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Abstract

The interconnecting links between individuals in an animal social network are often defined by discrete, directed behaviours, 
but where these are difficult to observe, a network link (edge) may instead be defined by individuals sharing a space at the 
same time, which can then be used to infer a social association. The method by which these associations are defined should 
be informed by the biological significance of edges, and therefore often vary between studies. Identifying an appropriate 
measure of association remains a challenge to behavioural ecologists. Here, we use automatically recorded feeder visit data 
from four bird systems to compare three methods to identify a social association: (1) strict time-window, (2) co-occurrence 
in a group, and (3) arrival-time. We tested the similarity of the resulting networks by comparing the repeatability and sen-
sitivity of individuals’ social traits (network degree, strength, betweenness). We found that networks constructed using dif-
ferent methods but applying similar, ecologically relevant definitions of associations based on individuals’ spatio-temporal 
co-occurrence, showed similar characteristics. Our findings suggest that the different methods to construct animal social 
networks are comparable, but result in subtle differences driven by species biology and feeder design. We urge researchers 
to carefully evaluate the ecological context of their study systems when making methodological decisions. Specifically, 
researchers in ecology and evolution should carefully consider the biological relevance of an edge in animal social networks, 
and the implications of adopting different definitions. 

Significance Statement

Time series data containing animal identities in physical and temporal proximity are commonly used to infer social networks 
from wild animals. To identify biologically-relevant social associations, researchers develop definitions specific to their study 
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system. However, researchers’ degrees of freedom in defining what constitutes a social association (as opposed to discrete 
interactions, which are usually well-defined) and the implications of using different definitions are often ignored. Here, we 
compare the structure of networks generated using three methods of social association definitions applied to spatio-temporal 
data streams from four avian study systems. We found that networks are largely robust to changing social association defini-
tions, with subtle differences. Our results underpin the importance of a priori association definition to infer social networks, 
as small decisions can influence structures of networks. Researchers should provide validation or biological justification 
when defining social network edges based on association in time and space. 

Keywords Animal behaviour · Gambit of the group · Sociality · Social network · RFID

intentionality, that is, that two or more individuals choose 
to associate with each other, over all others. We refer to 
this as an association. We refer to groupings, driven by 
non-social factors, as aggregations (following Krause and 
Ruxton 2002).

The need to distinguish between different forms of aggre-
gation is dependent on research objectives. For example, 
non-social aggregation may be more relevant than the 
strength and identity of social associations in diluting pre-
dation risk or behavioural transmission (for example Cress-
well 1994; Krause and Ruxton 2002; Sorato et al. 2012; 
Voelkl et al. 2016, Firth 2020); Whereas. the identity and 
behavioural preferences of associating individuals is impor-
tant when measuring the drivers of individual mate choice 
(Oh and Badyaev 2010; Wascher et al. 2015; Beck et al. 
2021; Dunning et al. 2023). The question then, of how social 
associations are extracted from aggregations of individual 
animals is long-standing in animal behaviour studies, and 
open to interpretation.

Recent methodological advances, from Radio-frequency 
identification (RFID) feeder design (Bridge et al. 2019; 
Youngblood 2019), data processing (Farine 2017; Iserbyt 
et al. 2018), and hypothesis testing (Hart et al. 2022a, b), 
aim to discern social associations through membership of 
discrete social groups – the gambit of the group method 
(Whitehead and Dufault 1999; Franks et al. 2010). This 
gambit of the group method assumes that individuals that 
overlap in space and time, to some extent, are associated 
with each other, hence co-occurring individuals are treated 
as a social group. Such associations can be inferred from 
temporal presence/absence data at central resources. These 
approaches are typically used for species that are difficult 
to observe in the wild, like small mammals (Godsall et al. 
2014; Evans et al. 2021; Raulo et al. 2021) or birds, that feed 
and shelter communally (Ringsby et al. 2009; Mariette et al. 
2011; Farine 2017; nchez-Tójar et al. 2017; Bandivadekar 
et al. 2018; Firth et al. 2018; Broughton et al. 2019; Hille-
mann et al. 2020), but defining what constitutes a social unit 
presents a challenge.

Introduction

Sociality - one’s propensity to socialise with others - has 
important consequences for life history and evolutionary 
processes (Wey et al. 2008; Maldonado-Chaparro et al. 
2018). For example, sociable individuals can experience 
increased survival or reproductive success (Silk et al. 2009; 
Oh and Badyaev 2010; Formica et al. 2012; Stanton and 
Mann 2012; Maldonado-Chaparro et al. 2018; Dunning et al. 
2023) and better access to information and resources (e.g., 
Aplin et al. 2012), compared to less sociable individuals. 
The social structure of a population also has implications 
for the transmission of infectious disease and information 
(Keeling and Eames 2005; McDonald et al. 2013; Kurvers 
et al. 2014; Aplin et al. 2015b; Albery et al. 2021; Beck et al. 
2023). Such social dynamics are generally measured using 
social networks, defined by a set of nodes and interconnect-
ing edges. Social network analysis is commonly used to 
quantify connections between individuals (Croft et al. 2008; 
Wey et al. 2008) and the importance of social links has been 
demonstrated across systems (in birds: Covas et al. 2006; 
McDonald 2007; Oh and Badyaev 2010; Firth et al. 2016; 
in mammals: reviewed in Silk 2007; and in invertebrates; 
Formica et al. 2012; Wice and Saltz 2021; Cook et al. 2023; 
and, among individuals of different species: Hillemann et al. 
2019). However, the definitions of these links - what consti-
tutes a social relationship - and the methods used to define 
them vary among studies.

In the wild, it can be challenging to directly observe 
social interactions among individuals and so, social con-
nectivity is often inferred from individuals overlapping in 
space and time – an aggregation. Aggregations, while gen-
erally describing spatio-temporal co-occurrence, may vary 
in their intentionality, intensity and duration. For example, 
moths gathering around a light source can be explained by 
proximate causes rather than by social or intentional asso-
ciation (Tinbergen 1953). Researchers often then seek to 
extract social data from aggregations of animals by defin-
ing parameters to extract something proximal to social 
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One common approach to infer associations from these 
data, is to use a strict time-window (Δt; Fig. 1Aa) within 
which all individuals co-occurring at the same location and 
time are defined as socially associating. For example, asso-
ciations have been defined between PIT (Passive Integrated 
Transponder)-tagged house sparrow Passer domesticus, 
foraging at the same RFID feeder within three seconds of 
each other (Plaza et al. 2019). Where spatial and tempo-
ral proximity is most important for the research question, a 
time window approach is the simplest method for defining 
spatio-temporal overlap. However, if the time-window is too 
short, socially associated individuals may not be identified 
as belonging to the same group, yet, if the time-window 
is too long, associations are inappropriately defined within 
non-social aggregations of birds (Croft et al. 2008; Psorakis 
et al. 2015). 

To solve this problem, gaussian mixture models have been 
developed to identify discrete grouping events in temporal 
data streams (GMM; Psorakis et al. 2012, 2015; Fig. 1Ab). 
The GMM approach considers dynamically changing time-
windows, determined by periods of increased activity at a 
bird feeder (Psorakis et al. 2012). The publication of an asso-
ciated R package “asnipe” (Farine 2013) has led to popular 
usage across many bird (see, Moyers et al. 2018; Broughton 
et al. 2019; Evans and Morand-Ferron 2019; Whiteside et al. 
2019; Taff et al. 2019; Brandl et al. 2021; Madsen et al. 
2021; Beltrão et al. 2022), and non-bird systems (Findlay 

et al. 2016; Poirier and Festa-Bianchet 2018; Zeus et al. 
2018; Skinner and Miller 2020).

Similarly to the strict time-window, the biological valid-
ity of using a GMM approach depends on the biology of 
the species and and experimental design study system. 
The GMM approach was specifically designed to identify 
bursts of activity at bird feeders, and was developed for 
a system of foraging great tits Parus major, which form 
small fission-fusion flocks over the non-breeding season. 
This approach may not be suitable for other systems; for 
example, house sparrow, that form highly gregarious flocks 
with loose group-level social preferences (Tóth et al. 2009; 
Havlı́ček et al. 2022; Dunning et al. 2023). In such gregari-
ous systems, GMMs may struggle to identify group limits, 
preventing the definition of associations within aggregations 
of birds at a feeder. This can be problematic if the research-
ers are more interested in questions where the identities of 
socially associated individuals matter.

In systems like house sparrows, the time between the 
arrival of individuals to a feeder may be more suitable to 
infer associations (hereafter Arrival-time approach; Dun-
ning et al. 2023; Chan and Dunning 2023; Fig. 1Ac). Unlike 
the strict time window approach and GMM, the arrival-
time approach assumes that flocks of socially associated 
individuals are more likely to arrive together at a resource, 
than to individuals who are not, capturing finer-scale move-
ment behaviours between associated individuals rather than 

Fig. 1   A  Three association definitions applied to sampled RFID data 
streams. Black lines denote individuals visiting a feeder where three 
are highlighted (one, two and three). The time-window definition 
(Aa) where individuals are considered associating when they overlap 
in space within (Δ t) of each other. The GMM (Ab) definition identi-
fies the start and the end of gathering events, denoted here with red 
dotted lines. Finally, arrival-time (Ac) defines an association where 
individuals overlap by  Δ t of their arrival (first detection) at the 
RFID antenna. An individual can only be recorded as arriving again 

after a period of absence defined by  Δ i. B. Radio Frequency Identi-
fication (RFID) experimental set-up in four systems: (a) open RFID 
antenna on Lundy Island, UK house sparrows  Passer domesticus  ; 
(b) RFID antenna at the entrance to a feeding chamber at Broken 
Hill, Australia for house sparrows; (c) Great tit  Parus major  interact-
ing with a single RFID antenna at Wytham woods, UK; (d) Sociable 
weaver  Philetairus socius  visiting four RFID antenna mounted at 
Benfontein Nature Reserve, South Africa
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proximity at a feeder (McKinnon et al. 2006; Atton et al. 
2012; Hilleman et al. 2020).

Determining an appropriate definition for the edges in 
a social network, such that they represent a social associa-
tion, is not trivial; while decisions are based on the scientific 
questions of interest and should consider the study system’s 
biology, these a priori decisions (Castles et al. 2014; Carter 
et al. 2015; Farine 2015; Farine and Whitehead 2015), and 
often applied without biological justification or validation 
steps. Yet, there is limited appraisal in the literature on how 
(1) different association definitions can influence the result-
ing social network structure, when applied to the same data 
stream; and, (2) how the same methods compares across 
different study systems of different species and with subtly 
different social behaviours.

Here, we test how different methodological approaches 
used to infer associations in animal social behaviour stud-
ies can influence resulting social networks in systems with 
different biology and behaviours. To this end, we tested the 
effect of three commonly used methods (1. strict time-win-
dow, 2.GMM, 3. arrival time), in four avian study systems, 
and described the factors that influence the resulting net-
work topology, individual network position and its repeat-
ability. Additionally, we compared the performance of the 
approaches under different parameterisation (e.g., varying 
the time window from 1 to 300 s for the strict time-window 
and arrival time approaches). With the prevalent use of tem-
poral data streams to infer social networks in behavioural 
ecology, our results can inform animal behaviour researchers 
on the consequences of their methodological choices when 
working with spatio-temporal data.

Materials and methods

Systems

We collected data from wild PIT-tagged birds at four sys-
tems: Two house sparrow populations, at Broken Hill, Aus-
tralia, and Lundy Island, UK; one sociable weaver popula-
tion at Benfontein Nature reserve, South Africa; and a great 
tit population at Wytham woods, UK. In all four systems, 
RFID antennas were mounted at a bird feeder to record PIT 
tagged individuals (Fig. 1B). All data collection was auto-
mated, and blind methods were used when all behavioral 
data were analyzed.

1) House sparrow on Lundy Island, Devon, UK (51.11 N, 
4.40 W): We collected RFID data between November 
2015 and January 2016 from the long-term study of 
house sparrows on Lundy Island where they breed and 
winter around a small village at the island’s southern 
end. House sparrows are socially monogamous and 

territorial during the breeding season, nesting in cavi-
ties, often in loose colonies. During the non-breeding 
period house sparrows form gregarious flocks, and often 
aggregate around food sources (Havlı́ček et al. 2022). 
On Lundy, we caught > 95% of the house sparrow popu-
lation (Simons et al 2015) and fitted subcutaneous PIT 
tags, which had no effect on fitness (Schroeder et al. 
2011). Individuals were recorded visiting a single, 7.8” 
x 7.8” RFID antenna (DorsetID, Netherlands) mounted 
below a large seed reservoir and positioned centrally 
in the study system (Fig. 1Ba), within the home range 
of all sparrows in the population. Several sparrows can 
access the feeder at the same time. PIT tags were read 
approximately every 0.25 s. The RFID system was active 
when power was available between 6:00 and 00:35 daily 
(Schroeder et al. 2012).

2) House sparrow at Broken Hill, New South Wales, Aus-
tralia (31.57 S, 141.27E): We used data from house spar-
rows visiting one RFID feeding station throughout the 
non-breeding period in July and August 2022, in Broken 
Hill, a town of around 1,900 hectares. The ecology of 
the house sparrows here is broadly like those on Lundy 
Island. A single feeding station had an RFID antenna 
fitted around an entrance hole (Priority 1 RFID, Mel-
bourne, Australia) that led to a feeding chamber, inside a 
metal net cage (Fig. 1Bb). This feeder was in the home-
range of only a small proportion of the Broken Hill spar-
row population of approximately 19,000 individuals, 
of which less than ~ 2% were tagged. Sparrows were 
implanted with subcutaneous PIT tags (Micro Products 
Australia Mini Microchips, 1.4 × 8.5 mm, 0.52 g) and 
were recorded when they entered and when they exited 
the feeding chamber. PIT tags were read approximately 
every 0.5 s.

3) Great tit in Wytham woods, Oxfordshire, UK (51.46 N, 
01.20 W): We used data collected between Decem-
ber 2011 and February 2012 from eight feeders at the 
northern extent (the Great Woods) of Wytham Woods, 
a largely broadleaf deciduous woodland surrounded by 
open arable farmland. Pairs of great tits establish terri-
tories during the breeding season, but this territoriality 
breaks down during the autumn and winter, when birds 
form loose fission-fusion flocks with unrelated indi-
viduals that forage together (Hinde 1952). Bird feeders 
had two access ports, both fitted with an RFID antenna 
(Dorset ID, Netherlands, Fig. 1Bc). The feeders were 
operational every week, from pre-dawn Saturday morn-
ing until after dusk on Sunday evening, and PIT tags 
were read approximately every 0.25 s.

4) Sociable weavers in Benfontein Nature reserve, North-
ern Cape, South Africa (28.51  S, 2.46E): Sociable 
weavers are highly social, colonial nesting passerines, 
endemic to Southern Africa. Outside of the breeding 
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period they form large gregarious foraging flocks com-
posed of mixed family groups (Ferreira et al. 2020). We 
collected social data at two feeder boxes placed next to 
each other on the ground (Fig. 1Bd) during the breeding 
season, between December 2017 and February 2018. 
Each feeder box had four perches, each with an attached 
RFID antenna (Priority 1 RFID, Melbourne, Australia), 
over four feeding trays. Although this setup only allowed 
one bird to access a feeding tray at once, four birds could 
feed at adjacent perches at the same time, and these co-
occurring birds were considered as feeding at the same 
time during network construction. All captured weavers 
were fitted with a PIT tag mounted to a plastic leg-ring. 
PIT tags were read approximately every 0.5 s.

Social network construction using different 
association definitions

We built three networks for each system, one for each asso-
ciation definition (Figs. 1), (1) time-window (Fig. 1Aa); (2) 
GMM (Psorakis et al. 2012, 2015; Farine 2017; Fig. 1Ab); 
(3) arrival-time definitions (Dunning et al. 2023; Fig. 1Ac). 
We built weighted networks, scaled using the simple ratio 
index (Farine and Whitehead 2015), and undirected net-
works in R (R Core Team 2023). We applied these general 
parameters between systems:

1) Strict time-window (Fig.  1Aa): The time-window 
approach had a single overlap parameter (Δt), where 
two individuals who visited a feeder within Δt were 
defined as associates. In the current study, we hope to 
compare other methods with the strictest definition for 
association, so we defined Δt as one second to capture 
absolute physical and temporal proximity at the feeder 
(for example, Farine 2015; McCully and Rose 2023).

2) GMM (Fig. 1Ab): We used the GMM function in the 
asnipe R package (Farine 2013) to detect groups. The 
GMM function detects the start and end point of gather-
ing events and associates all individuals (Psorakis et al. 
2012, 2015). We combined the date and location param-
eters within each system into a unique location to reduce 
processing time (Farine 2017A).

3) Arrival-time (Fig. 1Ac): We built arrival networks using 
a series of custom R functions, (see Chan and Dunning 
2023). This method assumes that birds arriving together 
are associated before they arrive at the resource, and 
therefore seeks to detect arrival time by which to define 
associations. We therefore defined two parameters: (1) 
A time threshold within which two (or more) individu-
als are associated based on their arrival times (Δt). (2) 
A period of inactivity for each bird, after which a bird 
is considered to have left the feeder (Δi), allowing for 
a new arrival. We defined Δt as 150 s and Δi as 300 s 

following Dunning et al. (2023), based on the biology 
of house sparrows on Lundy Island. The definition of 
these thresholds may alter network structure, and so we 
compared variations of Δt in sensitivity analyses (see 
Sensitivity Analysis).

For both strict time-window and arrival-time definitions, 
we employed a chain-rule method to assign individuals into 
groups, based on the gambit of the group principle. For 
example, under both time-window and arrival-time defini-
tions, if individuals A and B visit a feeder within t of each 
other, then immediately C visits within t of B, but not A, 
they are connected into a single group (A-B, B-C and C-B). 
Whereas, the arrival time definition introduces a parameter 
to prevent long chains of connection, by measuring asso-
ciation only from the point of arrival; if A and B arrive 
within t of each other, then after an interval long enough to 
determine that they have likely left the feeding area, B and 
C arrived within t of each other but without A, we instead 
infer two groups (A-B and B-C). If C arrives alone, even if 
A and B are still present but arrived much earlier, it is not 
linked to either of the others; see Fig. 1).

We used the iGraph package in R (Csardi and Nepusz 
2006) to extract three node-based network measures from 
the association datasets for each of the four systems: degree, 
the number of unique associates connected to a focal indi-
vidual; strength, the total number of associations between a 
focal individual and all associates; and weighted between-
ness, the number of geodesics (shortest paths between any 
nodes) that pass through a focal individual. For weighted 
betweenness, we additionally inversed the network weights 
as igraph considers network weights as costs (Silk et al. 
2017). Individuals who had a degree of 0 were removed 
from the network.

Analysis 

a) Similarity in network structures
  We described the cardinality of for each network for 

each association definition, i.e. the number of individu-
als (Vertices; V), and the number of associations (Edges, 
E), as well as the network density (D). The density of 
a network is defined by the number of observed edges 
over the maximum potential edges. Then, we used two 
Jaccard similarity indices to compare global network 
structures between all possible pairs of association defi-
nitions, within systems using the multinet R package 
(Magnani et al. 2021). Following (Bródka et al. 2018; 
but see Emmert-Streib et al. 2016): (1) Jaccard edges 
to compare common edges; and (2) Jaccard triangles as 
a measure of common clusters of individuals between 
networks. All Jaccard similarities range between 0 and 



 Behavioral Ecology and Sociobiology           (2025) 79:26    26  Page 6 of 15

1, where 0 denotes no overlap between networks, and 1 
when networks are identical.

  Finally, we ran pairs of Multiple Regression Quad-
ratic Assignment Procedure (MRQAP) network regres-
sion using the ‘netlm’ function in the ‘sna’ R package 
(Butts 2016; Elmer 2021), that allowed for the relation-
ship between two networks to be quantified, including 
edge weights. We first extracted and scaled the weighted 
adjacency matrices for each network, then ran a simple 
regression to determine whether one network predicts 
the other. The extracted effect size can then determine 
the extent in which a pair of networks were similar. In 
addition, we also ran Mantel tests (Mantel 1967; Croft 
et al. 2008) using the Pearson correlation method and 
999 matrix permutations with the ‘Vegan’ R package 
(Dixon 2003). Theis method determines significance by 
randomizing one of the two matrices and extracting an 
expected null distribution, where p-value represents the 
proportion of the null distribution more extreme than 
the actual estimate. The results produce a correlation 
between networks that varies between − 1 and 1, rep-
resenting matrices being negatively and positively cor-
related respectively.

  For each jaccard similarity index, MRQAP regression 
and mantel test described above, we compared metrics 
obtained from observed networks generated with 1000 
permuted networks yielding a distribution of social 
parameters that would be expected if individuals were in 
random groups at the feeder. We adopted a pre-network 
permutation approach (Farine 2017), by first extracting 
the individual group occurrence matrix (or “group-by-
individual” matrix in asnipe) using each association 
definition, which describes each detected group and its 
members (marked as a 1 or 0). We then shuffled each 
individual’s occurrence column without replacement to 
ensure that each individual was detected in the same 
number of groups at the feeder, but group membership 
was randomised. We repeated the permutation for each 
dataset, i.e. for each species and association definition, 
then extracted the same jaccard similarity, MRQAP and 
mantel coefficients. Finally, we calculated the propor-
tion of data in the randomised distribution that is more 
extreme than the observed estimate.

b) Repeatability of social traits
  We constructed weekly sub-graphs across each 

recording period for each of our four avian systems, 
using each of the three definitions for association. We 
extracted three network measures from each subgraph 
for each week, then z-transformed to normalise the 
measures due to differences in network structure across 
weeks.

  Individual social network metrics are an aspect of an 
individual’s animal personality and have been shown to 

be consistent across various study systems (Bell et al. 
2009; Aplin et al. 2015; Hillemann et al. 2019; Tkaczyn-
ski et al. 2020; Proops et al. 2021; Ogino et al. 2023). 
Thus, in the four study systems tested here, we assume 
that if individuals do display consistent differences in 
social network position, then an appropriate definition 
of association should find repeatability of social traits 
over time.

  We analysed repeatability of social traits using the R 
package MCMCglmm (Hadfield 2010), using package 
default function hyper-parameters of 13,000 iterations, 
thinning interval of 10 and burn-in of 3,000 iterations. 
We modelled each social trait as a response variable 
against the model intercept and with individual ID as a 
random effect. Repeatability was defined as the variance 
explained by individual ID over the total variance (Nak-
agawa and Schielzeth 2010). We describe the repeatabil-
ity in the context of three levels, low (< 0.3), medium 
(0.3–0.5) and high (> 0.5; following Bell et al. 2009; 
Winney et al. 2018). Using these subgraphs, we also 
explored the relationship between individual network 
measures extracted using each association definition, by 
running linear regressions for each association definition 
pair for all bird individuals across all weeks.

c) Sensitivity Analyses
  Finally, to test for how parameterisation of the arrival 

time and strict time-window method affects resulting 
networks, we computed repeatability measures again but 
varying the Δt parameter from 1 to 300 s for both the 
arrival and strict time-window methods. For the arrival 
time approach, we maintained Δi at 300 s. We did not 
do this for GMM networks, since associations defined by 
GMM automatically set parameters within the detection 
algorithm.

Results

We built social networks using 286,669 RFID detections 
comprising of 118 individuals visiting feeders on Lundy 
Island, 27,456 detections of 66 individuals at Broken Hill, 
402,255 detections of 219 individuals at Wytham Woods 
and 197,857 detections of 62 individuals at Benfontein. 
The number of individuals (network nodes) and association 
(edges) and their centrality varied with association defini-
tion (Table 1). 

a) Similarity in network structures
  Using the network centrality metrics extracted from 

each weekly sub-graph, we show that degree and 
strength positively predicts each other across all sys-
tems (regression coefficients ~ 0.6 – ~0.9; Fig. 2) with 
lower coefficients for betweenness (~ 0.3 – ~0.7)). Other 
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Fig. 2  Linear regression results of three individual social network 
traits (z-transformed within weeks) extracted  from weekly networks 
from four study systems using three association definitions. A) House 
sparrow data in Lundy Island, UK; B) House sparrow data in Broken 
Hill, Australia; C) Great tits data in Wytham Woods, UK; D) Socia-
ble Weaver data in Benfontein Nature Reserve, South Africa. We ran 

linear regressions for value 1 ~ value 2, reported as value 1 vs. value 
2: Arrival time vs. GMM (Purple), Arrival time vs. Strict time-win-
dow (Blue) and GMM vs. Strict time-window (Green), with the value 
1 on the x-axis and value 2 on the y-axis. P-values represents signifi-
cance of model estimate
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than the house sparrows on Lundy Island (Fig. 2A), the 
regression coefficient between arrival and GMM were 
always highest for all traits. 

  Using Jaccard similarity indices and MRQAP regres-
sions to compare similarities between networks, we 
show that network structures are robust to changing 
association definition (Table 1). All extracted similarity 
metrics were significant when compared with a null dis-
tribution of random networks (Supplementary Tables 1, 
2). We also report Mantel test results in Supplemen-
tary Table 3, though the results are similar to MRQAP 
regressions.

  From the Jaccard similarity metrics, the metrics are 
generally high, with the number of individuals detected 
(vertices; cardinality V) being similar between network 
pairs, whereas metrics to capture clustering (Jaccard 
triangles; 0.01–0.77), dyad identity (Edges, cardinality 
E; 0.15–0.87) and associated edge weights (MRQAP 
regression coefficient; 0.46–0.92) varied more. We 
found the highest similarity scores between the GMM 
and arrival-time definitions, followed by GMM and 
strict time-window definitions, then strict time-window 
and arrival definitions. All definitions included a simi-
lar number of individuals in networks, but the number 
of edges differed. Specifically, networks based on strict 

time-windows produced less dense networks, while 
using the arrival-time definition resulted in denser net-
works, likely due to the large difference in threshold 
used between the two methods.

b) Repeatability of social traits
  We calculated repeatability over nine weeks at Bro-

ken Hill, Australia, fourteen weeks on Lundy Island 
(see Dunning et al. 2023), thirteen weeks at Benfontein 
Nature Reserve, South Africa; and fourteen weeks at 
Wytham woods (see  Aplin et al. 2015a). We found that 
degree and strength, are repeatable in all four systems, 
with little variation between association definitions 
(Fig. 3). Repeatability was lower for betweenness in all 
systems, but still largely similar between association 
definitions. Between study systems, repeatability was 
low for all three definitions in the Lundy systems; low-
moderate repeatability in the Wytham system; and high 
repeatability for degree and strength, but low – moderate 
repeatability for betweenness in Broken Hill and Ben-
fontein systems. Repeatability of degree and strength 
was significantly lower in the Wytham system when 
associations were defined by the strict time-window 
definition (Fig. 3C). The arrival-time and GMM defini-
tions performed equally across systems (Fig. 3). 

c) Sensitivity Analyses

Fig. 3  Between week repeat-
ability for three individual 
social traits (degree, strength 
and betweenness), between 
three association definitions 
and in four systems: A) House 
sparrows from Lundy Island, 
UK, B) House sparrow data 
from Broken Hill, Australia; C) 
Great tits data from Wytham 
Woods, UK; and D) Sociable 
Weaver data from Benfontein 
Nature Reserve, South Africa. 
Points denote the mean repeat-
ability, and error bars the 95% 
CIs. Dotted lines denote thresh-
olds for low (< 0.3), medium 
(0.3 - 0.5) and high (> 0.5) 
repeatabilities (also see Table 2)
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  Finally, we explored how altering the time parameter 
(Δt) affected network structure within the arrival-time 
and strict time-window methods. For the arrival-time 
definition, our results show that social traits have low 

repeatability with a low Δt, but increased as Δt increases 
until reaching a plateau. We report a similar plateau for 
the time-window method, without an initial increase in 
repeatability. The repeatability of betweenness was more 

Fig. 4  Sensitivity analysis of between week repeatability of individ-
ual metrics for arrival and time-window  networks. For arrival time 
networks, we vary Δt from 0 to 300 seconds, and fixed Δi = 300s, 
and for time-window networks we varied Δt from 0 to 300 seconds. 
For associations defined by A) arrival time and B) time  window, 
across four systems: a) House sparrow data in Lundy Island, UK; b) 

House sparrow data in Broken Hill,  Australia; c) Great tits data in 
Wytham Woods, UK; d) Sociable Weaver data in Benfontein Nature 
Reserve, South Africa. Repeatability was calculated for degree (num-
ber of edges per node; green), strength (weighted degree; yellow) and 
betweenness (number of shortest paths passing through a node; pur-
ple)

Table 1  We compared three network structures, built using three 
association definitions, for four systems: (A) House sparrow on 
Lundy Island, UK. (B) House sparrow in Broken Hill, Australia (C) 
Great tits in Wytham Woods, UK: (D) Sociable Weaver in Benfontein 
Nature Reserve, South Africa. (1) we report the cardinality of each 
network in the first row as vertices (V; individuals in each network), 
edges (E; associations between individuals) and network density (D; 
the number of edges over the total number of potential edges); (2) we 

described two Jaccard similarity measures between networks (lower 
left matrixA-D): edges (common dyadic edges); triangles (common 
clusters of triads). Finally, we report the effect size from a MRQAP 
regression (upper right matrix A-D), which quantifies how well one 
network predicts the other. All comparison metrics are significant 
(p < 0.05) when compared to a null distribution generated by pre-net-
work permutation, hence is not reported here

Definitions A. Lundy B. Broken Hill

Strict-time window GMM Arrival time Strict-time window GMM Arrival time

Cardinality (V/D/E) 118/1619/0.23 118/2274/0.32 119/3783/0.54 57/290/0.18 66/1862/0.73 66/1534/0.71

Strict-time window - - 0.73 0.46 - 0.31 0.27

GMM Edges
Triangles

0.7
0.5

- 0.63 0.15
0.01

- 0.86

Arrival time Edges
Triangles

0.42
0.16

0.58
0.32

- 0.18
0.02

0.82
0.67

-

System C. Wytham D. Benfontein

Cardinality (V/E/D) 204/4115/0.29 219/6774/0.28 214/6688/0.19 62/978/0.51 62/1433/0.75 62/1583/0.83

Strict-time window - - 0.75 0.72 - 0.58 0.43

GMM Edges
Triangles

0.6
0.37

- 0.94 0.68
0.49

- 0.85

Arrival time Edges
Triangles

0.61
0.38

0.94
0.91

- 0.61
0.4

0.87
0.77

-
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sensitive to changes for both methods, especially in Bro-
ken Hill and Lundy Island (Fig. 4).

Discussion

In this study, we compared three association definitions 
applied to edges in avian social networks in four study 
systems. To define an association, we used a strict time-
window approach (Farine 2015), gaussian mixture mod-
els (GMM; Psorakis et al. 2012, 2015), and arrival-time 
(Chan and Dunning 2023; Dunning et al. 2023). We find 
that different association definitions yielded comparable 
individual-level social traits. When constructing animal 
social networks, the association definition should fit the 
research question, the social system of the study species, 
and other characteristics of the study design, such as tech-
nical limitations (Croft et al. 2008; Farine and Whitehead 
2015).

We found statistically significant similarity of social indi-
ces within systems, high level of inter-dependence between 
individual centrality traits, and similar levels of repeatabil-
ity between association definitions. We found that some 
association definitions resulted in more similar networks 
between systems with more similar ecologies, for example 
in the highly gregarious and open-access antenna systems at 
Lundy and Benfontein. Altering the arrival-time overlap (Δt) 

within arrival and time-window networks was also generally 
robust to the definition of Δt across systems. Association 
definitions generally did not significantly change network 
size, but using the strict time-window at Broken Hill led to 
fewer individuals being included in the network. Overall, 
processing of the same temporal data-stream using the three 
association definition methods applied here resulted in simi-
lar social networks. However, we show that methodological 
decisions can result in subtle differences, mainly explained 
by (1) differences between association definitions in the 
context of the system ecology, and (2) RFID feeder design.

We found slight differences in social networks created 
based on the association definition used across all four 
study systems. Particularly, the GMM and arrival method 
generally produced more similar networks across the four 
study systems compared to strict-time window, evident 
from the higher similarity metrics and consistent repeat-
ability of social traits across methods. The strict-time win-
dow method uses a low (one second) threshold to identify 
associations, resulting in closer co-occurrence to be treated 
as an association, in contrast to groups identified using the 
GMM or arrival approach. This distinction is important for 
the research question at hand, as researchers interested in 
capturing closer associations might opt for a strict-time win-
dow method, whereas the GMM or arrival methods might be 
more appropriate for research questions related to capturing 
wider group compositions. However, in the house sparrow 

Table 2  Repeatability and mean measures for three social network 
traits (degree, strength, betweenness) across weeks in 4 study sys-
tems (Lundy Island House sparrows, Broken Hill House Sparrows, 
Wytham Woods Great tits, and Benfontein Sociable Weavers) using 

three association definitions. We calculated for each metric across 
all weeks within study systems, with standard deviation provided in 
parenthesis

System Trait Method Mean (SD) R 95% CI System Mean (SD) R 95% CI

Lundy Degree Strict-time window 13.38 (16.08) 0.3 (0.26–0.37) Broken Hill 3.41 (2.8) 0.39 (0.32–0.48)

GMM 18.63 (20.61) 0.31 (0.26–0.38) 26.38 (13.94) 0.58 (0.49–0.62)

Arrival 32.33 (31.93) 0.28 (0.23–0.35) 25.01 (13.93) 0.55 (0.47–0.61)

Strength Strict-time window 0.12 (0.13) 0.17 (0.1–0.25) 0.09 (0.24) 0.81 (0.78–0.84)

GMM 0.78 (0.77) 0.21 (0.14–0.3) 1.71 (0.89) 0.64 (0.58–0.69)

Arrival 0.28 (0.19) 0.22 (0.15–0.29) 0.38 (0.17) 0.61 (0.55–0.67)

Betweenness Strict-time window 44.33 (123.2) 0.18 (0.11–0.24) 25.22 (64.08) 0.16 (0.02–0.23)

GMM 37.2 (104.76) 0.00 (0.00–0.16) 19.49 (29.75) 0.11 (0.16–0.31)

Arrival 24.81 (72.27) 0.07 (0.00–0.14) 17.61 (22.87) 0.22 (0.16–0.31)

Wytham Woods Degree Strict-time window 12.84 (7.8) 0.4 (0.36–0.45) Benfontein 18.36 (10.11) 0.61 (0.55–0.7)

GMM 30.41 (14.51) 0.5 (0.46–0.54) 30.02 (11.26) 0.67 (0.59–0.73)

Arrival 29.26 (14.35) 0.5 (0.45–0.54) 34.74 (10.67) 0.68 (0.6–0.74)

Strength Strict-time window 0.1
(0.05)

0.37 (0.32–0.41) 0.19 (0.11) 0.53 (0.45–0.63)

GMM 4.15 (1.96) 0.52 (0.48–0.56) 2.12 (0.95) 0.62 (0.54–0.69)

Arrival 0.45 (0.13) 0.46 (0.41–0.51) 0.44 (0.14) 0.63 (0.56–0.7)

Betweenness Strict-time window 135.8 (303.26) 0.09 (0.06–0.12) 26.86 (45.42) 0.19 (0.12–0.27)

GMM 140.48 (385.07) 0.08 (0.06–0.12) 19.37 (26.73) 0.11 (0.05–0.18)

Arrival 134.11 (390.52) 0.13 (0.09–0.17) 14.78 (32.52) 0.05 (0.01–0.11)
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system on Lundy Island, the strict-time window and GMM 
methods produced more similar networks compared to the 
arrival network. This may be explained by the gregarious 
nature of house sparrows that often aggregate at feeders in 
large numbers, making the arrival approach capture subtly 
different associations that are based on the behaviour outside 
of a feeder instead of proximity in the feeder.

Next, our results also suggest that the design of RFID 
feeders can influence the obtained social networks using 
different association methods. When using the strict time-
window definition, we observed lower repeatability of indi-
vidual social traits in Wytham woods, but increased repeat-
ability in Broken Hill and Benfontein. Importantly, RFID 
feeders in Wytham Woods only allow up to two birds to feed 
simultaneously, and since we used a strict threshold of 1 s 
to define the time-window, this method seems to have iden-
tified less repeatable associations compared to, for exam-
ple, the GMM approach. Similarly, the strict time-window 
definition in Broken Hill resulted in smaller network sizes, 
since sparrows were only detected as they entered and left 
a feeding chamber, affecting the detection of groups. In the 
Broken Hill sparrow system, a higher Δt value (e.g. 5–10 s) 
might be more appropriate to capture physical and temporal 
proximity. On the other hand, shorter time-windows can be 
more appropriate for open RFID systems like in Benfontein 
and Lundy Island (Fig. 1A), where multiple individuals can 
access the food resource at one time. Overall, GMM and 
arrival definitions captured more similar networks com-
pared to strict time-window approaches, because the latter 
is capturing physical and temporal proximity, while the two 
former capturing larger foraging groups.

The sensitivity analysis suggested that both the arrival 
time and strict time window approaches are robust against 
changes in the time-window parameter. However, between-
ness seemed to be much more variable, especially in the 
house sparrow systems on Lundy Island and Broken Hill. 
This was likely due to the sensitivity of the betweenness 
measure relative to the resulting network size and fine-scaled 
topological differences within a network. Where degree and 
strength captures the variation in each individual’s primary 
social associates, betweenness (the number of shortest paths 
a node sits), is more sensitive to the changing structure of the 
network. It may also be the case where RFID data of house 
sparrows contains more noise from random aggregations at 
the feeder, which makes the definition of Δt more important 
in the resulting network.

When deciding which association definition to use, 
researchers should not only consider which associations defi-
nition is appropriate for the research question at hand, but 
also consider the effect of choosing different time-window 
parameters when constructing social networks. We provide 
code for a comparison between association definitions and 
sensitivity analysis, and we encourage researchers to explore 

how different definitions affect the resulting networks, and 
make methodological decisions considering the biology of 
their study species.

A core limitation of our study (and indeed, of many stud-
ies on social behaviour in the wild) is the inability to know 
whether the association definition we use are capturing 
any social relationship or preferences between individuals. 
While RFID readers at feeders is one of the most common 
ways to measure social association in passerine bird studies, 
the method does not measure specific behavioural interac-
tions (in contrast to, for example, primate social network that 
are based on observed grooming interactions) and can also 
lead to artificially created associations. In other words, these 
remotely-sensed networks are only a proxy of the underly-
ing social structure in a population, and whether this social 
structure is appropriate will depend on the research question 
at hand.

While the research question should be the primary con-
sideration when deciding on the association definition of 
choice, we introduce additional considerations that can influ-
ence the constructed social networks when paired with a 
specific association definition. Key considerations are: (1) 
The gregariousness of the study system, or their propen-
sity to aggregate at a resource (Krause and Ruxton 2002), 
and (2) Data recording methodology; for example, use of 
open-access systems where multiple individuals can feed 
and get recorded simultaneously versus systems which lim-
ited access to the feeder and antenna. Where the concepts 
of social association are unclear, it may be beneficial to 
compare different definitions before hypothesis testing. Fur-
thermore, we encourage researchers to report justification 
of association definition in published research, providing a 
biological justification on the choice when testing hypoth-
eses using animal social networks. These could be empiri-
cally tested against another variable like familial ties (e.g. 
Ferreria 2020) or based on observation of the study species 
(e.g. Dunning et al. 2023). While we show here that differ-
ing association definitions are generally robust and produce 
broadly similar networks, any decisions researchers make 
nevertheless result in different network structures and may 
influence research outcomes.

Supplementary Information The online version contains supplemen-
tary material available at https:// doi. org/ 10. 1007/ s00265- 025- 03559-7.
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