
This is a repository copy of Beyond test flakiness: a manifesto for a holistic approach to 
test suite health.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/223068/

Version: Accepted Version

Proceedings Paper:
McMinn, P. orcid.org/0000-0001-9137-7433, Roslan, M.F. and Kapfhammer, G.M. (2025) 
Beyond test flakiness: a manifesto for a holistic approach to test suite health. In: 2025 
IEEE/ACM International Flaky Tests Workshop (FTW). 2nd International Flaky Tests 
Workshop 2025 (FTW 2025), 27 Apr 2025, Ottawa, Ontario, Canada. Institute of Electrical 
and Electronics Engineers (IEEE) ISBN 979-8-3315-0232-4 

https://doi.org/10.1109/FTW66604.2025.00007

© 2025 The Author(s). Except as otherwise noted, this author-accepted version of a 
proceedings paper published in 2025 IEEE/ACM International Flaky Tests Workshop 
(FTW) is made available via the University of Sheffield Research Publications and 
Copyright Policy under the terms of the Creative Commons Attribution 4.0 International 
License (CC-BY 4.0), which permits unrestricted use, distribution and reproduction in any 
medium, provided the original work is properly cited. To view a copy of this licence, visit 
http://creativecommons.org/licenses/by/4.0/

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse 
This article is distributed under the terms of the Creative Commons Attribution (CC BY) licence. This licence 
allows you to distribute, remix, tweak, and build upon the work, even commercially, as long as you credit the 
authors for the original work. More information and the full terms of the licence here: 
https://creativecommons.org/licenses/ 

Takedown 
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by 
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request. 



Beyond Test Flakiness: A Manifesto for a

Holistic Approach to Test Suite Health
Phil McMinn

University of Sheffield, UK

Muhammad Firhard Roslan

University of Sheffield, UK

Gregory M. Kapfhammer

Allegheny College, USA

Abstract—Large numbers of flaky tests are a sure sign of a
dysfunctional, or “unhealthy”, test suite. In this paper, we identify
several further indicators of unhealthy test suites, arguing that
trade-offs exist among some indicators, with others complement-
ing one another. We encourage researchers and practitioners not
to stop at test flakiness—or any individual metric of “good”
or “bad” tests—and instead focus on developing and adopting
techniques and tools that holistically address test suite health. For
more information, see https://philmcminn.com/test-suite-health.

I INTRODUCTION & MOTIVATION

Since flaky tests [7] may fail when a program is actually

working or pass when it is not, developers cannot trust them to

accurately assess their software. This paper argues that flaky

tests are just one of a series of indicators of an “unhealthy”

test suite—a test suite that is not fit for the purpose of giving

developers timely feedback about the correctness of the soft-

ware they are developing, either at the present time or in the

future. It contends that considering flakiness in combination

with other test suite health indicators is advantageous for

determining what is a truly useful, functioning test suite.

These indicators can be organized into a checklist, with the

aim of minimizing or maximizing the presence and impact

of each one. Critically, we argue that, while some indicators

are complementary, trade-offs exist among others, suggesting

that it is not appropriate to optimize for each one separately

from the others. This paper therefore encourages researchers

to look “beyond” test flakiness, and, in particular, the isolated

consideration of it and other indicators of test health. Instead,

it suggests that test suite health is a big-picture issue that

must be holistically tackled to encourage practitioners to write

“good” test suites that are fit for their purpose, supported by

researchers who design and experimentally evaluate automated

techniques and tools to assist them in effectively doing so.

II INDICATORS OF UNHEALTHY TEST SUITES

Unhealthy test suites have several tell-tale signs. In this

section, we identify a list of nine test suite health indicators,

the first being I0: Flakiness. We discuss further indicators

starting with those that are the most well-understood and

measurable, to those that are less so and more diffuse. We do

not claim our list to be exhaustive, but rather as a starting point

for researchers, and to promote discussion at the workshop.

I1: Low Code Coverage. A test suite with low code coverage

does not execute regions of the program under test and is thus

the first and most obvious indicator of poor test suite health.

While high coverage does not indicate good test suite health

either, as we will later argue, low coverage tests will not be

able to reveal many defects or give developers useful feedback.

I2: High Pseudo-Testedness. Pseudo-tested program elements

(e.g., statements or methods) are executed by tests, but can be

removed from the program without any impact on the pass/fail

behavior of the tests [6], [11]. High levels of pseudo-testedness

reveal poor test suite health in the form of a lack of assertions.

Perhaps paradoxically, a test suite with high levels of pseudo-

testedness is likely to be less prone to flakiness (I0)—due

to fewer checks, and brittleness (I6)—due to less stringent

assertions, suggesting a trade-off between health indicators.

I3: Low Mutation Score. A low mutation score indicates a

test suite that is not very sensitive to faults, and is therefore

also an indicator of poor test suite health [6]. If there is high

pseudo-testedness then the mutation score will be low, since

if code can be removed without the test suite “noticing”, it is

unlikely that seeded faults will be detected either. Yet, tests

with a high mutation score may be more brittle (I6) if they

are “change detectors” that myopically focus on the program’s

current implementation rather than its intended specification.

I4: Long-Running Test Suites. If a test suite is not fast to

execute, it will not provide quick feedback to developers who

thus may be dissuaded from using it as frequently as they

should. While there are techniques to reduce test suites and

prioritize important tests, developers must be careful not to use

them as a “sticking plaster” that deceptively masks problems

and/or significant bottlenecks in the test suite’s execution. This

may, for example, require a slow-running component to be

mocked to improve test speed. However, testers need to be

careful this does not reduce realism (I7) or potentially increase

either the flakiness (I0) or brittleness (I6) of their test suite.

I5: Low Diversity of Tests. Test diversity can be measured in

a variety of ways, for example, based on execution traces [12],

or the actual text of test cases [5]. Regardless, low test diversity

likely indicates that tests are executing similar program paths,

which may increase pseudo-testedness (I2) and decrease mu-

tation scores (I3). It may also contribute to a high level of

brittleness in tests (I6), since if the interfaces to frequently-

called methods change, then a large number of tests will also

need to be changed. This can also arise when developers copy

and paste from prior test cases when they create new ones [1].

I6: High Brittleness. Large numbers of tests that break due to

production code changes suggest that tests are highly coupled

to implementation details [4], another signal of an unhealthy

test suite. This is one way in which the pursuit of either

high coverage (I1) or mutation scores (I3) can be detrimental

since, whenever possible, tests should focus on behaviors of

the program under test, not how they have been implemented.



I7: Low “Realism”. Tests that do not mimic the way an API,

library, or component is used in production may suffer from a

lack of realism. This means that the tests may be exercising the

program differently than real-world users, potentially leading

to false outcomes. Such tests may also contribute to brittleness

(I6) and require excessive maintenance when the code under

test changes. Tests may become unrealistic when they rely too

heavily on mocks to simulate parts of a system [4] or test via

non-public methods rather than through a public interface [8].

I8: High Variability of Indicators. Variability of indicator

metrics is itself an indicator of an unstable and hence po-

tentially unhealthy test suite. Hilton et al. [3] observed that

test suites often differ in their coverage levels from run to

run. Flakiness (I0) itself is a variation in test outcomes. Other

indicators such as wildly differing execution times or mutation

scores would appear to be signs of undependability, and hence

variation of key metrics is potentially an important but largely

unexplored area of research in the context of test suite health.

III TEST SUITE HEALTH: A RESEARCH AGENDA

Having identified some indicators of test suite health, the

question is what to do about them to help practitioners

maintain healthier test suites in future development practice.

This requires more research. As part of such a research agenda,

we contend that several pressing challenges must be addressed:

C1: Further Indicators. The previous section is a list of what

we believe to be a good initial starting point for analyzing test

suite health. However, there may be further useful indicators

that could be added to our checklist, while others may turn out

to be less useful than initially thought and could be removed.

C2: Synergies & Trade-offs. We have outlined some syn-

ergies and trade-offs between each of the indicators. More

are likely to exist, and identifying these will be important

for techniques that attempt to measure and/or optimize for

overall test suite health. Where there are trade-offs, we need

to establish how much a decrease in one metric is tolerable for

an increase in another. Following this, is there a Pareto-front

of potentially acceptable options, and if so, is there any advice

we can give as to which should be preferred by the tester?

C3: Measurability. While several indicators, such as coverage

(I1) and mutation score (I3), are established metrics, others,

like realism (I7), lack obvious means of quantification. Fur-

thermore, test brittleness (I6) is, in its various forms, a serious

and costly problem in development practice, but has received

relatively little attention in the literature compared to flakiness.

C4: Metrifying Test Suite Health & C5: Making Actionable

Recommendations and Fixes. Once we have established

which indicators are practically useful, and how they can all

be measured, the question then is how to use them all in

combination to build a holistic picture of test suite health?

While putting a number to it may be useful in some contexts,

it is unlikely to be helpful to developers seeking concrete

actions on how to go about improving the health of their tests.

Future research needs to address this, and link measurements

to actionable tasks that a developer might want to perform.

C6: Tooling. There already exist several tools for some of

the individual indicators (e.g., coverage and mutation score)

and they may help with both of the two previous challenges.

However, for others, tooling and more research is required.

C7: How Does Test Suite Health Change? Finally, it would

be interesting to study how test suite health changes over the

lifecycle of a project. Is it something that gradually deteriorates

over time, creating a technical debt in the same way that

all code tends to require maintenance and refactoring? Are

differing checks and interventions needed at different maturity

stages of a project, and are there points in the project’s life-

cycle where some indicators are more important than others?

IV RELATED WORK

Test Smells [10] characterize poor testing practices. While

smelly tests may contribute to an unhealthy test suite, we

argue that “test smelliness” and “test suite health” are two

separate concepts. On the one hand, test smells tend to be static

properties related to how individual tests are implemented,

thereby characterizing bad programming practice. Test suite

health, on the other hand, holistically characterizes how well

a complete test suite functions in giving developers fast and

reliable feedback about the correctness of their software.

Other Work on Test Quality (e.g., [2]) tends to focus on in-

dividual tests or factors of “good” tests, ignoring the potential

relationships between them. Jason Swett provides a different

definition of “Test Suite Health” [9] that also does not consider

the interplay between factors; and provides a manual check

service. Yet, our vision is that test suite health assessment

will be an automated process that provides recommendations

to improve the test suite health and potentially automated fixes.

REFERENCES

[1] M. Aniche, C. Treude, and A. Zaidman. How developers engineer test
cases: An observational study. TSE, 48, 2022.

[2] D. Bowes, T. Hall, J. Petric, T. Shippey, and B. Turhan. How good are
my tests? In Proc. WETSoM, 2017.

[3] M. Hilton, J. Bell, and D. Marinov. A large-scale study of test coverage
evolution. In Proc. ASE, 2018.

[4] E. Kuefler. Unit Testing. In T. Winters, T. Manshreck, and H. Wright,
editors, Software Engineering at Google: Lessons Learned from Pro-

gramming Over Time, chapter 12. O’Reilly Media, 2020.
[5] Y. Ledru, A. Petrenko, S. Boroday, and N. Mandran. Prioritizing test

cases with string distances. ASE, 2012.
[6] M. Maton, G. M. Kapfhammer, and P. McMinn. Exploring pseudo-

testedness: Empirically evaluating extreme mutation testing at the state-
ment level. In Proc. ICSME, 2024.

[7] O. Parry, M. Hilton, G. M. Kapfhammer, and P. McMinn. A survey of
flaky tests. TOSEM, 2021.

[8] M. F. Roslan, J. M. Rojas, and P. McMinn. Private — Keep out?
Understanding how developers account for code visibility in unit testing.
In Proc. ICSME, 2024.

[9] Jason Swett. https://www.codewithjason.com/test-suite-health-check.
[10] A. Van Deursen, L. Moonen, A. Van Den Bergh, and G. Kok. Refac-

toring test code. In Proc. XP2001, 2001.
[11] O. L. Vera-Pérez, B. Danglot, M. Monperrus, and B. Baudry. A

comprehensive study of pseudo-tested methods. ESE, 2019.
[12] S. Yoo, M. Harman, P. Tonella, and A. Susi. Clustering test cases

to achieve effective and scalable prioritisation incorporating expert
knowledge. In Proc. ISSTA, 2009.

ACKNOWLEDGMENTS. Phil McMinn is funded in part by EPSRC grant “Test FLARE”,

EP/X024539/1. For the purpose of open access, the author has applied a Creative Com-

mons Attribution (CC BY) license to any Author Accepted Manuscript version arising.


