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1. Introduction 1 

Cognitive tasks such as language comprehension, learning, reasoning and problem-solving require the 2 

storage and management of information (Baddeley, 1992; Vuontela et al., 2003). One key executive 3 

function for these purposes is working memory (WM), which emerges from the interaction between 4 

memory and attention and allows an individual to store and manipulate information for short periods 5 

of time (Cowan, 2014; Shelton et al., 2010). Longitudinal studies on WM have shown that it improves 6 

during childhood before showing a period of latency in early adolescence (10 to 13 years; Ahmed et 7 

al., 2022; Reynolds et al., 2022). WM also shows a brief second period of improvement in middle 8 

adolescence (14 to 16 years). 9 

 Environmental epidemiologists and researchers in related disciplines have been working 10 

intensively during the past decade to map and quantify the potential salutogenic effects of green 11 

spaces and greenness on a wide range of health outcomes (Dzhambov et al., 2020; Markevych et al., 12 

2017). One of the potential pathways for positive impact is the reduction of exposure to air pollutants 13 

because: (i) pollutants may become deposited on vegetated surfaces (Lindén et al., 2023); (ii) green 14 

spaces create an increased distance to emission sources such as roads (Klingberg et al., 2017). In this 15 

context, the study of whether higher exposure to residential green spaces and greenness leads to 16 

higher working memory scores has received considerable attention. A recently published systematic 17 

review (Buczyłowska et al., 2023) compiled the results of seven observational studies linking green 18 

space and greenness metrics with WM outcomes in participants of various ages between 4 and 18 19 

years. Four of these studies showed statistically significant protective effects. The remaining three 20 

studies did not find any supporting evidence. In a more recent study, not included in the systematic 21 

review, marginally significant associations (p < 0.10) were found between both green space availability 22 

and residential Normalized Difference Vegetation Index (NDVI) and WM scores and in a sample of over 23 

1,600 children aged 6 to 11 years living in various European cities (Fernandes et al., 2023).  24 

 In the present study, we wanted to contribute to the debate by analysing new data that could 25 

help clarify the associations, if any, between  residential green spaces, greenness metricsand WM. In 26 

addition, we wished to explore the specific issue of WM and reduced exposure to NO2, a pollutant that 27 

has been specifically linked to WM performance in childhood (Alemany et al., 2018; Forns et al., 2017; 28 

Sunyer et al., 2015).  29 

2. Methods 30 

2.1 Sample of participants 31 

Data from participants in pregnancy cohorts included in the LifeCycle Project (Nader et al., 2023) was 32 

accessed. More specifically, we included data from those cohorts with available residential greenness 33 

metrics and WM data during childhood. From 19 participating cohorts, we requested data to Avon 34 

Longitudinal Study of Parents and Children (ALSPAC; Boyd et al., 2013; Fraser et al., 2013), Born in 35 

Bradford (BiB; McEachan et al., 2024; Wright et al., 2013) and the Gipuzkoa, Sabadell and Valencia 36 

Infancia y Medio Ambiente cohorts (INMA; Guxens et al., 2012) which were the only ones with 37 

available WM assessments. These cohorts provided data from children aged 10 to 12 years (ALSPAC), 38 

7 to 10 years (BiB), 6 to 8 years and 10 to 12 years (INMA). Ethics and funding aspects of each cohort 39 

study are described in the supplementary materials. 40 



3 

 

2.2 Study variables 41 

2.2.1 Exposures 42 

The residential environment of each participant the year when the WM assessment was conducted 43 

was characterised via two complementary residential greenness metrics widely used in the field (Labib 44 

et al., 2020; Nordbø et al., 2018); NDVI and the availability of green spaces > 5,000 m2. The NDVI is a 45 

greenness measure derived from satellite imagery. We used imagery corresponding to in the maximum 46 

vegetation period from the Landsat 4–5 Thematic Mapper (TM), Landsat 7 Enhanced Thematic Mapper 47 

Plus (ETM+), and Landsat 8 Operational Land Imager (OLI)/Thermal Infrared Sensor (TIRS) with 30m x 48 

30m resolution was used to determine the surrounding greenness. NDVI scores range from 1 to +1 49 

(Tucker, 1979), with 1  being the maximum greenness level. Negative NDVI values correspond to water, 50 

snow and other non-vegetated surfaces and were removed to calculate the final scores (Peters et al., 51 

2022; Zhang et al., 2020).  52 

Availability of major (>5000 m2) greenspace was computed using Urban Atlas. For ALSPAC and 53 

the INMA 6 to 8 years follow-up, we used the following land cover classes within Urban Atlas 54 

(Copernicus, 2006)  :  14100 (Green urban areas), 30000 (Forests and semi-natural areas), and 20000 55 

(Agricultural areas). In the case of BiB and INMA 10 to 12 years follow-up, a wider set of classes 56 

(Copernicus, 2012)  were included: 14100 (Green urban areas), 21000 (Arable land [annual crops]), 57 

22000 (Permanent crops), 23000 (Pastures), 24000 (Complex and mixed cultivation patterns), 25000 58 

(Orchards), 31000 (Forests), and 32000 (Herbaceous vegetation associations). 59 

Following previous studies  (Binter et al., 2022; Nieuwenhuijsen et al., 2019), we used NDVI 60 

values expressed in radii of 100, 300 and 500 m. Finally, in line with the recommendations of the World 61 

Health Organization (WHO Regional Office for Europe, 2016), availability of green spaces was defined 62 

within 300 m of the participants’ residence. More information about the procedure followed to 63 

calculate these variables can be found elsewhere (Fossati et al., 2019). 64 

2.2.2 Mediator 65 

Individual residential exposure to NO2 also during the year of WM assessment was estimated using 66 

the land use regression (LUR) models. For ALSPAC, we resorted to the models created for the Effects 67 

of Low-Level Air Pollution: A Study in Europe project (ELAPSE; (De Hoogh et al., 2018). For BiB and 68 

INMA, we used the LUR models developed in the European Study of Cohorts for Air Pollution Effects 69 

(ESCAPE; Beelen et al., 2013; Estarlich et al., 2011). These models explained a high proportion of the 70 

observed variance in the NO2 levels measured in the air pollution campaigns conducted to validate 71 

them (the following coefficients are R2 scores); ALSPAC = 0.54, BiB = 0.77, INMA-Gipuzkoa = 0.51, 72 

INMA-Sabadell = 0.77, and INMA-Valencia = 0.73. 73 

2.2.3 Outcome 74 

Participants’ WM performance was measured in each of the cohort and follow-ups included in the 75 

study. In ALSPAC and INMA (6 to 8 and 10 to 12 years), WM was measured with N-back tests, a 76 

computerized cognitive task consisting of the recall of a previously presented stimulus (i.e., number). 77 

The stimuli appeared on the screen one at a time, and the participant was instructed to press a button 78 

if the current stimulus was the same as the second to last stimulus shown (2-back test). A WM score 79 

was calculated via the estimation of the d prime (d’) index, a measure derived from signal detection 80 
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theory that allows the distinction of signal from noise. Measures of d’ were calculated for each trial as 81 

follows: d’ = z (hit rate) – z (false alarm rate), a higher d’ indicating better detection, and thus, a more 82 

accurate performance (Deserno et al., 2012; Stanislaw, 1999). The task was created using the 83 

psychology experiment software E-Prime version 2.0 (Psychology Software Tools Inc, Pittsburgh, PA, 84 

USA). 85 

 In the case of BiB, WM memory was measured with the backward digit recall task. In this task, 86 

participants were requested to recall sets of numbers they heard through headphones and input in 87 

reverse order using keyboard keys (Hill et al., 2022). The length of the sets of numbers increased from 88 

two to five, with four trials per set. The overall WM score corresponded to the proportion of correct 89 

answers in all the trials. 90 

 Once these separate scores were calculated for each cohort, they were harmonised following 91 

the LifeCycle protocol (López Vicente et al., 2019) based on prior studies that required the combination 92 

of data coming from different cohorts (Vilahur et al., 2014; Villanueva et al., 2018). This harmonization 93 

procedure began with the calculation of z-scores (subtracting the mean from the raw score and 94 

dividing by the standard deviation). In a second stage, these scores were multiplied by 15 and 100 95 

points were added so they presented a standardised distribution with M = 100 and SD = 15.  96 

2.2.4 Covariates 97 

The set of covariates selected for this study were: sex of the child (female/male); age when the WM 98 

test was conducted; preterm birth (<37 weeks of pregnancy, yes/no); and birthweight (in grams). We 99 

used maternal educational attainment (primary, secondary, university) and the EUSILC index of total 100 

disposable family income (Pizzi et al., 2020) as indicators of socio-economic status. The EUSILC index 101 

was not available for ALSPAC so we used maternal occupational status instead, which corresponded to 102 

the International Standard Classification of Occupations 1988 (ISCO 1988; 103 

https://ec.europa.eu/eurostat/documents/1978984/6037342/ISCO-88-COM.pdf). All the covariates 104 

were harmonised following the procedure described elsewhere (Pinot De Moira et al., 2021).  105 

2.4 Data analysis 106 

The dataset was analysed using R software v.4.0.3 (R Core Team, 2022). After estimating descriptive 107 

statistics, we applied the principles of robust causal inference to select the covariates to be included 108 

in the statistical models. We started by adapting the Direct Acyclic Graph (DAG) from a previous study 109 

on greenness and WM (Subiza-Pérez et al., 2023; see Figure 1) and validating it separately for each 110 

cohort and follow-up, following the procedure described elsewhere (Ankan et al., 2021; Subiza-Pérez 111 

et al., 2024, 2023) and using R packages dagitty (Textor, 2020; Textor et al., 2017) and lavaan (Rosseel, 112 

2012). In line with these previous studies, we considered testable implications as unmet when their 113 

associated p-values were lower than 0.05 and the r-scores larger than 0.20. The minimum adjustment 114 

sets of variables were identified via the dagitty function adjustmentSets(). This process was applied to 115 

the complete cases datasets (i.e., analytical samples hereafter)1. 116 

 
1 There were substantial missing variables in the socio-economic and environmental variables in the two British 
cohorts. In order to see whether the analytical samples differed from the initial ones, we run a series of chi-
square and Welch t-tests. However, the results of these analyses revealed that there were not statistically 
relevant differences between the two sets of samples (see Supplementary Tables 1 and 2).  

https://ec.europa.eu/eurostat/documents/1978984/6037342/ISCO-88-COM.pdf
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 We used the functions included in stats and medflex R packages to fit the linear regression 117 

models and extract the coefficients indicative of the total, direct and indirect (i.e., through air 118 

pollution), associations of greenness metrics with WM scores (Steen et al., 2017). We did this for each 119 

combination of exposure, outcome, cohort, and follow-up, resulting in 16 models.  For those models 120 

with NDVI as the predictor variable, the coefficients reflect changes in WM scores by NDVI increases 121 

of 1 IQR (see specific sample IQRs in Supplementary Table 3). Given the nature of the set of exposure 122 

variables here considered these analyses were all cross-sectional.  123 

Once we quantified the associations for each cohort experiment, we combined the available 124 

evidence from all cohorts using meta-analysis methodology (Higgins and Green, 2008). For this 125 

purpose, we used the function metagen() of the R package meta (Balduzzi et al., 2019), applying the 126 

generic inverse variance method for pooling the available data of the response variable (Borenstein et 127 

al., 2010). 128 

 129 

 130 

 131 

 132 

 133 

 134 

 135 

 136 

 137 

 138 

 139 

 140 

 141 

 142 

 143 

3. Results 144 

3.1 Sample description and DAG validation 145 

The analytical samples comprised 6,760 participants distributed among the four study samples (see 146 

Table 1). These samples were evenly distributed in terms of sex, except for INMA 6 to 8 years follow-147 

up sample in which a greater proportion of males was observed. Preterm birth was below the 5% of 148 

the samples and was slightly higher in the British samples. In terms of maternal educational 149 

Figure 1. DAG explaining the relationship between exposure to residential green 
space and working memory. Arrows highlighted in green correspond to the effects 
of interest for this study. SES = EUSILC index of total disposable family income for 
BiB, INMA 6 to 8 and INMA 10 to 12 years samples. Maternal occupational status for 
ALSPAC. NO2 = nitrogen dioxide. 
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attainment, we found relevant differences between the samples. Most ALSPAC mothers were 150 

moderately educated whereas those included in the BiB sample had low educational attainment. 151 

Mothers in INMA clustered among the medium and high levels of educational attainment. Regarding 152 

greenspace availability, most of the participants (>70%) lived within 300 m of a green space larger than 153 

5,000 m2, but that figure was higher for those participants in the Spanish samples. In contrast, the 154 

observed NDVI values were larger in ALSPAC and BiB than INMA. Concentrations of NO2 were similar 155 

among the samples, although a greater between-participant variability was observed in the INMA 156 

samples.  157 

None of the testable assumptions implied in the DAG obtained r-coefficients above 0.20 and 158 

p-values below 0.05 (see Appendix I) in the ALSPAC, BiB and INMA 10 to 12 years follow-up samples, 159 

so the initial DAG was considered correct for these samples. However, two testable implications were 160 

unmet in the case of the INMA 6 to 8 years follow-up; “greenness metric ⊥ age” and “NO2 ⊥ age”, 161 

which indicated that exposures were not independent of the age when the WM test was conducted. 162 

We updated the study DAG with these relationships (see Supplementary Figure 1) and extracted the 163 

minimum set of adjustment variables for the total association models, which was composed of 164 

maternal education and family income for all the models. In addition, age was included in the models 165 

involving the INMA 6 to 8 years follow up sample. For the direct association models, the adjustment 166 

set also included NO2.  167 

3.2 Separate models  168 

Table 2 shows the results of the separate linear regression models. We found a consistent positive 169 

association between NDVI and WM scores in BiB and INMA 6 to 8 years cohorts; participants living in 170 

greener residential settings scored higher in the computerized WM task. In the case of BiB, we also 171 

observed that availability of green spaces was positively associated with the outcome. However, we 172 

could not confirm the mediation via NO2 as all the indirect association coefficients but one fell above 173 

the p = 0.05 threshold. For the cohorts and follow-ups involving older participants (i.e., ALSPAC and 174 

INMA 10 to 12 years), none of the models revealed statistically significant associations, so neither 175 

residential greenness nor green space availability predicted WM scores. See the graphical depictions 176 

of these associations, along with the distribution of residuals in Supplementary figures 2A and 2B.  177 

3.3 Meta-analysis  178 

Figure 2 and Supplementary Figure 2 show the results of the meta-analysis. The only integrated 179 

estimate showing a statistically significant association was that of NDVI 100 m [0.48, (95%CI = 0.05 – 180 

0.91)], indicating greater WM scores for those participants living in greener areas. The rest of the 181 

combined estimates, albeit suggestive of a positive association, did not reach statistical significance. 182 

Meta-analytic estimates revealed a high level of heterogeneity between the individual studies (I2 = 45 183 

– 76%). The forest (Figure 2) and the funnel (Supplementary Figure 3) plots confirmed what was found 184 

in the earlier stage of the analysis as they showed how the connection between residential greenness 185 

and green space availability was stronger and statistically significant only in BiB and the INMA 6 to 8 186 

years follow up samples.  187 
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Table 1 Description of study variables in study samples. Numbers represent mean scores in continuous variables and frequencies in categorical ones.  Scores within parentheses indicate the 
proportion of participants in the corresponding categories or the standard deviation in continuous variables. 

Cohort N Sex 

Age 

(in 
years) 

Preterm 
birth  

BW 

(in grams) Ed. attainment EUSILC 
Green space 

avail. NDVI100 NDVI300 NDVI500 

NO2 

(in  µg/ 
m3)  

WM 

              

ALSPAC 
10-12 

1971 

♂ 958 
(48.60%)                                          
♀ 1013 

(51.40%) 

10.61 
(0.23) 

83 
(4.21%) 3450 (522.01) 

High 396 (20.09%)            
Medium 1420 (72.04%)                              

Low 155 (7.87%) 
NA 

Yes 1522 
(77.22%)              
No 449 

(22.88%) 

0.39 
(0.10) 

0.48 
(0.10) 

0.49 
(0.10) 

22.21 
(3.42) 

101.30 
(13.53) 

              

BiB 7-10 2606 

♂ 1268 
(48.66%)                                          
♀ 1338 

(51.34%) 

7.90 
(0.74) 

121 
(4.64%) 

3195.38 
(527.28) 

High 696 (26.71%)                    
Medium 387 (14.85%)                  

Low 1523 (58.44%) 

6.88 
(0.25) 

Yes 1922 
(73.75%)              
No 684 

(26.25%) 

0.41 
(0.11) 

0.43 
(0.10) 

0.45 
(0.10) 

17.32 
(1.53) 

100.45 
(15.13) 

              

INMA 6 
to 8  1126 

♂ 674 
(59.86%)                                             
♀ 452 

(40.14%) 

7.55 
(0.55) 

31 
(2.75%) 

3260.46 
(448.02) 

High 435 (38.63%)             
Medium  458 (40.67%)                    

Low 233 (20.70%) 

7.12 
(0.31) 

Yes 972 
(86.32%)                     
No 154 

(86.32%) 

0.25 
(0.11) 

0.29 
(0.13) 

0.33 
(0.14) 

25.5 
(12.97) 

100.15 
(14.98) 

              

INMA 10 
to 12 

1057 

♂ 503 
(47.59%)                                                 
♀ 554 

(52.41%) 

10.83 
(0.56) 

26 
(2.46%) 

3271.16 
(448.33) 

High 419 (39.64%)                     
Medium 428 (40.49%)                   

Low 210 (19.87%) 

7.14 
(0.31) 

Yes 897 
(84.86%)             
No 160 

(15.14%) 

0.27 
(0.13) 

0.32 
(0.14) 

0.35 
(0.15) 

22.23 
(12.55) 

99.66 
(15.21) 

Note: BW = Birth Weight, EUSILC = index of total disposable family income. NDVI 100, 300, and 500: Normalized Difference Vegetation Index in 100-, 300- and 500-m buffers. NO2 = Nitrogen 
dioxide, WM = Working Memory. 'Green availability' refers to major greenspace (>5000 m²) within 300m of home address, including green urban areas, forests, and agricultural areas. 
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Table 2.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   Results 

of the linear regression models showing the total, direct and indirect associations between  residential greenness metrics and working memory scores by cohort and follow-up. 

Cohort Exposure 

    
NDVI 100 NDVI 300 NDVI 500 Green availability 

  
Association Coefficient SE 95%CI t p-value Coefficient SE 95%CI t 

p-

value 
Coefficient SE 95%CI t 

p-

value 
Coefficient SE 95%CI t p-value

INMA 6-8 

years 

Total 1.07 0.61 (-0.13, 2.26) 1.75 0.08 1.64 0.72 (0.23, 3.05) 2.29 0.022 1.84 0.73 (0.40, 3.28) 2.51 0.012 -0.64 1.35 (-3.28, 2) -0.47 0.634 

Direct 1.06 0.69 (-0.30. 2.42) 1.52 0.128 1.85 0.9 (0.08, 3.63) 2.05 0.041 2.36 -0.97 (0.47, 4.26) 2.45 0.015 -1.22 1.47 (-4.10, 1.65) -0.83 0.404 

Indirect 0.11 0.35 (-0.58, 0.80) 0.31 0.76 -0.26 0.48 (-1.22, 0.68) -0.54 0.585 -0.51 0.58 (-1.67, 0.58) -0.88 0.382 1.47 0.71 (0.10, 2.88) 2.07 0.038 

BiB 7-10 years 

Total 1.66 0.45 (0.77, 2.53) 3.71 <.001 1.52 0.52 (0.50, 2.53) 2.95 0.003 1.42 0.49 (0.46, 2.38) 2.9 0.004 1.63 0.68 (0.30, 2.99) 2.39 0.017 

Direct 1.61 0.46 (-0.15, 0.26) 3.48 <.001 1.43 0.52 (0.41, 2.44) 2.75 0.006 1.35 0.49 (0.39, 2.33) 2.74 0.006 1.65 0.69 (0.32, 3) 2.4 0.016 

Indirect 0.06 0.1 (-0.15, 0.26) 0.53 0.597 0.09 0.12 (-0.14, 0.32) 0.77 0.442 0.06 0.06 (-0.05, 0.18) 1.09 0.275 -0.01 0.02 (-0.06, 0.03) -0.6 0.549 

ALSPAC 10-12 

years 

Total -0.04 0.31 (-0.64, 0.56) -0.13 0.896 -0.2 0.31 (-0.82, 0.39) -0.64 0.52 -0.3 0.44 (-1.18, 0.55) -0.68 0.498 -0.31 0.7 (-1.71, 1.05) -0.44 0.66 

Direct 0.14 0.33 (-0.50, 0.78) 0.43 0.666 0.16 0.4 (-0.63, 0.92) 0.4 0.692 0.24 0.56 (-0.91, 1.36) 0.41 0.683 -0.01 0.73 (-1.48, 1.38) -0.02 0.985 

Indirect -0.18 0.11 (-0.40, 0.04) -1.61 0.107 -0.36 0.25 (-0.84, 0.13) -1.44 0.149 -0.53 0.37 (-1.26, 0.18) -1.45 0.147 -0.3 0.2 (-0.67, 0.11) -1.49 0.136 

INMA 10-12 

years 

Total -0.24 0.6 (-1.41, 0.94) -0.39 0.694 -0.36 0.68 (-1.69, 0.97) -0.53 0.596 -0.57 0.74 (-2.01, 0.88) -0.77 0.443 -0.53 1.29 (-3.07, 2) -0.41 0.679 

Direct 0.41 0.76 (-1.07, 1.90) 0.55 0.584 0.52 0.95 (-1.35, 2.40) 0.55 0.583 0.35 1.1 (-1.82, 2.52) 0.32 0.751 0.27 1.49 (-2.64, 3.19) 0.18 0.853 

Indirect -0.64 0.45 (-1.54, 0.24) -1.4 0.160 -0.87 0.71 (-2.25, 0.53) -1.24 0.216 -0.89 0.87 (-2.58, 0.83) -1.03 0.305 -0.85 0.73 (-2.30, 0.56) -1.17 0.243 

Note: NDVI 100, 300, and 500: Normalized Difference Vegetation Index in 100-, 300- and 500-m buffers. 'Green availability' refers to major greenspace (>5000 m²) within 300m of home address, including green urban areas, forests, and agricultural areas. Covariates: maternal 

educational attainment and family socioeconomic status. Models fitted with data from INMA 6-8 years follow-up were additionally adjusted for age due to the amendments made to the DAG after its validation.  
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Figure 2. Results of the meta-analysis combining the estimates of the individual cohort models. NDVI 
100 m (first), NDVI 300 m (second), NDVI 500 m (third) and green space availability (fourth). 
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4. Discussion 189 

We aimed to produce new scientific evidence that could contribute towards a consensus on the 190 

associations between residential greenness and WM during childhood and pre-adolescence. This is 191 

needed because the current epidemiological evidence is mixed. The systematic review by Buczyłowska 192 

and colleagues (2023) indicated that only four out of seven of the published observational studies in 193 

the field were able to statistically confirm the hypothesised protective greenness-WM links during 194 

childhood and adolescence. Similarly, a systematic review and meta-analysis published after the 195 

conduction of the analysis presented in this piece, and therefore not described in the introduction of 196 

this paper, synthesized the results of 22 correlational studies using residential greenness metrics and 197 

found no overall association between those and cognitive performance in children and adolescents 198 

(Nguyen and Walters, 2024).  In line with this picture, our results are far from consistent. We found 199 

that residential greenness, in the form of NDVI, was positively associated with WM scores but only for 200 

those participants between 6 and 10 years of age. However, the resulting coefficient showed a high 201 

degree of heterogeneity, which limits its generalizability. For older groups, NDVI values did not predict 202 

WM scores. Moreover, the availability of green spaces near the household showed a beneficial 203 

association with WM memory in BiB but that could not be confirmed in the other cohorts. Finally, and 204 

contrary to theoretical expectations (Markevych et al., 2017) and previous studies (Dadvand et al., 205 

2015), we did not find support for the air pollution reduction pathway.  206 

 A potential explanation for our results could be the existence of a window of exposure by 207 

which children and adolescents are more susceptible to the potential benefits of greenness and green 208 

spaces in certain moments of their development (i.e., before and the 10 to 13 years period of latency 209 

described by Ahmed et al., 2022 and  Reynolds et al., 2022). Another potentially compatible 210 

explanation relates to the observed changes in the use of greenspaces that occur from childhood to 211 

adolescence (Marquet et al., 2019). In the Marquet et al study, which analysed data from in situ 212 

observations in parks in the city of New York, the authors reported that use decreased with age as 213 

younger children were observed more often in the parks than teenagers.  214 

In order to test this possibility, we reviewed the studies compiled by Buczyłowska and 215 

colleagues (2023) and the one by Fernandes et al. (2023) to see whether the pattern of statistically 216 

significant vs non-significant results aligned with the childhood-adolescence gap suggested here. The 217 

age of participants in the studies that reported significant beneficial associations greenness and/or 218 

green spaces are as follows: 4 to 6 years (Dockx et al., 2022), 7 to 13 years (Dadvand et al., 2015), 9 to 219 

15 years (Maes et al., 2021) and 11 years (Flouri et al., 2019). On the other hand, those not reporting 220 

statistically significant results analysed data from samples composed of participants 5 to 18 years 221 

(Reuben et al., 2019), 6 to 11 years (Fernandes et al., 2023; Julvez et al., 2021) and 13 to 17 years 222 

(Bijnens et al., 2022). The picture that emerges from this revision, also supported with the results of 223 

our work, is that the statistically significant and non-significant results do not cluster by age and 224 

therefore more studies are needed to establish a scientific consensus.  225 

4.1 Study strengths and limitations 226 

This study contributes to the specific literature on residential greenness and WM for a number of 227 

reasons. First, it makes available the estimates of the association between residential greenness and 228 

availability of green spaces with WM scores in an overall sample of 6,818 children and adolescents. 229 

This sample size is relevant given that previous evidence is based on a total of 16,508 participants 230 
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(Buczyłowska et al., 2023; Fernandes et al., 2023). Second, we used a DAG and the d-separation 231 

criterion to select the set of adjustment variables DAG (Ankan et al., 2021 ; Elwert, 2013; Pearl, 2000; 232 

Tennant et al., 2021; Textor et al., 2017). Also in the methodological sphere, we meta-analysed the 233 

coefficients estimated for each cohort study which allowed us to interpret results beyond previous 234 

narrative assessments (Buczyłowska et al., 2023). Finally, despite of the fact that two previous works 235 

utilised part of the available residential greenness and WM data within the A EU Child Cohort Network 236 

consortium (Fernandes et al., 2023; Subiza-Pérez et al., 2023), this is the first comprehensive study 237 

using all available data.  238 

 However, there are some limitations that need to be acknowledged when interpreting our 239 

results and that are pervasive in this area of research. We focused on the home environment and 240 

therefore neglected other relevant environments that may have an impact on behaviour and 241 

development, such as the school or leisure areas. This has been referred to as the uncertain geographic 242 

context problem (Kwan, 2012, 2009). Moreover, and in line with Labib and colleagues (2020), our study 243 

does not account for the frequency and duration of residential green space use, if any, and their quality, 244 

design and safety features. In terms of the outcome, the measurement of WM was not fully consistent 245 

across cohorts. We encourage future researchers in this are to employ a consensual strategy that could 246 

lead to more homogenous evidence. Furthermore, given that we studied the cross-sectional 247 

associations between greenness metrics and WM scores we cannot make inferences about potential 248 

long-term effects (e.g., early childhood exposure). Despite the fact that we could not control for it due 249 

to the nature of our greenness metrics (i.e., NDVI values corresponding to the period of maximum 250 

vegetation), one of the anonymous reviewers insightfully pointed out that the potential confounding 251 

effects of seasonality, given the season variations observed in both greenness (Klimavičius et al., 2023; 252 

Naif et al., 2020) and cognitive performance (Hohm et al., 2024; Meyer et al., 2016) metrics. We 253 

consider that future research on greenness and executive functions should consider this aspect.  We 254 

did not explore pathways other than the reduction of NO2 concentrations, and therefore we lack 255 

specific information about other pollutants (e.g., particulate matter) and other potential pathways 256 

such as the promotion of physical activity or social cohesion (Markevych et al., 2017). Nevertheless, 257 

from a formal point of view, the potential association through those other pathways are included 258 

within the direct association estimates. We used a complete case analysis approach, since there were 259 

no statistically significant differences between the missingness of covariates and the exposure or the 260 

outcome (Missing at Random-MAR hypothesis). Our choice led to unbiased estimates, although it 261 

resulted in a potential loss of statistical power. In this context, it also needs to be acknowledged that, 262 

given that our participants enrolled in the cohort study and the subsequent follow-ups voluntarily, our 263 

study might be affected by selection bias. Despite some previous works using part of the available 264 

residential greenness and WM data within the A EU Child Cohort Network consortium study 265 

(Fernandes et al., 2023; Subiza-Pérez et al., 2023), this study is the first one using all the data available 266 

in the consortium. Both the analysis of the BiB and ALSPAC datasets, and the meta-analytic approach 267 

is original to the study presented here.  268 

5. Final remarks 269 

This study aimed to provide further evidence on the potential benefits of residential greenness and 270 

green spaces on WM during childhood and adolescence. We found some support for a beneficial 271 

association in children between 6 and 10 years of age which could not be confirmed for older 272 

participants. More studies and meta-analysis are needed to achieve a scientific consensus.  273 
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