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DERIVED CATEGORIES OF FANO THREEFOLDS AND DEGENERATIONS

ALEXANDER KUZNETSOV AND EVGENY SHINDER

Abstract. Using the technique of categorical absorption of singularities we prove that the nontrivial

components of the derived categories of del Pezzo threefolds of degree d ∈ {2, 3, 4, 5} and crepant cate-

gorical resolutions of the nontrivial components of the derived categories of nodal del Pezzo threefolds of

degree d = 1 can be smoothly deformed to the nontrivial components of the derived categories of prime

Fano threefolds of genus g = 2d+ 2 ∈ {4, 6, 8, 10, 12}. This corrects and proves the Fano threefolds con-

jecture of the first author from [Kuz09], and opens a way to interesting geometric applications, including

a relation between the intermediate Jacobians and Hilbert schemes of curves of the above threefolds. We

also describe a compactification of the moduli stack of prime Fano threefolds endowed with an appropriate

exceptional bundle and its boundary component that corresponds to degenerations associated with del

Pezzo threefolds.
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1. Introduction

1.1. Fano threefolds and their derived categories. The main characters of this paper are smooth

or nodal Fano threefolds with Picard number 1 and index 1 or 2, i.e.,

• 5 families of del Pezzo threefolds, i.e., threefolds Y with the Picard group Pic(Y ) generated by

the half of the anticanonical class H := −1
2KY , classified by the degree

d(Y ) := H3 = 1
8 (−KY )

3 ∈ {1, 2, 3, 4, 5}

(see §2 for a more detailed description), and

• 10 families of prime Fano threefolds, i.e., threefolds X with the Picard group Pic(X) generated

by the anticanonical class −KX , classified by the genus

g(X) := 1
2(−KX)

3 + 1 ∈ {2, 3, 4, 5, 6, 7, 8, 9, 10, 12}

(see §4 for a more detailed description for g(X) ∈ {4, 6, 8, 10, 12}), so that (−KX)
3 = 2g(X)− 2.

A.K. was partially supported by the HSE University Basic Research Program. E.S. was partially supported by the

EPSRC grant EP/T019379/1 “Derived categories and algebraic K-theory of singularities”, and by the ERC Synergy grant

“Modern Aspects of Geometry: Categories, Cycles and Cohomology of Hyperkähler Varieties”.
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2 ALEXANDER KUZNETSOV AND EVGENY SHINDER

Since any terminal Gorenstein Fano threefold is smoothable by [Nam97], we can consider singular

varieties of this type as degenerations of smooth varieties. The main advance of this paper is the discovery

of a relation between derived categories associated with some of these degenerations.

A systematic study of derived categories of smooth Fano threefolds was initiated in [Kuz09], where it

was shown that

• If Xg is a prime Fano threefold with g(Xg) = g ∈ {4, 6, 7, 8, 9, 10, 12} (for g = 4 the corresponding

threefold should be general, see Proposition 4.2), there is a semiorthogonal decomposition

(1) Db(Xg) = 〈AXg ,OXg ,U
∨
Xg

〉,

where UXg is the Mukai bundle, see Definition 1.2 below (if g = 4 and X4 is general there are

two different Mukai bundles, hence two different decompositions of the form (1)).

• If Xg is a prime Fano threefold with g ∈ {2, 3, 5} (or a special threefold with g = 4) there is only

a more coarse semiorthogonal decomposition

Db(Xg) = 〈AXg ,OXg 〉.

• If Yd is a del Pezzo threefold with d(Yd) = d, 1 ≤ d ≤ 5, there is a semiorthogonal decomposition

(2) Db(Yd) = 〈BYd ,OYd ,OYd(H)〉.

The components AXg and BYd of these decompositions encode the most important geometric properties

of the corresponding varieties Xg and Yd. For instance, one can detect rationality of the varieties Xg

or Yd from the properties of their components AXg and BYd , see [Kuz16].

In some cases, the components AXg have an explicit description:

AX7 ≃ Db(C7(X)), AX9 ≃ Db(C3(X)), AX10 ≃ Db(C2(X)), AX12 ≃ Db(Qu3),

where Cg(X) is a (smooth proper) curve of genus g depending on X and Qu3 is the quiver with 2

vertices and 3 arrows (which can be thought of as a noncommutative curve), see [Kuz06, §§6.2–6.4] for

the first three equivalences and [Kuz09, Theorem 4.1] (summarizing the results from [Kuz96, Theorem 3]

and [Kuz97, Theorem 2]) for the fourth. Similarly, for the categories BYd we have

BY4 ≃ Db(C2(Y )), BY5 ≃ Db(Qu3),

see [BO95, Theorem 2.9] or [Kuz06, §6.5], or [Kuz08, Corollary 5.7] for the first, and [Orl91] or [Kuz06,

§6.1] for the second. In particular, we have equivalences

(3) AX10 ≃ BY4 and AX12 ≃ BY5

for pairs (X10, Y4) such that C2(X) ∼= C2(Y ) and all pairs (X12, Y5). In the other cases no explicit

description of the categories AXg or BYd is available, but still one can prove yet another equivalence

(4) AX8 ≃ BY3

for many pairs (X8, Y3), see [Kuz04, Theorem 3.17] or [Kuz09, Theorem 4.7].

1.2. Fano threefolds conjecture. Motivated by the equivalences (3) and (4) and by some numerical

coincidences, the first author suggested in [Kuz09, Conjecture 3.7] so-called “Fano threefolds conjecture”,

saying that for any 1 ≤ d ≤ 5 there is an equivalence

AX2d+2
≃ BYd

for “many” pairs (X2d+2, Yd). To explain what “many” means here, we need to define appropriate moduli

spaces. We introduce the necessary definitions in a slightly more general form, allowing for singularities

and dealing with the stack structure of the moduli spaces; this will be useful later.
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Definition 1.1. The moduli stacks MFXg
and MFYd

of nodal prime Fano threefolds of genus g or nodal

del Pezzo threefolds of degree d are the fibered categories over (Sch /k) with fiber over a scheme S the

groupoid of flat projective morphisms of schemes f : X → S such that for every geometric point s ∈ S

the scheme Xs is a prime Fano threefold of genus g or a del Pezzo threefold of degree d, respectively, with

only (isolated) ordinary double points as singularities. A morphism from f : X → S to f ′ : X′ → S′ is a

fiber product diagram

X
φX

//

f
��

X′

f ′

��

S
φ

// S′.

The moduli stacks MFXg
⊂ MFXg

and MFYd
⊂ MFYd

of smooth prime Fano threefolds or smooth del Pezzo

threefolds are defined as the substacks of morphisms f : X → S such that f is smooth.

In the case of prime Fano threefolds of even genus we will need an upgrade of the stack MFXg
; to

define it we need the following notion:

Definition 1.2. Let X be a nodal Fano threefold of even genus g over a field k. A Mukai bundle on X

is a (−KX)-stable vector bundle U such that

(5) rk(U) = 2, c1(U) = KX , H•(X,U) = 0, and Ext•(U,U) = k.

Note that if U is a Mukai bundle on X then the pair (OX ,U
∨) is exceptional.

Given a morphism X → S we define the étale sheaf VBX/S of vector bundles as the étale sheafification

of the presheaf on S that takes an étale morphism S′ → S to the set of isomorphism classes of vector

bundles on X×S S
′; this is analogous to the widely used étale sheaf PicX/S of line bundles ([Kle05, §9.2]).

A global section E of VBX/S over S is, by definition, the data of an étale covering {Si} → S and a

collection of vector bundles Ei on X ×S Si whose pullbacks to X ×S (Si ×S Sj) are isomorphic. For a

global section E = (Si,Ei) ∈ VBX/S(S) and a geometric point s ∈ S we denote by EXs
the vector bundle

on Xs defined as the restriction of the local section Ei of E from any open X×S Si over s.

Definition 1.3. Let g ∈ {4, 6, 8, 10, 12}. The moduli stack MFMXg
of Fano–Mukai pairs is the fibered

category over (Sch /k) with fiber over a scheme S the groupoid of pairs (f : X → S,U), where

• f : X → S is a flat projective morphism of schemes and

• U ∈ VBX/S(S) is a global section of the étale sheaf of vector bundles,

such that f : X → S is an S-point of MFXg
and UXs

is a Mukai bundle on Xs for every geometric

point s ∈ S. Morphisms are defined as fiber product diagrams as in Definition 1.1 such that φ∗X(U
′) = U

as sections of VBX/S(S). The stack MFMXg
⊂ MFMXg

of smooth Fano–Mukai pairs is defined as the

substack of pairs (f : X → S,U) such that f is smooth.

The Fano threefolds conjecture [Kuz09, Conjecture 3.7] claimed that for 1 ≤ d ≤ 5 there is a substack

(6) Zd ⊂ MFMX2d+2
×MFYd

such that for each geometric point (X2d+2,UX , Yd) of Zd there is an equivalence of categories AX2d+2
≃ BYd

defined in (1) and (2), respectively, and that Zd is dominant over both factors.

The equivalences (3) and (4) proved the cases 3 ≤ d ≤ 5 of the conjecture. So only the cases d = 2

and d = 1 were left open. However, for d = 1 the dimensions of the intermediate Jacobians of X4 and Y1
differ by 1, so the components AX4 and BY1 have no chance to be equivalent on the nose. Furthermore,

for d = 2 the conjecture also turned out to be wrong: it was recently disproved in [Zha20, BP22]; in fact,

it was shown that the categories AX6 and BY2 are never equivalent.
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1.3. Modified Fano threefolds conjecture. The goal of this paper is to explain a modification of

the Fano threefolds conjecture and prove it. The key idea is to include into consideration singular Fano

threefolds (this is why we extended Definitions 1.1 and 1.3 to include singular threefolds), and to rely on

the technique of categorical absorption of singularities developed in [KS23].

Our main theorem, stated below, uses the notion of base change for B-linear semiorthogonal decom-

positions for which we refer to [Kuz11]. It also uses a natural crepant categorical resolution B̃Y (see

Lemma 3.1 for its construction) of the category BY for a 1-nodal del Pezzo threefold of degree 1 (that is

defined by (2), like in the smooth case).

Theorem 1.4 (= Theorem 3.6). Let Y be a smooth del Pezzo threefold of degree 2 ≤ d ≤ 5 or a 1-nodal

del Pezzo threefold of degree d = 1. There is a B-point (f : X → B,UX) of MFMX2d+2
for a smooth

pointed curve (B, o) and a B-linear semiorthogonal decomposition

Db(X) = 〈Db(o), ĀX, f
∗Db(B), f∗Db(B)⊗U∨

X〉

such that

(a) for each point b 6= o the fiber Xb is a smooth prime Fano threefold of genus 2d+2 and (ĀX)b ≃ AXb
;

(b) the fiber Xo is 1-nodal and (ĀX)o ≃ BY if 2 ≤ d ≤ 5 or (ĀX)o ≃ B̃Y if d = 1.

In particular, the category ĀX is smooth and proper over B.

In other words, the category ĀX provides a (smooth and proper) interpolation between the compo-

nents AXb
of smooth prime Fano threefolds of genus g = 2d + 2 defined by (1) and the components BY

(or their crepant categorical resolutions B̃Y ) of del Pezzo threefolds of degree d defined by (2).

Remark 1.5. We do not prove this here, but in the case d ≥ 3 one can choose the B-point (f : X → B,UX)

of the stack MFMX2d+2
in such a way that the family of categories ĀX is isotrivial, i.e., (ĀX)b ≃ (ĀX)o

for all b; then AXb
≃ BY , which implies that the correspondence Zd ⊂ MFMX2d+2

×MFYd
defined in (6)

is dominant over MFYd
.

In fact, Theorem 1.4 can be deduced by base change from a more general result describing the structure

of the derived category of more general families of Fano threefolds, see (46) and the preceding discussion.

Our techniques also allow us to prove similar extension results for the moduli stacks of curves and moduli

stacks of prime Fano threefolds of genus 9, 7, and 5; these results will be presented elsewhere.

A similar result in the case d = 2 was proved by a completely different technique in [BP22, Theorem 1.6].

However, the approach of [BP22] only works for special Y (for double solids whose ramification divisor

contains a line) and provides families X/B of special threefolds of genus 6 (double covers of a quintic del

Pezzo threefold), but the category constructed in [BP22] in this case is equivalent to our category ĀX.

1.4. Geometric applications. A smooth and proper family of complex varieties gives rise to a vari-

ation of pure Hodge structures and, under appropriate assumptions, to a smooth and proper family of

principally polarized abelian varieties. In particular, the family of intermediate Jacobians of a smooth

and proper family of Fano threefolds is also smooth and proper. We expect the same to be true for the

smooth and proper family of triangulated categories ĀX constructed in Theorem 1.4.

Recall that the intermediate Jacobian of an admissible triangulated subcategory C ⊂ Db(Z) in the

derived category of a smooth and proper complex variety Z was defined in [Per22, Definition 5.24] as

J(C) = J(Ktop
1 (C)),

where Ktop
1 (C) is the degree 1 component of the topological K-theory of categories, endowed with appro-

priately defined pure Hodge structure of weight −1 (see [Per22, Proposition 5.4]). On the other hand, a

relative version of topological K-theory of categories was constructed by Moulinos in [Mou19, §7.2].
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Conjecture 1.6 (cf. [Per22, Remark 5.8]). Let S be a scheme over C and let C/S be a smooth and proper

S-linear triangulated category. If for each point s ∈ S the category Cs is equivalent to an admissible subcat-

egory in the derived category of a smooth and proper variety, the relative topological K-theory Ktop
1 (C/S)

admits a variation of pure Hodge structures of weight −1 which for each point s ∈ S agrees with the

Hodge structure of Ktop
1 (Cs). In particular,

J(C/S) := J(Ktop
1 (C/S))

is a smooth and proper family of complex tori, such that for each point s ∈ S we have J(C/S)s ∼= J(Cs).

Applying this to the smooth and proper family of categories ĀX and using [Per22, Theorem 1.6] to

identify the fibers, we would obtain the following

Corollary 1.7. For Y and X constructed in Theorem 1.4 there is a family J → B of principally polarized

abelian varieties such that

Jb
∼=

{
Jac(Xb), if b 6= o,

Jac(Y ), if b = o,

where in the case d = 1 the right-hand side is understood as Jac(Bly0(Y )), where y0 ∈ Y is the node.

Although we would like to see Corollary 1.7 as a consequence of Theorem 1.4 and Conjecture 1.6,

there is a direct Hodge-theoretic proof, using the geometric construction of X from Y ; we deduce it in

the Appendix from a slightly more general Proposition A.16.

Corollary 1.7 provides a conceptual explanation for the coincidences between the dimensions of the

intermediate Jacobians that we list in the following table (Mukai calls it “the periodic table of Fano

threefolds”, see [Muk02, Table 1.4]).

Prime Fano threefolds X12 X10 X9 X8 X7 X6 X5 X4 − X3 X2

Del Pezzo threefolds Y5 Y4 − Y3 − Y2 − − Y1 − −

dim(Jac(−)) 0 2 3 5 7 10 14 20 21 30 52

Note how the discrepancy between dim(Jac(X4)) and dim(Jac(Y1)) matches the fact that in Theorem 1.4

and Corollary 1.7 we consider 1-nodal threefolds of type Y1: if Y is a 1-nodal and Y ′ is a smooth del

Pezzo threefold of degree d = 1, we have dim(Jac(Y )) = dim(Jac(Y ′))− 1 = 20.

Similarly, a proper family of varieties gives rise to various relative moduli spaces of stable coherent

sheaves; the same is true for families of categories if they are endowed with appropriate stability con-

ditions, see [BLM+21, Definition 1.1 and Theorem 21.24]. We expect that stability conditions for the

families of categories ĀX exist and give rise to interesting relative moduli spaces.

Conjecture 1.8. For a del Pezzo threefold Y , a family of prime Fano threefolds X/B, and the B-linear

category ĀX/B constructed in Theorem 1.4, the étale sheafification Knum
0 (ĀX/B) of the relative numerical

Grothendieck group is locally constant, and there is a numerical stability condition σ on ĀX over B such

that the corresponding stability condition σb on the fiber (ĀX)b of ĀX is

• a numerical stability condition on AXb
, if b 6= o, and

• a numerical stability condition on BY (for 2 ≤ d ≤ 5) or B̃Y (for d = 1), if b = o.

Moreover, if v ∈ Knum
0 (ĀX/B)(B) is a section, there is a moduli space Mσ(ĀX,v) over B such that

Mσ(ĀX,v)b ∼=

{
Mσb

(AXb
,v), if b 6= o,

Mσo
(BY ,v) or Mσo

(B̃Y ,v), if b = o and 2 ≤ d ≤ 5 or d = 1.

In other words, the fibers of Mσ(ĀX,v) are appropriate moduli spaces of stable objects in AXb
, BY , or B̃Y .
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If d = 2, an interesting example of a moduli space associated with a stability condition in the

category AX ⊂ Db(X) for a general smooth Fano threefold X of genus 2d + 2 = 6 is the minimal

model Fmin
2 (X) of the Hilbert scheme of conics F2(X) on X, see [JLLZ24, Theorem 7.12]. It is natural to

expect that the analogous moduli space associated with the category BY ⊂ Db(Y ) is the Hilbert scheme

of lines F1(Y ). In this example we expect the following to be true.

Conjecture 1.9. For a quartic double solid Y → P3 that contains no lines in the ramification divisor

and a family of prime Fano threefolds X/B of genus g = 6 constructed in Theorem 1.4 there is a stability

condition σ on ĀX and a section v ∈ Knum
0 (ĀX/B)(B) such that the corresponding moduli space Mσ(ĀX,v)

is a smooth and proper family of surfaces F(X/B) such that

F(X/B)b ∼=

{
Fmin
2 (Xb), if b 6= o,

F1(Y ), if b = o.

By [DK20, Theorem 1.1] and [Wel81, Theorem 4.1] the relative Albanese variety Alb(F(X/B)/B) of

the above family of surfaces should be isomorphic to the relative family of intermediate Jacobians, so

Conjecture 1.9 should give yet another proof of Corollary 1.7 for d = 2.

Of course, we expect a similar result to be true for d ≥ 3, but it is less interesting, because in this

case F1(Yd) ∼= F2(X2d+2) for any Yd and appropriate X2d+2, see [KPS18, Propositions B.4.1, B.5.1,

and B.6.1], and, for instance, if we consider a family X/B giving rise to an isotrivial family of cate-

gories ĀX/B (see Remark 1.5), the corresponding family of surfaces F(X/B) will also be isotrivial.

On the other hand, the case d = 1 may be very interesting, and may provide a useful insight into the

geometry of the Hilbert scheme of conics on X4 and the Hilbert scheme of lines on Y1.

Remark 1.10. We were informed by the authors that Conjectures 1.8 and 1.9 are proved when B is the

spectrum of a complete DVR (and d ≥ 2 for the first conjecture) in the forthcoming paper [LMP+24].

1.5. A sketch of the proof. Our proof of Theorem 1.4 and its generalization (46) is based on a geometric

construction, which we call a bridge. This construction connects the realms of del Pezzo threefolds and

prime Fano threefolds of even genus.

If d ≥ 2 to construct a bridge we consider a smooth del Pezzo threefold Y of degree d, a smooth

rational curve C ⊂ Y of degree d− 1, and the blowup BlC(Y ). In Proposition 2.6 we show that the

anticanonical class of BlC(Y ) is nef and big and defines a small birational contraction

π : BlC(Y ) → BlC(Y )can =: X

to a 1-nodal nonfactorial prime Fano threefold X of genus 2d + 2, the anticanonical model of BlC(Y ).

The morphism π contracts a single smooth rational curve (the strict transform of the unique bisecant

line for C in Y ) in BlC(Y ) to the node x0 ∈ X . Furthermore, in Lemma 2.12 and Proposition 3.3 we

construct a Mukai bundle UX on X; it is worth pointing here that UX depends on both Y and C.

If d = 1 the construction is similar. In this case we consider a 1-nodal del Pezzo threefold Y of

degree d = 1, the blowup Bly0(Y ) of Y at the node y0 ∈ Y , its anticanonical model X := Bly0(Y )can,

and construct a Mukai bundle UX on X that depends on a choice of ruling F of the exceptional divisor

of Bly0(Y ) → Y (the ruling F plays here the role similar to that of a curve C when d ≥ 2).

From now on we concentrate on the simpler case where d ≥ 2. Let (Y,C) be a smooth del Pezzo three-

fold of degree d ≥ 2 with a smooth rational curve of degree d− 1, let X = BlC(Y )can be the anticanonical

model of the blowup BlC(Y ), and let UX be the corresponding Mukai bundle, obtained by the bridge

construction. Let, furthermore, f : X → B be a smoothing of X (it exists by [Nam97, Theorem 11])

over a smooth pointed curve (B, o). Using exceptionality of the bundle UX we check that (possibly after

base change to an étale neighborhood of o ∈ B) it extends to a global section UX ∈ VBX/B(B) such
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that (f : X → B,UX) is a B-point of the stack MFMX2d+2
, the central fiber Xo is isomorphic to X, and

the morphism f is smooth over the punctured curve B \ {o}.

To complete the proof of Theorem 1.4 it remains to explain how the subcategory ĀX ⊂ Db(X) is

constructed and how its properties are verified. We do this using the technique of categorical absorption

of singularities developed in [KS23]. More precisely, applying [KS23, Theorem 1.5 and Theorem 6.1] we

obtain semiorthogonal decompositions

Db(X) = 〈ι∗PX ,D〉, Db(X) = 〈PX ,Do〉, and Db(Xb) = Db,

where ι : X → X is the embedding of the central fiber, PX ∈ Db(X) is a so-called P∞,2-object, so

that ι∗PX ∈ Db(X) is an exceptional object, D is a B-linear admissible subcategory in Db(X) which

is smooth and proper over B, while Do and Db are its base changes along the embeddings {o} →֒ B

and {b} →֒ B. The category D can be thought of as a family of smooth and proper triangulated

categories parameterized by the curve B. For more details about this construction see Theorem 3.6 and

its proof.

Finally, we refine the above decomposition slightly. We observe that the structure sheaf OX and the

dual Mukai bundle U∨
X on X are contained in the subcategory D ⊂ Db(X) and form a relative over B

exceptional pair, hence they induce a B-linear semiorthogonal decomposition

D = 〈ĀX, f
∗(Db(B))⊗ OX, f

∗(Db(B))⊗ U∨
X〉,

thus defining a B-linear triangulated subcategory ĀX ⊂ D ⊂ Db(X) which is smooth and proper over B.

It follows from [Kuz11, Theorem 5.6] that the fibers (ĀX)b of this category corresponding to points b 6= o

are equivalent to the subcategories AXb
⊂ Db(Xb) from (1). On the other hand, the category (ĀX)o

corresponding to the origin o ∈ B can be identified (by an appropriate sequence of mutations, explained

in Proposition 3.3) with the subcategory BY ⊂ Db(Y ) defined by (2).

In the case d = 1 the argument proving Theorem 1.4 is essentially the same.

1.6. Boundary components of the compactified moduli stack. Theorem 1.4 shows that the family

of categories AX defined by (1) for all smooth prime Fano threefolds (or, more precisely, for all smooth

Fano–Mukai pairs) of genus g ∈ {4, 6, 8, 10, 12} extends naturally to some degenerations of these varieties.

In §5 we describe precisely the locus in the stack MFMXg
corresponding to such degenerations.

For this we consider the stack MFCYd
parameterizing pairs (Y,C) or (Y, F ) used in the bridge con-

struction as described in §1.3 (see Definition 5.1 for the actual definition of this stack) and applying a

relative version of the bridge construction we define in Lemma 5.5 a morphism of stacks

µ : MFCYd
→ MFM

(1)
X2d+2

⊂ MFMX2d+2
,

where MFM
(1)
X2d+2

⊂ MFMX2d+2
is the 1-nodal locus. In fact, as we check in Theorem 4.5 the sub-

stack MFM
(1)
X2d+2

is a Cartier divisor in the open substack MFM
≤1
X2d+2

⊂ MFMX2d+2
of at most 1-nodal

Fano–Mukai pairs and we prove in Theorem 5.7 that µ is an isomorphism of MFCYd
onto a connected

component of MFM
(1)
X2d+2

, which we denote

MFM
(1)
X2d+2,Yd

⊂ MFM
(1)
X2d+2

⊂ MFMX2d+2

and call the del Pezzo component of MFM
(1)
X2d+2

. Thus, Theorem 1.4 (or rather its generalization (46))

can be interpreted as a construction of a smooth and proper extension of the family of categories AX

across the del Pezzo component of the boundary of MFMX2d+2
. We discuss a convenient way to think

about such an extension in §1.7 below.

The above observation motivates the following problem, which is also interesting by itself.
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Problem 1.11. Classify all connected components of the boundary divisor MFM
(1)
X2d+2

⊂ MFMX2d+2
and

study possible extensions of the family of categories AX across these components.

The categorical absorption point of view suggests that a nice extension is possible for those boundary

components that correspond to nonfactorial 1-nodal degenerations of X; such degenerations are classified

in [KP23b] and independently in [CKMS23], thus answering the first half of this question.

1.7. The categorical period map. We finish the Introduction with a speculative section, discussing a

possible reformulation of our results in terms of a categorical period map.

To define the categorical period map we need to introduce a stack MTrCat of triangulated categories.

One option is to define it as the étale sheafification of the fibered category over (Sch /k) whose fiber

over a scheme S is the groupoid of S-linear enhanced triangulated categories and their S-linear enhanced

equivalences. To make this into a real definition, we need, however, to treat MTrCat as higher stack, which

goes very far out of the scope of this paper. Another option is to use the approach developed in [AT09].

Anyway, assuming that MTrCat is defined appropriately, given any flat projective morphism f : X → S

and an admissible S-linear subcategory D ⊂ Db(X) one should be able to produce an S-point of MTrCat,

i.e., a morphism

℘D : S → MTrCat

which (by analogy with Hodge theory) we call the categorical period map.

Now we explain how our results would be interpreted in the (hypothetical) terms of the moduli

stack MTrCat and the categorical period map ℘. Since the components AX ⊂ Db(X) and BY ⊂ Db(Y)

of the family versions of decompositions (1) and (2) associated to families (f : X → S,UX) and g : Y → S

are admissible S-linear subcategories, they should define the categorical period maps of stacks

℘A : MFMXg
→ MTrCat, and ℘B : MFYd

→ MTrCat .

Then the original Fano threefolds conjecture (which holds for d ≥ 3 but fails for d ≤ 2) can be rephrased

as the dominance of the fiber product

Zd = MFMX2d+2 ×
MTrCat

MFYd
,

(with respect to the categorical period maps ℘A and ℘B) over both factors.

On the other hand, the semiorthogonal decomposition of Theorem 1.4 (or rather its generalization (46))

can be interpreted as a commutative diagram

MFCYd

µ

∼
//

��

MFM
(1)
X2d+2,Yd

℘
Ā

��

MFYd

℘B
// MTrCat

for d ≥ 2, or

MFCY1

µ

∼
//

��

MFM
(1)
X4,Y1

℘
Ā

��

MF
(1)
Y1

℘
B̃

// MTrCat

for d = 1.

In both diagrams the left vertical arrow is the forgetful map, ℘Ā is the categorical period map asso-

ciated with the component ĀX ⊂ Db(X) of the semiorthogonal decomposition from (46) for a fam-

ily (f : X → S,UX) of Fano–Mukai pairs, while ℘B or ℘
B̃
is the categorical period map associated with

(the categorical resolution B̃Y of) the component BY ⊂ Db(Y). In particular, we see that

MFCYd
⊂ Z̄

(1)
d := MFM

(1)
X2d+2,Yd ×

MTrCat

MFYd
, or MFCY1 ⊂ Z̄

(1)
1 := MFM

(1)
X4,Y1 ×

MTrCat

MF
(1)
Y1
,

and therefore Z̄d is dominant over MFYd
for d ≥ 2, and over the 1-nodal locus MF

(1)
Y1

⊂ MFY1 for d = 1.

Note that ℘Ā differs on the boundary of MFMX2d+2
from the naive extension of ℘A; in fact, ℘Ā takes

values in smooth and proper triangulated categories, while the naive extension does not.
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Thus, our construction provides a partial extension ℘Ā of the categorical period map ℘A across the del

Pezzo component MFM
(1)
X2d+2,Yd

⊂ MFMX2d+2
, but it has different flavour in the cases d ≥ 3 and d ≤ 2.

When d ≥ 3 the images of ℘A and ℘Ā are the same (and equal to the image of ℘B), but the fibers

of ℘Ā are partial compactifications of the fibers of ℘A. For instance, in the case d = 3 the fiber of ℘A

over the point ℘B([Y ]) = [BY ] for a smooth cubic threefold Y is isomorphic to the “locally free” locus in

a certain moduli space of stable coherent sheaves of rank 2 on Y , see [Kuz04]. The complement of this

locus is the union of two divisors, see [Dru00], and the corresponding fiber of ℘Ā also includes a dense

open subset of one of these. We expect that a dense open subset of the second divisor corresponds to

another boundary component of MFMX8 ; we plan to discuss this elsewhere.

On the other hand, when d ≤ 2 the fibers of ℘A and ℘Ā are the same, but the image of ℘Ā is larger than

the image of ℘A. Moreover, the fibers of ℘Ā over the image of ℘B or ℘
B̃
, respectively, are deformations

of the fibers of ℘A. For instance, in the case d = 2 the fiber of ℘Ā over the point ℘B([Y ]) for a quartic

double solid Y is isomorphic to the Hilbert scheme of lines on Y , and this is a deformation of double

Eisenbud–Popescu–Walter surfaces that are (conjecturally) isomorphic to the fibers of ℘A.

Thus, the map ℘Ā compactifies ℘A “vertically” for d ≥ 3, and “horizontally” for d ≤ 2.

Structure of the paper. In §2 we explain the bridge construction of a 1-nodal prime Fano threefold X

of genus 2d + 2 from a del Pezzo threefold Y of degree d endowed with a curve C or a ruling F . In §3

we construct the P∞,2-object PX and the Mukai bundle UX on X and prove Theorem 1.4. In §4 we

discuss general properties of the moduli spaces of Mukai bundles and moduli stacks of Fano threefolds

and Fano–Mukai pairs. Finally, in §5 we identify the del Pezzo component of the boundary divisor of the

moduli stack MFMX2d+2
.

In Appendix A we discuss some material about nodal varieties that is used in the body of the paper

and give a Hodge-theoretic proof of Corollary 1.7.

Conventions. We work over an algebraically closed field k of characteristic 0. When we say that a

variety X is nodal (resp. k-nodal), we mean that Sing(X) is finite or empty (resp. has length k) and every

point in Sing(X) is an ordinary double point on X, see Definition A.1.

Acknowledgements. We would like to thank Olivier Debarre, Sergey Gorchinskiy, Alex Perry, Yuri Prok-

horov, Andrey Soldatenkov, and Claire Voisin for useful discussions and the referee for their comments.

2. The bridge

In this section we present the main geometric construction of the paper — the bridge, linking del Pezzo

threefolds Y to prime Fano threefolds X of even genus. We upgrade this construction to an isomorphism

of moduli stacks in Section 5.

Recall that for any del Pezzo threefold Y with Pic(Y ) = Z · H, where H := −1
2KY , we denote

by d(Y ) := H3 the degree of Y . Then d = d(Y ) ∈ {1, 2, 3, 4, 5}, and Y can be described as follows

(see [KP23a, Theorem 1.2]):

• if d = 5 then Y = Gr(2, 5) ∩ P6 ⊂ P9;

• if d = 4 then Y is a complete intersection of two quadrics in P5;

• if d = 3 then Y is a cubic hypersurface in P4;

• if d = 2 then Y is a quartic double solid, i.e., a double covering of P3 branched at a quartic;

• if d = 1 then Y is a sextic hypersurface in the weighted projective space P(1, 1, 1, 2, 3).

By the Riemann–Roch Theorem, we have dim |H| = d+ 1, and the linear system |H| defines a map

(7) ϕ = ϕd : Y 99K Pd+1.
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If d ≥ 3 it is a closed embedding, if d = 2 it is a regular double covering, and if d = 1 it is a rational

elliptic fibration with a single indeterminacy point, called the base point of Y that coincides with the

intersection of Y with the weighted projective line P(2, 3) ⊂ P(1, 1, 1, 2, 3).

Remark 2.1. If d = 1 the linear system |2H| is base point free and defines a regular double covering

ϕ̂1 : Y → P(1, 1, 1, 2).

This follows from the analogous property of del Pezzo surfaces of degree 1 by the argument of [KP23a,

Proposition 2.2(ii)]. Because of this property, Y is called a double Veronese cone.

We will say that a singular point y0 ∈ Y is a cusp (also called generalized cusp in [KP23b]) if it is a

hypersurface singularity such that Bly0(Y ) is smooth along the exceptional divisor E ⊂ Bly0(Y ) which is

an irreducible singular quadric surface and OE(−E) is the hyperplane class of E.

Setup 2.2. In the rest of the paper we work in one of the following two situations:

(a) (Y,C) is a pair, where Y is a smooth del Pezzo threefold of degree d ∈ {2, 3, 4, 5}, C ⊂ Y is a

smooth rational curve on Y of degree d− 1, and

Ỹ := BlC(Y )
σ

−−→ Y

is the blowup with exceptional divisor E ⊂ Ỹ , or

(b) (Y, F ) is a pair, where Y is a del Pezzo threefold of degree d = 1 with a single node or cusp y0 ∈ Y ,

Ỹ := Bly0(Y )
σ

−−→ Y

is the blowup with exceptional divisor E ⊂ Ỹ , so that E is a quadric and F ∈ Cl(E) is a ruling.

Note that in any case Ỹ is a smooth projective threefold, σ∗OỸ
∼= σ∗OỸ (E) ∼= OY , and the derived

pushforward of OỸ (−E) is the ideal sheaf of C or y0.

Remark 2.3. In the case d = 2 the curve C ⊂ Y is a line; if it is contained in the ramification divisor

of ϕ2 : Y → P3, we say it is a ramification line. In the case d = 1 the point y0 ∈ Y is distinct from the base

point of Y ([KP23a, Proposition 2.2(ii)]) and contained in the ramification divisor of ϕ̂1 : Y → P(1, 1, 1, 2).

Remark 2.4. Any del Pezzo variety Y as above is locally factorial: for 2 ≤ d ≤ 5 this follows from

smoothness of Y , and for d = 1 this is proved in [PS21, Corollary 2.5] or [KP23b, Corollary B.4] (in the

case of a cusp, see [KPS21, (2.8) and Proposition 3.6] or [KP23b, Remark 2.2]). Thus, the class group of

Weil divisors Cl(Y ) is generated by H and the degree D ·H2 of any surface in D ⊂ Y is divisible by d.

Lemma 2.5. Assume Setup 2.2. The linear system |H − E| on Ỹ is a pencil, its base locus

(8) L̃ := Bs(|H − E|) ⊂ Ỹ

is a smooth rational curve such that

(9) H · L̃ = 1, E · L̃ = 2,

and

(10) NL̃/Ỹ
∼= OL̃(−1)⊕2,

Moreover,

• if d ≥ 3 or d = 2 and C is not a ramification line the map σ : L̃→ σ(L̃) is an isomorphism onto

a line σ(L̃) ⊂ Y distinct from C, the scheme E ∩ L̃ has length 2, it is not contained in a fiber

of E → C, and the scheme C ∩ σ(L̃) has length 2 as well;

• if d = 2 and C is a ramification line then L̃ is the exceptional section of the P1-bundle E → C

and the map σ : L̃→ σ(L̃) is an isomorphism onto the line σ(L̃) = C;
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• if d = 1 the scheme E∩ L̃ has length 2, it is not contained in a ruling of E, the map σ : L̃→ σ(L̃)

is the normalization morphism, and σ(L̃) ⊂ Y is the fiber of the elliptic fibration ϕ1 : Y 99K P2

with singularity at the singular point y0 of Y .

Proof. In case 2.2(a) we consider the linear subsystem |H − C| ⊂ |H| and prove that

dim |H − C| = 1.

Indeed, if 2 ≤ d ≤ 4 the image ϕd(C) ⊂ Pd+1 of C under the morphism (7) is a smooth rational curve

of degree 1 ≤ d − 1 ≤ 3, it spans a Pd−1 ⊂ Pd+1, hence dim |H − C| = 1. On the other hand, if d = 5

the image ϕ5(C) ⊂ P6 is a smooth rational quartic curve. If it only spans a P3, then there is a unique

quadric surface in this P3 containing ϕ5(C) (otherwise, C would be contained in a curve of degree 4 and

arithmetic genus 1, which is absurd), and since Y is an intersection of quadrics, this quadric surface must

be contained in Y which is impossible by Remark 2.4. Therefore, ϕ5(C) spans a P4 and dim |H −C| = 1.

Moreover, in all these cases the base locus Bs(|H − C|) = Y ∩ 〈C〉 contains no divisorial components

(again by Remark 2.4), hence it is a local complete intersection curve. Since on the other hand, its degree

equals d and it contains the curve C of degree d− 1, it is equal to the union of C and an extra line L, or

the curve C with multiplicity 2 (this is only possible if d = 2 and C ⊂ Y is a ramification line). It also

follows that the dimension of the tangent space to Bs(|H − C|) at any point does not exceed 2; indeed,

if d = 2 then Bs(|H − C|) is the preimage of a line in P3 under the double covering ϕ2 : Y → P3, which

factors as the composition Y →֒ P(1, 1, 1, 1, 2) 99K P3, hence Bs(|H−C|) is contained in the smooth locus

of the surface P(1, 1, 2) ⊂ P(1, 1, 1, 1, 2), and if d > 2 this follows from the fact that Bs(|H −C|) is a local

complete intersection curve with two smooth components.

Now consider the linear system |H − E| on the blowup Ỹ ; the morphism σ induces its isomorphism

onto |H − C|, so it is a pencil. Note that Bs(|H − E|) does not contain any fiber of E → C, be-

cause the dimension of the tangent space to Bs(|H − C|) at any point of C does not exceed 2; in

particular E 6⊂ Bs(|H − E|), and therefore the scheme L̃ := Bs(|H − E|) has no divisorial components.

Moreover, it follows that L̃ is a local complete intersection curve, the restriction of σ to L̃ is finite, and

[L̃] = (H − E)2

in the Chow group CH2(Ỹ ). Standard intersection theory (see, e.g., [IP99, Lemma 4.1.2]) gives

(11) H3 = d, H2 ·E = 0, H · E2 = 1− d, E3 = 4− 2d,

and (9) follows. In particular, since H ·L̃ = 1 and |H| is base point free, it follows that L̃ is irreducible and

generically reduced, and since it is a local complete intersection, it is everywhere reduced. Moreover, the

image ϕd(σ(L̃)) ⊂ Pd+1 must be a line, and therefore σ(L̃) ⊂ Y is also a line, and the map σ : L̃→ σ(L̃)

is finite of degree 1, hence it must be an isomorphism; in particular, L̃ is a smooth rational curve.

Next, we consider the Koszul complex

(12) 0 → OỸ (2E − 2H) → OỸ (E −H)⊕2 → OỸ → OL̃ → 0.

Restricting it to L̃ and using (9), we deduce (10).

Finally, if L̃ is not contained in E it follows from (9) that the intersection E∩ L̃ is a scheme of length 2.

This scheme is not contained in a fiber of E → C because the projection L̃ → σ(L̃) is an isomorphism.

Therefore, C ∩ σ(L̃) is a scheme of length 2 as well. On the other hand, if L̃ ⊂ E then σ(L̃) = C,

hence d− 1 = H ·C = H · L̃ = 1 by definition of C and (9), respectively, hence d = 2. Moreover, since Y

in this case is a quartic double solid and C is a line, the base locus of |H − C| is the union of C and its

image under the involution of the double covering ϕ2 : Y → P3, therefore the equality σ(L̃) = C means

that C is fixed by the involution, hence it is a ramification line. Finally, it follows from (9) in this case

that L̃ is the exceptional section of the P1-bundle E → C.
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Now consider case 2.2(b). Since the singular point y0 ∈ Y is distinct from the base point of the

two-dimensional linear system |H| (see Remark 2.3), it follows that

dim |H − y0| = 1 and |H − 2y0| = ∅.

Now consider the linear system |H − E| on the blowup Ỹ ; the morphism σ induces its isomorphism

onto |H − y0|, so it is a pencil, and its base locus L̃ does not contain E. As before, L̃ is a local complete

intersection curve, hence OL̃ has the Koszul resolution (12). Moreover, the equalities (11) still hold true

(see, e.g., [IP99, Lemma 4.1.6]), hence (9) follows. In particular, H · L̃ = 1, and therefore L̃ has a unique

horizontal component L̃0, the map L̃0 → σ(L̃0) is finite of degree 1, and the image σ(L̃) = σ(L̃0) is a

fiber of the elliptic fibration ϕ1 : Y 99K P2. Thus, σ(L̃0) is a curve of arithmetic genus 1.

On the other hand, E is an irreducible quadric surface and OE(−E) is its hyperplane class, hence the

divisor E has negative intersection with any curve in E. Therefore, E · L̃0 ≥ E · L̃ = 2, hence the fiber

of L̃0 → σ(L̃0) over the point y0 ∈ σ(L̃0) has length at least 2. This implies that y0 is a singular point

of σ(L̃0), L̃0 is a smooth rational curve, the map L̃0 → σ(L̃0) is the normalization morphism, the length

of the fiber over y0 is 2, and E · L̃0 = E · L̃, hence L̃ has no vertical components. Moreover, the length 2

scheme E∩ L̃ is not contained in a ruling of E because it is an intersection in E of two divisors equivalent

to (H −E)|E and OỸ (H − E) restricts to E as the hyperplane class.

It only remains to prove (10). For this we again restrict the Koszul complex (12) to L̃ and use (9). �

In what follows we will often use the notation introduced in Lemma 2.5. Furthermore, we consider the

following two classes in the group of 1-cycles on Ỹ modulo numerical equivalence:

• ℓ̃ — the class of the curve L̃ defined by (8);

• ℓE — the class of a fiber of E → C if d ≥ 2, or the class of a ruling of E if d = 1.

Note that in the latter case, if y0 ∈ Y is a node, so that E ∼= P1 × P1, the classes of the two rulings are

numerically equivalent because Y is locally factorial, see Remark 2.4.

Proposition 2.6. Assume Setup 2.2.

(i) The nef cone of Ỹ is generated by H and 2H − E and the Mori cone is generated by ℓ̃ and ℓE.

(ii) The effective cone of Ỹ is generated by E and H − E.

(iii) The linear system |2H − E| on Ỹ is base point free and defines a small birational contraction

π : Ỹ → X

onto a 1-nodal prime Fano threefold X of genus g = 2d + 2. The exceptional locus of π is the

smooth rational curve L̃ ⊂ Ỹ defined in (8), and x0 := π(L̃) is the node of X.

Proof. First, we show that the sheaf OỸ (2H−E) on Ỹ is globally generated. For this we twist the Koszul

complex (12) by OỸ (2H − E), and using (9) we obtain the following exact sequence:

(13) 0 → OỸ (E) → OỸ (H)⊕2 → OỸ (2H − E) → OL̃ → 0.

The sheaves OỸ (E), OỸ (H), and OL̃ have no higher cohomology, hence the same is true for OỸ (2H−E).

It also follows that

(14) dimH0(Ỹ ,OỸ (2H − E)) = 2(d+ 2)− 1 + 1 = 2d+ 4,

and (13) induces a long exact sequence of global sections. Therefore, there is a commutative diagram

0 // H0(OỸ (E))⊗ OỸ
//

��

H0(OỸ (H))⊕2 ⊗ OỸ
//

��

H0(OỸ (2H − E))⊗ OỸ
//

��

H0(OL̃)⊗ OỸ
//

��

0

0 // OỸ (E) // OỸ (H)⊕2 // OỸ (2H − E) // OL̃
// 0,
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where the vertical arrows are given by evaluation and the rows are exact.

If d ≥ 2 the sheaves OỸ (H) and OL̃ are globally generated, hence the second and fourth vertical arrows

are surjective, hence so is the third arrow, i.e., OỸ (2H − E) is globally generated.

If d = 1 the above argument works as well over the complement of the base point of |H|, therefore

Bs(|2H − E|) ⊂ Bs(|H|).

On the other hand, the linear system |2H| defines the regular double covering ϕ̂1 : Y → P(1, 1, 1, 2) (see

Remark 2.1) and the point y0 lies on its ramification divisor (see Remark 2.3), hence we have

Bs(|2H − E|) ⊂ E.

The right sides of the inclusions are disjoint (by Remark 2.3), hence OỸ (2H − E) is globally generated.

(i) Now we describe the nef cone and the Mori cone of Ỹ . Since Cl(Y ) = Z · H (see Remark 2.4)

the group Pic(Ỹ ) = Cl(Ỹ ) is generated by H and E. Since OỸ (2H − E) is globally generated, it is nef.

Moreover, the line bundle OỸ (H) is the pullback of an ample line bundle from Y , hence it is also nef.

On the other hand, using (9), we compute

(15)
H · ℓE = 0, H · ℓ̃ = 1,

(2H −E) · ℓE = 1, (2H − E) · ℓ̃ = 0.

Since both ℓE and ℓ̃ are effective curve classes, we conclude that H and 2H − E generate the nef cone

of Ỹ , while ℓE and ℓ̃ generate the Mori cone.

(ii) Assume D = aH + bE is an effective divisor. It is enough to show that a ≥ 0 and a+ b ≥ 0. The

first follows immediately because σ(D) ∼ aH is also effective. For the second, using (11) we compute

D · (2H − E) · (H −E) = (a+ b)(d+ 1),

and since H −E has no fixed components and 2H −E is nef, this must be nonnegative, hence a+ b ≥ 0.

(iii) We already checked that the linear system |2H − E| is base point free and has dimension 2d+ 3.

Now consider the morphism Ỹ → P2d+3 induced by this linear system, and its Stein factorization

(16) Ỹ
π

−−→ X −−→ P2d+3,

where the morphism π has connected fibers, X is normal, and the morphism X → P2d+3 is finite.

Note that any curve in a fiber of π has zero intersection with 2H −E; therefore the description of the

Mori cone in (i) implies that its class is a positive multiple of the class of L̃. Since (H − E) · L̃ = −1

by (9), it follows that any such curve has negative intersection with H − E, hence it is contained in the

base locus of the linear system |H −E| which, as we showed in Lemma 2.5, equals L̃. Thus, L̃ is the only

curve contracted by π; in particular π is birational and small.

Since Ỹ is smooth, X is smooth away from the point x0 := π(L̃). On the other hand, (10) implies that

the point x0 ∈ X is an ordinary double point, so X is 1-nodal.

Furthermore, by (9) the subgroup in Pic(Ỹ ) of classes restricting trivially to L̃ is generated by the

anticanonical class 2H − E of Ỹ , and since π is small, it is the pullback of the anticanonical class of X,

which therefore generates Pic(X). By definition of π, this class is the pullback of the hyperplane class

of P2d+3 under the finite morphism in (16), hence it is ample, hence X is a prime Fano threefold. Finally,

H0(X,OX (−KX)) = H0(Ỹ ,OỸ (2H − E)) = 2d+ 4,

where we used (14) in the second equality, so it follows that the genus of X is 2d+ 2. �
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In what follows we refer to the construction of Proposition 2.6 as the bridge construction, and to the

variety X constructed in Proposition 2.6 as the anticanonical model of BlC(Y ), and use for it the notation

(17) X :=

{
BlC(Y )can, if d ≥ 2,

Bly0(Y )can, if d = 1.

Remark 2.7. By construction, X is not factorial; indeed, Pic(X) = Z ·KX while Cl(X) = Cl(Ỹ ) ∼= Z2.

Furthermore, since H ·L̃ = 1, it follows that X is maximally nonfactorial, see §A.3 or [KS23, Lemma 6.14],

that is the map from Cl(X) to the direct sum of local class groups of the singular points is surjective.

This is not a coincidence: in Proposition A.14 we show that every nodal Fano threefold such that

rk(Cl(X)) = rk(Pic(X)) + |Sing(X)|

is maximally nonfactorial. This is important because maximal nonfactoriality is a necessary condition for

the categorical absorption of singularities [KS23, Proposition 6.12], which is crucial for our applications.

Remark 2.8. For d ≥ 3 one can check that the anticanonical class of X is very ample, so that the

second arrow in (16) is a closed embedding, and its image is an intersection of quadrics, see, e.g., [Pro19,

Theorem 4.5] or [KP23b, Corollary 4.11]. On the other hand, one can check that if d = 1 then X is a

hyperelliptic threefold of typeH5 from [PCS05] (see [Pro19, Example 4.3] or [KP23b, Proposition 4.4(iv)]),

and if d = 2 then X is a trigonal threefold of type T7 from [PCS05] (see [Pro19, Example 4.7] or [KP23b,

Proposition 4.7(iv)]).

Remark 2.9. One can extend the blowup σ : Ỹ → Y and the small contraction π : Ỹ → X to a Sarkisov

link by flopping the curve L̃. By [Tak22] (or [KP23b, Table 2]) the other extremal contraction is a del

Pezzo fibration Ỹ + → P1 of degree d+ 1, so that we have the following diagram

(18)

X̃

����
��
��
��

  ❆
❆❆

❆❆
❆❆

❆

Ỹ

σ

����
��
��
��

π

��
❃❃

❃❃
❃❃

❃❃

ψ
//❴❴❴❴❴❴❴ Ỹ +

π+

~~⑥⑥
⑥⑥
⑥⑥
⑥⑥

σ+

!!❇
❇❇

❇❇
❇❇

❇

Y X P1,

where the map X̃ → Ỹ is the blowup of L̃, the map X̃ → X is the blowup of the node x0 ∈ X, and ψ is the

flop of L̃. Moreover, if D is the exceptional divisor of X̃ over X, it is not hard to check that the nef cone

of X̃ is generated by the pullbacks H, 2H−E, and H−E−D of the ample generators of Pic(Y ), Pic(X),

and Pic(P1), respectively. In particular, the three rays of the nef cone give contractions of different type,

which allows one to reconstruct the entire diagram (18) from X by blowing up the node and running the

minimal model program. We will use this idea in the proof of Theorem 5.7.

We will also need the following observation regarding the Hilbert scheme Fd−1(Y ) of curves with

Hilbert polynomial p(t) = (d− 1)t+ 1 on a del Pezzo threefold Y .

Lemma 2.10. Let Y be a smooth del Pezzo threefold of degree 2 ≤ d ≤ 5.

(i) The open subset F◦
d−1(Y ) ⊂ Fd−1(Y ) parameterizing smooth rational curves of degree d − 1 is

nonempty and connected.

(ii) Assume C ⊂ Y is a smooth rational curve of degree d − 1 which is not a ramification line

when d = 2. Then

(19) H1(C,NC/Y ) = 0 and dimH0(C,NC/Y ) = 2d− 2.

In particular, the Hilbert scheme Fd−1(Y ) is smooth of dimension 2d− 2 at [C].
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Proof. (i) If d = 2 then F◦
d−1(Y ) = Fd−1(Y ) is the Hilbert scheme of lines; connectedness (and nonempti-

ness) of this Hilbert scheme is proved in [Wel81, Theorem 3.57 and Remark 3.58].

Assume d ≥ 3. In this case we apply a construction converse to that of Lemma 2.5. More precisely, we

consider a general hyperplane section S ⊂ Y (this is a smooth del Pezzo surface of degree d), choose any

line L ⊂ S, and a general curve in the linear system |H − L| on S; it is easy to see that this is a smooth

rational curve of degree d− 1 (see, e.g., [LSZ20, Lemma 4.6]). This proves that F◦
d−1(Y ) has a structure

of a fibration over the Hilbert scheme of lines on Y (which is connected, see [KPS18, Proposition 2.2.10])

with fiber over a line L an open dense subset of the Grassmannian Gr(2, d) that parameterizes pencils of

hyperplanes through L, hence F◦
d−1(Y ) is nonempty and connected.

(ii) We use notation of Lemma 2.5. Twisting the Koszul complex (12) by OỸ (−E) and pushing it

forward along σ, we obtain an exact sequence

(20) 0 → OY (−2H) → OY (−H)⊕2 → JC → σ∗(OL̃(−E)) → 0.

Combining it with (9) we obtain a right exact sequence

OY (−H)⊕2 → JC → OL(−2) → 0,

where we set L := σ(L̃). Restricting it to C we obtain a right exact sequence

OC(1− d)⊕2 → N∨
C/Y → OC∩L → 0.

where C ∩ L is a scheme of length 2 by Lemma 2.5. Note that OC(1 − d)⊕2 and N∨
C/Y are locally free

sheaves of rank 2, and the cokernel of the first arrow is a torsion sheaf, hence the kernel is a torsion

subsheaf of a locally free sheaf, hence it vanishes, and this morphism is injective. Thus, the above

sequence is also left exact. Twisting it by det(NC/Y ) ∼= OC(2d− 4) we obtain

0 → OC(d− 3)⊕2 → NC/Y → OC∩L → 0.

Since d ≥ 2, the equalities (19) as well as the dimension and smoothness of the Hilbert scheme follow. �

Remark 2.11. The argument does not work when d = 2 and C is a ramification line, because in this

case L = C, so restricting (20) to C we obtain a right exact sequence

OC(−1)⊕2 → N∨
C/Y → OC(−2) → 0

which implies NC/Y
∼= OC(2)⊕OC(−2). In particular, the cohomology groups of NC/Y jump, hence the

point [C] on the Hilbert scheme is singular.

In the next lemma we construct an important vector bundle UỸ of rank 2 on Ỹ . As we will prove later

(see Proposition 3.3), the sheaf π∗(U
∨
Ỹ
) is locally free and dual to a Mukai bundle on X.

If d = 1 the construction works both in the nodal and cuspidal cases, but the nodal case is simpler

and as we do not need the cuspidal case for applications, we omit it.

Lemma 2.12. Assume Setup 2.2 and if d = 1 assume that Y is 1-nodal. Then there is an exact sequence

(21) 0 → U∨
Ỹ
→ OỸ (H)⊕ OỸ (H) → OE(dF ) → 0,

where F is the class of a fiber of E → C if d ≥ 2, or a ruling on E ∼= P1×P1 if d = 1. It defines a vector

bundle UỸ on Ỹ of rank 2 with c1(UỸ ) = E − 2H = KỸ . Moreover, the sheaf π∗(U
∨
Ỹ
) is (−KX)-stable.

Proof. If d ≥ 2 the curve C has degree d− 1, hence OỸ (H)|E ∼= OE((d− 1)F ), and if d = 1 the divisor E

is contracted by σ to a point, hence OỸ (H)|E ∼= OE . In any case, we have

Ext•(OỸ (H),OE(dF )) = Ext•(OE((d− 1)F ),OE(dF )) = H•(E,OE(F )) = k2.
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The natural evaluation morphism OỸ (H)⊕OỸ (H) → OE(dF ) is surjective because the line bundle OE(F )

is globally generated. Since E is a Cartier divisor, the projective dimension of the sheaf OE(dF ) on Ỹ

is 1, hence the kernel of this epimorphism is a vector bundle of rank 2, and its first Chern class is obvious.

To prove the stability of π∗(U
∨
Ỹ
) consider any saturated subsheaf F ⊂ π∗(U

∨
Ỹ
) of rank 1. The restriction

of F to X \ {x0} is reflexive; considering it as a sheaf on Ỹ \ L̃ and taking its reflexive extension to Ỹ ,

we obtain a reflexive subsheaf F̃ ⊂ U∨
Ỹ

of rank 1, which is invertible because Ỹ is smooth. Composing

the embeddings F̃ →֒ U∨
Ỹ

→֒ OỸ (H)⊕2, we see that the line bundle F̃∨(H) has global sections. This line

bundle is nontrivial, because H•(Ỹ ,U∨
Ỹ
(−H)) = 0 by construction, hence by Proposition 2.6(ii) we have

c1(F̃
∨(H)) = aE + b(H − E), a, b ≥ 0, (a, b) 6= (0, 0).

It follows that c1(F) = H − aE − b(H − E), hence c1(F) ≤ H − E or c1(F) ≤ H − (H − E) = E. Now

using (11) we see that the slope of F̃ with respect to 2H −E is bounded from above by the maximum of

(H − E) · (2H − E)2 = d+ 1 and E · (2H − E)2 = 2d.

On the other hand, the slope of U∨
Ỹ
is equal to

1
2 (2H − E)3 = 2d+ 1.

It follows that the slope of F̃ is strictly less than the slope of U∨
Ỹ
, hence the quadratic term in the

reduced Hilbert polynomial of π∗F̃ is less than the quadratic term in the reduced Hilbert polynomial

of π∗(U
∨
Ỹ
). But the sheaves F and π∗F̃ are isomorphic away from the point x0, hence their reduced

Hilbert polynomials agree up to a constant, and hence the reduced Hilbert polynomial of F is less than

the reduced Hilbert polynomial of π∗(U
∨
Ỹ
). Therefore, π∗(U

∨
Ỹ
) is stable. �

Remark 2.13. Note that in the case d = 1 the bundle UỸ depends on the choice of a ruling of E.

3. Derived categories

In §2 we introduced the bridge construction of the 1-nodal prime Fano threefold X from a del Pezzo

threefold Y with some extra data as in Setup 2.2. In this section we relate the component BY of the

derived category of Y , defined in (2), and the components AXb
of smoothings Xb of X, defined in (1).

We start with a remark about the case d = 1. Recall that in this case Y is singular, hence the

category BY defined in (2) is not proper. On the other hand, Ỹ is a resolution of singularities of Y , so

one can find a smooth and proper replacement for BY inside Db(Ỹ ). We do this in the next lemma.

In contrast to Lemma 2.12, it is crucial here to assume that Y is 1-nodal, because in the cuspidal case

the sheaf OE(F ) is not exceptional; in fact, in this case Ext•(OE(F ),OE(F )) ∼= k⊕ k[−1]⊕ k[−2] (where

we consider OE(F ) as an object of Db(Ỹ )).

Lemma 3.1. Let (Y, F ) be as in Setup 2.2(b) and Y is 1-nodal, so that F is a ruling of the exceptional

divisor E of the blowup Ỹ = Bly0(Y ) at the node y0 ∈ Y . Then there is a semiorthogonal decomposition

(22) Db(Ỹ ) = 〈B̃Y ,OỸ ,OỸ (H),OE ,OE(F )〉,

where B̃Y is a smooth and proper triangulated category.

Proof. We apply [KS23, Theorem 5.8] (see also [CGL+22, Theorem 1.1] for a slightly different treatment

or [Kuz08, §4] for a general approach). Using [KS23, (43)] we obtain a semiorthogonal decomposition

Db(Ỹ ) = 〈OE(E),OE(E + F ), D̃Y 〉,

where the category D̃Y = {F ∈ Db(Ỹ ) | F|E ∈ 〈OE(−F ),OE〉} is smooth and proper and contains the

image of the fully faithful functor σ∗ : Dperf(Y ) → Db(Ỹ ). Mutating the objects OE(E) and OE(E+F ) to
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the right of D̃Y and using the fact that −KỸ = 2H−E restricts to E as −E, we obtain a semiorthogonal

decomposition

Db(Ỹ ) = 〈D̃Y ,OE ,OE(F )〉.

As σ∗ is fully faithful, the pair (OY ,OY (H)) from (2) gives rise to the exceptional pair (OỸ ,OỸ (H)) in D̃Y

and therefore to the semiorthogonal decomposition (22) defining the subcategory B̃Y . It is admissible in

the derived category of a smooth and proper variety Ỹ , hence it is a smooth and proper category. �

Remark 3.2. One can make a relation between the categories B̃Y and BY more precise; in fact, us-

ing the techniques developed in [KS23] and [KS22] one can check that the restrictions of the func-

tors σ∗ : D
b(Ỹ ) → Db(Y ) and σ∗ : Dperf(Y ) → Db(Ỹ ) give functors

σ∗ : B̃Y → BY and σ∗ : BY ∩Dperf(Y ) → B̃Y

such that σ∗ is a crepant categorical contraction and (B̃Y , σ
∗, σ∗) is a crepant categorical resolution of BY .

For convenience, in the case where 2 ≤ d ≤ 5 we will write

(23) B̃Y := σ∗(BY ) ⊂ Db(Ỹ ).

Thus, in all cases B̃Y ⊂ Db(Ỹ ) is a smooth and proper admissible subcategory, and when d ≥ 2 the

functors σ∗ : B̃Y → BY and σ∗ : BY → B̃Y are equivalences.

In the following crucial proposition we show that the bundle UỸ constructed in Lemma 2.12 is a

pullback of a Mukai bundle UX on X (as defined in Definition 1.2) and construct a semiorthogonal

decomposition of Db(X) containing B̃Y as one of components.

Recall that an object P ∈ Db(X) is called a P∞,2-object if Ext•(P,P) = k[θ] with deg(θ) = 2, see [KS23,

Definition 2.6 and Remark 2.7].

Proposition 3.3. Assume Setup 2.2 and if d = 1 assume that Y is 1-nodal. Let X be the 1-nodal Fano

threefold constructed in Proposition 2.6 and let UỸ be the vector bundle constructed in Lemma 2.12. Then

(24) UỸ
∼= π∗UX ,

where UX
∼= π∗UỸ is a Mukai bundle on X, and there is a semiorthogonal decomposition

(25) Db(X) = 〈PX , ĀX ,OX ,U
∨
X〉,

where the category PX is generated by the P∞,2-object PX := π∗(OỸ (E −H)) and

ĀX ≃ B̃Y .

In particular, the category ĀX is smooth and proper.

Proof. If d ≥ 2 we apply the blowup formula for σ : Ỹ = BlC(Y ) → Y ; combining it with (2) and (23)

and the standard semiorthogonal decomposition Db(C) = 〈OC(d − 1),OC(d)〉 for the curve C ∼= P1, we

obtain the semiorthogonal decomposition:

(26) Db(Ỹ ) = 〈B̃Y ,OỸ ,OỸ (H),OE((d− 1)F ),OE(dF )〉,

where B̃Y is defined in (23) and F stands for the class of a fiber of E → C. If d = 1 we use the

semiorthogonal decomposition (22); it has exactly the same form as (26).

Next, we modify (26) by a sequence of mutations.

Step 1. First, mutate the last two objects to the left of OỸ (H). The computation similar to that of

Lemma 2.12 shows that Ext•(OỸ (H),OE((d − 1)F )) = k, hence the mutation of OE((d − 1)F ) is given

by the exact sequence

0 → OỸ (H − E) → OỸ (H) → OE((d− 1)F ) → 0;
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in particular, the result of the mutation is the exceptional bundle OỸ (H −E). The mutation of OỸ (dF )

is described in Lemma 2.12 and the result is U∨
Ỹ
. Thus, we obtain the semiorthogonal decomposition

(27) Db(Ỹ ) = 〈B̃Y ,OỸ ,OỸ (H − E),U∨
Ỹ
,OỸ (H)〉.

Step 2. Next, mutate OỸ (H − E) to the left of OỸ . Twisting (12) by OỸ (H − E) and using (9) we

obtain an exact sequence

(28) 0 → OỸ (E −H) → O
⊕2
Ỹ

→ OỸ (H − E) → OL̃(−1) → 0.

By (27) the pair (OỸ ,OỸ (H−E)) is exceptional, hence H•(Ỹ ,OỸ (E−H)) = 0, and so it follows from (28)

that H•(Ỹ ,OỸ (H − E)) = k2 and that the middle arrow in (28) is the evaluation morphism. Therefore,

the result of the mutation is the cone of the middle arrow in (28), and it also follows that the same object

can be represented as the cone of the morphism OL̃(−1)[−1] → OỸ (E−H)[1] associated with (28), which

itself is considered as Yoneda extension.

On the other hand, Serre duality gives

Ext•(OỸ (H − E),OỸ (E −H)) = H•(Ỹ ,OỸ (2E − 2H)) ∼= H•(Ỹ ,OỸ (−E)[3])∨ = 0.

Combining this with the vanishing H•(Ỹ ,OỸ (E −H)) = 0 proved above, we deduce from (28) that

Ext•(OL̃(−1),OỸ (E −H)) ∼= Ext•(OỸ (E −H)[2],OỸ (E −H)) ∼= k[−2]

and that the morphism OL̃(−1)[−1] → OỸ (E −H)[1] associated with (28) is the evaluation morphism.

Since by (10) the object OL̃(−1) is spherical, we finally conclude that the result of the mutation (up to

twist) is the spherical twist TO
L̃
(−1)(OỸ (E −H)) and we have the triangle

(29) OL̃(−1)[−2] → OỸ (E −H) → TO
L̃
(−1)(OỸ (E −H)).

Thus, we obtain the semiorthogonal decomposition

Db(Ỹ ) = 〈B̃Y ,TO
L̃
(−1)(OỸ (E −H)),OỸ ,U

∨
Ỹ
,OỸ (H)〉.

Step 3. Next, we mutate OỸ (H) to the far left. Since KỸ = E − 2H, we obtain

Db(Ỹ ) = 〈OỸ (E −H), B̃Y ,TO
L̃
(−1)(OỸ (E −H)),OỸ ,U

∨
Ỹ
〉.

Step 4. Finally, we mutate B̃Y to the right of TO
L̃
(−1)(OỸ (E −H)):

(30) Db(Ỹ ) = 〈OỸ (E −H),TO
L̃
(−1)(OỸ (E −H)),RTO

L̃
(−1)(OỸ

(E−H))(B̃Y ),OỸ ,U
∨
Ỹ
〉,

where RTO
L̃
(−1)(OỸ

(E−H)) is the right mutation functor through the subcategory TO
L̃
(−1)(OỸ (E −H)).

Now we check that (30) induces a decomposition of Db(X). Indeed, the functor π∗ : D
b(Ỹ ) → Db(X)

is a Verdier localization with respect to the subcategory generated by the sheaf OL̃(−1) (this, e.g., follows

from [KS23, Theorem 5.8 and Corollary 5.11]), i.e.,

Db(X) ≃ Db(Ỹ )/OL̃(−1).

By [KS22, Propositions 5.5 and 6.1] the functors π∗ and π∗ induce an equivalence between the left

orthogonal of OL̃(−1) in Db(Ỹ ) and Dperf(X). By (29) and (30) the bundle U∨
Ỹ

belongs to this left

orthogonal, hence U∨
Ỹ
is the pullback of a perfect complex U∨

X on X. Since pullback of perfect complexes

commutes with dualization, we obtain (24), and then the projection formula implies UX ∼= π∗UỸ .

It is clear that UX is a vector bundle, rk(UX) = 2, and c1(UX) = KX . Moreover, UX is (−KX)-stable

by Lemma 2.12, and it is acyclic and exceptional because π∗ is fully faithful and the pair (OỸ ,U
∨
Ỹ
) is

exceptional by (30). Thus, UX is a Mukai bundle on X.
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Similarly, RTO
L̃
(−1)(OỸ

(E−H))(B̃Y ) is left orthogonal to OL̃(−1), hence π∗ and π
∗ induce an equivalence

RTO
L̃
(−1)(OỸ

(E−H))(B̃Y ) ≃ ĀX

with a subcategory ĀX ⊂ Dperf(X) ⊂ Db(X), which is smooth and proper because B̃Y is. Finally,

applying [KS23, Proposition 4.1] we obtain the required decomposition (25), where

PX := 〈OỸ (E −H),TO
L̃
(−1)(OỸ (E −H))〉/OL̃(−1).

and using [KS23, Theorem 6.17], we deduce that PX is generated by the object

(31) PX := π∗(OỸ (E −H)),

which is a P∞,2-object. �

Remark 3.4. For future reference we note that the equivalence B̃Y ≃ ĀX is given by the functors

(32) π∗ ◦RTO
L̃
(−1)(OỸ

(E−H)) : B̃Y → ĀX and LTO
L̃
(−1)(OỸ

(E−H)) ◦ π
∗ : ĀX → B̃Y ,

where LTO
L̃
(−1)(OỸ

(E−H)) is the left mutation functor, and when d ≥ 2 the equivalence BY ≃ ĀX is given

by their compositions with σ∗ and σ∗, respectively.

Remark 3.5. When X is a smooth prime Fano threefold of genus 2d+2 and UX is a Mukai bundle, then

the dual U∨
X is globally generated and induces an embedding X →֒ Gr(2, d+3). For d ≤ 4 this leads to a

nice description of X which will be recalled in §4. One can check that for 1-nodal threefolds constructed

in Proposition 2.6 the dual Mukai bundle U∨
X constructed in Proposition 3.3 is globally generated if and

only if d ≥ 3; it would be interesting to understand how the description of the image of X in Gr(2, d+3)

differs from the smooth case.

All the components of the semiorthogonal decomposition (25) constructed in Proposition 3.3 except

for PX are smooth and proper; in terminology of [KS23] this means that PX absorbs singularities of X

(see [KS23, Definition 1.1]). An important property of a subcategory generated by a P∞,2-object, called

the universal deformation absorption property in [KS23, Definition 1.4], is that it disappears in any

smoothing of the variety, while its orthogonal complement deforms. Using this property we prove the

main result of this section, a more precise version of Theorem 1.4 from the Introduction.

Recall that a smoothing of X is a flat projective morphism f : X → B to a smooth pointed curve (B, o)

such that the total space X is smooth, the central fiber Xo is isomorphic toX, and f is smooth over B\{o}.

Note also that by [Nam97] any nodal Fano threefold X admits a smoothing such that for each b 6= o the

fiber Xb is a smooth prime Fano threefold with g(Xb) = g(X), see Theorem A.9 for details.

Theorem 3.6. Assume Setup 2.2 and if d = 1 assume that Y is 1-nodal. Let X be the 1-nodal Fano

threefold constructed in Proposition 2.6 and let UX and PX be the Mukai bundle and the P∞,2-object

on X constructed in Proposition 3.3.

For any smoothing f : X → B of X after appropriate étale base change there is a vector bundle UX

on X such that

• UX|X ∼= UX ,

• UX|Xb
is a Mukai bundle for all b 6= o in B, and

• the object ι∗PX ∈ Db(X) is exceptional, where ι : X →֒ X is the embedding of the central fiber.

Moreover, there is a B-linear semiorthogonal decomposition

(33) Db(X) = 〈ι∗PX , ĀX, f
∗Db(B), f∗Db(B)⊗ U∨

X〉,

where ĀX is an admissible B-linear subcategory in Db(X) which is smooth and proper over B. Finally,

(ĀX)o ≃ B̃Y and (ĀX)b ≃ AXb
for b 6= o,
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where B̃Y is defined in (22) for d = 1 and in (23) for d ≥ 2, and AXb
is defined in (1).

Proof. To construct a vector bundle UX we consider the relative moduli space of stable vector bundles on

the fibers of X/B. Since UX is stable (by Proposition 3.3 and Definition 1.2), it corresponds to a point

of this relative moduli space over o ∈ B, and by [HL10a, Corollary 4.5.2] the property Ext•(UX ,UX) = k

implies that the moduli space is étale over B at the point [UX ]. Therefore, after a base change from B to

a small étale neighborhood of o ∈ B, we will have a section of this relative moduli space, i.e., a fiberwise

stable vector bundle UX of rank 2 on X which restricts to UX on the central fiber.

Since the Picard sheaf of X/B is locally constant by Corollary A.8 and c1(UX) = KX , it follows

that c1(UX|Xb
) = KXb

for all b ∈ B. Semicontinuity of cohomology implies that, after appropriate

shrinking of B, we may assume that for each b ∈ B the bundle UX|Xb
is acyclic and exceptional; therefore,

it is a Mukai bundle.

The object ι∗PX is exceptional by [KS23, Theorem 1.8]. The sheaves OX and U∨
X

form a relative

exceptional pair, and (25) implies that they are semiorthogonal to ι∗PX . Therefore, together they induce

the required semiorthogonal decomposition (33).

Since ι∗PX is supported on the central fiber of f : X → B the base change of the subcategory it

generates along the embedding b →֒ B for b 6= o is zero. Therefore, such a base change results in a

semiorthogonal decomposition

Db(Xb) = 〈(ĀX)b,OXb
,U∨

Xb
〉.

Comparing it with (1) we conclude that (ĀX)b = AXb
.

On the other hand, using [KS23, Theorem 1.5] we obtain a semiorthogonal decomposition

Db(Xo) = 〈PX , (ĀX)o,OX ,U
∨
X〉

and comparing it with (25), we conclude that (ĀX)o = ĀX . Finally, Proposition 3.3 provides an equiva-

lence (ĀX)o ≃ BY .

Since ĀXb
is smooth and proper for all points b ∈ B (including b = o), the category ĀX is smooth and

proper over B by [Kuz22b, Theorem 2.10]. �

Informally, the category ĀX provides an interpolation between the component AXb
⊂ Db(Xb) and the

component BY ⊂ Db(Y ) if d ≥ 2 or its categorical resolution B̃Y ⊂ Db(Ỹ ), if d = 1.

4. Moduli stacks

In this section we study the stacks MFYd
, MFXg

, and MFMXg
of del Pezzo threefolds, prime Fano

threefolds, and Fano–Mukai pairs, respectively, introduced in Definitions 1.1 and 1.3 in the Introduction.

To start with, we discuss some properties of Mukai bundles, see Definition 1.2. We denote by M(X; p)

the coarse moduli space of (−KX)-semistable sheaves onX with Hilbert polynomial p(t) ∈ Q[t] (computed

with respect to −KX); this is a projective scheme, see, e.g., [HL10a, Theorem 4.3.4].

Lemma 4.1. Let X be a nodal prime Fano threefold of genus g ∈ {4, 6, 8, 10, 12}. For any Mukai

bundle U on X one has

(34) c2(U) ·KX = − g+2
2 and pU(t) = pMu(t) :=

2g−2
3 t3 + 16−g

6 t.

Moreover, the subscheme Mu(X) ⊂ M(X; pMu) corresponding to Mukai bundles is an open subscheme.

Finally, Mu(X) is a finite reduced scheme.

Proof. Assume U is a Mukai bundle on a nodal prime Fano threefold X of genus g ∈ {4, 6, 8, 10, 12}.

Let S ⊂ X be a general anticanonical divisor; then S is a smooth K3 surface (when X is smooth, this is
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a result of Shokurov [Sho79, Theorem 1.2] and Reid [Rei83, Theorem 0.5], and in the nodal case we can

use [Mel99, Theorem 1] because g ≥ 4). Consider the standard exact sequence

0 → U∨ ⊗U⊗ ωX → U∨ ⊗ U → U|∨S ⊗ U|S → 0.

Using exceptionality of U and Serre duality on X, we deduce that

(35) Ext•(U|S ,U|S) = H•(S,U|∨S ⊗ U|S) = k⊕ k[−2],

hence χ(U|S ,U|S) = 2. Since c1(U) = KX by Definition 1.2, we have c1(U|S)
2 = K2

X · (−KX) = 2g − 2,

hence the Riemann–Roch theorem on S applied to U|∨S ⊗ U|S gives

c2(U|S) =
g+2
2 and pU|S(t) = (2g − 2)(t2 − t) + g+4

2 .

Since pU|S (t) = pU(t) − pU(t− 1), these formulas imply (34) up to constant term of pU(t). On the other

hand, the constant term must be zero because U is acyclic by Definition 1.2.

What we have proved so far implies that Mu(X) ⊂ M(X; pMu). This is an open embedding because

stability and local freeness of U and the conditions H•(X,U) = 0 and Ext•(U,U) = k defining Mu(X) are

open properties. Furthermore, first order deformations of U are classified by the space Ext1(U,U) and

the obstruction space is Ext2(U,U) (see, e.g., [HL10a, §2.A.6 and Corollary 4.5.2]); since U is exceptional,

both spaces vanish, hence both schemes Mu(X) and M(X; pMu) are smooth and zero dimensional at [U].

This means that Mu(X) is a union of reduced isolated points of M(X; pMu), and since M(X; pMu) is

projective, it follows that Mu(X) is a finite reduced scheme. �

In the next proposition we identify the scheme Mu(X) in the cases where X is smooth. Recall that

a smooth prime Fano threefold of genus 4 is a complete intersection of a quadric and a cubic in P5;

moreover, the quadric passing through X is unique (and thus canonically defined by X) and has corank 0

or 1. We denote this quadric by Q(X).

Proposition 4.2. Let X be a smooth prime Fano threefold of genus g ∈ {4, 6, 8, 10, 12}. Then

Mu(X) ∼=





Spec(k), if g ∈ {6, 8, 10, 12},

Spec(k) ⊔ Spec(k), if g = 4 and Q(X) is smooth,

∅, if g = 4 and Q(X) is singular.

Proof. If g ∈ {6, 8, 10, 12} this is [BKM24a, Theorem 1.1], see also [KPS18, Theorem B.1.1, Proposi-

tion B.1.5, and Lemma B.1.9].

Now let g = 4. First, assume the quadric Q(X) is smooth. Let S be one of the two spinor bundles

on Q(X) (see [Ott88]). Then the restriction S|X is a vector bundle of rank 2 with c1(S|X) = KX . Using

the vanishing of cohomology of S and S(−3) (see [Ott88, Theorems 2.1 and 2.3]) and the Koszul resolution

0 → S(−3) → S → i∗(S|X ) → 0,

where i : X →֒ Q(X) is the embedding, we deduce that S|X is acyclic. Similarly, using the vanishing

of Ext•(S, S(−3)) and exceptionality of S on Q(X), we deduce that Ext•(S, i∗(S|X )) ∼= k, which by

adjunction imples that S|X is exceptional. Finally, since S|X has rank 2 and c1(S|X ) = KX and X is

smooth of Picard rank 1, stability of S|X follows from the vanishing of H•(X, S|X ) proved above. We

conclude that S|X is a Mukai bundle.

Similarly, the restriction S′|X of the other spinor bundle to X is another Mukai bundle, not isomorphic

to S|X . Indeed, one has Ext•(S′, S) = 0 and Ext•(S′, S(−3)) = k[−3], therefore Ext•(S′|X , S|X) = k[−2].

On the other hand, the argument of [KPS18, Proposition B.1.5] shows that if U is a Mukai bundle on X

then either U ∼= S|X or Ext1(S|X(1),U) 6= 0. If we assume the second then applying the functor Ext•(−,U)
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to the natural exact sequence (restricted from Q(X), see [Ott88, Theorem 2.8])

0 → S′|X → O
⊕4
X → S|X(1) → 0

and using the acyclicity of U we deduce that Hom(S′|X ,U) 6= 0. Since S′|X and U are stable bundles

with equal rank and first Chern class, they are isomorphic. This proves that either U ∼= S|X or U ∼= S′|X ,

hence the moduli stack Mu(X) has exactly two points: [S|X ] and [S′|X ].

Now assume that the quadric Q(X) is singular, i.e., Q(X) ∼= Cone(Q̄) is the cone over a smooth quadric

threefold Q̄. Since X is smooth, the cubic hypersurface cutting out X ⊂ Q(X) does not pass through

the vertex of the cone, hence the projection out of the vertex defines a regular triple covering X → Q̄.

Let S|X be the pullback to X of the unique spinor bundle of Q̄. It is stable, acyclic, but not exceptional;

in fact it is easy to see that

Ext•(S|X , S|X) ∼= k⊕ k[−1]⊕ k[−2].

Moreover, using the exact sequence (pulled back from Q̄, see [Ott88, Theorem 2.8])

0 → S|X → O⊕4
X → S|X(1) → 0

and the same argument as above, one can check that any Mukai bundle U would have been isomorphic

to S|X , but as S|X is not a Mukai bundle, we conclude that Mu(X) = ∅. �

Remark 4.3. In [BKM24a, BKM24b] the existence and uniqueness of Mukai bundles is proved for any

locally factorial Fano threefolds of genus g ≥ 6 with terminal Gorenstein singularities.

Before we pass to the stacks MFYd
, MFXg

, and MFMXg
, we discuss a simple but instructive example

of the moduli stacks MQn ⊂ MQn of smooth and nodal n-dimensional quadrics (with the definition

analogous to Definition 1.1) and the moduli stack MQSn of smooth quadrics endowed with a spinor

bundle (with the definition analogous to Definition 1.3). We denote by ξQ : MQSn → MQn the morphism

of stacks that forgets the spinor bundle.

Lemma 4.4. The stacks MQn, MQn, and MQSn are smooth irreducible Artin stacks of finite type over k,

the substack MQn ⊂ MQn is open and dense, and the complement MQ
(1)
n := MQn \MQn is a Cartier

divisor. Moreover, if n is even the morphism ξQ : MQSn → MQn is a finite étale covering of degree 2,

branched over MQ
(1)
n .

Proof. Let Vn+2 denote a vector space of dimension n+ 2. Consider the open subsets

U0
n ⊂ U≤1

n ⊂ P(Sym2 V ∨
n+2)

parameterizing n-dimensional quadrics in P(Vn+2) of corank 0 (i.e., smooth) and corank ≤ 1 (i.e., nodal),

respectively. Note that the complement P(Sym2 V ∨
n+2) \ U

0
n is a Cartier divisor of degree n + 2, and its

intersection U≤1
n \U0

n with U≤1
n is smooth. If n is even, we denote by Û≤1

n → U≤1
n and Û0

n → U0
n the flat

double covering branched over U≤1
n \ U0

n and its restriction, which is étale over U0
n. Then it is easy to

prove the following global quotient representations

MQn
∼= U0

n/PGL(Vn+2), MQn
∼= U≤1

n /PGL(Vn+2) and MQSn
∼= Û0

n/PGL(Vn+2).

Thus, U≤1
n , U0

n, and Û0
n are smooth irreducible atlases for MQn, MQn, and MQSn, respectively, and all

statements of the lemma follow easily. �

Now we finally consider the moduli stacks of Fano threefolds. When discussing the stacks MFXg
of

prime Fano threefolds we concentrate on the cases where g ∈ {4, 6, 8, 10, 12} that are crucial for this

paper, although the same arguments can be also applied for g ∈ {2, 3, 5, 7, 9}.
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Recall from [IP99, §12.2], [Muk92, §2], or [BKM24b, Theorem 1.1] the following descriptions of smooth

prime Fano threefolds X of genus g ∈ {4, 6, 8, 10, 12} as zero loci of regular global sections of vector

bundles:

• if g = 12 then X is the zero locus of a section of the vector bundle (∧2U∨
3 )

⊕3 on Gr(3, 7),

• if g = 10 then X is the zero locus of a section of the vector bundle U⊥
2 (1)⊕ O(1)⊕2 on Gr(2, 7),

• if g = 8 then X is the zero locus of a section of the vector bundle O(1)⊕5 on Gr(2, 6),

• if g = 6 then X is the zero locus of a section of the vector bundle O(1)⊕3 ⊕ O(2) on CGr(2, 5),

• if g = 4 then X is the zero locus of a section of the vector bundle O(2) ⊕ O(3) on P5,

where Uk stands for the tautological vector bundle of rank k on the Grassmannian Gr(k, n), U⊥
k is the

dual of the corresponding quotient bundle, and CGr(2, 5) is the cone over Gr(2, 5). The stacks MFXg
,

MFYd
, and MFMXg

were defined in Definitions 1.1 and 1.3; the 1-nodal loci are defined in §A.1.

Theorem 4.5. The stacks MFXg
and MFMXg

for g ∈ {4, 6, 8, 10, 12} and MFYd
for d ∈ {1, 2, 3, 4, 5} are

smooth irreducible algebraic stacks of finite type over k, their substacks

MFXg
⊂ MFXg

, MFMXg
⊂ MFMXg

, and MFYd
⊂ MFYd

are open and dense, and MFXg
\MFXg

, MFMXg
\MFMXg

, and MFYd
\MFYd

are Cartier divisors, smooth

along the 1-nodal loci MF
(1)
Xg

, MFM
(1)
Xg

, and MF
(1)
Yd

, respectively.

Moreover, the forgetful morphism ξ : MFMXg
→ MFXg

is étale, separated, and representable, and its

fiber over [X] ∈ MFXg
is the moduli space Mu(X) of Mukai bundles on X. More precisely,

• if g ≥ 6 then ξ is an open embedding and induces an isomorphism MFMXg

ξ|MFMXg
−−−−−−−→∼ MFXg

, and

• if g = 4 then ξ|MFMX4
is induced by the double covering ξQ, i.e., there is a Cartesian diagram

(36)

MFMX4
//

ξ|MFMX4
��

MQS4

ξQ
��

MF◦
X4

// MQ4,

where MF◦
X4

⊂ MFX4 is the open substack parameterizing smooth X with smooth quadric Q(X),

and the bottom horizontal arrow is defined by [X] 7→ [Q(X)].

Proof. Let M be either of the stacks MFXg
or MFYd

and let M be the corresponding stack MFXg
or MFYd

.

By [JL18, Lemmas 2.4 and 2.5] the stack M is a smooth algebraic stacks locally of finite type over k (it

is a union of connected components of the stack Fano considered in [JL18]). Moreover, M is irreducible

of finite type because the corresponding Fano varieties have uniform descriptions listed just before the

theorem (in the case where M = MFXg
) and at the beginning of §2 (in the case where M = MFYd

); indeed,

we see that in each case an open subset of an appropriate vector space (of global sections) surjects onto M.

Note that smoothness of Fano varieties is only used in [JL18, §2] to deduce unobstructedness of their

deformations in the proof of [JL18, Lemma 2.5]. However, nodal (or even terminal Gorenstein) Fano

threefolds are also unobstructed by [Nam97, Proposition 3], hence the same argument proves that the

stack M is a smooth algebraic stacks of finite type over k (for finiteness just note that terminal Gorenstein

Fano varieties form a bounded family by [Kol85, Proposition 2.6.4]). Furthermore, M is dense in M

because any nodal Fano variety is smoothable by [Nam97, Proposition 4]; therefore irreducibility of M

implies irreducibility of M, and since M is smooth, also its integrality.

Next, we prove that the boundary M \M is a Cartier divisor in M. First, the argument of [Nam97,

Theorem 11] shows that any nodal Fano variety has a partial smoothing which is 1-nodal; this means

that the boundary M \M is equal to the closure of the 1-nodal locus M
(1)

⊂ M \M. On the other hand,
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as the property of being Cartier divisor is local on the base in the smooth topology, Corollary A.5 proves

that M
(1)

is a Cartier divisor in M
≤1

, the substack of threefolds with at most one node. Therefore, M \M

is a Weil divisor in M, and since M is smooth, M \M is a Cartier divisor in M. Note also that for any

point [X] in the 1-nodal locus M
(1)

there is a smoothing X/B of X with smooth X (see Theorem A.9),

hence by Lemma A.4 the corresponding curve B → M intersects the divisor M
(1)

transversely at [X],

hence the divisor is smooth at [X].

Now consider the canonical morphism of stacks ξ : MFMXg
→ MFXg

. Let (X,UX) be a k-point

of MFMXg
. By standard deformation theory (see [HL10a, Corollary 4.5.2]) the relative tangent space to

deformations of the pair (X,UX ) over MFXg
is Ext1(UX ,UX) and the obstruction space is Ext2(UX ,UX).

Since UX is exceptional, both spaces vanish, hence the morphism ξ is étale.

Since MFXg
is smooth, we deduce that MFMXg

is also smooth. Since the preimage of a Cartier divisor

under an étale map is a Cartier divisor, we conclude that MFMXg
\MFMXg

is a Cartier divisor in MFMXg
,

and since the complement of a Cartier divisor is dense, we conclude that MFMXg
is dense in MFMXg

. It

also follows that the 1-nodal locus MFM
(1)
Xg

is smooth.

Now consider the fiber of ξ over a k-point [X]. By Definition 1.3 this is the fibered category over (Sch /k)

whose fiber over a scheme S is the groupoid — or rather the set — of global sections U ∈ VBX×S/S(S)

such that Us is a Mukai bundle on X for every geometric point s ∈ S. By definition of the étale sheaf VB

the datum of U is the same as a collection of vector bundles on X × Si for an étale covering {Si} → S

whose pullbacks are isomorphic on X × (Si ×S Sj). Obviously, this fibered category is equivalent to

the étale sheafification of the usual functor of semistable sheaves as in [HL10a, §4.1]. Finally, using the

condition that Us are Mukai bundles and Lemma 4.1, we conclude that ξ−1([X]) ∼= Mu(X).

The same argument combined with a relative version of Lemma 4.1 shows that ξ factors through

an open embedding into a relative moduli space of semistable sheaves, which is projective over MFXg
.

Therefore, ξ is separated and representable.

Now assume g ≥ 6. If X is smooth then ξ−1([X]) ∼= Spec(k) by Proposition 4.2. Since ξ is étale and

separated, and MFXg
is dense in MFXg

, it follows that every nonempty fiber of ξ is a point. Since the

property of being open immersion is local on the base in the smooth (and even in the fpqc) topology

(see [Sta24, Lemma 02L3]), it follows that ξ is an open embedding; in particular, it follows that MFMXg

is irreducible.

Finally, assume g = 4. Given an S-point f : X → S of MF◦
X4

we consider the relative anticanonical

embedding X →֒ PS(V), where V := (f∗ω
−1
X )∨. It is easy to see that there is a unique flat family of

quadrics Q(X) ⊂ PS(V) containing X, and this family defines an S-point of MQ4. This construction is

functorial in S, hence defines a morphism of stacks MF◦
X4

→ MQ4. The argument of Proposition 4.2

then proves that MFMX4
∼= MQS4×MQ4

MF◦
X4
, i.e., that (36) is a Cartesian diagram. It also follows

that MFMX4 is an open substack in a projective space bundle over MQS4, and since MQS4 is irreducible

(by Lemma 4.4), MFMX4 , and hence also MFMX4 , is irreducible. �

Remark 4.6. If g ≤ 10 and d ≤ 4 the stacks MFXg
, MFMXg

, and MFYd
are Deligne–Mumford stacks;

this follows from finiteness of the automorphisms groups of the corresponding Fano threefolds ([KPS18,

Theorem 1.1.2]) by the argument of [KP18, Proposition A.2].

5. A boundary divisor

In this section we show that Fano threefolds obtained in §2 by the bridge construction form a connected

component of the open substack MFM
(1)
Xg

of the boundary divisor MFM
≥1
Xg

= MFMXg
\MFMXg

. We also

discuss generalizations of Theorem 3.6 for families of nodal Fano threefolds over arbitrary bases.
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We need to define yet another stack. Note that for any family of 1-nodal threefolds Y → S, if y0 is

the nodal S-point of Y then the blowup Bly0(Y) is smooth over S and its exceptional divisor E → S is a

smooth family of quadric surfaces, see Lemma A.6.

Definition 5.1. For each d ∈ {1, 2, 3, 4, 5} we define the stack MFCYd
as the fibered category over (Sch /k)

whose fiber over a scheme S is the groupoid of:

• (for d ≥ 2) pairs (Y → S,C), where Y → S is an S-point of MFYd
, i.e., a family of smooth del

Pezzo threefolds of degree d, and C ⊂ Y is a family of smooth rational curves of degree d− 1;

• (for d = 1) pairs (Y → S,F), where Y → S is an S-point of MF
(1)
Y1

, i.e., a family of 1-nodal del

Pezzo threefolds of degree 1, and F ∈ PicE/S(S) is a global section of the relative Picard sheaf

for the exceptional divisor E of the blowup Bly0(Y), where y0 is the nodal S-point of Y, such

that for each geometric point s ∈ S the divisor class Fs ∈ Pic(Es) is a ruling of Es ∼= P1 × P1.

Morphisms in MFCYd
are defined as morphisms in MFYd

compatible with C or F in the obvious way.

Lemma 5.2. For all d ∈ {1, 2, 3, 4, 5} the stack MFCYd
is smooth and connected.

Proof. For d ≥ 3 the stack MFCYd
is an open substack in the relative Hilbert scheme of rational curves of

degree d− 1 over the stack MFYd
of del Pezzo threefolds of degree d. Its connectedness and smoothness

follow from Theorem 4.5 and Lemma 2.10.

Let d = 2. Since Lemma 2.10 fails for ramification lines, see Remark 2.11, we argue differently.

Every smooth del Pezzo threefold Y of degree 2 is a quartic hypersurface in the weighted projective

space P(1, 1, 1, 1, 2) (see, e.g., [KP23a, Theorem 1.2(ii)]), which can be thought of as a cone in P10 over the

second Veronese embedding P3 →֒ P9. The Hilbert scheme F◦
1(P(1, 1, 1, 1, 2)) of curves C ⊂ P(1, 1, 1, 1, 2)

of degree 1 with respect to the generator of the class group Cl(P(1, 1, 1, 1, 2)) (i.e., of degree 2 in the

ambient P10) not passing through the singular point of the cone has the following structure: the projection

from the vertex of the cone maps any such curve C isomorphically onto a line in P3 (which under the

second Veronese embedding becomes a conic in P9), the preimage of this line in P(1, 1, 1, 1, 2) is P(1, 1, 2),

i.e., a quadratic cone in P3 ⊂ P10, and the curve C is a hyperplane section of this quadratic cone. Thus,

the Hilbert scheme F◦
1(P(1, 1, 1, 1, 2)) is an open subscheme in a projective space bundle over Gr(2, 4),

hence it is smooth and connected. Furthermore, the Hilbert scheme of pairs C ⊂ Y is an open subscheme

in a projective space bundle over F◦
1(P(1, 1, 1, 1, 2)), hence it is also smooth and connected. Finally, the

moduli stack MFCY2 is the quotient stack of this smooth and connected scheme by the automorphism

group of the weighted projective space, hence it is smooth and connected.

Finally, let d = 1. Every 1-nodal del Pezzo threefold Y of degree 1 is a sextic hypersurface in the

weighted projective space P(1, 1, 1, 2, 3) (see, e.g., [KP23a, Theorem 1.2(i)]) and the position of the

node y0 ∈ Y is constrained to the complement of the line P(2, 3) ⊂ P(1, 1, 1, 2, 3), (see, e.g., [KP23a,

Proposition 2.2(ii)]). Therefore, the Hilbert scheme of pairs y0 ∈ Y is an open subscheme in a projective

space bundle over P(1, 1, 1, 2, 3) \ P(2, 3), hence it is smooth and connected. The moduli stack MF
(1)
Y1

of

1-nodal del Pezzo threefolds of degree 1 is the quotient stack of this smooth and connected scheme by

the automorphism group of the weighted projective space, hence it is smooth and connected.

Furthermore, since the spinor bundles on a smooth quadric surface are the line bundles associated with

the rulings, the definition of the stack MFCY1 implies that there is a Cartesian diagram

(37)

MFCY1

ǫ̂
//

��

MQS2

ξQ

��

MF
(1)
Y1

ǫ
// MQ2,
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where ǫ takes a family Y → S of 1-nodal del Pezzo threefolds to the family of quadric surfaces E → S

where E is the exceptional divisor of Bly0(Y), and ξQ is the étale double covering defined in Lemma 4.4. It

follows that the left vertical arrow in (37) is finite étale of degree 2, hence the smoothness of MF
(1)
Y1

proved

above implies the smoothness of MFCY1 . It also follows that the morphism ǫ̂ : MFCY1 → MQS2 is a

quotient of an locally trivial fibration with smooth conected fibers by an algebraic group, and since MQS2
is connected by Lemma 4.4, the same is true for MFCY1 . �

Next, we discuss a universal version of the bridge construction from §2 and its inverse. To explain it

we need universal versions of the line bundles OY (H) and OE(F ) and the Mukai bundle UX used in §2.

A convenient notion to use here is that of a vector bundle on a family of varieties twisted by a Brauer

class pulled back from the base of the family, see [Kuz22a, §2.2] for a discussion of this notion.

Note that if X → S is a flat morphism of schemes, β ∈ Br(S) is a Brauer class, and E ∈ Coh(X,β) is

a β-twisted vector bundle on X, then there is an étale covering {Si} → S on which β becomes trivial,

hence the pullbacks of E to X ×S Si are untwisted vector bundles Ei such that for all i, j the pullbacks

of Ei and Ej to X×S Si×S Sj are isomorphic. Therefore, the collection {Ei} defines a global section of the

étale sheaf VBX/S . If this is the case we will say that the twisted bundle E represents the corresponding

global section of VBX/S , which we will abusively also denote E.

In the next lemma we show that some global sections of VB can be represented by twisted sheaves.

Lemma 5.3. Let d ∈ {1, 2, 3, 4, 5} and let S be a k-scheme.

(a) For any S-point Y → S of MFYd
there is a 2-torsion Brauer class βH ∈ Br(S) and a βH-twisted

line bundle OY(H) ∈ Coh(Y,βH) such that for any geometric point s ∈ S the restriction OY(H)|Ys

is the ample generator of Pic(Ys).

(b) For any S-point (Y → S,C) or (Y → S,F) of MFCYd
there is a 2-torsion Brauer class βF ∈ Br(S)

and a βF-twisted line bundle OE(F) ∈ Coh(E,βF) on the exceptional divisor E of Ỹ = BlC(Y)

or Ỹ = Bly0(Y) such that for any geometric point s ∈ S the restriction OE(F)|Es is the line bundle

corresponding to the class of a fiber of the map Es → Cs or to the chosen ruling of Es.

(c) For any S-point (X → S,UX) of MFMX2d+2
there is a 2-torsion Brauer class βU ∈ Br(S) and a

βU-twisted vector bundle UX ∈ Coh(X,βU) that represents the global section UX ∈ VBX/S(S).

Proof. We use [Kuz22a, Lemma 2.11] which is stated for smooth morphisms and line bundles, but the

second part of this lemma that we are applying here does not use the smoothness assumption, and besides,

the same argument works for any global section of VB whose fibers are simple sheaves.

(a) If Y → S is an S-point of MFYd
, the étale Picard sheaf PicY/S is constant of rank 1 by Corollary A.8,

hence there is a global section H ∈ PicY/S(S) that restricts to the ample generator of the Picard group

of each geometric fiber. By [Kuz22a, Lemma 2.11] it gives rise to a Brauer class βH and a twisted line

bundle as required. The index of Y/S is 2, hence βH is 2-torsion, see [Kuz22a, Corollary 2.17].

(b) If (Y → S,C) is an S-point of MFCYd
for d ≥ 2, then C → S is a P1-bundle. The argument of

part (a) allows us to construct a 2-torsion Brauer class on S and a twisted line bundle on C that restricts

to the ample generator of the Picard group of each geometric fiber; its pullback along E → C is then the

required twisted line bundle on E.

Similarly, if (Y → S,F) is an S-point of MFCY1 we just apply [Kuz22a, Lemma 2.11] to F ∈ PicE/S(S).

(c) Let (X → S,UX) be an S-point of MFMX2d+2
. Then arguing as in the second part of the proof

of [Kuz22a, Lemma 2.11] and using exceptionality of UX on the fibers of X/S we construct the Brauer

class βU and a βU-twisted vector bundle on X representing UX. The class βU is 2-torsion, because ∧2UX

is, on the one hand, β2
U
-twisted (by [Kuz22a, Lemma 2.13]), and on the other hand, it is untwisted,

because it is isomorphic to the canonical line bundle on each fiber. �
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Remark 5.4. Using the argument of [Kuz22a, Corollary 2.17] it is easy to check that

βH = 1 when d ∈ {1, 3, 5}, and βU = 1 when d ∈ {2, 4}, i.e., g ∈ {6, 10}.

Indeed, the pushforward of OY(H) to S is a βH-twisted vector bundle of rank d+ 2, hence its top wedge

power is a βd+2
H

-twisted line bundle on S, hence βd+2
H

= 1. Since d + 2 is odd for d ∈ {1, 3, 5} and βH

is 2-torsion, we conclude that βH = 1. Similarly, the pushforward of U∨
X to S is a βU-twisted vector

bundle of rank d+3 (this follows from the Hilbert polynomial computation in Lemma 4.1), and the same

argument applies. It is also easy to see that βF = βH (hence βF · βH = 1) for d ∈ {2, 4}.

Now we explain the relative version of the bridge construction.

Lemma 5.5. For each d ∈ {1, 2, 3, 4, 5} there is a morphism of stacks

(38) µ : MFCYd
→ MFM

(1)
X2d+2

which takes a geometric point (Y,C) or (Y, F ) of MFCYd
to the Fano–Mukai pair (X,UX ), where X is

constructed in Proposition 2.6 and UX is constructed in Proposition 3.3.

Proof. First, assume d ≥ 2. Let (g : Y → S,C) be an S-point of MFCYd
. Then Ỹ := BlC(Y)

σ
−−→ Y

is a family of smooth threefolds over S. Let g̃ := g ◦ σ : Ỹ → S, and let OY(H) and OE(F) be the

twisted line bundles constructed in Lemma 5.3, where E is the exceptional divisor of the blowup σ. By

Proposition 2.6(iii) the (untwisted, because βH is 2-torsion) line bundle O
Ỹ
(2H−E) is globally generated

over S. Let V := (g̃∗OỸ
(2H − E))∨. Taking the Stein factorization

Ỹ
π

−−→ X −−→ PS(V)

of the morphism to PS(V) given by O
Ỹ
(2H−E) (a relative version of (16)), we obtain a family f : X → S

of 1-nodal prime Fano threefolds of genus 2d+ 2. Furthermore, the relative version of (21)

0 → U∨
Ỹ
→ O

Ỹ
(H)⊗ g̃∗g̃∗OE(F) → OE(H + F) → 0,

defines a (βF ·βH)-twisted vector bundle U
Ỹ
on Ỹ, Proposition 3.3 implies that UX := π∗UỸ

is a (βF ·βH)-

twisted Mukai bundle on X such that U
Ỹ
∼= π∗UX, so that (f : X → S,UX) is an S-point of MFM

(1)
Xg

.

Similarly, if d = 1, let (g : Y → S,F) be an S-point of MFCY1 and let y0 be the nodal S-point of Y/S.

Then Ỹ := Bly0(Y) is a family of smooth threefolds over S (see Lemma A.6), and as before we construct a

family f : X → S of 1-nodal prime Fano threefolds of genus 4 with a (βF · βH)-twisted Mukai bundle UX

on X so that (f : X → S,UX) is an S-point of MFM
(1)
X4

.

In both cases the construction is functorial in S, hence defines a morphism of stacks. �

In the case d = 1 we will need the following obvious observation.

Lemma 5.6. There is a morphism of stacks µ̄ : MF
(1)
Y1

→ MF
(1)
X4

and a Cartesian diagram

(39)

MFCY1

µ
//

��

MFM
(1)
X4

ξ
��

MF
(1)
Y1

µ̄
// MF

(1)
X4
,

where the left vertical arrow is the natural étale double cover and ξ is defined in Theorem 4.5.

Proof. Indeed, in the case d = 1 the construction of the family f : X → S of prime Fano threefolds in

Lemma 5.5 does not depend on the choice of F ∈ PicE/S(S) (only the Mukai bundle does), therefore it

defines a morphism µ̄ such that the diagram (39) commutes.
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The diagram (39) induces a morphism

MFCY1 → MFM
(1)
X4

×
MF

(1)
X4

MF
(1)
Y1
,

which is étale, because the vertical arrows in (39) are étale. Now, the fibers of the left side over MF
(1)
Y1

are

2-point sets, while the fibers of the right side over MF
(1)
Y1

are at most 2-points sets (by separatedness of ξ

and Proposition 4.2), hence the morphism is bijective, and therefore the diagram (39) is Cartesian. �

Recall from Lemma 5.2 that the stack MFCYd
is connected. For each d ∈ {1, 2, 3, 4, 5} let

MFM
(1)
X2d+2,Yd

⊂ MFM
(1)
X2d+2

⊂ MFMX2d+2

be the connected component of the 1-nodal locus MFM
(1)
X2d+2

of the stack MFMX2d+2
containing µ(MFCYd

).

Theorem 5.7. For all d ∈ {1, 2, 3, 4, 5} the morphism µ defined in Lemma 5.5 induces an isomorphism

MFCYd

µ
−−→∼ MFM

(1)
X2d+2,Yd

.

Proof. We will construct a morphism MFM
(1)
X2d+2,Yd

→ MFCYd
inverse to µ.

Let S → MFM
(1)
X2d+2,Yd

be a chart (i.e., a smooth morphism from a connected scheme S) meeting the

image of µ. Since MFM
(1)
X2d+2,Yd

is smooth by Theorem 4.5, the scheme S is also smooth. Let (X → S,UX)

be the corresponding 1-nodal Fano–Mukai pair. Let x0 be the nodal S-point of X and let

X̃ := Blx0(X) and D ⊂ X̃

be the blowup and its exceptional divisor. For general s ∈ S we have ρ(X̃s) = 3 by Remark 2.9.

Therefore, by Corollary A.8 we have ρ(X̃s) = 3 for every s ∈ S, hence Xs is nonfactorial for all s.

Moreover, by [KP23b, Theorem 1.1] for each point s ∈ S the anticanonical class of X̃s is nef and big; it

is also not ample for general s, hence not ample for all s by openness of ampleness.

Let X̄ → S be the relative anticanonical model of X̃ → S. For general s ∈ S it follows from [KP23b,

Theorem 1.4 and Remark 1.5] that X̄s ⊂ Y × P1 is a complete intersection of ample divisors, where Y

is a del Pezzo threefold of degree d, and Pic(X̄s) is generated by the pullbacks of the ample generators

of Pic(Yd) and Pic(P1). By Corollary A.8 the étale Picard sheaf PicX̄/S is constant of rank 2 and has

relatively nef generators H1 and H2 that by semicontinuity satisfy the inequalities

dimH0(X̄s,OX̄s
(H1)) ≥ d+ 2 and dimH0(X̄s,OX̄s

(H2)) ≥ 2

for all s ∈ S. Now applying [KP23b, Theorem 1.4 and Remark 1.5] we conclude that for each point s ∈ S

the anticanonical model of X̃s is a divisor

X̄s ⊂ Ys × P1

of bidegree (1, 1), where Ys is a del Pezzo threefold of degree d (which is smooth if d ≥ 2 and has a single

node or cusp if d = 1) and H1, H2 are the pullbacks of the ample generators of the Picard groups of the

factors. The relative over S contraction defined by the class H1 is a morphism

X̄ → Y,

where Y → S is a flat family of del Pezzo threefolds of degree d. If d ≥ 2 this family is smooth over S

and if d = 1 the singular locus of Y over S is an S-point y0 of Y such that Bly0(Y) is smooth over S and

its exceptional divisor E is a family of irreducible quadric surfaces over S.

Assume d ≥ 2; then Y → S is an S-point of MFYd
. Moreover, in this case the exceptional divisor of

the composition X̃ → X̄ → Y has two irreducible components: one of them is the exceptional divisor D
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and the other component E is contracted onto a family of smooth rational curves C ⊂ Y of degree d− 1.

Then (Y → S,C) is an S-point of the stack MFCYd
, and it is clear that

(40) µ(Y → S,C) = (X → S,UX).

The above construction is obviously functorial in S, hence it gives a morphism of stacks which is right

inverse to µ. Moreover, a simple verification shows that this map is also left inverse to µ, which completes

the proof of the theorem in the case d ≥ 2.

Now assume d = 1. Then the above argument gives a morphism

(41) MF
(1)
X4,Y1

→ MF
(1+)
Y1

from a component of the stack of 1-nodal Fano threefolds of genus 4 to the stack of 1-nodal or 1-cuspidal

del Pezzo threefolds of degree 1 (whose definition is analogous to Definition 1.1) which is right inverse to

the natural extension of the morphism µ̄ to the stack MF
(1+)
Y1

. Thus, these two stacks are isomorphic.

Furthermore, the morphism µ is a lift of µ̄ to the natural double coverings

MFCY1 → MF
(1)
Y1
, and MFM

(1)
X4,Y1

ξ
−−→ MF

(1)
X4,Y1

where the first is induced by ξQ, see diagram (37), and the second is the restriction of the morphism

defined in Theorem 4.5. Since ξ is étale and ξQ is ramified over the substack MQ
(1)
2 ⊂ MQ2 of nodal

quadrics by construction (see Lemma 4.4), it follows that the image of MFM
(1)
X4,Y1

under the composition

MFM
(1)
X4,Y1

ξ
−−→ MF

(1)
X4,Y1

µ̄−1

−−−→ MF
(1+)
Y1

ǫ
−−→ MQ2

does not intersect the branch divisor MQ
(1)
2 ⊂ MQ2 of ξQ, hence the image of µ̄−1 ◦ ξ does not intersect

the cuspidal locus in MF
(1+)
Y1

. This proves that the restriction of µ̄ induces an isomorphism

µ̄ : MF
(1)
Y1

−−→∼ ξ(MFM
(1)
X4,Y1

)

Finally, Lemma 5.6 implies that µ induces an isomorphism MFCY1 −−→∼ MFM
(1)
X4,Y1

over µ̄. �

In conclusion we explain how one can construct semiorthogonal decompositions for families of Fano

threefolds more general than those considered in Theorem 3.6.

On the one hand, for all d ∈ {1, 2, 3, 4, 5} and all S-points

(f : X → S,UX) ∈ MFMX2d+2
(S), (g : Y → S) ∈ MFYd

(S), and (g : Y → S,F) ∈ MFCY1(S)

the construction of Lemma 5.3 provides 2-torsion Brauer classes on S and the corresponding twisted

sheaves UX, OY(H), and OE(F) on X, Y, and the exceptional divisor E of Ỹ = BlC(Y) or Ỹ = Bly0(Y),

respectively, that form relative exceptional collections over S and induce semiorthogonal decompositions

Db(X) = 〈AX, f
∗Db(S), f∗Db(S,βU)⊗U∨

X〉,(42)

Db(Y) = 〈BY, g
∗Db(S), g∗Db(S,βH)⊗ OY(H)〉,(43)

Db(Ỹ) = 〈B̃Y, g̃
∗Db(S), g̃∗Db(S,βH)⊗ OY(H), g̃∗Db(S)⊗ OE , g̃

∗Db(S,βF)⊗ OE(F)〉.(44)

Here g̃ : Ỹ → S is the composition of the blowup morphism with g and for d ≥ 2 the category B̃Y defined

by (44) is equivalent to the category BY defined by (43), while for d = 1 it provides a crepant categorical

resolution of BY as in Remark 3.2.

On the other hand, consider the open substack

(45) MFMX2d+2,Yd
:= MFMX2d+2

⊔MFM
(1)
X2d+2,Yd

= MFMX2d+2
⊔µ(MFCYd

) ⊂ MFMX2d+2
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that parameterizes Fano–Mukai pairs (X,UX ) such that either X is smooth or (X,UX) is obtained by the

bridge construction of §2. Note that MFM
(1)
X2d+2,Yd

⊂ MFMX2d+2,Yd
is a smooth Cartier divisor. Consider

an S-point of MFMX2d+2,Yd
transverse to the boundary, i.e., an S-point (f : X → S,UX) such that the

1-nodal locus

S(1) = S ×MFMX2d+2,Yd
MFM

(1)
X2d+2,Yd

is a smooth Cartier divisor in S. By Theorem 5.7 there is an S(1)-point (Y → S(1),C) or (Y → S(1),F)

of MFCYd
such that

X(1) := X×S S
(1) ∼= Ỹcan,

where Ỹ = BlC(Y) or Ỹ = Bly0(Y), and

π : Ỹ → Ỹcan = X(1)

is a small birational contraction. Consider the twisted sheaf

P := π∗OỸ
(E −H) ∈ Db(X(1),βH),

this is a relative twisted version of the P∞,2-object constructed in (31). Let ι : X(1) →֒ X be the embedding

induced by the embedding S(1) →֒ S. One can prove that the S-linear Fourier–Mukai functor

ΦP : D
b(S(1),βH) → Db(X), ΦP(−) = ι∗((f |X(1))∗(−)⊗ P)

is fully faithful and there is an S-linear semiorthogonal decomposition

(46) Db(X) =
〈
ΦP(D

b(S(1),βH)), ĀX, f
∗Db(S), f∗Db(S,βU)⊗ U∨

X

〉

refining (42), where ĀX, defined as the orthogonal complement in AX of the image of ΦP, is smooth and

proper over S. Finally, setting S(0) := S \ S(1) and X(0) := X×S S
(0), one can check that

(47) (ĀX)S(0) ≃ AX(0) and (ĀX)S(1) ≃

{
BY, if d ≥ 2,

B̃Y, if d = 1,

where the categories in the right-hand sides are defined in (42), (43), and (44), respectively.

One way to prove (46) and (47) is by extending our results from [KS23] about P∞,2-objects to the rela-

tive setting. Another way is to bootstrap from Theorem 3.6 by base change to appropriate curves B ⊂ S

and the technique developed in [Kuz06]. We leave the details to the interested reader.

Appendix A. Nodal varieties

In this appendix we discuss geometry of nodal varieties and of families of nodal varieties. We assume

that the base field k is algebraically closed of characteristic zero. Recall that a scheme X of dimension n

has hypersurface singularities if it is locally isomorphic to a hypersurface {ϕ = 0} in An+1; this is equivalent

to the inequality dimTx(X) ≤ n+ 1 for each geometric point x ∈ X. We will use the following

Definition A.1. A k-scheme X of dimension n is nodal if it has isolated hypersurface singularities and

the Hessian matrix (∂2ϕ/∂xi∂xj)
n+1
i,j=0 of its local equation is nondegenerate at every singular point of X.

By definition any nodal scheme X is Gorenstein. Moreover, it follows (see Lemma A.6 for an argument

in the relative case) that the blowup π : X̃ → X of X at its singular points is smooth, each connected

component E ⊂ X of the exceptional divisor is a smooth quadric of dimension n − 1 with conormal

bundle OE(−E) isomorphic to the hyperplane bundle of the quadric. Moreover, the discrepancy of E

equals n− 2; in particular, X has terminal singularities when n ≥ 3.



DERIVED CATEGORIES OF FANO THREEFOLDS AND DEGENERATIONS 31

A.1. Morphisms with nodal fibers. We will say that f : X → S is a morphism with nodal fibers if f is

flat and all geometric fibers of f are smooth or nodal. We always assume that the base S is Noetherian.

Lemma A.2. If every geometric fiber of a flat morphism f : X → S has hypersurface singularities

then X/S has hypersurface singularities, i.e., X is locally isomorphic to a hypersurface in an affine space

over S. In particular, a morphism with nodal fibers has hypersurface singularities.

Proof. Let x ∈ X be a geometric point and set s = f(x) ∈ S. Since the fiber Xs has hypersurface

singularities, there is a neighborhood (Us, x) of x in Xs and an open embedding Us →֒ {ϕ = 0} ⊂ An+1,

where n = dim(X/S). The morphism Us →֒ An+1 is given by n + 1 functions; they extend to regular

functions on a neighborhood (U, x) of x in X such that U ∩ Xs = Us and define an S-morphism

g : U → An+1
S

that restricts to the above morphism of Us over s. The image of g is a hypersurface over s, hence it is

a hypersurface over a neighborhood of s in S. The property of being an open immersion is local on the

base (see [Sta24, Lemma 02L3]), hence, shrinking U if necessary, we may assume that locally g is an open

embedding into a hypersurface in An+1
S . �

If f : X → S is a flat morphism and X/S has hypersurface singularities, the Jacobian ideals of local

equations of X ⊂ An+1
S provide the relative singular locus Sing(X/S) with a scheme structure. More

precisely, if {ϕ = 0} ⊂ An+1
S is a local presentation of X then

Sing(X/S) := {ϕ0 = ϕ1 = · · · = ϕn = 0} ⊂ X,

where ϕi = ∂ϕ/∂xi is the derivative of ϕ with respect to i-th coordinate on An+1
S . We always en-

dow Sing(X/S) with this scheme structure.

Lemma A.3. If f : X → S is a flat proper morphism with nodal fibers then Sing(X/S) is finite over S.

Proof. The singular locus of X over S is quasi-finite over S by Definition A.1, and on the other hand it

is closed in X, hence proper over S; therefore, it is finite over S. �

Now assume f : X → S is a morphism with nodal fibers and Sing(X/S) is finite over S (by Lemma A.3

this holds if f is proper). Then f∗OSing(X/S) is a coherent sheaf on S. We denote by

S≥m ⊂ S and S≤m−1 ⊂ S

the closed subscheme where the rank of f∗OSing(X/S) is at least m (it is defined by an appropriate Fitting

ideal) and its open complement, respectively. Furthermore, we denote

S(m) := S≤m ∩ S≥m.

The subscheme S(m) is closed in S≤m, open in S≥m, and locally closed in S; it parametrizes points of S

over which the fibers are exactly m-nodal. We also write X≤m/S≤m, X≥m/S≥m, and X(m)/S(m) for the

corresponding families obtained from X/S by base change.

Lemma A.4. If f : X → S is a morphism with nodal fibers, the morphism Sing(X/S) → S is unramified.

Moreover, if Sing(X/S) is finite over S then the closed subscheme S(1) ⊂ S≤1 is locally principal and the

morphism Sing(X(1)/S(1)) → S(1) is an isomorphism. Finally, if S is smooth then S(1) is smooth if and

only if X is smooth along f−1(S(1)).

Proof. By Lemma A.2 we may assume that X ⊂ An+1
S is a hypersurface with equation ϕ. Consider the

critical locus of ϕ, that is the subscheme

S̃ := {ϕ0 = ϕ1 = · · · = ϕn = 0} ⊂ An+1
S .
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Then Sing(X/S) = S̃∩X, and since the Hessian matrix of ϕ is nondegenerate at every point of Sing(X/S),

the projection f |S̃ : S̃ → S is étale along Sing(X/S), hence Sing(X/S) → S is unramified.

For the second claim we may assume S = S≤1, i.e., S≥2 = ∅. The assumption S≥2 = ∅ implies that

the sheaf f∗OSing(X/S) as OS -module is locally generated by its unit, hence f |Sing(X/S) : Sing(X/S) → S

is a closed embedding and S(1) = f(Sing(X/S)) by definition. Finally, since locally around S(1) the

morphism f |S̃ : S̃ → S is an isomorphism, and Sing(X/S) is cut out in S̃ by the equation ϕ = 0, it follows

that Sing(X/S) is locally principal in S̃, hence S(1) is locally principal in S.

For the last claim note that X is smooth away from Sing(X/S). So, let x ∈ Sing(X/S) be a point such

that s = f(x) ∈ S(1). Then x ∈ S̃, hence ϕi(x) = 0 for 0 ≤ i ≤ n, and the equality Sing(X/S) = S̃ ∩ X

implies that the tangent space to X at x is equal to the sum of the tangent space to Sing(X/S) and the

relative tangent space to An+1
S at x. Therefore, X is smooth at x if and only if Sing(X/S) is smooth at x,

and since Sing(X(1)/S(1)) → S(1) is an isomorphism, this holds if and only if S(1) is smooth at s. �

Corollary A.5. Let f : X → S be a flat proper morphism with nodal fibers over an integral scheme S.

If the general fiber of f is smooth then S(1) ⊂ S≤1 is a Cartier divisor.

Proof. By Lemma A.4 the subscheme S(1) ⊂ S≤1 is locally principal. It is not equal to S≤1 because the

general fiber of f is smooth, hence the equation locally defining S(1) in S≤1 is nonzero, and since S is

integral, this equation is not a zero divisor. Therefore, S(1) ⊂ S≤1 is a Cartier divisor. �

We will say that f : X → S is uniformly m-nodal if Sing(X/S) is finite over S and S(m) = S. In the

special case where m = 1 the subscheme Sing(X/S) ⊂ X is an S-point of X; it will be called the nodal

S-point or simply the node of X/S.

Lemma A.6. If f : X → S is a uniformly m-nodal flat morphism, then

(i) the scheme Sing(X/S) is finite étale of degree m over S,

(ii) the blowup BlSing(X/S)(X) is smooth over S,

(iii) the exceptional divisor E ⊂ BlSing(X/S)(X) is a smooth quadric fibration over Sing(X/S), and

(iv) the conormal bundle OE(−E) is the relative hyperplane bundle on this quadric fibration.

Proof. (i) The equality S(m) = S means that f∗OSing(S/S) is locally free of rank m, hence Sing(X/S) is

flat and finite over S. Since it is also unramified over S by Lemma A.4, it is étale.

(ii)–(iv) All these claims are étale local around Sing(X/S), so we may assume thatm = 1 and Sing(X/S)

is just the nodal S-point x0 of X. Furthermore, by Lemma A.2 we may assume that X ⊂ An+1
S is a

hypersurface with equation ϕ. Note that ϕ vanishes together with its first derivatives at x0, while the

Hessian matrix of ϕ at x0 is nondegenerate. Clearly,

Blx0(X) ⊂ Blx0(A
n+1
S )

is the Cartier divisor with equation obtained by dividing the pullback of ϕ by the square of the equation

of the exceptional divisor Ẽ of Blx0(A
n+1
S ), and the exceptional divisor E of Blx0(X) is the quadric

in Ẽ ∼= PnS associated with the Hessian matrix at x0. In particular, E is smooth over S, hence Blx0(X)

is smooth along E. On the other hand, Blx0(X) \ E = X \ {x0} is also smooth over S, hence Blx0(X) is

smooth over S. Finally, the conormal bundle of E is isomorphic to the restriction of the conormal bundle

of Ẽ; the latter is obviously the hyperplane bundle, hence so is the former. �

A.2. Families of nodal Fano varieties. In this section we study properties of families of nodal Fano

varieties, i.e., proper morphisms f : X → S with nodal fibers such that the relative anticanonical class ω−1
X/S

is f -ample. However, for the statement of Proposition A.7 we can weaken the assumptions.

We denote by PicX/S the étale sheafification of the Picard functor, see [Kle05, §9.2].
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Proposition A.7. Let f : X → S be a flat projective morphism of relative dimension n ≥ 3 such that

(48) H1(Xs,OXs
) = H2(Xs,OXs

) = 0

for any geometric point s ∈ S. Assume also that either

(a) f has nodal fibers, or

(b) the scheme S is integral of positive dimension, the fiber of f over a geometric point s ∈ S has

isolated hypersurface singularities, and over S \ {s} the morphism f is smooth.

Then the étale sheaf PicX/S is locally constant on S. In particular, if S is connected then the Picard rank

of geometric fibers of f is constant.

Proof. Recall from [Kle05, Theorem 9.4.8, Theorem 9.5.11, Remark 9.5.12, and Proposition 9.5.19] that

the assumption (48) implies that the Picard sheaf PicX/S is represented by the Picard scheme PicX/S
which is étale over S. Therefore, any line bundle on a geometric fiber Xs of f extends uniquely to a line

bundle over an étale neighborhood of s in S.

Let us prove that the morphism PicX/S → S satisfies the valuative criterion for properness (note,

however, that this morphism is not of finite type, hence not proper). So, assume S is the spectrum of a

discrete valuation ring, s ∈ S is the closed point, and L0 is a line bundle on the general fiber of X/S. We

need to show that there is a line bundle L on X which restricts to the general fiber as L0.

First, consdier case (b). Then we extend L0 to a coherent sheaf on X and then, by taking the double

dual, to a reflexive sheaf L of rank 1. Since X/S is smooth over the general point of S, we have

an inclusion Sing(X) ⊂ Sing(Xs). Moreover, X has isolated hypersurface singularities by Lemma A.2.

Finally, since dim(Xs) ≥ 3, we have dim(X) ≥ 4. Now it follows from [Gro05, XI, Corollaire 3.14] that X

is locally factorial, hence L is a line bundle.

Now, consider case (a). Since Sing(X/S) is finite and unramified over S by Lemmas A.3 and A.4, we

have

Sing(X/S) = Z ⊔ Z ′,

where Z is finite étale over S and Z ′ is a finite reduced scheme contained in the central fiber of X/S.

Consider the blowup

π : X′ := BlZ(X) → X.

By Lemma A.6 the map X′ → S has nodal fibers, Sing(X′/S) = Sing(X′
s) = Z ′, and the exceptional

divisor E of π is a smooth quadric fibration over Z. In particular, X′ → S satisfies the assumption of

part (b). Therefore, the line bundle L′
0 := π∗L0 extends to a line bundle L′ on X′. Let E0 and Z0 be

the general fibers of E and Z over S. The line bundle L′|E0
∼= L′

0|E0
∼= π∗L0|E0 is trivial over Z0, and

since E → Z is a smooth quadric bundle, L′|E is trivial over Z, and therefore there is a line bundle L

on X such that L′ ∼= π∗L. Clearly, the restriction of L to the general fiber of X/S is isomorphic to L0.

Finally, since PicX/S is étale and satisfies the valuative criterion for properness over S, it follows that

étale sheaf PicX/S represented by it is locally constant. �

Since any nodal Fano variety satisfies (48) (see [IP99, Proposition 2.1.2(i)]), the conclusion of Propo-

sition A.7 holds for families of nodal Fano varieties of dimension at least 3.

Corollary A.8. If f : X → S is a family of nodal Fano varieties of dimension n ≥ 3 then the Picard

rank, Fano index, and anticanonical degree of the fibers of X/S are locally constant.

Moreover, if the Picard rank of fibers is 1, the étale sheaf PicX/S ∼= ZS is constant.

Proof. The sheaf PicX/S is locally constant by Proposition A.7, hence by [Kuz22a, §2.1] it corresponds to

a monodromy action of the étale fundamental group π1(S) on the Picard group Pic(Xs) of a geometric

fiber. It follows that the Picard rank is locally constant. Since the canonical class KXs
∈ Pic(Xs)
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is monodromy invariant (see [Kuz22a, Lemma 2.5]), the Fano index and anticanonical degree are also

locally constant.

Assume now the Picard rank of Xs is 1. Since Xs is Fano, the group Pic(Xs) is torsion free by [IP99,

Proposition 2.1.2(ii,iii)] hence Pic(Xs) ∼= Z. Since the canonical class KXs
∈ Pic(Xs) is monodromy

invariant and nonzero, the monodromy action is trivial, and the sheaf PicX/S is constant. �

The following result proved by Namikawa is crucial for our paper.

Theorem A.9 ([Nam97]). Let X be a nodal Fano threefold. There exists a smoothing of X, i.e., a flat

projective morphism X → B over a smooth connected pointed curve (B, o) such that

• the total space X is smooth,

• Xo
∼= X,

• the morphism f−1(B \ {o}) → B \ {o} is a smooth family of Fano threefolds of the same Picard

number, Fano index, and anticanonical degree as X.

Proof. In [Nam97, Proposition 3] it is proved that deformations of a nodal Fano threefold X are unob-

structed, and in [Nam97, Proposition 4] it is proved that any local deformation of X around its singular

locus lifts to a global deformation. Since nodal singularities are hypersurface singularities, they are locally

smoothable, hence a global smoothing X → B also exists.

Since ampleness is an open property, shrinking B if necessary we can assume that ω−1
X/B is ample

over B, hence every fiber of X → B is a Fano variety. The equalities of the Picard rank, Fano index, and

anticanonical degree of all fibers of X/B follow from Corollary A.8. �

A.3. Maximal nonfactoriality of Fano threefolds. In this subsection we work over k = C and study

the topology of maximally nonfactorial threefolds.

Recall from [KPS21, Definition 3.4] that a nodal threefold X is maximally nonfactorial (respectively,

Q-maximally nonfactorial) if the natural morphism from the class group of X to the direct sum of the

local class groups of X at the singular points is surjective (respectively, has finite cokernel). See [KS23,

Definition 6.10] for an equivalent definition in terms of the blowup of X at the nodes. For us, however,

the following reformulation is more convenient: assume X has a small resolution of singularities X̂ → X,

let C1, . . . , Cm ⊂ X̂ be its exceptional curves, and consider the natural linear map

(49) Pic(X̂) → Zm, D 7→ (D · Ci)
m
i=1.

Then by [KS23, Lemma 6.14] maximal nonfactoriality (respectively, Q-maximal nonfactoriality) of X

is equivalent to surjectivity (respectively, surjectivity after tensoring with Q) of (49). Restating this

criterion in terms of homology groups, we obtain

Lemma A.10. Let ̟ : X̂ → X be a small resolution of a nodal projective complex threefold X such that

the condition (48) holds for X. Let C1, . . . , Cm ⊂ X̂ be the exceptional curves of ̟. Then

(i) X is Q-maximally nonfactorial if and only if the classes [C1], . . . , [Cm] ∈ H2(X̂,Z) are linearly

independent,

(ii) X is maximally nonfactorial if and only if the classes [C1], . . . , [Cm] ∈ H2(X̂,Z) are linearly

independent and the subgroup in H2(X̂,Z) generated by these classes is saturated.

Proof. Let γ : Zm → H2(X̂,Z) be the map given by the classes [C1], . . . , [Cm] of the exceptional curves.

It follows from (48) that Pic(X̂) ≃ H2(X̂,Z), hence the map (49) can be rewritten as the composition

H2(X̂,Z) ։ Hom(H2(X̂,Z),Z)
γ∗

−−→ Hom(Zm,Z).
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The first arrow is surjective by the universal coefficient theorem, hence (49) is surjective if and only

if γ∗ is, which holds exactly when γ is an isomorphism onto a saturated subgroup of H2(X,Z). Similarly,

tensor product of (49) with Q is surjective if and only if γ∗Q is, which holds exactly when γ is injective. �

By [KS23, Proposition 6.13] for any Q-maximally nonfactorial nodal threefold X there exists a small

resolution. We will need the following standard topological computation (see, e.g., [Cle83, §1]).

Lemma A.11. Let X be a maximally nonfactorial m-nodal threefold and let ̟ : X̂ → X be a small

resolution. Then the map ̟∗ : H3(X,Z) → H3(X̂,Z) is an isomorphism. If, moreover, X is proper then

(50) b4(X) = b2(X) +m

and the natural mixed Hodge structure of H3(X,Z) is pure.

Proof. Let C1, . . . , Cm ⊂ X̂ be the exceptional curves. The cohomology exact sequence of a pair gives

0 → H2(X,Z)
̟∗

−−−→ H2(X̂,Z)
γ∗

−−→

m⊕

i=1

H2(Ci,Z) → H3(X,Z)
̟∗

−−−→ H3(X̂,Z) → 0,

where γ : ⊔ Ci →֒ X̂ is the embedding. Since (49) is surjective by the maximal nonfactoriality assump-

tion, the map γ∗ is also surjective, hence ̟∗ : H3(X,Z) → H3(X̂,Z) is an isomorphism. It also follows

that b2(X̂) = b2(X) +m and b4(X̂) = b4(X).

If X is proper, then X̂ is smooth and proper, the Hodge structure of H3(X̂,Z) is pure, hence the

Hodge structure of H3(X,Z) is pure as well. Finally, Poincaré duality on X̂ implies (50). �

The following result is well known but we could not find a reference. For an abelian group A we denote

by Ator ⊂ A the subgroup of torsion elements in A.

Lemma A.12. If X is a smooth complex Fano threefold then H3(X,Z)tor = 0 and H2(X,Z)tor = 0.

Proof. By the universal coefficient theorem it is enough to prove the second vanishing. We use the

classification of Fano threefolds and two simple observations.

First, using an appropriate version of the Lefschetz hyperplane theorem we deduce H2(X,Z)tor = 0

if X is a smooth complete intersection of Cartier divisors in a weighted projective space (see [Dim85,

Proposition 6]), or a complete intersection of ample divisors in a smooth rational variety (see, e.g., [DK19,

Lemma 3.2(c)]), or a double covering of a smooth rational variety with smooth ample branch divisor,

(see, e.g., [DK19, Lemma 3.3(c)]).

Moreover, since H2(X,Z)tor is a birational invariant, we conclude that H2(X,Z)tor = 0 for all X

birational to threefolds as above; in particular, this holds if X is rational.

Finally, looking at the classification of smooth Fano threefolds (see [MM82] or [Bel24]), we see that

the above observations cover all the possibilities. �

Remark A.13. Lemma A.12 also proves that the Brauer group Br(X) is zero for any Fano threefold.

The proof of the following result, answering in the case of Fano threefolds the question posed af-

ter [KS23, Proposition 6.13], uses an idea suggested to us by Claire Voisin.

Proposition A.14. If X is a nodal Q-maximally nonfactorial complex Fano threefold then X is maxi-

mally nonfactorial.

Proof. Let ̟ : X̂ → X be a small resolution (recall that it exists by [KS23, Proposition 6.13]). Since X

is Q-maximally nonfactorial, the classes [C1], . . . , [Cm] ∈ H2(X̂,Z) of the exceptional curves are linearly

independent by Lemma A.10. On the other hand, by Theorem A.9 there exists a smoothing X of X over

a smooth pointed curve (B, o). Using [Fri91, Lemma 8.1] for b 6= o in B we obtain

H2(Xb,Z) = H2(X̂,Z)/〈[C1], . . . , [Cm]〉.
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Since Xb is a smooth Fano threefold, Lemma A.12 proves that H2(Xb,Z) is torsion free. Thus, the subgroup

in H2(X̂,Z) generated by the classes [C1], · · · , [Cm] is saturated, hence X is maximally nonfactorial by

Lemma A.10. �

A.4. The family of intermediate Jacobians. In this section we discuss the Hodge theory of nodal

complex Fano threefolds; in particular, we give a Hodge-theoretic proof of Corollary 1.7. We will need the

following standard topological computation for topological one-parameter degenerations see, e.g., [PS08,

§C.2.2].

Lemma A.15. Let f : X → (∆, o) be a smoothing of a proper 1-nodal maximally nonfactorial three-

fold X = Xo over a pointed complex disc. For any point b 6= o in ∆ the monodromy action on H3(Xb,Z)

is trivial, and we have an isomorphism of abelian groups

(51) H3(X,Z) ∼= H3(X,Z) ∼= H3(Xb,Z).

Proof. Since X is smooth, there is a continuous retraction map r : X → X. Obviously, it induces an

isomorphism of cohomology groups r∗ : H3(X,Z) −−→∼ H3(X,Z).

Choose a point b 6= o in ∆, consider the map rb := r|Xb
: Xb → X, and denote by S3b := r−1

b (x0) ⊂ Xb

the vanishing 3-sphere and by ib : S
3
b →֒ Xb its embedding. The cohomology sequence of a pair (see, e.g.,

[PS08, (C-10)]) gives an exact sequence

0 → H3(X,Z)
r∗
b−−→ H3(Xb,Z)

i∗
b−−→ H3(S3b ,Z) −−→ H4(X,Z)

r∗
b−−→ H4(Xb,Z) → 0.

It also follows that b2(X) = b2(Xb). Combining this with (50) and Poincaré duality on Xb, we obtain

b4(X) = b2(X) + 1 = b2(Xb) + 1 = b4(Xb) + 1.

We conclude that the kernel of the morphism r∗b : H
4(X,Z) → H4(Xb,Z) has rank 1, hence the mor-

phism H3(S3b ,Z) → H4(X,Z) must be injective, and hence the morphism i∗b : H
3(Xb,Z) → H3(S3b ,Z) must

be zero. This means that the vanishing sphere S3b is homologically trivial, hence the natural monodromy

action on H3(Xb,Z) is trivial as well, and the map r∗b : H
3(X,Z) → H3(Xb,Z) is an isomorphism. �

Now we can state the main result of this subsection. We denote by Jac(X) the intermediate Jacobian

of a smooth projective rationally connected threefold X; this is a principally polarized abelian variety.

Proposition A.16. Let f : X → B be a smoothing of a 1-nodal maximally nonfactorial Fano threefold X.

There is a smooth and proper family J → B of principally polarized abelian varieties such that

Jb
∼=

{
Jac(Xb), if b 6= o,

Jac(X̂), if b = o,

where X̂ is a small resolution of X. Moreover, these isomorphisms are compatible with the principal

polarizations.

We note that a general approach for relative Jacobians of degenerations has been developed in [Zuc76],

but in our simple situation of trivial monodromy we do not need that formalism.

Proof. By Lemma A.15 the analytic sheaf H3
X/B

:= R3f∗ZX on B is locally constant and we have a base

change isomorphism

(52) (H3
X/B)o −−→∼ H3(X,Z).

Moreover, away from the origin o ∈ B the local system H3
X/B is endowed with a polarized variation of

pure Hodge structures, and since the monodromy around the origin o acts trivially on H3(Xb,Z) (again
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by Lemma A.15) the Hodge filtration of (H3
X/B)b has a limit when b approaches o, see [Sch73, (6.15)],

and the limiting filtration endows (H3
X/B)o with a rational mixed Hodge structure.

Consider a semistable reduction σ : X̃ → X of the family X/B and the composition of maps

H3(X,Q) = H3(Xo,Q)
σ∗o−−−→ H3(X̃o,Q)

sp
−−−→ (H3

X/B)o ⊗Q −−→∼ H3(X,Q),

where sp is the specialization map, see [PS08, §11.3.1], and the last arrow is induced by the map (52). Un-

winding the definitions, we see that their composition is an isomorphism of Q-vector spaces, hence sp ◦σ∗o
is also an isomorphism. On the other hand, both σ∗o and sp are compatible with the Hodge filtrations;

this is obvious for σ∗o , and for sp this is [PS08, Theorem 11.29]. Therefore, the limiting mixed Hodge

structure is isomorphic to the Hodge structure of H3(X,Q); in particular, it is pure and has a natural

integral structure.

Now we see that the local system H3
X/B carries a polarized variation of pure integral Hodge structures,

so we can define J → B as the corresponding family of principally polarized abelian varieties. The

isomorphism Jb
∼= Jac(Xb) follows from the definition of H3

X/B , and the isomorphism Jo
∼= Jac(X̂) follows

from the isomorphism of the limiting Hodge structure and the Hodge structure of H3(X,Z) proved above

combined with the isomorphism of Lemma A.11. �

Now we can use this to prove Corollary 1.7 from the Introduction.

Proof of Corollary 1.7. Consider the smoothing X → B constructed in Theorem 1.4. Its central fiberX is

maximally nonfactorial (either by Remark 2.7, or by Proposition A.14), hence Proposition A.16 provides

a smooth and proper family J → B of abelian varieties such that Jb ∼= Jac(Xb) for b 6= o. Moreover, using

the small resolution π : Ỹ → X from Proposition 2.6 we obtain an isomorphism Jo
∼= Jac(Ỹ ). Finally,

if d ≥ 2 the morphism σ : Ỹ → Y is the blowup of a smooth rational curve, hence Jac(Ỹ ) ∼= Jac(Y ). �
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exposé de Michèle Raynaud. [With an exposé by Michèle Raynaud], With a preface and edited by Yves Laszlo,

Revised reprint of the 1968 French original.

[HL10a] Daniel Huybrechts and Manfred Lehn. The geometry of moduli spaces of sheaves. Cambridge Mathematical

Library. Cambridge University Press, Cambridge, second edition, 2010.

[IP99] V. A. Iskovskikh and Yu. G. Prokhorov. Fano varieties. In Algebraic geometry, V, volume 47 of Encyclopaedia

Math. Sci., pages 1–247. Springer, Berlin, 1999.

[JL18] Ariyan Javanpeykar and Daniel Loughran. Good reduction of Fano threefolds and sextic surfaces. Ann. Sc.

Norm. Super. Pisa Cl. Sci. (5), 18(2):509–535, 2018.

[JLLZ24] Augustinas Jacovskis, Xun Lin, Zhiyu Liu, and Shizhuo Zhang. Categorical Torelli theorems for Gushel–Mukai

threefolds. J. Lond. Math. Soc. (2), 109(3):Paper No. e12878, 52, 2024.

[Kle05] Steven L. Kleiman. The Picard scheme. In Fundamental algebraic geometry, volume 123 of Math. Surveys

Monogr., pages 235–321. Amer. Math. Soc., Providence, RI, 2005.

[Kol85] János Kollár. Toward moduli of singular varieties. Compositio Math., 56(3):369–398, 1985.

[KP18] Alexander Kuznetsov and Alexander Perry. Derived categories of Gushel–Mukai varieties. Compos. Math.,

154(7):1362–1406, 2018.

[KP23a] A. G. Kuznetsov and Yu. G. Prokhorov. On higher-dimensional del Pezzo varieties. Izv. Ross. Akad. Nauk Ser.

Mat., 87(3):75–148, 2023.

[KP23b] Alexander Kuznetsov and Yuri Prokhorov. One-nodal Fano threefolds with Picard number one. Preprint

arXiv:2312.13782, 2023.

[KPS18] Alexander G. Kuznetsov, Yuri G. Prokhorov, and Constantin A. Shramov. Hilbert schemes of lines and conics

and automorphism groups of Fano threefolds. Jpn. J. Math., 13(1):109–185, 2018.

[KPS21] Martin Kalck, Nebojsa Pavic, and Evgeny Shinder. Obstructions to semiorthogonal decompositions for singular

threefolds I: K-theory. Mosc. Math. J., 21(3):567–592, 2021.

[KS22] Alexander Kuznetsov and Evgeny Shinder. Homologically finite-dimensional objects in triangulated categories.

Preprint arXiv:2211.09418, 2022.

[KS23] Alexander Kuznetsov and Evgeny Shinder. Categorical absorptions of singularities and degenerations. Épijournal
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