results obtained from our drug-repositioning pipeline.

(A) Enriched terms derived from theGREP software package, which is based on the Anatomical Therapeutic Chemical classification. Blue indicates the significant

‘‘other nervous system drugs’’ category. Some of the drugs within this category are shown (see Table S6 for a complete list).

(B) Lollipop plots depict drug enrichment analysis for different categories, such as disease indication, gene target, and mechanism of action. Information was

obtained from the Drugmonizome database, and the x axis depicts the enrichment corrected p value, which uses Bonferroni correction for the disease indication

and the gene target plots and FDR for the mechanism of action.

(C) Drug perturbation data were obtained from the LINCS database. The graphs show the CMap scores for the selected drugs across cell types. CMap scores are

determined using a bidirectional weighted Kolmogorov-Smirnov enrichment statistic test, which compares gene expression changes in the disease and drug

signatures to quantify the extent to which the drug effectively reversed (flipped) the gene expression signature associatedwith the disease. Lower scores indicate

amore substantial potential for therapeutic effectiveness. An average CMap (diamond shape) was calculated using the normalized connectivity score to evaluate

the overall effect of each drug across the tested cell lines. Drugs with a reversal potential were selected if (1) they depicted a negative average CMap and (2) they

showed a negative or neutral (measured as 0) CMap score for each cell line (circle shape). A375, ASC, FIBRNPC, HCC515, HT29, NEU, A549, NPC, HA1E, PC3,

MCF7, PHH, SKB, and VCAP refer to the cell line types available in the LINCS database (see STAR Methods for details).

(D) The Venn diagram shows the drugs that fulfilled these criteria in the motor cortex and cerebellum. Of these, acamprosate was selected for additional in vitro

validation.

See also Figures S5 and S6.
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A

B C

D E

Figure 6. Acamprosate is neuroprotective in iPSC-derived motor neurons from C9orf72 patients

(A) Schematic representation of the experiments to validate the effect of acamprosate.

(B) The bar graph depicts the percentage of cells showing cleaved caspase-3 (caspase-3+ cells) after acamprosate treatment. Minor dots represent biological

replicates, averaging from three technical replicates each. In contrast, the bordered dots represent the mean effect in iPSC-derived motor neurons from two

healthy donors, two C9orf72 ALS patients, and one isogenic line. Data are mean ± SD. Comparisons within the control and the ALS-C9orf72 groups were

performed using a two-way ANOVA, with a Tukey’s post hoc test (n = 2). Only p < 0.05 and comparisons with the vehicle group are displayed in the graph.

(C) Representative images of themotor neurons showing cleaved caspase-3 staining (green), MAP2 staining (red), andDAPI (blue). Scale bar, 50 mm. All molecular

phenotypes were confirmed in a minimum of 3 technical replicates, and at least 25 fields were randomly selected and scanned per well of a 96-well plate in

triplicate.

(D) Acamprosate effective doses (10 and 30 mM) were confirmed in additional iPSC-derived motor neurons, totaling cells from four healthy donors, five C9orf72

ALS patients, and two isogenic lines. Each point represents the mean effect per cell line. Data are mean ± SD. Comparisons within the control, the ALS-C9orf72,

and the ISO-C9orf72 groupswere performed using a two-way ANOVA, with Tukey’s post hoc test (control, n = 4; ALS-C9orf72, n = 5; ISO-C9orf72, n = 2). p < 0.05

are annotated.

(legend continued on next page)
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ALS.35 Second, and perhaps most important, in contrast to

chlordiazepoxide and alprazolam, acamprosate is not associ-

ated with sedation or respiratory depression, which are poten-

tially hazardous side effects in the ALS population.36,37

Acamprosate is neuroprotective in a patient-derived

C9orf72 cell model

We assessed dose-response curves and potential levels of

toxicity of acamprosate in motor neurons derived from induced

pluripotent stem cells (iPSCs) obtained from two ALS patients

carrying the C9orf72 repeat expansion, two healthy individuals,

and one isogenic control line (see Figure 6A for an outline of

the workflow and Figure S6 for a representative immunohisto-

chemistry staining of cell cultures). The drug did not exert a

toxic effect on C9orf72 or healthy motor neurons, even at the

higher doses (30 mM for 72 h, viability measured using 3-(4,5-

dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay;

Figures S7 and S8). Using cleaved caspase-3, an established

biochemical proxy for cell survival in C9orf7238–40 and other ge-

netic forms of ALS,41 acamprosate strongly reduced cell death in

C9orf72-derived motor neurons; the percentage of cleaved cas-

pase-3+ cells was 1.8-fold lower at 10 mM, and 2.3-fold lower at

30 mM (half-maximal effective concentration = 0.271 mM;

Figures 6B, 6C, and S9).

Based on this initial screening data, we selected the highest

efficacious doses (10 and 30 mM) for additional testing. We

confirmed the efficacy of acamprosate at protecting motor neu-

rons in additional cell lines (five ALS patients carrying the

C9orf72 repeat expansion, four healthy individuals, and two

isogenic control lines; Figure 6D). Again, the drug hadminimal ef-

fects on healthymotor neurons and isogenic controls (Figures 6B

and 6C).

Effect of acamprosate is comparable to riluzole, the

current standard of care

Next, we compared the efficacy of acamprosate in preventing

cell death to riluzole, the most widely prescribed drug for ALS,

which extends life expectancy by an average of 3–6 months.42

As expected, riluzole treatment reduced cell death in C9orf72

motor neurons (1.4-fold decrease at 10 mM; Figure 6E). Notably,

acamprosate exerted an average of 30% higher protection,

either alone (Figure 6D) or combined with riluzole, than that

observed with riluzole (Figure 6E).

DISCUSSION

We used our genetic and transcriptomic information to nominate

medications that could be repurposed to delay symptom onset

among C9orf72 carriers, and our data support further investiga-

tion of acamprosate as a potential treatment for this common

form of neurodegeneration. Acamprosate is a US Food and

Drug Administration (FDA)-approved medication with a favor-

able safety profile that is prescribed to maintain alcohol absti-

nence. The drugmodulates glutamate receptors,43 amechanism

overlapping with riluzole, a commonly prescribed medication for

ALS patients that slows clinical progression, at least in part,

through its anti-glutamate properties.42,44 Interestingly, acam-

prosate, alone or in combination with riluzole, exceeded the neu-

roprotective properties of riluzole in our cell-based model.

Our work supports previous research suggesting that a com-

bination of baclofen and acamprosate may be a plausible thera-

peutic strategy for ALS; the combination prevented TDP-43

stress granule formation in a human osteosarcoma U2OS cell

line overexpressing human TDP-43 and displayed neuroprotec-

tive effects in primary motor neurons derived from SOD1G93A rat

embryos.35 However, our work nominating acamprosate was an

independent effort based on large-scale human genomic data. It

is also the first time that acamprosate has been nominated as a

personalized treatment for C9orf72-related ALS-FTD. These

studies offer evidence that acamprosate may benefit ALS pa-

tients, warranting further consideration for the development of

acamprosate as a treatment within this population. Our cell-

based assays also suggested that a combination of riluzole

and acamprosate treatment is more effective than acamprosate

alone. Such combination therapy has emerged as a promising

approach in neurological diseases, perhaps reflecting the need

to ameliorate multiple pathways to produce a clinical benefit.45

Drug repositioning has become an attractive option for drug

discovery, as using de-risked compounds lowers development

costs and shortens time lines.46 Systematic approaches based

on genetic and transcriptomic data integration are also prom-

ising.47,48 An emerging theme in the pharmaceutical industry is

that drugs targeting proteins and pathways with genetic evi-

dence aremore likely to succeed.16,17 The effect of acamprosate

onC9orf72-related disease may be due to its known glutaminer-

gic and GABAergic properties, but this is currently unproven.

Instead, our work reinforces the value of genomic data to rapidly

nominate drugs for repurposing in situations where the underly-

ing molecular mechanisms of disease are complex and where

the mode of action of a drug is unclear. In support of this data-

driven, mechanism-free approach, we highlight that acampro-

sate was first approved for use in alcohol-dependence syn-

drome 35 years ago, and yet precisely how the drug works in

this condition remains speculative. This situation is hardly unique

among CNS drugs. Despite decades of patient use, the exact

molecular mechanism by which riluzole confers its survival

advantage in patients with ALS is unknown. Delaying clinical tri-

als until the mechanism of action of acamprosate is determined

may be unnecessary, especially considering the current uncer-

tainty about how the C9orf72 repeat expansion causes disease

and the lack of reliable animal models.

Our findings also partially explain the variable age at onset

observed in C9orf72 patients and confirm that genetic modifiers

are crucial in determining the onset age in this patient popula-

tion.6,49 Individuals with C9orf72-related disease with a high ge-

netic risk of sporadic ALS developed symptoms approximately

(E) The graph shows the percentage of cleaved caspase-3+ motor neurons derived from C9orf72 patients treated with riluzole (10 mM) and riluzole

plus acamprosate (10 and 30 mM). Dots represent the mean effect of each line. Data are mean ± SD. Comparisons were performed using a one-way ANOVA with

Tukey’s post hoc test (n = 5). p < 0.05 are annotated as follows: *p < 0.05; **p < 0.01; ***p < 0.001; ****p < 0.001, *****p < 0.0001.

See also Figures S6–S9 and Table S10.
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3 years earlier than patients with a low genetic risk. Interestingly,

the genetic risk attributable to general ALS did not affect onset

age among patients not carrying the C9orf72 repeat expansion,

as confirmed recently in a multicenter study.50 Our findings sup-

port the hypothesis that ALS is amultistep process51–54 and sug-

gest that a personalized approach will be necessary to treat the

various genetic forms of ALS and neurodegenerative disorders.

We identified ‘‘neuronal cytoskeleton’’ and ‘‘axonal trans-

port’’ as the central pathways influencing the age at onset

among C9orf72 carriers. Interestingly, arginine-containing di-

peptides generated fromC9orf72 repeat expansions are known

to impedemicrotubule-basedmotility and axonal transport ma-

chinery in cells.55 This pathogenic mechanism involves phys-

ical interactions of the dipeptides with the kinesin-containing

motor complexes. Reinforcing this research, we found the

rs113247976 variant within this gene to be among the most

influential on onset age, with C9orf72 patients carrying the

KIF5A variant experiencing symptoms nearly 3.5 years earlier

than patients who did not carry this variant (Table S7). These

observations indicate that axonal transport is centrally involved

inC9orf72-related neurodegeneration, and this cellular process

may be a credible therapeutic target. Notwithstanding, our data

also suggest that multiple cellular processes are disrupted by

C9orf72 mutation, underscoring the importance of our more

comprehensive genomic approach to drug repurposing.

Previous research has investigated disease modifiers of

C9orf72. However, these efforts were focused on individual

loci and ignored the collective contribution of the ALS polygenic

inheritance.19,56–58 This knowledge gap was primarily due to the

limited availability of largeC9orf72 datasets required for this type

of analysis. In contrast, our approach was based on genome-

wide research involving 1,516 ALS/FTD C9orf72 carriers and

7,037 ALS non-carriers, making it one of the largest cohorts re-

ported to date. We also focused on genomic variants outside

theC9orf72 locus, which are likelymore amenable to therapeutic

intervention with small molecules than the repeat expansion

itself.

Our research underscores the critical contribution of common

risk factors as modifiers of monogenic forms of ALS.35 Unfortu-

nately, data were unavailable to allow a similar analysis of other

highly penetrant genetic mutations that cause ALS, such as

SOD1 and TBK1.However, the onset age amongSOD1mutation

carriers, such as the Ala5Val variant, is much more circum-

scribed than the variable age penetrance observed among

C9orf72 patients.59 Nevertheless, our study provides a founda-

tion for future research exploring how the common risk factors

of ALS affect other monogenic forms of the disease and

leveraging this information to repurpose medications.

In conclusion, we found that the risk of sporadic ALS is a crit-

ical determinant of the age at symptom onset among patients

carrying the C9orf72 repeat expansion. We identified various

pathways and genes that play pivotal roles in the underlying

cellular processes determining onset timing. We integrated our

genomic data with transcriptomics to nominate drugs that could

be repurposed to delay disease onset, an approach that has pre-

viously prioritized medications for chronic conditions such as

obesity60 and osteoporosis.61 Acamprosate emerged as the pri-

mary contender from these analyses, and we subsequently

confirmed that this oral, inexpensive medication reduces

C9orf72 motor neuron death in cell-based assays. Future

research will explore how acamprosate may be exerting this ef-

fect. Nevertheless, our work pinpoints acamprosate for future

exploration as a treatment to slow the manifestation of symp-

toms in this common genetic form of neurodegeneration. Our

innovative and multidisciplinary approach could also fill the

gap in therapeutic discovery in other complex neurodegenera-

tive conditions, and we have made our computational pipeline

publicly available to facilitate such work.

Limitations of the study

Our study has limitations. There was only a 3-year difference in

onset age between the patients with the highest and the lowest

genetic risk of sporadic ALS, representing a modest portion of

the 40-year spread reported for C9orf72 onset age. Despite

this, the magnitude of this effect was comparable to the results

reported for the TMEM106B locus in C9orf72 patients.19 Inter-

estingly, the outcome we observed was independent of this lo-

cus. Our capacity to predict age at onset in this group of patients,

as well as our ability to assess the contribution of ALS genetic

risk on disease progression, will improve as larger datasets

with comprehensive phenotypic data become available.

Another limitation of our study is that the underlying mecha-

nism of the neuroprotective effect of acamprosate in C9orf72-

derived motor neurons remains unknown. Although exploring

such mechanisms was beyond the scope of this paper, future

research should carefully address this gap, especially consid-

ering the implications it may have for the broader ALS patient

population. Previously published data suggested that acampro-

sate may also have a neuroprotective effect on non-C9orf72 ALS

patients. A combination of acamprosate and baclofen (PXT864)

has been proposed as a treatment for sporadic ALS. However,

no clinical trial has been registered, and the company has dis-

continued its development, citing financial reasons.62 We antic-

ipate our work will lead to a renewed interest in the otherwise

overlooked acamprosate as a treatment for this uniformly fatal

neurodegenerative disease. Such repurposing of FDA-approved

drugs for unmet medical needs has strategic advantages that

shorten the development time line—preclinical safety testing

can be shortened as the safety profile and pharmacokinetic pro-

file of existing drugs are already established. The standard daily

dose (1,998 mg) of acamprosate is known to cross the blood-

brain barrier and alter brain physiology; patients with alcohol

dependence who were treated with acamprosate showed highly

significant suppression of glutamate levels in the anterior cingu-

late gyrus over 4 weeks.63 These observations provide a quanti-

tative biomarker of target engagement. It also supports the hy-

pothesis that the protective effect observed in our cell-based

assays at the relatively low dose of 1 mMwill translate into human

patients at the well-tolerated standard dose.
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Materials availability

This study did not generate new unique reagents.

Data and code availability

The summary statistics of the reference dataset genome-wide association

study (GWAS) are publicly available at http://databrowser.projectmine.

com/. The individual-level data for the training and test datasets are available

on dbGaP (accession nos. phs000101.v5.p1 and phs001963.v1.p1). The

data for the replication dataset were from a different study (principal inves-

tigator: Christopher Shaw, King’s College London) and are available upon

reasonable request. RNA-seq data from the motor cortex were obtained

from the New York Genome Center, and RNA-seq data from the cerebellum

were obtained from GEO (GEO: GSE67196). The figures were created using

BioRender and Inkscape. The Sankey diagram was created using Visual

Paradigm. The programming code used in this paper is available at https://

github.com/sarasaezALS/C9orf72_AAO and https://zenodo.org/records/

13259646 (https://doi.org/10.5281/zenodo.13259646) to facilitate the appli-

cation of this methodology to other disorders. The individual-level polygenic

risk scores generated for patients with the C9orf72 mutation are available

at https://zenodo.org/uploads/13769448. The connectivity scores for the

drugs evaluated as treatments for C9orf72-related disease are available at

https://zenodo.org/records/13769483.
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STAR+METHODS

KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

Anti-goat (donkey) Thermo Fisher Catalog # A21432,

RRID: AB_2535853

Anti-guinea pig (goat) Thermo Fisher Catalog # A21450,

RRID: AB_2535867

Anti-mouse (donkey) Thermo Fisher Catalog # A10037,

RRID: AB_2534013

Anti-mouse (donkey) Thermo Fisher Catalog # A21202,

RRID: AB_141607

Anti-rabbit (donkey) Thermo Fisher Catalog # A21206,

RRID: AB_2535792

Anti-rabbit (donkey) Thermo Fisher Catalog # A10042,

RRID: AB_2534017

Beta III tubulin (mouse) Biolegend Catalog # 801201,

RRID: AB_2728521

Caspase-3 (rabbit) Merck Millipore Catalog # AB3623,

RRID: AB_91556

ChAT (goat) Merck Millipore Catalog # AB144P,

RRID: AB_2079751

Islet ½ (rabbit) Abcam Catalog # ab109517,

RRID: AB_10866454

MAP-2 (guinea pig) Synaptic systems Catalog # 188004,

RRID: AB_2138181

NeuN (mouse) Merck Millipore Catalog # MAB377,

RRID: AB_2298772

Chemicals, peptides, and recombinant proteins

Acamprosate calcium Sigma-Aldrich Catalog # A6981

Accutase StemCell Technologies Catalog # 07922

All-trans retinoic acid Merck Millipore Catalog # 554720

B27 supplement Thermo Fisher Catalog # 17504044

Brain Derived Neurotrophic Factor (BDNF) Peprotech Catalog # 450-02

Camptothecin (CPT) Cell Signaling Technology Catalog # 13637

CHIR 99021 Tocris Biosciences Catalog # 4423

Ciliary Neurotrophic Factor (CNTF) Peprotech Catalog # 450-13

Compound E Merck Millipore Catalog # 530509

D(�)-2-Amino-5-phosphonopentanoic acid

(D-AP5)

Sigma-Aldrich Catalog # A8054

4,6-diamidino-2-phenylindole (DAPI) Merck Millipore Catalog # 508741

Dimethyl Sulfoxide (DMSO) Merck Millipore Catalog # 317275

Distilled H2O Merck Millipore Catalog # EM3234

Dorsomorphin homolog 1 (DMH-1) Tocris Biosciences Catalog # 4126

GlutaMAX Thermo Fisher Catalog # 35050061

Hank’s balanced salt solution (HBSS) Thermo Fisher Catalog # 14175

Insulin-like Growth Factor-I (IGF-1) Peprotech Catalog # 100-11

KnockOut DMEM/F-12 Thermo Fisher Catalog # A1370801

mTeSR Plus Basal Medium StemCell Technologies Catalog # 100-0276

N2 supplement Thermo Fisher Catalog # 17502048

(Continued on next page)
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Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

Paraformaldehyde Thermo Fisher Catalog # 047392.9M

Penicillin/streptomycin Merck Millipore Catalog # 516106

Phosphate buffered saline (PBS) Merck Millipore Catalog # 6504

Purmorphamine (PMN) Merck Millipore Catalog # 540220

ReLeSR Passaging Reagent StemCell Technologies Catalog # 100-0484

Riluzole Merck Millipore Catalog # 557324

SB431542 Tocris Biosciences Catalog # 1614

Triton X-100 Merck Millipore Catalog # 648464

Vitronectin XF StemCell Technologies Catalog # 07180

Y27632 dihydrochloride Tocris Biosciences Catalog # 1254

Critical commercial assays

MTT assay Thermo Fisher Catalog #V13154

SNP beadchip genotyping array Illumina Catalog #: InfiniumOmni2-5-8v1-4_A1

Deposited data

ALS GWAS summary statistics Van Rheenen et al.50 https://www.projectmine.com/research/

download-data/

The individual-level data for the training and

test datasets

Dewan et al.64 dbGaP (accession # phs001963.v1.p1),

RRID: SCR_002709

The individual-level data for the training and

test datasets

Nicolas et al.65 dbGaP (accession # phs000101.v5.p1),

RRID: SCR_002709

The individual-level control data for the

training and test datasets

https://dbgap.ncbi.nlm.nih.gov dbGaP (accession # phs000001,

phs000007, phs000187, phs000196,

phs000292, phs000304, phs000315,

phs000368, phs000372, phs000394,

phs000397, phs000404, phs000421,

phs000428, phs000615, phs000675,

phs000801, and phs000869),

RRID:SCR_002709

The individual-level data used as the

replication dataset in this study.

King’s College London, unpublished study Available from study principal investigator

(Christopher Shaw, King’s College London)

upon reasonable request.

The individual-level polygenic risk scores

generated for the C9orf72 patients.

This study https://zenodo.org/uploads/13769448

LINCS dataset Subramanian et al.33 https://lincsproject.org,

RRID: SCR_006454

The LINCS connectivity scores for the drugs

evaluated as treatments forC9orf72-related

disease.

This study https://zenodo.org/records/13769483

RNA-sequencing data from the motor

cortex

New York Genome Center https://www.nygenome.org

RNA-sequencing data from the cerebellum Prudencio et al.66 GEO (accession # GSE67196),

RRID: SCR_005012

Experimental models: Cell lines

Human: iPS cell line Cedars-Sinai CS14iCTR-nxx

Human: iPS cell line Coriell Biorepository GM23338, RRID: CVCL_F182

Human: iPS cell line University of Sheffield MIFF1, RRID: CVCL_1E69

Human: iPS cell line Cedars-Sinai CS02iCTR-NTn1

Human: iPS cell line University of Sheffield ALS-183-C9

Human: iPS cell line University of Sheffield ALS-78

Human: iPS cell line Cedars-Sinai CS28iALS-C9nxx

Human: iPS cell line Cedars-Sinai CS29iALS-C9nxx

Human: iPS cell line Cedars-Sinai CS52iALS-C9nxx

(Continued on next page)
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EXPERIMENTAL MODEL AND STUDY PARTICIPANT DETAILS

Human participants

Tables S8 and S9 list the source and clinical features of the cohorts used in this study. The ALS patients were diagnosed according to

the El Escorial criteria69 for the training and test datasets, and the FTD patients were analyzed according to the Neary criteria.70 The

C9orf72 repeat expansionswere detected using a repeat-primed polymerase chain reaction (PCR) assay according to an established

protocol.3 Written consent was obtained from all individuals enrolled in this study, and the institutional review board approved the

study of the National Institute on Aging (protocol number 03-AG-N329). The C9orf72 patients of the replication cohort were from

a different study conducted at the King’s College London and recruited by the SLAGEN Consortium, the University of Edinburgh,

the Bo�gaziçi University, and ProjectMinE.Written consent was obtained from all individuals at their respective centers (see theRepli-

cation cohort section for details).

Datasets

Four independent datasets were used in the analysis, as is standard in genetic risk score analysis (see Figure 1 for the analysis work-

flow). The reference dataset consisted of summary statistics from a published GWAS based on 12,577 ALS cases and 23,475 control

individuals (Table S9).65 The allele weights obtained from the reference dataset were used to construct the ALS genetic risk score

model in the training dataset.

The training dataset was composed of 7,037 ALS individuals known not to carry C9orf72 repeat expansions and 34,235 controls

(Table S9). The case samples were previously genotyped in the Laboratory of Neurogenetics, National Institutes of Health, using

HumanOmniExpress SNP arrays (version 1.0, Illumina Inc., San Diego, CA).22,65 The US control samples had been previously gen-

otyped on Illumina SNP arrays as part of other GWAS efforts. These data were downloaded from the dbGaP repository (accession

numbers phs000001, phs000007, phs000187, phs000196, phs000292, phs000304, phs000315, phs000368, phs000372,

phs000394, phs000397, phs000404, phs000421, phs000428, phs000615, phs000675, phs000801, and phs000869). Additional

Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

Human: iPS cell line Cedars-Sinai CS29iALS-C9n1.ISOxx

Human: iPS cell line Cedars-Sinai CS52iALS-C9n6.ISOxx

Software and algorithms

Codes and scripts This paper https://github.com/sarasaezALS/C9orf72_

AAO; https://zenodo.org/records/

13259646

Drugmonizome Kropiwnicki et al.34 https://maayanlab.cloud/drugmonizome/#/

ExperimentHub https://www.bioconductor.org/packages/

release/bioc/html/ExperimentHub.html

https://mrcieu.github.io/TwoSampleMR

Geneshot Lachmann et al.30 https://maayanlab.cloud/genesgen,

RRID: SCR_017582

g:Profiler2 Kolberg et al.29 https://biit.cs.ut.ee/gprofiler/ggos,

RRID: SCR_018190

Harmony software Perkin Elmer Catalog # hh17000010,

RRID: SCR_023543

PLINK (version 1.9) PLINK Working Group https://www.cog-genomics.org/plink/1.9/,

RRID: SCR_001757

Prism (version 10) GraphPad Software https://www.graphpad.com,

RRID: SCR_002798

PRSice2 Choi et al.67 https://choishingwan.github.ii/PRSice/,

RRID: SCR_017057

Python Python Team https://www.python.org,

RRID: SCR_008394

R (version 4.0.5) R Core Team https://www.r-project.org,

RRID: SCR_001905

SignatureSearch (version 1.11.0) Duan et al.68 https://bioconductor.org/packpack/

release/bioc/vignettes/sigsignatureSea/

inst/doc/signatursignatu.html,

RRID: SCR_016177
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SNP array data from the HYPERGENES project and the Wellcome Trust Case Control Consortium were included as Italian and UK

control subjects.71 All study participants were of European ancestry, and familial cases were included in the analysis. The individual-

level data for the training dataset was used as input for the PRSice2 algorithm.

To assess the effect of the ALS genetic risk score on age at onset in C9orf72 carriers, we calculate the genetic risk score in the

C9orf72 cohort. This test dataset consisted of 817 ALS/FTD cases that carry theC9orf72 gene (see Table S9 for detailed information).

Of these, 666 (81.5% of the cohort) were genotyped on SNP arrays in the Laboratory of Neurogenetics,65 and 151 (18.4%) underwent

whole-genome sequencing.64 Genotype data for the 161 SNPs making up the model were extracted from the SNP array and whole-

genome sequence data.

We replicated our findings in an independent C9orf72 cohort obtained from a different study conducted at King’s College London.

This replication dataset consisted of 699 ALS/FTD cases known to carry theC9orf72 repeat expansion and genotyped on SNP arrays

using Illumina InfiniumOmni2-5-v1.72

METHOD DETAILS

SNP array-based genotyping data quality control procedures and imputation

Standard quality-control procedures were applied to the genotype data of the training dataset (n = 7,037 cases and 34,235 controls)

and the test dataset (n = 666 cases) before input into the PRSice2 algorithm. Briefly, individuals with low call rates (<95%), hetero-

zygosity outliers (F-statistic >�0.15 or < 0.15), and ancestry outliers (+/� 6 standard deviations frommeans of principal components

1 and 2 of the 1000 Genomes phase 3 Caucasian with European ancestry from Utah (CEU) and Toscani in Siena, Italy (TSI)

populations) were excluded. Variants with a missingness rate of >5%, exhibiting deviation from Hardy–Weinberg Equilibrium in con-

trols (p-value < 10�6), and palindromic SNPs were excluded. Cryptically related samples (defined as Pi_hat >0.125) were removed.

The remaining sample genotypes were imputed using the Michigan Imputation Server pipeline using Minimac473 under default

settings with Eagle (version 2.4) phasing based on Haplotype Reference Consortium (release 1.1 2016). Samples from the United

States, Italy, the United Kingdom, Belgium, and France were imputed as a single group. Those variants were additionally filtered

post-imputation to exclude variants with minor allele frequency <0.01, missing call rates >15%, and imputation quality R2 < 0.3.

The SNP array-based genotyping in the replication dataset section describes the quality control and imputation methodology used

in the replication dataset. Samples in common between the test and replication datasets were identified using the checksum pro-

gram id_geno_checksum.v2 and removed.

Whole-genome sequencing of the test dataset

In the test dataset, one hundred and fifty-one C9orf72 carriers had previously undergone 150 base pair, paired-end whole-genome

sequencing on a HiSeq X Ten sequencer.64,74Genotype data for the 161 SNPs making up the model were extracted from this whole-

genome sequence data. They were merged with the SNP array genotype data for the remaining 666 C9orf72 carriers using PLINK

(version 1.9).75,76

Genetic risk score generation and computation

The genome-wide genetic risk score was calculated using the training dataset based on the weighted allele dosages obtained from

the reference dataset as implemented in PRSice2.67,77 This approach allows variants below the typical GWAS significance threshold

of 5.0 x 10�8 to be included in the analysis, and the model selected a p-value threshold% 0.0001 for SNP selection. For the training

dataset, 1,000 permutations were used to generate empirical p-value estimates for each GWAS-derived p-value. Each permutation

test in the training dataset provided aNagelkerke’s pseudo-R2 value after adjusting for an estimated ALS prevalence of 5 per 100,000

of the population.78 To avoid accounting for the C9orf72 effect, 150 kb upstream and downstream of the C9orf72 top GWAS variant,

rs3849943 (chr9: 9:27,543,382; GRCh37), were removed from the analysis. Sex, age at onset, and principal components one to

twenty were included as covariates in the model.

The –score command implemented in PLINK (version 1.9)75 was used to test the general ALS genetic risk score’s contribution to

the age of symptom onset among the C9orf72 expansion carriers. Risk allele dosages were counted, giving a dose of two if homo-

zygous for the risk allele, one if heterozygous, and zero if homozygous for the reference allele. Linear regression was used to evaluate

the association between the genetic risk scores and the age at onset, as implemented in R (version 4.0.3). Sex, disease diagnosis

(ALS or FTD), and principal components one to twenty were included as covariates in the model. For replication, 147 out of 161

SNPs were used to build genetic risk scores. Sex and principal component 1 were used as covariates in the model. Genetic risk

scores were transformed to Z scores based on cases (a Z score of one is equivalent to a single standard deviation of increase

from the case population mean of the genetic risk score). There was a four-standard deviation difference from the genetic risk score

mean between C9orf72 carriers at the top and the bottom of the genetic risk score distribution. We calculated the maximum age at

onset that the genetic risk score can explain by multiplying the slope of the regression (beta) by this standard deviation difference.

This approach determined the extent to which the genetic risk score can account for variations in the age at onset. Individuals within

the extremes were defined as those within the 3% tails of the genetic risk score distribution. On average, the score at the extremes

exceeded ±2 standard deviations from the data mean (Table S2).79
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Leave-one-out analysis and decile generation

Leave-one-out analyses were performed by iteratively excluding one variant from the ALS genetic risk score (based on 161 predic-

tors) and re-estimating the causal effect on age at onset (Table S3). The 161 variants were then ordered based on the regression co-

efficient (beta) from the leave-one-out analysis and regrouped in ten deciles. Thus, we generated ten ranked deciles composed of 16

variants each. Decile ten contains the 16 variants with a more significant contribution to early age at onset. Regression analyses to

evaluate the contribution of each decile (16 variants) to age at onset were performed using PLINK (version 1.9) as described

previously.75

Pathway analysis

Functional enrichment analysis was performed using the g:GOSt function of g:Profiler2.29 Briefly, SNPs from decile one and the

C9orf72 gene name were input for g:Profiler2.29,80 Enrichment was performed against the biological process and molecular function

from the Gene Ontology (GO) and the Kyoto Encyclopedia of Genes and Genomes (KEGG) databases. Only gene lists that contain

between 5 and 500 genes were selected for the analysis. The significant threshold was an FDR-corrected p-value less than 0.05.

Pathways containing a single gene were removed from the study.

Drug prioritization via gene-drug pattern matching

The SNPs that compose decile ten (Table S3) were mapped to gene names using the g:SNPense function of g:Profiler2.29 These

genes were used as search terms (defined as seed genes in Table S5) to identify functionally related genes based on previous knowl-

edge and gene-gene co-expression data in the Geneshot webserver (accessed October 2021).30 This application identifies genes

associated with our search term based on their co-occurrence in publications and gene-gene similarity from human RNA-seq

data (ARCHS4) to predict associations between genes and search terms.30 The resulting list of genes plus the seed genes

(Table S5) was then used as input for the GREP analysis (version 1.0.0), a pipeline identifying drugs that can be repurposed to target

the gene set based on their enrichment in clinical indication categories.31

Finally, drugmonizomewas used to identify significant biomedical terms within the specified drugs based on their indications (from

the SIDER (Side Effect Resource) database, the mechanism of action (MOA, from the DrugRepurposingHub database), and the gene

targets (from the Drugbank database) (data accessed 10/12/2022).34

Drug prioritization via gene expression-pattern matching

The nominated drugs were validated using the drug-repurposing algorithm called Connectivity map (CMap) through the Signature-

Search package using the LINCS search method (version 1.8.2).68 This algorithm uses two inputs: (i) a disease gene expression

signature based on a list of the up- and down-regulated genes, and (ii) a drug perturbation dataset composed of differential expres-

sion profiles of each gene after drug treatment. A bi-directional weighted Kolmogorov–Smirnov enrichment statistic test of gene

expression ranks in the disease and drug signatures was used to assign a weighted normalized connectivity score (referred to as

a CMap score) to each drug, reflecting the degree to which the drug ‘flips’ the signature of the disease. The CMap scores reflect

the similarity between the query drug’s signature and those in the database, suggesting that the drug has similar or dissimilar bio-

logical effects.

To build theC9orf72 disease signature in themotor cortex, differentially expressed genes inC9orf72 cases (n = 36) versus controls

(n = 58) were selected at a Bonferroni-corrected p-value <0.05 (see supplemental information for details). This dataset was obtained

from the New York Genome Center. To build the C9orf72 disease signature in the cerebellum, differentially expressed genes in

C9orf72 cases (n = 8) versus controls (n = 8) were selected at FDR-corrected p-value <0.05. This dataset was downloaded as a

raw count matrix from GEO (accession number GSE67196).66 Drug signatures from the LINCS database were accessed through Ex-

perimentHub (version 2.2.0) in the form of moderated z-scores from differential expression (DE) analysis of 12,328 genes from 8,140

compound treatments of 30 cell lines corresponding to a total of 45,956 signatures. Drug signatures corresponding to the nominated

drugs were extracted from the analyzed results and were available for the following cell lines: A375 (LINCS ID = LCL-1235, a human

cell line exhibiting epithelial morphology isolated from the skin of a patient with malignant melanoma, provided by the American Type

Culture Collection (ATCC)), ASC (LCL-2104, human adipose stem cells, Sciencell Research Laboratories), FIBRNPC (LSC-1021,

iPSC), HCC515 (LCL-2084, human cell line isolated from lung adenocarcinoma, Broad Institute), HT29 (LCL-1180, a human cell

line with epithelial morphology isolated from a patient with colorectal adenocarcinoma, ATCC), NEU (LDC-1033, differentiated

cell), A549 (LCL-1601, a human cell line isolated from the lung of a patient with non-small cell lung carcinoma, ATCC), NPC (LDC-

1021, normal stem fibroblast-derived iPSCs), HA1E (LCL-2090, a human cell line isolated from kidney, Broad Institute), PC3 (LCL-

1299, a human cell line isolated from a patient with grade IV prostate adenocarcinoma, ATCC), MCF7 (LCL-2138, a human cell

line isolated from a patient with breast adenocarcinoma, ATCC), PHH (primary human hepatocyte), SKBR3 (LCL-1475, human

cell line isolated from a patient with breast adenocarcinoma, ATCC), and VCAP (LCL-1147, a human cell line that was isolated

from a patient with prostate carcinoma, ATCC). Additional information about the cell lines is available at lincsportal.ccs.miami.edu.

Drug in vitro validation

Human induced pluripotent stem cells (iPSCs) were maintained in 6-well plates coated with vitronectin XF (10 mg/mL) in the complete

mTeSR-Plus medium. Media was replaced every 48 h, and cells were passaged as clumps every four to six days using ReLeSR,

Cell Genomics 4, 100679, November 13, 2024 e5

Article
ll

OPEN ACCESS



according to the manufacturer’s instructions. IPSCs were used between passages 20 and 35, and all iPSCs were cultured in 5% O2

and 5% CO2 at 37
�C. In this study, we used iPS cells derived from four unaffected controls (CS14iCTR-21nxx, MIFF1, CS02iCTR-

NTn1, GM23338), five iPS lines derived from ALS patients harboring C9orf72 repeat expansions (ALS-183-C9, CS52iALS-C9nxx,

ALS-78, CS28iALS-C9nxx, CS29iALS-C9nxx) and two isogenic control lines of CS52iALS-nxx and CS29iALS-C9nxx, respectively

(CS52iALS-C9n6.ISOxx, CS29iALS-C9n1.ISOxx (C9orf72 HRE Corrected)) (Table S10). The cells were fed on alternate days with

the neuronal medium until day 40. Cells were previously characterized at day 40 of differentiation andwere found to express classical

mature motor neuron markers (ChAT, SMI32, Islet 1/2, MAP2, NeuN) (Figure S6 and Table S11).

Drug treatments were applied for 72 h at day 40 of differentiation, and cells were assayed for viability (MTT) or fixed for subsequent

immunocytochemistry assays. All the imaging was performed using the Opera Phenix High Content Screening System (PerkinElmer)

at 340 magnification. The supplementary material provides a detailed description of the methodology.

QUANTIFICATION AND STATISTICAL ANALYSIS

The statistics and graphs for the cell line experiments were generated using GraphPad Prism 10 (GraphPad Software, La Jolla, Cal-

ifornia USA, www.graphpad.com). Comparisons were performed using one-way ANOVA or two-way ANOVA with Tukey’s post hoc

multiple comparisons test. Three technical replicates per treatment were averaged before plotting, and statistical analysis was per-

formed using the percentage of cleaved caspase-3mean across cell lines. Plots represent mean ± SD. p-values smaller than 0.05 are

annotated unless otherwise specified in the figure legend.
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