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ABSTRACT

This paper presents an overview of the discipline of structural health monitoring (SHM), organised in terms of three proposed 

ages. The first age is delineated by the prehistory of SHM and the period where nondestructing testing methods evolved into an 

organised set of principles built upon physics- based models; this age ended when the model- based approaches reached an im-

passe in terms of their ability to properly deal with real- world problems. The second age of SHM began with a transition to data- 

based methods based on statistical pattern recognition, which provided a holistic approach to SHM problems for the first time. 

This age arguably ended when the methods foundered in situations where the necessary training data were scarce. It is argued 

here that the third age began with the development of population- based SHM, which has been designed to overcome the problem 

of data scarcity. As there is very limited space in a single article to provide a comprehensive overview, an appendix has been 

provided here that gives a very systematic bibliography of SHM reviews—a meta- bibliography.

1   |   Introduction

The realisation of methods for automated and objective as-

sessment of structural health and safe residual life has long 

been regarded as a highly desirable research objective across 

the whole spectrum of engineering disciplines. Timely and 

accurate detection and assessment of damage offer clear ben-

efits in terms of both economy and safety. The advantages 

of reaching this goal have led to a great deal of research and 

development over decades. Progress has been made and the 

technology is arguably on the cusp of widespread industrial 

uptake. The aim of this paper is to give an overview of the his-

torical developments in structural health monitoring (SHM), 

paying close attention to stagnation points in that history and 

explaining how the relevant barriers were overcome. There 

will be discussion of some of the challenges that remain and 

a suggestion of how SHM needs to further evolve in order to 

meet those challenges.

It is useful to begin with a definition; in quite general terms, 

‘SHM is the process of implementing a damage- detection strategy 

for aerospace, civil and mechanical engineering infrastructure’ 

[1]. It is important to note at the outset that SHM is not the only 

means of implementing a `damage- detection strategy’; the over-

view [2] discusses four main classes of diagnostic technologies: 

nondestructive evaluation (NDE), SHM, condition monitoring 

(CM) and statistical process control (SPC). However, SHM will 

be the focus of the current paper; the authors taking the view-

point that CM and SPC are distinguished by their focus on prob-

lems outside the structural context (CM is largely concentrated 

on rotating machinery and SPC is directed at chemical and ma-

terial processes). Furthermore, NDE will mainly be discussed 

in historical terms as a discipline which evolved (in a sense), 

into SHM. NDE will be understood here to encompass damage- 

identification methods based on taking the structure or system 

of interest out of operation and inspecting using instruments re-

quiring an a priori specification of the area of concern.

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is 

properly cited.
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The SHM process will be considered to compliment (or extend) 

traditional NDE1 by evolving the technology into a quantitative, 

autonomous, online and in situ monitoring methodology, ap-

plicable on a more global scale. Many regard SHM to be distin-

guished by the fact that it exploits permanently installed sensor 

networks and does not take the structure of interest out of oper-

ation. SHM also has the goal of minimising the human- in- the- 

loop component of the damage assessment process. This paper 

will focus on the evolution of SHM technologies consistent with 

these distinctions.

A `history’ of SHM cannot disregard previous histories; in fact, 

the current work will present quite a personal viewpoint. To 

provide balance, an Appendix is provided here, which attempts 

to give a comprehensive list of previous reviews and over-

views. Considering the broader literature, a search using one 

of the most widely used browsing tools reveals that the term 

“Structural Health Monitoring” first appeared in a paper title in 

1990 [3]. However, it is important to note that there are many 

papers describing studies that can be classified as SHM (even 

though the term was not used), that predate the 1990 paper, 

such as the extensive literature on damage detection in off-

shore oil platforms that appeared in the 1970s and 1980s [4]. 

Furthermore, the large body of literature that focusses on CM 

of rotating machinery (which is regarded here as a subdomain 

of SHM) dates back to the 1920s [5]. There are many SHM lit-

erature reviews or overview articles that have appeared over 

the years (as detailed in the Appendix). These articles provide 

detailed insight into the evolution of various aspects of SHM 

technology [4, 6]. However, some of these reviews are quite 

dated [4, 6] and most—because of the large amount of SHM 

literature that has appeared in the last 30 + years—only have 

a narrow focus; for example, on certain specific sensing tech-

nologies (e.g., smart phones), specific application areas for 

SHM (e.g., offshore structures) or specific data analysis meth-

odologies (e.g., deep learning). As well as providing references, 

Appendix summarises and categorises this extensive body of 

SHM review literature.

In the face of such a vast body of SHM review material, it is 

important to identify the contribution that this overview ar-

ticle aims to make. Like many technologies, SHM has seen 

repeated cycles of relatively- rapid advances followed by peri-

ods of stagnation. In SHM specifically, the stagnation often 

results when methodologies that have been demonstrated 

with numerical simulations or with well- controlled labora-

tory experiments are faced with real- world applications. The 

resulting hiatus is then overcome when new technologies, 

often based on developments from fields outside of NDE and 

SHM, are adapted to address SHM shortcomings. The intent 

of this paper is to summarise, at a high level, the evolution of 

SHM technology, based on the premise that two of the stagna-

tion points have actually required something of the order of a 

paradigm shift in order to make progress; this premise leads 

naturally to the breakdown of SHM history into three ages. 

This paper will attempt to delineate these three ages, argu-

ing that the third age has just begun. It is also important to 

note that this summary will only have a limited discussion of 

specific SHM application domains. Such discussions are left 

to the considerable number of application- specific review arti-

cles summarised in Appendix.

2   |   The Genesis of SHM: The First Age

As discussed in Farrar and Worden [6], the interest in identify-

ing damage has been around as long as man has used tools and 

built structures. Early qualitative damage- detection methods 

were based on human tactile sensing of changes in perceived 

vibration and/or sensing of audible changes in acoustic signa-

tures. The most- cited example is perhaps the railway wheel- 

tapper's method. In many cases, such approaches to damage 

detection can be very effective, and they are so intuitive that 

many people adopt these practices in everyday life, for exam-

ple, qualitatively identifying damage in an automobile based 

on changes in vibration or acoustic signatures—so- called 

`squeaks and rattles'. Often, these methods satisfy the online, 

in situ monitoring aspect of the SHM definition above; how-

ever, they are still heavily dependent on the human- in- the- 

loop in the measurement and data analysis aspects of SHM. 

One cannot argue that these human- sensing approaches to 

SHM represent a “rapid advance” as they have developed over 

millennia. Furthermore, the qualitative nature of these assess-

ments and the limitations of human- sensing modalities place 

strict limitations on such approaches, that is, a stagnation 

point. These limitations motivated the development of what 

are currently known as NDE or nondestructive testing (NDT) 

technologies [7]. Modern NDE techniques arguably started to 

emerge in the late 1800s; they saw more rapid advancement 

and adaption in practice during the 1940s–1960s, particularly 

as portable instruments became available which could mea-

sure various physical effects like acoustic emissions. By the 

1970s and 1980s, traditional NDE also reached a stagnation 

point, associated with several issues:

1. Many of the methods were, and still are, qualitative 

(not quantitative).

2. Most NDE methods can only examine a relatively small 

area of the structure or system; they are very local, not 

global.

3. Some methods can only be applied to exposed surfaces, 

which often necessitates disassembly of a system to apply 

the NDE method; not online, in situ monitoring.

4. The application of the methods and interpretation of 

the results requires significant human interactions 

in the measurement and data analysis processes; not 

autonomous.

5. In almost all cases, the structure or system must be taken 

out of service to apply the NDE method; again, not online 

or in situ monitoring).

With this stagnation point in NDE technology as a motivator, 

the structural dynamics community started to actively pursue 

research in what is now known as SHM. The basic hypoth-

esis that this community adopted was based on the widely 

accepted theory that a structure's dynamic response to op-

erational and/or environmental loading, or to loads applied 

specifically for the diagnostic purposes, is a function of the 

structure's mass, stiffness and energy dissipation properties. 

There is now extensive experimental evidence from a wide va-

riety of application domains (aerospace, civil and mechanical 

engineering systems) that supports this theory. Possibly the 
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most significant paper in this early stage of SHM development 

is [8]. The hypothesis is:damage will alter the dynamic proper-

ties of a structure, which in turn will alter the measured dynamic 

response of the structure. Therefore, damage can be inferred 

from changes in the structure's measured dynamic response. 

In principle, all dynamic properties might change as a result 

of damage, but the exact damage modality will shape which 

parameters are most sensitive. For example, a fatigue crack 

will produce a localised increase in flexibility or decrease in 

stiffness, with a consequent reduction in resonance frequency 

which is, in turn, observable by experimental modal analysis. 

If the crack faces rub as the structure vibrates, there will be 

an increase in damping. Such observables, which are sensitive 

to damage, are commonly called features, particularly in the 

context of data- based SHM. Such features, which are derived 

from the mass, stiffness and- energy dissipation properties 

of the structure of interest, are global properties of the struc-

ture, so it was anticipated that changes in dynamic response 

measurements could identify damage on a more global scale. 

It is therefore clear to see why there was so much interest in 

SHM, at a time that NDE was experiencing the stagnation de-

scribed above. If the SHM hypothesis was shown to be valid, 

it would address four of the five issues above associated with 

the stagnation point for NDE, leaving only the issue that the 

vibration- based methods still required significant human in-

teraction in the data- analysis process.2 Two main technologies 

then emerged, associated with vibration- based SHM.

2.1   |   Forward Modelling

By the 1980s, and as direct result of the evolution of commercial 

finite- element (FE) codes, the structural dynamics community 

had well- developed tools for forward- modelling approaches to 

predict when and where damage might occur in a structure. 

These forward- modelling approaches consisted of creating a 

discrete digital structural model based on the geometry and ma-

terial properties of the actual structure of interest, the bound-

ary conditions and the structural element connectivity. Next, an 

assumed load, or a loading scenario based on in situ measure-

ments, was digitally applied, and the response of the structure 

was predicted by the model using computer calculations. The 

predicted response would then be compared to some strength, 

stability or deformation failure criteria to assess if the given 

loading would produce damage.

At the time, the processor and memory capabilities of digital 

computers limited the level of detail in such models to tens 

or hundreds of degrees of freedom in the 1970s. In contrast, 

today at one co- author's laboratory, problems on the order of 

thirty to fifty million degrees of freedom are routinely anal-

ysed. Arguably, FE modelling is one of the most revolutionary 

engineering tools to have been developed in the last century. 

Unfortunately, this approach to modelling engineering sys-

tems is not very effective for near- real- time damage assess-

ment in operating structures, because of the still- existing 

limits to available computer power. There are also gaps in 

the physical knowledge required. It is difficult to incorporate 

the local initial conditions (e.g., material flaws and residual 

stresses) that are present in all engineered systems, into such 

models; unfortunately, these initial conditions often dictate 

damage initiation. It is generally difficult to model actual 

damage mechanisms, for example, delaminations in compos-

ite materials; this difficulty also extends to modelling joints in 

(even) undamaged structures, for example, welds, rivet lines 

and adhesive joints. Finally, the loading applied to a structure 

in simulation does not necessarily reflect the actual loading 

experienced by a system, especially if the structure experi-

ences random loading. It is also difficult to accurately sim-

ulate the temporal and spatial variability in operational and 

environmental loads that occur in most deployed structures. 

As a result, dynamic inputs need to be defined that represent 

the envelope of load distributions that might be encountered 

(e.g., aerodynamic loading on aircraft, hydrodynamic loading 

on offshore platforms and seismic loading on civil infrastruc-

ture) or a worst- case loading scenario that can be defined. In 

general, these approaches are adequate for most design pur-

poses, but they do not reflect the actual loading that dictates 

the current state of structural health. Finally, these simula-

tions require experimental validation over a wide range of op-

erational and environmental conditions and such validation 

can be costly and time- consuming. These issues generated a 

stagnation point for forward modelling, and the SHM commu-

nity turned to inverse- modelling methods.

2.2   |   Inverse Modelling

Within the time- frame of the 1970s–1980s, two other factors 

contributed significantly to the advancement of SHM technol-

ogy. Firstly, there was an industry ‘pull’ for better damage- 

detection technology, primarily from four distinct application 

domains: aerospace structures, civil infrastructure with par-

ticular emphasis on bridge structures, offshore oil platforms 

and rotating machinery. In addition, there was emerging tech-

nology from other fields that could be directly adapted to the 

SHM problem, including lower- cost sensing, increased com-

puting power, data storage and improved telemetry, as well 

as new sensing modalities. As depicted in Figure 1, based on 

the foundations provided by NDE and its associated stagna-

tion, the industry ‘pulled’ relevant enabling technologies from 

other fields and drew significant interest from researchers in 

the structural dynamics community; SHM emerged as a se-

rious discipline in the early 1990s, with a primary focus on 

deterministic inverse modelling.

Throughout the 1990s and into the early 2000s, significant 

research was carried out on different deterministic inverse- 

modelling approaches to SHM. The general concept behind 

such approaches is that one begins by measuring the dy-

namic response of the structure in its undamaged condition. 

Typically, dynamic properties such as mode shapes and modal 

frequencies are extracted from these measurements to use in 

the modelling process. As an example, the first mode obtained 

from 26 accelerometer measurements on a bridge structure [9] 

is shown in Figure 2. Next, an FE model of the bridge is con-

structed. Properties of the model, in this case the material 

properties of the concrete deck and piers and the connectiv-

ity of the girders to the piers, are adjusted so that the model 

accurately predicts the undamaged measured modal prop-

erties. In the case of the bridge example  [9], the first mode 

shape predicted by the model is shown in Figure 3. This step 
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is referred to as FE model updating and presents significant 

technical difficulties as it is an ill- posed problem, despite the 

development of various sophisticated mathematical methods 

[10]. At this point, the assumption is made that an experimen-

tally validated model of the undamaged structure is available. 

The process is then repeated after a possible damage event (or 

after some ‘inspection’ period).

For the case discussed here, a cut was made in one of the bridge 

girders at the middle of the centre span to simulate damage from 

a fatigue- crack. New dynamic response measurements were 

made, and new modal properties were extracted from the data 

acquired, with the structure in a possibly damaged condition 

(Figure  4). The validated undamaged FE model was updated 

again based on the new modal properties acquired from the po-

tentially damaged structure so that the model now accurately 

predicted those measured modal properties (Figure 5). The stiff-

ness or flexibility indices of the two models were then compared 

to identify that damage was present, where the damage was 

located and to provide a quantified assessment of the extent of 

damage (Figure 6).

The earliest examples of using these inverse- modelling ap-

proaches to SHM appeared in applications to offshore oil plat-

forms that were conducted in the 1970s3. In the 1980s and 

1990s, much of research into this approach was undertaken by 

the aerospace engineering community who were focussed on 

assessing damage to truss structures that would be deployed 

on the international space station. However, as more research 

FIGURE 2    |    First mode of a highway bridge in its undamaged condi-

tion, as identified from experimental measurements.

FIGURE 3    |    First mode of the bridge predicted by an FE model that 

has been updated to match the response observed in Figure 2.

FIGURE 4    |    First mode of the bridge identified from experimental 

measurements after damage had been introduced.

FIGURE 1    |    The confluence of NDE technology, industry ‘pull’ and the enabling technologies that led the structural dynamics community to de-

velop deterministic inverse- modelling approaches to SHM.
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was conducted on these inverse- modelling approaches and they 

were applied to in situ structures with their associated sources 

of variability, some significant challenges were encountered that 

led to a new stagnation point in the evolution of deterministic 

inverse- modelling approaches to SHM. The issues included the 

following:

1. Almost all inverse- modelling approaches at the time as-

sumed that the structure could be accurately modelled as 

a linear system before and after damage. For the bridge ex-

ample discussed above, the torch cut in the girder that was 

used to simulate a fatigue crack was actually wide enough 

that it did not open and close under the applied dynamic 

loading, so in this case the linear system assumption was 

valid—the simulated crack only changed the geometry of 

the structure. However, an actual `breathing’ fatigue crack 

could exhibit nonlinear response characteristics under ac-

tual operational and environmental loading conditions, 

which would pose challenges for the model- updating pro-

cess as the features used in the updating process (modal 

frequencies, mode shapes) are not strictly defined for the 

damaged systems.

2. Typically, there is a significant mismatch in the experimen-

tally measured DOFs (26 in the bridge example above) and 

the DOFs in the numerical model (on the order of 10,000 

for the bridge example), which necessitates either extrap-

olation or condensation in the updating process. These 

processes can adversely impact the ability to identify local 

damage.

3. The inverse- modelling approaches have difficulty ac-

counting for the environmental and operational variabil-

ity that is associated with almost all in situ structures. 

As an example, Figure 7 shows the first mode of an un-

damaged bridge structure measured in the morning, 

and Figure 8 shows the same mode when measurements 

were made in the early evening on the same day [9, 11, 

12]. This bridge is symmetric about its centreline and 

oriented in a north–south direction. The skewed first 

bending mode is caused by the sun heating one side of 

the bridge in the morning and the other side in the after-

noon. The question then becomes which mode to use in 

the model- updating process. Note that for in situ moni-

toring, varying traffic loading will also produce changes 

in the mass properties of the bridge.

4. Damage usually needs to be severe enough to alter the load 

path through the structure before it will produce signifi-

cant changes in the low- frequency global dynamic proper-

ties of the structure that are used in the updating process.

5. Extracting the features from the measured data (most 

commonly modal parameters), updating the models and 

assessing changes in the models that are indicative of 

damage usually require a significant human- in- the- loop 

effort and can be computationally time- consuming.

3   |   The Second Age: Data- Based SHM

The technical issues associated with the model- based approach 

to SHM are largely the result of the following: (a) the difficulty 

of providing an accurate model of the structure (and damage), 

(b) the difficulty in accommodating uncertainties (unknown 

loading conditions, operational and environmental variations 

(variations in measurements) and (c) the ill- posed nature of the 

inverse problem. To address the stagnation point associated with 

inverse-  modelling approaches to SHM, around the year 2000, 

a number of researchers realised that the damage- detection 

FIGURE 5    |    First mode of the bridge predicted by the FE model after 

the model shown in Figure 3 has been updated a second time to match 

the results shown in Figure 4.

FIGURE 6    |    Change in flexibility coefficients that resulted from the 

introduction of damage into the bridge.

FIGURE 7    |    First bending mode of a bridge span measured at 

10:00 AM.

FIGURE 8    |    First bending mode of the bridge span shown in 

Figure 7, measured at 5:30 PM the same day.
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process could be posed as a problem in statistical pattern rec-

ognition (SPR) or machine learning (ML). Following a period of 

exploration by the community, a quite general SPR paradigm for 

SHM was proposed that included the following steps [13]:

1. Operational evaluation.

2. Data acquisition.

3. Feature selection and extraction.

4. Statistical model development for feature discrimination.

Tables 1–3 attempt to track, at a high level, the evolution of tech-

nologies that have been used by the SHM community to address 

Steps 2–4 of this paradigm.

The SPR paradigm is very general and, in fact, does not preclude 

the use of deterministic physics- based models. However, the 

major impact to the field that resulted from the realisation that 

SHM is best defined as a problem in SPR was the adaptation of 

mature pattern- recognition technologies previously developed 

for other applications (e.g., econometrics, speech pattern rec-

ognition, credit- card fraud detection, radar and sonar detection 

TABLE 1    |    Evolution of sensing technology used in structural health 

monitoring.

Sensing, data processing and 

telemetry technologies

Approximate time 

of adoption by the 

SHM community

Qualitative visual, audio and 

tactile feel

As long as man has used 

tools and built structures

Quantitative sensors (strain and 

acceleration)

1940s

Quantitative sensors (velocity) 1950s

Specialty sensors (e.g., neutron 

detectors for reactor core barrel 

diagnostics)

1960s

Eddy- current noncontact 

proximately sensors

Late 1960s

Real- time fast Fourier 

transform analysers

1970s

Continued reductions in cost 

of computer processor and 

memory hardware

1980s to present

Fibre- optic sensors Mid- 1990s

Wireless embedded systems Early 2000s

Energy harvesting Early 2000s

Macrofiber composite sensor/

actuators

Early 2000s

Robotic inspection systems Early 2000s

Video- based motion 

measurements

Mid 2010s

Augmented reality Mid- 2010s

TABLE 2    |    Evolution of damage- sensitive features used in structural 

health monitoring.

Features

Approximate time 

of adoption by the 

SHM community

Qualitative vibration 

amplitudes and acoustic 

frequencies

As long as man has used 

tools and built structures

Quantitative vibration 

amplitudes

1940s

Statistical model parameters 

(e.g., signal root mean- square 

amplitude)

1940s

Physics- informed waveform 

comparisons

1970s

Modal parameters 1970s

Inverse model updating 1970s

Time series model parameters 

and residual errors.

Late 1990s

Time- frequency measures 

(e.g., Holder exponent)

Early 2000s

Information measures 

(e.g., entropy measures)

Early 2000s

High- dimension features 

(used with deep learning)

Mid- 2010s

TABLE 3    |    Evolution of statistical modelling and data science 

applications to structural health monitoring.

Of statistical modelling and data 

science technology

Approximate time 

of adoption by the 

SHM community

Rotating machinery signal statistics 

(1940s)

1940s

For the most part statistics and data 

science was ignored by the inverse 

modelling community

1970s- Early 2000s

Statistical process control Mid- 1990s

Novelty detection Late 1990s

Machine- learning classifiers Early 2000s

Auto- encoders Early 2000s

Detection theory Mid- 2000s

Info- gap robustness assessments Early 2010s

Value of information Mid- 2010s

Deep learning Mid- 2010s

Population- based SHM Early 2020s
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and syndromic surveillance for epidemic outbreaks). A signifi-

cant advantage of the adoption of SPR was that a great deal of 

the associated technology was probabilistic and thus provided 

a natural and powerful means of accommodating uncertainty. 

Furthermore, ML and SPR were undergoing a period of massive 

development in the 21st century, and the advances being made 

in machine- learning algorithms for pattern recognition were 

also being adapted to the SHM problem.

The SPR methods resulted in data- driven approaches to 

SHM that are free from the more rigid constraints imposed 

by physics- based modelling. As mentioned above, these ap-

proaches have been shown to be better suited to handle the 

operational and environmental variabilities that are encoun-

tered in all in situ SHM applications. Additionally, these 

methods are well suited for online, in situ monitoring, and 

with sufficient training data,3 these methods can minimise 

the human- in- the- loop aspect of the SHM decision- making 

process. Finally, it should be noted that as these data- driven 

methods were developed, they led to the definition of a set of 

fundamental axioms for SHM [14, 15], a set of `universal’ guid-

ing principles.

At the same time (the early 2000s) that the data- driven meth-

ods were beginning to be adapted to SHM, lots of research on 

ultrasonic guided- wave approaches to SHM was reported in the 

literature and at SHM conferences. However, guided- wave ap-

proaches arguably tend to suffer from the same limitations as 

most NDE methods. In their current state of development, for 

the most part, they do not have the ability to be deployed for 

online, in situ monitoring and they require significant human 

interaction.

Since the early 2000s, there has been a significant amount 

of work on data- driven approaches to SHM, and although 

these approaches addressed some of the issues with inverse, 

deterministic- modelling approaches, they too had reached a 

point of stagnation in the mid- to- late 2010s. The issue with 

these data- driven methods primarily stems from the fact that 

they are almost completely dependent on training data. To 

account for operational and environmental variability, the 

training data may need to be acquired for long periods of time 

to encompass most of the variability that might be expected. 

Furthermore, it is rare that training data are available from 

the damaged systems. To overcome these limitations, some 

researchers have proposed to turn to population- based SHM 

in the early 2020s.

4   |   The Third Age: Population- Based SHM

The current section is a little more speculative; it is not yet clear 

that population- based SHM (PBSHM) represents a paradigm 

shift in the sense that moving to data- based SHM proved to be; 

however, what is true is that PBSHM clearly has the potential 

to overcome the data challenges that appeared to stagnate the 

discipline recently.

The main problem is with the availability of data. A data- 

based approach requires data appropriate to the diagnostic 

problem under consideration. For a given structure, damage 

detection can be carried out in an unsupervised way, in which 

only data for the normal condition are required. SPR/ML tech-

nology based on novelty detection then suffices to detect devi-

ations from normal condition [16]. If a higher- level of damage 

identification is needed—for example, damage- location—a 

supervised classifier algorithm will be needed and this will 

require damage- state data spanning all the possible states of 

interest, labelled accordingly. There is a clear problem here 

for very high- value structures; most high- value structures are 

designed conservatively, so that damage within the design life 

is rare; if damage does occur, damage- state data will not be 

available because (a) the structure is retired and so monitoring 

is not needed anymore or (b) the structure has been repaired 

and is now in a new normal condition. It is financially incon-

ceivable that copies of an aircraft say, would be damaged in 

multiple ways to provide data to train an algorithm; providing 

data from forward modelling would provide problems as dis-

cussed in Section 2.

One way out of this dilemma is provided if the structure of 

interest is an identical copy of another structure for which 

damage- state data are available. One could then train on the 

data- rich structure and assume that the resulting classifier 

generalises to the data- poor structure. Unfortunately, even 

nominally- identical structures will often differ enough that 

generalisation is not guaranteed, for example, because of 

manufacturing variations or differences in the environment 

in which the structure is embodied. Fortunately, a recent de-

velopment in ML allows one to develop classifiers for data- 

poor structures, given only data for a `similar’ problem. This 

technology is called transfer learning (TL) [17]. The important 

point here is that the problems of interest have to be ‘simi-

lar’; if there are significant differences, the process of TL can 

make matters worse—a phenomenon called negative transfer. 

The idea of PBSHM then is to monitor a population of struc-

tures, so that diagnostic capability for a data- poor structure is 

possible if the population contains another data- rich structure 

which is similar to the initial one.

It is useful here to introduce some terminology. The data- rich 

structure which helps the inference is referred to as the source 

structure; one also refers to the source SHM problem. The data- 

poor structure of interest for which inference is required is called 

the target structure. If the population of structures is composed of 

nominally identical objects—like a wind farm composed of the 

same model of turbine—it is referred to as a homogeneous popu-

lation. If one has a homogeneous population, one is faced with a 

simpler PBSHM and a broader range of techniques becomes avail-

able, based on the fact that one can assume that the SHM problems 

are similar [18]. A more complicated situation arises when the 

population contains quite different structures—the heterogeneous 

case [19–21].

The most general PBSHM problem—for heterogeneous popula-

tions—breaks down into two main stages:

1. Given a new target structure, can one find another struc-

ture in the population similar enough to act as a source, so 

that positive transfer is ensured.
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2. Carry out the transfer.

Neither of these problems is at all simple. In the first case, the 

proposed solution has been to find an abstract representation of 

the structures, so that the representations live in a metric space, 

so that ‘similarity’ is replaced by a ‘distance’ in the space; low 

distance implies high similarity. The construction of the ab-

stract representation is carried out in two stages, as depicted in 

Figure 10, for a wind- turbine.

First, one identifies the main components of the structure; one 

tries to capture the essence of the structure of interest by break-

ing it down into the simplest set of components which express 

the topology and functionality of the structure (Figure 9a); these 

components are then labelled (Figure 9b). The resulting model 

is called an irreducible element (IE) model. The IE model is then 

converted to an attributed graph (AG), where the vertices of the 

graph correspond to IEs, and an edge is added if two elements 

are connected in the physical model [19]. The term ‘attributed’ 

means that each vertex or edge can carry a vector of parame-

ters; for example, the node attributes might summarise the 

dimensions and material properties of a given IE. The critical 

point here is that the space of graphs is a metric space and thus 

equipped to give a distance between structures. If that distance 

is small enough, one can proceed to attempt transfer between 

structures. In fact, once the AG model is established, there are 

multiple means of constructing the metric; the method used in 

[19] is based on finding the maximum common subgraph of 

the two AGs of interest; the greater the common subgraph, the 

greater the similarity and the lower the distance.

There are many different methods of transfer learning; so far, 

the main methods used for SHM have been based on domain 

adaptation (DA). DA is based on the idea of moving the feature 

data into a harmonised latent space (i.e., representing the data 

in both domains), constructed such that a classifier trained on 

source data will also generalise to target data [22].

The remainder of this section will illustrate the processes; for 

details on the theory and computation, the reader is referred 

to the original references [19, 20]. One of the first major tests 

of PBSHM—going beyond synthetic data—was to examine 

a population of real bridges. A population of eight structures 

was considered [19], composed of two beam- and- slab bridges, 

FIGURE 9    |    Determining the abstract representation of a wind- turbine structure: (a) identification of main components of the given structure, (b) 

labelling the irreducible elements, (c) conversion to the attributed graph. The shaded grey circles in (b) and (c) represent ‘ground’ nodes, so the edge 

‘9’ is the connection to ground.

FIGURE 10    |    AG representations of two real beam- and- slab bridges.
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two truss bridges, two suspension bridges, an arch bridge and a 

cable- stayed bridge. Figure 10 shows the IE models for the two 

beam- and- slab bridges. It is amusing to note that the two graphs 

appear to look more like birds than bridges; this is because the 

topology is captured by the graph topology which is independent 

of the way in which the graphs are represented visually.

The first major test of the concepts was to compute the similarity 

measures for the population; the results are shown in Figure 11. 

The metric used is the maximum common subgraph, scaled so 

that complete correspondence gives a score of unity, while com-

plete dissimilarity gives a score of zero. The results are excellent; 

the pairs (beam- and- slab, truss and suspension) give high sim-

ilarities; all other comparisons give low scores. Note that the 

diagonal compares each bridge to itself, thus yielding perfect 

scores.

The next PBSHM stage is to effect transfer; this has been illus-

trated using a number of simulated examples and also on real- 

world structures. Successful transfer between two real- world 

bridges is demonstrated in [23, 24]; transfer between the wings 

of two different models of aircraft is shown in [25]. Once transfer 

is realised, the results of classifiers can be incorporated as usual 

in appropriate decision- support tools.

FIGURE 11    |    Comparison/similarity scores across a population of eight real- world bridges.

FIGURE 12    |    The items in red show how robust SHM technology can modify the traditional lifecycle engineer V beginning in the upper left when 

the concepts of operation are defined for the system.
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5   |   Conclusions and Remaining Challenges

The previous sections have summarised the evolution of SHM 

technology over an approximately 50- year period. Those ap-

proaches taken to develop SHM capabilities have reached a 

number of stagnation points (as all technologies experience), 

and then new approaches have been developed to address the 

stagnation points. The major stagnation points allow a conve-

nient division into three ages of SHM. Despite all these efforts, 

there are still outstanding challenges that will require further 

advances in SHM technology. Some of these challenges, which 

can be tied to the four- step SPR paradigm, are as follows:

• The ability to define the damage that needs to be identified 

(operational evaluation). Particularly challenging for new 

systems without any maintenance history and for the new 

paradigm of population- based SHM

• There is no widely accepted procedure to demonstrate rate 

of return on investment in an SHM system (operational 

evaluation). In fact, this issue might be addressed by an 

appropriate risk- based approach to SHM/PBSHM, and re-

search in this direction is currently underway. Many com-

panies consider such economic analyses proprietary

• Saint Venant's principle: This principle is essentially the 

issue of sensitivity to damage. Discontinuities in a struc-

ture only influence the strain field in the local vicinity of 

the discontinuity; this places a lower bound on the number 

of sensors needed and their density on the structure (data 

acquisition). In terms of vibration- based SHM, global dy-

namic properties are typically insensitive to local damage

• There is no accepted SHM sensing system design methodol-

ogy (data acquisition)—almost all systems, with the excep-

tion of rotating machinery monitoring systems, are unique 

designs.

• Understanding how the damage- sensitive features will 

change with varying environmental and operational condi-

tions (feature extraction, data acquisition and statistical mod-

elling). Additional sensors may be needed to characterise the 

environmental and operational conditions. Training data may 

need to be acquired over long periods of time to fully capture 

the range of variability the system will experience.

• Developing a principled approach to feature selection (fea-

ture extraction). Most feature selection is done by physics- 

informed engineering judgement

• Setting classification boundaries (statistical modelling). 

Defining these boundaries will entail managing the trade- 

off between false- positive and false- negative damage indi-

cations and can potentially be accommodated in a full risk/

utility- based (PB)SHM.

• Managing large volumes of data from an online monitoring 

system (data acquisition). The SHM community can learn 

how this data management is done successfully in other 

contexts where ML is applied (credit card fraud detection, 

syndromic surveillance).

There is also a fundamental disconnect between the way research-

ers and industry practitioners develop solutions to SHM problems. 

Researchers typically begin by defining a methodology and then 

show it works on a generic problem (often matched to the method-

ology). On the other hand, industrial practitioners tend to define 

a specific problem and then develop a solution for that problem 

without concern for how generally that method can be applied.

Finally, there is the ‘Catch 22’ issue of SHM system validation. 

Owners and operators will not invest in SHM technology until 

it can be demonstrated on in situ systems. However, in general, 

these owners and operators will not allow the people developing 

the SHM system to potentially damage a high- capital expendi-

ture system solely to demonstrate the capabilities of the SHM 

system. Currently, validation data from damaged systems are 

scarce, although PBSHM has been conceived to overcome this 

problem if possible.

It is anticipated that this stagnation point- new development 

cycle of SHM technology advancement will continue into 

the foreseeable future. The goal of this process will be to de-

velop simple (can be operated by engineers and technicians 

without advanced degrees), reliable, adaptable, low- cost, low- 

maintenance SHM systems. These systems will be validated 

with numerically generated and experimentally acquired data 

so that the SHM system has a quantified probability of detec-

tion for predefined damage scenarios under all anticipated 

sources of operational and environmental variability. A major 

potential of PBSHM lies in removing the boundaries between 

model- based and data- based SHM. As all structures are con-

verted into AG representations, PBSHM does not distinguish 

between models and real structures. In fact, there is no re-

quirement that a model have such high fidelity that it closely 

matches the structure; in fact, it need only be close enough 

for transfer, in the population metric. Such advancements will 

allow SHM technology to become part of the lifecycle design 

process early on when defining the concepts of operation for 

a new engineered system as illustrated in Figure 12. In paral-

lel with these, technological advancements will be the further 

development of codes and standards for the implementation 

of SHM in different application domains. An extensive set of 

codes and standards currently exists for rotating machinery 

monitoring and (e.g., ISO standards [26]), and a relatively new 

standard has recently appeared for aerospace applications 

[27]. Such codes and standards are a clear indication that the 

technology has matured to the point where industry is ready 

to adopt SHM in these specific application domains.
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Endnotes

 1 The term nondestructive testing (NDT) is very often used instead.

 2 Of course, as modal analysis methods increased in their sophistica-
tion, they became themselves much more automated, thus removing 
(to a great extent), the final issue associated with NDE.

 3 The ‘sufficient training data’ clause turned out to be the problem.
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Appendix 

This appendix summarises the many SHM review articles in Tables A1 
to A4 below that have previously appeared in refereed journal publica-
tions. It is important to note that there are some highly- cited SHM re-
view articles that were not published in journals; however, the authors 
felt it was important to only include surveys that have been subjected to 
a peer- review process and that are easily obtained by the SHM commu-
nity (although not necessarily without cost).

These articles have been categorised into three topic areas: 1. Their 
Application focus, 2. Their Sensing Modality focus, and 3. Their Data 
Analysis Methodology focus. Many of the reviews address more than 
one of these topic areas and, hence, will be listed in multiple tables. The 
reviews listed in Table 1, are general and address multiple applications, 
multiple sensing modalities and multiple data- analysis methodologies. 
The citation listing is presented by year the review was published. 
Within a given year, there is not specific order to the citations.

 1
4
7
5
1
3
0
5
, 2

0
2
5
, 1

, D
o
w

n
lo

ad
ed

 fro
m

 h
ttp

s://o
n
lin

elib
rary

.w
iley

.co
m

/d
o
i/1

0
.1

1
1
1
/str.1

2
4
9
5
 b

y
 U

N
IV

E
R

S
IT

Y
 O

F
 S

H
E

F
F

IE
L

D
, W

iley
 O

n
lin

e L
ib

rary
 o

n
 [1

1
/0

2
/2

0
2

5
]. S

ee th
e T

erm
s an

d
 C

o
n

d
itio

n
s (h

ttp
s://o

n
lin

elib
rary

.w
iley

.co
m

/term
s-an

d
-co

n
d
itio

n
s) o

n
 W

iley
 O

n
lin

e L
ib

rary
 fo

r ru
les o

f u
se; O

A
 articles are g

o
v

ern
ed

 b
y

 th
e ap

p
licab

le C
reativ

e C
o

m
m

o
n
s L

icen
se



12 of 24 Strain, 2025

TABLE A2    |    Structural Health Monitoring Reviews Focused on Specific Applications

Application Focus References

Adhesive and bonded joints A- 222, A- 229

Aerospace Structures A- 32, A- 37, A- 64, A- 66, A- 68, A- 120, A- 135, A- 138, A- 151, A- 189, A- 231

Agricultural Structures A- 181

Asphalt Pavements A- 140

Benchmark Studies A- 57

Bolted Assemblies A- 243

Civil Infrastructure: Buildings and Bridges A- 1, A- 3, A- 8, A- 13, A- 17, A- 24, A- 27, A- 29, A- 31, A- 46, A- 55, A- 76, A- 77, A- 78, 
A- 83, A- 84,A- 89, A- 102, A- 110, A- 131, A- 135, A- 159, A- 165, A- 166, A- 185, 

A- 198, A- 199, A- 207, A- 212, A- 216, A- 217, A- 219, A- 223, A- 234, A- 235, A- 237, 
A- 245, A- 251, A- 259, A- 275, A- 276, A- 277, A- 278, A- 280, A- 284, A- 298, A- 301, 

A- 303

Concrete and Concrete Structures A- 65, A- 116, A- 164, A- 188, A- 191, A- 192,A- 281, A- 284

Composite Materials and Structures A- 12, A- 32, A- 44, A- 51, A- 61, A- 64, A- 70, A- 90, A- 122, A- 129, A- 139, A- 143, 
A- 145, A- 177, A- 186, A- 189, A- 189, A- 201, A- 213, A- 221, A- 227, A- 236, A- 242, 

A- 249, A- 292, A- 293, A- 296

Cultural Heritage & Historic Structures A- 87, A- 105, A- 184, A- 269

Dams A- 225

Fluid Storage Tanks A- 254

Health and Usage Monitoring Systems (Aircraft & Rotorcraft) None found

Hot Gas Components in Gas Turbines A- 123

Inland Waterways and Ports A- 299

Marine Structures A- 183, A- 244, A- 268

Masonry structures A- 100, A- 187, A- 193, A- 240

Mines A- 108

Offshore Wind Jacket Structures A- 262

Oil & Gas Infrastructure (Onshore & Offshore) A- 43, A- 130, A- 268, A- 273

Pipeline Structures A- 42, A- 141, A- 194, A- 273

Railroads and Track Structures A- 9, A- 149, A- 232

Rotating Machinery A- 6, A- 7, A- 16, A- 50, A- 71, A- 73, A- 95, A- 106, A- 107, A- 114, A- 128, A- 132, 
A- 154, A- 155, A- 167, A- 169, A- 220, A- 230, A- 233, A- 238, A- 255, A- 263, A- 264, 

A- 279, A- 287, A- 288, A- 289

Timber Structures A- 147, A- 148

Wind Turbines A- 23, A- 34,A- 53, A- 60, A- 62, A- 63, A- 80, A- 104, A- 111, A- 119, A- 202, A- 302

TABLE A1    |    General Structural Health Monitoring Literature Reviews

Review Topic References

General Reviews A- 2, A- 4, A- 5, A- 36, A- 38, A- 41, A- 48, A- 57, A- 67, A- 74, A- 79, A- 81, A- 93, A- 
160, A- 197, A- 206, A- 258, A- 260,
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TABLE A3    |    Structural Health Monitoring Reviews Focused on Specific Sensing Modalities

Sensing Technologies References

Acoustic Emission A- 108, A- 179

Augmented and Virtual Reality A- 271

Bio- Inspired Sensing A- 121

Carbon coated piezoresistive fiber sensor A- 178

Carbon Nanotubes A- 65, A- 70, A- 192, A- 213, A- 295, A- 296

Connected and Automated Vehicles A- 174

Corrosion sensors A- 130

Doppler Radar A- 190

Electromechanical Impedance A- 18, A- 35, A- 91, A- 109, A- 152, A- 172, A- 229

Embedded Sensors A- 205

Energy Harvesting A- 26, A- 68, A- 88, A- 235

Fiber Optic Sensing A- 21, A- 25, A- 30, A- 31, A- 37, A- 39, A- 40, A- 55, A- 56, A- 64, A- 66, A- 138, A- 149, A- 159, A- 164, 
A- 179,A- 191, A- 195, A- 244, A- 282

General Sensors Overview A- 252

Global Navigation Satellites &GPS Technology A- 49, A- 126, A- 161, A- 163

Ground Based Radar A- 111, A- 240

High- Temperature Environment A- 171

LIDAR A- 212

Low- Frequency Methods A- 14

MEMS A- 125

Multi- Sensor Approaches A- 145

Mxene sensors A- 209

Nanocarbon- based solutions A- 133, A- 251

Noncontact Sensing A- 196, A- 270

Optimal Sensor Placement A- 124,A- 153, A- 253, A- 283

Piezoelectric actuators A- 33

Piezoelectric Sensing A- 96, A- 102, A- 115, A- 129, A- 144, A- 163, A- 239, A- 257

Piezoresistive Sensing A- 178, A- 186

Renewable Energy Methods A- 150

RFID Strain Sensing A- 99, A- 265

Robotic Systems (ground and aerial) A- 92, A- 175, A- 180, A- 228

Self- Reporting Mechanochromic Composites A- 227

Self- Sensing Cement Composites A- 291, A- 295

Sensor Networks A- 10

Sensor Validation A- 98

Shear horizontal wave transducers A- 182

Smart Aggregate A- 274

Smart Phones A- 272

Smart Sensing Technology A- 101, A- 127, A- 140, A- 226

Smart Skin A- 231

Strain A- 52

Through- Thickness Electrical Conductivity A- 139,

Ultrasonics A- 83, A- 168

Vision Sensing A- 170,

Wireless Sensing A- 11, A- 15, A- 40, A- 47, A- 54, A- 61, A- 94, A- 125, A- 134, A- 226, A- 235, A- 275,A- 286
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TABLE A4    |    Structural Health Monitoring Reviews Focused on Specific Data Analysis Methodologies

Data Analysis Methodologies References

Acoustic Scattering A- 59, A- 249

Convolution Neural Networks A- 155

Data Fusion A- 158

Data Visualization A- 271

Deep Learning A- 128, A- 131, A- 136, A- 157, A- 165, A- 169, A- 220, A- 236, A- 256, A- 266, A- 279, 
A- 288, A- 290

Data Science A- 117, A- 156, A- 208

Empirical Mode Decomposition A- 50, A- 58

Entropy A- 106

Environmental and Operational Variability A- 19, A- 142, A- 176, A- 216, A- 225, A- 239, A- 261

Generative adversarial networks A- 215

Guided Waves A- 82, A- 221, A- 222, A- 224, A- 241, A- 285, A- 294, A- 297

High - Dimension Data Analytics A- 218

Information Processing A- 24,

Internet of Things A- 97, A- 146, A- 193, A- 217, A- 235

Local Mean Decomposition A- 132

Low- Frequency Methods A- 14

Machine Learning/Artificial Intelligence A- 22, A- 107, A- 110, A- 118, A- 146, A- 162, A- 165, A- 173, A- 184, A- 200, A- 203, 
A- 207, A- 219, A- 224, A- 232, A- 234, A- 236, A- 270, A- 284, A- 300

Machine Vision/Image Analysis A- 45, A- 85, A- 86, A- 185, A- 248, A- 267, A- 289

Multi- Sensor Approaches A- 145

Multispectral Technique A- 211

Neutral Axis Location A- 69

Nonlinear Dynamics A- 28, A- 292

Optimization Algorithms A- 87, A- 118, A- 137, A- 153, A- 283,

Population- Based Methods A- 200

Post- Earthquake Assessments A- 214

Reliability Metrics A- 204

Resonance Demodulation A- 263

Self- Sensing Concrete A- 246

Sensor Network Paradigms A- 103

Signal Processing A- 75, A- 287, A- 294

Simulated Annealing A- 250

Stochastic Functional Model–Based Method A- 112

Symbolic Vibration Data A- 72

Temperature Tracer Method A- 210

Time Frequency Analysis & Wavelet Transform A- 20,A- 71, A- 73, A- 238,

Time Series Analysis A- 113

Transfer Learning A- 236

Unsupervised Learning Methods A- 247
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