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The main aim of this work is to use a model-independent approach, along with late-time observational
probes, to reconstruct the dark energy (DE) equation of state wDEðzÞ. Our analysis showed that, for a late
time universe, wDE deviates from being a constant but in contrast exhibits an oscillatory behavior, hence
both quintessence (wDE > −1) and phantom (wDE < −1) regimes are equally allowed. In order to portray
this oscillatory behavior, we explored various parametrizations for the equation of state and identified the
closest approximation based on the goodness of fit with the data and the Bayesian evidence analysis. Our
findings indicated that while all considered oscillating DE parametrizations provide a better fit to the data,
when compared to the cosmological constant, they are penalized in the Bayesian evidence analysis due to
the additional free parameters. Overall, the present article demonstrates that, in the low redshift regime, the
equation of state of the DE prefers to be dynamical and oscillating. We anticipate that future cosmological
probes will take a stand in this direction.

DOI: 10.1103/PhysRevD.111.023531

I. INTRODUCTION

The physics of the dark sector in our Universe, consisting
of two dominant components (which together make up
nearly 96% of the total energy budget), namely, a non-
luminous dark matter (DM) fluid and dark energy (DE), has
remained a significant mystery for cosmologists for the past
two decades. The DM sector plays a crucial role in the
observed structure formation of our Universe, while the DE
is believed to be responsible for the unknown mechanism

driving the current accelerating phase of our Universe.
Based on existing observational evidence, DM behaves
as a pressureless or cold fluid (referred to as CDM), while
DE is adequately described by a positive cosmological
constant, Λ, incorporated into the gravitational equations of
Einstein’s general relativity. The cosmological constant
corresponds to the vacuum energy with a constant equation
of state (EOS) w ¼ pΛ=ρΛ ¼ −1, where pΛ and ρΛ are the
pressure and energy density of the vacuum energy sector,
respectively. In this case the DE is nondynamical. The
resulting picture—known as ΛCDM or standard model
cosmology—has been quite successful in explaining a large
span of the observational datasets.
However, ΛCDM cosmology is facing both theoretical

and observational challenges. The cosmological constant
problem [1] and the cosmic coincidence problem [2] were
among the initial challenges for ΛCDM, and motivated
cosmologists to explore alternative scenarios. On the other
hand, recent advancements in observational data consis-
tently report discrepancies in the estimations of key
cosmological parameters obtained from early-time mea-
surements, such as those from the cosmic microwave
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background radiation analyzed by Planck (under the
assumption of the ΛCDM paradigm), when compared to
estimations from other astronomical probes. Specifically,
the ∼5σ tension on the Hubble constant H0 between the
ΛCDM based Planck [3] and the SH0ES (Supernova H0

for the Equation of State) Collaboration [4] has emerged as
a significant issue and probably demands a revision of the
standard cosmological model.
Given the impressive fit of ΛCDM with numerous

astronomical probes, one may expect that this model might
be an approximate version of the ultimate cosmological
picture that is yet to be unveiled. As a consequence, several
revisions of it have been suggested and they have been
consequently investigated using various astronomical
probes [5–12]. In particular in the DE sector, among the
others in the late time universe, revisions can be categorized
into two main directions: DE scenarios in the context of
Einstein’s general relativity [13–15] and alternative models
based on modified gravity [16–22]. Focusing on the former,
the simplest revision of a ΛCDM cosmology appears in
the introduction of a dynamical DE, where the DE EOS,
wDE ¼ pDE=ρDE, is either a constant with a value different
from −1 or it is a function of the cosmic variables. Since
there is no fundamental principle to derive wDE, therefore, a
variety of parametrized forms of wDE have been proposed
in the literature [23–60]. This is one of the potential
approaches in which observational data are used to restrict
the choices of the dynamical DE models. On the contrary,
one can reconstruct the evolution ofwDEwithoutmaking any
prior assumptions about the underlying model. This alter-
native approach is appealing because it leads to a model-
independent reconstruction of the DE EOS, and, because of
this characteristic, it could be used to discriminate between
the dark energy parametrizations. Recognizing the potential
nature of this approach in discriminating between the DE
parametrizations based on their EOS, we conducted a
model-independent reconstruction of wDE using some
well-known and most used astronomical probes. Our analy-
sis revealed that the reconstructed wDE exhibits an oscil-
latory behavior (in the following sections, we will elaborate
on the methodology of this reconstruction and present
corresponding plots to illustrate our findings) with the
evolution of the Universe.
The possibility of an oscillating behavior ofwDE was also

observed in some earlier works [61,62] where the authors
reconstructed the DE EOS following a nonparametric
approach and using various observational datasets. Before
the observational hints for an oscillating DE EOS, existence
of periodic behavior in some cosmological models was
noticed. In the context of single scalar field cosmologies, it
was found that a scalar field potential, which is minimally
coupled to gravity, can induce an oscillating behavior in the
expansion rate of the universe [63], and as a consequence,
this oscillatory behavior can be transmitted (through the
Friedmann equations) to the energy density of the scalar

field and its EOS. On the other hand, multiscalar field
models [64–66] and modified theories of gravity (see for
instance [67–69]) can also instigate oscillatory nature in the
associated dynamical variables. Specifically, within these
frameworks, the periodic behavior of the cosmological
parameters exists, corresponding to asymptotic solutions
described by the saddle critical points of the associated
autonomous dynamical systems. It was argued in Ref. [70]
that oscillating DE can solve the cosmic coincidence
problem. These altogether motivated several investigators
to work with the oscillating DE EOS [71–84].
As the evolution of DE is not yet uncovered, therefore,

in principle, the oscillation in the DE EOS cannot be
excluded unless the observational data is in strong disagree-
ment with such possibility. The reconstructed wDE, as done
in the present article together with similar findings in the
earlier works [61,62], further strengthens the possibility
of oscillations in the DE EOS. Our model-independent
reconstruction, along with this theoretical background, will
serve as motivation for us to propose a number of new DE
parametrizations, designed in such a way that they present
oscillatory behavior at late times with “as minimal as
possible” a number of free parameters.
The article is organized as follows. In Sec. II we describe

the gravitational equations and introduce the oscillating DE
parametrizations. In Sec. III, we describe the observational
data and methodology. Then in Sec. IV we discuss the
results and their implications. Finally, in Sec. V, we give our
conclusions.

II. OSCILLATING DARK ENERGY

We consider that the geometry of our Universe is well
described by the Friedmann-Lemaître-Robertson-Walker
(FLRW) line element given by

ds2¼−dt2þa2ðtÞ

�

dr2

1−Kr2
þ r2ðdθ2þ sin2θdϕ2Þ

�

; ð1Þ

in which ðt; r; θ;ϕÞ are the comoving coordinates; aðtÞ is
the expansion scale factor of the universe (hereafter
denoted simply by “a”) which is related to the redshift z
as 1þ z ¼ a0=aðtÞ (a0 is the present value of the scale
factor); K stands for the spatial geometry of the universe
where K ¼ 0 corresponds to a spatially flat universe;
K ¼ −1 corresponds to an open universe, and K ¼ 1

corresponds to a closed universe. We assume that the
gravitational sector of the universe is described by
Einstein’s general relativity and the matter sector of the
universe is minimally coupled to gravity. In this framework,
one can write down the Einstein’s gravitational equations as
follows:

ρ ¼
3

8πG

�

H2 þ
K

a2

�

; ð2Þ
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ä

a
¼ −

4πG

3
ð3pþ ρÞ; ð3Þ

where an overhead dot represents the derivative with
respect to the cosmic time; H ≡ ȧ=a is the Hubble rate
of the FLRW universe; p and ρ are, respectively, the
pressure and energy density of the total matter sector of
the universe. From Eqs. (2) and (3), or alternatively, using
the Bianchi’s identity, one arrives at the conservation
equation of the total fluid

ρ̇þ 3Hðpþ ρÞ ¼ 0: ð4Þ

As ρ includes the total energy density of all the fluids and if
the fluids do not interact with each other (which is the case
of this article), hence, for the ith fluid, the conservation
equation becomes ρ̇i þ 3Hðpi þ ρiÞ ¼ 0. Now, as usual,
we consider that the matter sector of the universe is
comprised of pressureless matter (baryonsþ cold DM)
and a DE fluid. We have neglected radiation as its effects
are negligible in the late time. All the fluids obey a
barotropic EOS pi ¼ wiρi where for pressureless matter
wm ¼ 0 and, for DE, wDEðaÞ is dynamical. From the
conservation equation of each fluid, one can derive that
ρr ¼ ρr0ða=a0Þ

−4, ρm ¼ ρm0ða=a0Þ
−3, where ρr0 and ρm0

are, respectively, the present values of ρr and ρm. Finally,
the evolution of the DE density becomes

ρDE ¼ ρDE;0 exp

�

−

Z

a

a0

1þ wDEðaÞ

a
da

�

; ð5Þ

which dictates that depending on the functional form of
wDE, the evolution of the energy density varies. In this
work, we assume that wDEðaÞ has an oscillating nature. As
one can propose a variety of oscillating DE EOS para-
metrizations, in this work we started with some already
known ones with many free parameters and then considered
some other new parametrizations with fewer free param-
eters. In Table I, we summarize the EOS parametrizations
that we wish to study. Some of them have already been
proposed in the literature, and some of them are new,
proposed in this work. The new parametrizations in this
work (models 8–12) are proposed as a way to reproduce a
heavy oscillatory behavior at late times (0 < z < 3) with as
few parameters as possible (two in this case). Our five
proposed parametrizations also share the important feature
that, at large redshifts (early times), they recover the
behavior wDEðzÞ ≈ −1. This is clearly seen by the terms
1

1þz2
and z

1þz2
, which are factors in the oscillatory part of the

equation and tend to zero as z becomes sufficiently large.
This behavior is desirable for achieving a ΛCDM-like
evolution in the early universe, while allowing for an
oscillating EOS for dark energy (DE) at later times. In
models 1, 3–5, and 7, where the oscillatory component
does not have a mechanism for diminishing amplitude as z

increases, this early-time behavior is absent. On the other
hand, models 2 and 6 exhibit wðzÞ ≈ w1 and wðzÞ ≈ w0 as
z → ∞, respectively. To replicate the standard model’s
early-time behavior in these cases, it would be necessary
for w1 and w0 to approach −1. We would like to clarify that
this does not mean that the proposed parametrizations are
the only available ones to exhibit these features, but rather
that we choose to focus on them. Other options are
possible, but their study is beyond the scope of this work.
Let us note that, given a particular choice of the

oscillating wDE, one can further investigate how this affects
other cosmic variables. For example, the deceleration
parameter q ¼ −ð1þ Ḣ=H2Þ can be expressed in terms
of the cosmic fluids as follows:

q ¼ −1 −
K

a2H2
þ 4πG

�

pþ ρ

H2

�

: ð6Þ

Now, for a specific EOS of DE, one can trace the evolution
of the universe from Eq. (6) and investigate whether for this
particular EOS of DE, our universe enters into the accel-
erating phase from the decelerating one. In this article
we have considered the spatial flatness of the FLRW
universe, i.e., K ¼ 0 and without any loss of generality
we set a0 ¼ 1.

TABLE I. The table summarizes a variety of oscillating dark
energy parametrizations considered in this work. It is very
important to note that, in all the parametrizations displayed
above, w0 does not always refer to the present value of the DE
EOS. We have kept similar notations as used by the correspond-
ing authors. Thus, the present value of the DE EOS is the one
that can be obtained by setting z ¼ 0 in wDEðzÞ. For example,
in models 4–7, w0 is the present value of the DE EOS, but
in models 1–3, the present values of the DE EOSs are w0 þ
w1 cosðA lnð1=acÞÞ, w1 þ w2 cos ðw3 þ acÞ, and wc − A sinðθÞ,
respectively. On the other hand, for models 8–12, the present
value of the DE EOS is −1.

Model
no. Expression of wDE

Free
parameters Reference

1 w0 þ w1 cosðA lnða=acÞÞ 4 Reference [71]
2 w1 þ w2a cos ðw3aþ acÞ 4 Reference [85]
3 wc − A sinðB ln aþ θÞ 4 Reference [70]
4 w0 þ bf1 − cos ½lnð1þ zÞ�g 2 Reference [78]
5 w0 þ b sin ½lnð1þ zÞ� 2 Reference [78]
6 w0 þ b½sinð1þzÞ

1þz
− sin 1� 2 Reference [78]

7 w0 þ b½ z
1þz

� cosð1þ zÞ 2 Reference [78]
8 −1þ w1

1þz2
sinðw2zÞ 2 This work

9 −1þ w1z

1þz2
sin ðw2zÞ 2 This work

10 −1þ w1z

1þz2
cos ðw2zÞ 2 This work

11 −1þ w1z

1þz2
ðcos ðw2zÞÞ

2 2 This work

12 −1þ w1z

1þz2
ðcos ðw2zÞÞ

3 2 This work
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III. OBSERVATIONAL DATA

AND THE METHODOLOGY

As our objective is to carry out parameter inference
within various DE models, it is imperative to have suitable
datasets at our disposal. In this study, we will utilize the
following ones:

(i) The PantheonPlus supernova type Ia (SNeIa) sam-
ple [86], which encompasses 1701 light curves
corresponding to 1550 unique SNeIa within the
redshift range of 0.001 < z < 2.26. This dataset
will be referred to as SN.

(ii) Measurements of baryon acoustic oscillation (BAO)
containing the SDSS galaxy consensus, quasars, and
Lyman-α forests [87]. The sound horizon is cali-
brated by using BBN [88]. These datasets are
thoroughly detailed in Table 3 of Ref. [87]. In this
work, we will collectively refer to this set of
measurements as BAO.

(iii) The Hubble parameter serves as a key indicator of
the Universe’s expansion rate. This parameter is
determined by collecting measurements from an-
cient stars, referred to as cosmic chronometers,
which effectively act as “standard clocks” in cos-
mology. In our study, we rely on a compilation of 31
of these cosmic chronometers [89–95], denoted as
CC in the datasets. This dataset and its covariance
matrix are available within the sampler code used in
this work1 and this dataset is explicitly shown in
Table 1 of [96].

To determine the optimal parameter values for our
models, we employ a customized Bayesian inference code,
known as SimpleMC [97,98], specifically designed for
computing expansion rates and distances based on the
Friedmann equation. For each model, we calculate its
Bayesian evidence denoted as Ei. To facilitate a compari-
son between two different models (designated as 1 and 2),
we rely on the Bayes’ factor B1;2, defined as the ratio of
their respective evidences, or more precisely, the natural
logarithm of this ratio. When using the empirical revised
Jeffreys’ scale, shown in Table II, we gain a robust
understanding of the relative performance of alternative
models.
In assessing the goodness of fit of our reconstructions,

particularly in relation to ΛCDM, we employ the value
−2 lnLmax for each model, where Lmax is the maximum
likelihood obtained within a Bayesian context. For a
comprehensive review of cosmological Bayesian inference,
we refer to [99]. The SimpleMC code also makes use of the
DYNESTY library [100], which leverages nested sampling
techniques to compute the Bayesian evidence. The selec-
tion of the number of live points adheres to the general rule

of thumb, specifically 50 × ndim [101], where ndim
denotes the total number of parameters subject to sampling.
As stated in the Introduction, the first reconstruction

made consists of a model independent approach using a
binning scheme. In this method, steps or bins are used to
represent any function f, connecting them with hyperbolic
tangents to ensure continuity. The target function is defined
as follows:

fðzÞ ¼ f1 þ
X

N−1

i¼1

fiþ1 − fi

2

�

1þ tanh

�

z − zi

ξ

��

; ð7Þ

whereN is the number of bins, fi is the amplitude of the bin
value, zi is the position where the bin begins in the z axis,
and ξ is a smoothness parameter. For a detailed explanation
on how this approach to a reconstruction works please
refer to [102]. In this case the reconstructed quantity is
the EOS parameter wDEðzÞ, so the bins take the form of wi.
The number of bins is N ¼ 20 and the smoothness
parameter takes the value of ξ ¼ 0.1. The flat priors will
be wiðziÞ∶½−2.5; 0.0�.
Regarding the flat priors of the cosmological parameters

for every reconstruction, including the EOS parametriza-
tions, the following ranges were imposed: Ωm (matter
density parameter) was constrained within the range of
[0.1, 0.5], Ωbh

2 (physical baryon density) within [0.02,
0.025], and h (dimensionless Hubble parameter, where
H0 ¼ 100h s−1Mpc−1 km) within [0.4, 0.9]. For the
model-specific parameters of the oscillating DE paramet-
rizations we choose the following flat priors:

(i) Model 1: w0 ¼ ½−2.0; 0.0�, w1 ¼ ½−5.0; 5.0�,
A ¼ ½−5.0; 5.0�, ac ¼ ½0.001; 10�.

(ii) Model 2: w1 ¼ ½−2.0; 0.0�, w2 ¼ ½−5.0; 5.0�,
w3 ¼ ½−5.0; 5.0�, ac ¼ ½0.001; 10�.

(iii) Model 3: wc ¼ ½−2.0; 0.0�, A ¼ ½−5.0; 5.0�,
B ¼ ½−5.0; 5.0�, θ ¼ ½0.001; 10�.

(iv) Models 4–7: w0 ¼ ½−2.0; 0.0�, b ¼ ½−5.0; 5.0�.
(v) Models 8–10: w1 ¼ ½−5.0; 5.0�, w2 ¼ ½−10.0; 10.0�.
(vi) Models 11–12: w1 ¼ ½−5.0; 5.0�, w2 ¼ ½−3.0; 3.0�.

IV. RESULTS AND THEIR IMPLICATIONS

In this section we summarize the results obtained from
all the parametrizations after conducting parameter infer-
ence on them. We begin with the reconstructed EOS of DE
using bins and CCþ SNþ BAO, as shown in Fig. 1. From

TABLE II. Revised Jeffreys’ scale for model selection.

lnB12 Odds Probability Strength of evidence

< 1.0 < 3∶1 < 0.75 Inconclusive
1.0 ∼3∶1 0.750 Weak evidence
2.5 ∼12∶1 0.923 Moderate evidence
5.0 ∼150∶1 0.993 Strong evidence

1One can access them from the publicly available SimpleMC’s
repository https://github.com/ja-vazquez/SimpleMC/tree/master/
simplemc/data.
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Fig. 1, it is evident that the reconstructed wDE exhibits
oscillatory behavior around wDE ¼ −1 during late times.
This oscillation implies a transition between the quintessence
(wDE > −1) and phantom (wDE < −1) regimes. This finding
aligns with recent studies suggesting an oscillating nature of
wDE in the late-time evolution of the universe [61,62].We can
also observe a preference for this behavior reflected in the
−2Δ lnLmax value of −15.41 (as shown in Table III).

However, this preference can also be attributed to the high
number of parameters (20) used for this reconstruction,
which enables a better fit to the data. Nonetheless, these
additional degrees of freedomcomewith a significant caveat:
a penalty in the value of the Bayes’ factor, which is 4.92 in
this case, indicating it as the least favored among the options.
Now, having this reconstructed version of wDE, one can
further investigate the viability of the existing oscillating DE
parametrizations. However, there is an opportunity to
enhance these models by utilizing fewer additional param-
eters to avoid substantial penalization.
Let us now discuss the parametrizations displayed in

Table I. Their performance in fitting the data and Bayesian
evidence is reported in Table III. The best-fit values of all
the free parameters of the oscillating DE models are
reported in Table IV. Finally, Figs. 2 and 3 highlight their
qualitative features in terms of their EOS and deceleration
parameter qðzÞ. In Fig. 2, the evolution of all the EOS
parameters is depicted. It is noticeable that, except for
model 11, all of the models allow for both quintessence and
phantom behavior within 1σ. In Fig. 3, we present the
evolution of the deceleration parameter, revealing a clear
transition from the past decelerating phase to the current
accelerating phase for all parametrizations. In addition, for
model 8, we observe an indication (even if not statistically
significant) for the slowing down of the cosmic acceleration
and based on the turning nature of the curve, maybe in the
future our universe could enter into a decelerating phase.
Next in Fig. 4 we show the best-fit values of wDE at

present time [i.e., wDEðz ¼ 0Þ] obtained in all the EOS

FIG. 1. The reconstructed EOS for DE for 20 bins using the
combined dataset from CCþ SNþ BAO reveals an oscillating
feature of wDE, particularly at low redshifts.

TABLE III. The table summarizes the mean values and
the standard deviations (in parentheses) for the parameters h
andΩm0 for the combined dataset CCþ SNþ BAO. The last two
columns correspond to the Bayes factor, which, if positive,
indicates a preference for ΛCDM, and the −2Δ lnLmax ≡

−2 lnðLmax;ΛCDM=Lmax;iÞ evaluated for each oscillating DE para-
metrization which are used to compare the fit with respect to the
standard ΛCDM model. Here ze denotes the redshift of equiv-
alence between matter and DE (i.e., the redshift at which
ρm ¼ ρDE) and it has been evaluated for each model taking
the best-fit values of the model parameters.

Model h Ωm0 lnBΛCDM;i −2Δ lnLmax ze

ΛCDM 0.696 (0.017) 0.310 (0.012) � � � � � � 0.244
20 bins 0.688 (0.019) 0.298 (0.014) 4.92 (0.21) −15.41 0.202
1 0.677 (0.020) 0.292 (0.015) 3.15 (0.21) −4.11 0.158
2 0.670 (0.020) 0.294 (0.015) 3.24 (0.20) −4.14 0.151
3 0.672 (0.020) 0.295 (0.015) 3.17 (0.22) −4.19 0.148
4 0.675 (0.023) 0.298 (0.019) 2.47 (0.20) −3.11 0.359
5 0.678 (0.024) 0.293 (0.021) 3.51 (0.21) −3.12 0.201
6 0.682 (0.023) 0.297 (0.019) 2.49 (0.20) −3.17 0.171
7 0.687 (0.023) 0.299 (0.019) 2.01 (0.21) −3.94 0.142
8 0.683 (0.020) 0.298 (0.014) 1.02 (0.20) −4.94 0.203
9 0.682 (0.019) 0.302 (0.014) 0.82 (0.21) −5.21 0.178
10 0.675 (0.022) 0.304 (0.015) 1.08 (0.20) −5.02 0.182
11 0.678 (0.022) 0.299 (0.015) 1.11 (0.20) −4.76 0.201
12 0.681 (0.022) 0.302 (0.015) 0.79 (0.22) −4.49 0.171

TABLE IV. The table summarizes the mean values and the
standard deviations (in parentheses when symmetric) for the
model-specific parameters.

Model

w0 w1 A ac
1 −0.98 (0.09) 0.02 (0.21) 0.98 (4.23) 4.99 (2.85)

w1 w2 w3 ac
2 −0.91 (0.11) 0.002 (0.207) −0.304 (7.134) 5.18 (2.82)

wc A B θ

3 −0.97þ0.19
−0.08 −0.041þ0.18

−0.15 6.21þ0.28
−4.09 6.31(2.81)

w0 b � � � � � �

4 −0.911ð0.043Þ −0.111ð0.279Þ � � � � � �
5 −0.928ð0.057Þ 0.072(0.155) � � � � � �
6 −0.911ð0.049Þ 0.058(0.189) � � � � � �
7 −0.921ð0.054Þ 0.088(0.191) � � � � � �

w1 w2 � � � � � �

8 −0.72þ1.93
−0.81 3.29þ0.42

−0.31
� � � � � �

9 −0.23þ0.02
−0.04 −2.08þ0.51

−1.03
� � � � � �

10 0.24þ0.11
−0.12 −0.83þ1.21

−0.32
� � � � � �

11 0.209(0.169) −0.005ð1.101Þ � � � � � �
12 0.189(0.195) 0.067(1.231) � � � � � �
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FIG. 2. The best-fit curve (red line) together with the 1σ curves representing wDE for all the DE parametrizations considering the
combined dataset CCþ SNþ BAO. The different curves represent the behavior of each parametrization when taking values distributed
along the inferred 1σ range of their respective parameters.
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FIG. 3. The statistical behavior of the deceleration parameter for all the DE parametrizations has been displayed considering the
combined dataset CCþ SNþ BAO. In each graph the red curve represents the best-fit curve filled with the 1σ region.
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parameters for the combined dataset CCþ SNþ BAO.
Note that for models 8–12, because of the way they are
defined, they attain wDEðz ¼ 0Þ ¼ −1. For the remaining
models, the current nature (z ¼ 0) of the oscillating DE
EOS is quintessential in most of the cases (phantom nature
only for model 2), which is reflected from Fig. 4.
Introducing an extra parameter for models 8–12 to attain
a different value at z ¼ 0 could potentially exhibit a similar
tendency. However, we have opted to retain them as they
are to maintain the number of degrees of freedom at a
minimum. Nonetheless, we believe that exploring exten-
sions to these parametrizations to address this behavior
might be worthwhile in future work.
At last in Fig. 5 we present the evolution of the density

parameters Ωi for the energy components of the universe.
We can see that, despite having a dynamical DE (in this
case being the oscillating EOS for model 12), there are
domination eras for radiation and matter.2 In the last
column of Table III we report every redshift of equivalence
between matter and DE for the best-fit of every model. In
what follows we focus on each model and their responses to
the observational data.
Models 1–3. Models 1–3 are some of the earliest

examples of parametrizations where the EOS was allowed
to oscillate, being particularly inspired by a quintom DE (a
DE whose EOS can cross the phantom divide line
wDE ¼ −1). Given that these three models have the largest
number of free parameters, i.e., 4, it is unexpected that they
are not the best fit to the data (when compared to the other
models), which is reflected in their −2Δ lnLmax values as
−4.11, −4.14, and −4.19, respectively. We attribute this to

the fact that, according to Fig. 1, the data prefers oscil-
lations at late times, which these models have problems
fulfilling due to the way they are defined (their oscillatory
behavior becomes more prominent at high redshifts).
Unsurprisingly, though, their Bayes’ factors are higher
than most of the other models with fewer free parameters,
presenting moderate evidence in favor of ΛCDM.
Models 4–6. This triad of models shows some improve-

ment in fitting the data, although it is the smallest among
the models studied. This limitation arises from a significant
drawback: they lack a parameter to adjust the frequency of
oscillations. Consequently, during a parameter inference
procedure, their oscillations remain static. While these
models indeed exhibit oscillatory behavior, it occurs
primarily at early times (similar to models 1–3) rather
than at late times (low redshifts). Introducing a new
parameter to modify the oscillation frequency would be
necessary to address this issue. However, it is worth noting
that such an addition would likely result in a worse
Bayesian evidence, and they already have moderate evi-
dence against them when compared to the standard model.
Model 7. Similar to Models 4–6, model 7 shares a

disadvantage: lacking a parameter to modulate the oscil-
lation frequency. This is apparent when looking at its
−2Δ lnLmax value of −3.94, making it the fourth worst
among the group. However, it does exhibit a crossing of the
phantom divide line at low redshift. The Bayes’ factor
aligns with expectations, considering its number of param-
eters and the similarity in their priors with the preceding
three models.
Models 8–10. Models 8 and 9 exhibit the most notable

oscillatory behavior, evident at the 1σ level, as illustrated in
Fig 2. Model 8 demonstrates the ability to cross the
phantom divide line up to 3 times, while model 9 achieves
up to two crossings. Notably, model 9 boasts the best fit

FIG. 4. The best-fit value of each EOS parametrization today
[wDEðz ¼ 0Þ]. Models 8–12 cannot have an initial value different
from −1 because of the way they are defined. The dotted vertical
line corresponds to wðz ¼ 0Þ ¼ −1.

FIG. 5. Evolution of the density parameters for model 12 using
its best-fit values. Although only the plot for model 12 is shown,
all other models exhibit the same general behavior. The only
notable difference is the redshift value at which the transitions
between domination eras occur.

2We note that, within the present oscillating DE models
displayed in Table I, our universe experiences radiation and
matter dominated eras prior to the present DE dominated era.
Although we have shown these features for model 12 in Fig. 5,
one can take any of the models in Table I.
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among all the models studied in this work. Their Bayes’
factors provide moderate evidence against themselves, in
line with expectations, given the presence of two extra
parameters and relatively broad priors compared to other
models. Model 10 shares some visual similarities with
models 7 and 9, with the latter also presenting a similar
Bayes’ factor albeit a worse fit to the data (but not
by much).
Models 11 and 12. These last two entries show the most

favorable Bayes’ factors in the comparison, although they
still fall short compared to the standard model’s one,
exhibiting only weak evidence against them according to
the revised Jeffreys’ scale. This is likely due to the narrower
prior on the parameter w2 compared to models 4–10. Their
fit to the data is moderate, and this might be attributed to
certain characteristics of these parametrizations: Model 11,
by design, cannot cross the phantom divide line, a behavior
favored by every other reconstructed EOS in this work,
putting it at a disadvantage; model 12, featuring a cubic
cosine function, introduces some flatness in the oscillations
at certain intervals, attempting to identify this characteristic
in Fig. 1 (which is model independent) will prove to be a
futile task, making this particular behavior less preferred
when using these datasets to perform parameter inference.

V. SUMMARY AND CONCLUSIONS

With the abundances of astronomical data and the
availability of sophisticated numerical packages, cosmol-
ogy has become increasingly exciting in the 21st century.
Understanding the dynamics of the Universe has emerged
as a pivotal challenge for modern cosmology over the past
several years. While the standard ΛCDM cosmology has
been successful in explaining numerous astronomical
surveys, this century has highlighted that ΛCDM may
not be the ultimate theory of the Universe. Discrepancies
between early and late cosmological probes, with the H0

tension being a major challenge, suggest the need for
alternative explanations.
Tracing the evolutionary history of the Universe, com-

monly two approaches are considered. The simplest and
most commonly used approach, as documented in existing
literature, is to propose a cosmological model and assess
how well available astronomical data aligns with this
model. This method enables the introduction of a sequence
of cosmological models with the aim of identifying the
most optimal one based on the observational datasets.
Alternatively, using the available astronomical probes, one
can reconstruct the expansion history of the Universe
through cosmological variables. For instance, by employ-
ing a suitable numerical algorithm, one can reconstruct the
Hubble parameter and its derivatives. Subsequently, a
cosmological parameter expressed as a function of these
variables can be reconstructed. Unlike the previous
approach, this method is model independent, as it does
not require the assumption of an arbitrary parametrization.

In seeking to understand how the model-independent
approach influences the evolution of DE, we have noticed
that wDE may exhibit an oscillating nature between
quintessence and phantom states (see Fig. 1) and this
result is in agreement with earlier reports by other authors
[61,62]. This served as an inspiration to revisit oscillating
DE parametrizations previously introduced in the literature
by numerous investigators [63,70–79,82,83]. In this article,
we have considered 12 oscillating DE EOS parametriza-
tions (see Table I), among which seven models have been
previously proposed in earlier works, while five models are
newly introduced. The aim of this article is to determine
which of these 12 distinct models offer the best approxi-
mation to the reconstructed DE EOS as in Fig. 1. Among all
of these, we find that models 8 and 9 exhibit the most
remarkable oscillatory features (see Fig. 2). Specifically, for
model 8, wDE crosses the phantom divide line wDE ¼ −1 up
to 3 times, while for model 9, two crossings of the phantom
divide line are observed. Hence, these two models can be
considered to have similar (though not identical) features as
depicted in Fig. 1.
On the other hand, concerning the fit to the data, our

analyses clearly demonstrate that every EOS considered in
this work fits the data significantly better compared to the
ΛCDM model, as quantified through −2Δ lnLmax (see the
fifth column of Table III). However, in terms of Bayesian
evidence analysis (see the fourth columnofTable III), none of
the models are preferred over ΛCDM. This is because the
present oscillating DE parametrizations have 2–4 extra free
parameters compared to the ΛCDM model, resulting in a
higher number of degrees of freedom. While having more
degrees of freedomgenerally leads to a better fit, it also entails
being penalized by the Bayes’ factor. Nevertheless, it should
be mentioned that, among all the oscillating DE models
studied here, models 9 and 12 deserve special attention given
that they are the only ones which obtained a lnBΛCDM;i < 1,
with model 12 having the best Bayes’ factor overall.
Qualitatively both models exhibit oscillating features at
low redshifts, with model 12 also manifesting some flatness
at certain intervals. Those distinguishing features should be
paid more attention in light of these findings.
In summary, this study aims to identify a DEEOS capable

of replicating the behavior of the model-independent
reconstruction of wDE (Fig. 1) up to z ¼ 3, thereby incor-
porating low redshift cosmological probes into the analysis.
It is important to note that (i) high redshift cosmological
probes have not been considered in the reconstruction, and
(ii) upcoming astronomical surveys are expected to intro-
duce more potential cosmological probes in the coming
years. As a result, the final conclusion in this regard may
hold surprises for future investigations.
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