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1 | INTRODUCTION
1.1

In this paper, we return to the question of the comparison of various notions of co-operad occur-
ring in the literature. One such notion is the one defined by Lurie in terms of simplicial sets over
the nerve of the category of finite pointed sets, see [section 2]; another is the one defined in terms
of dendroidal sets, or dendroidal spaces [5]. Lurie’s oo-category and the dendroidal one are in fact
symmetric monoidal co-categories where the monoidal structures resemble the Boardman-Vogt
tensor product of operads. The co-categories themselves are underlying Quillen model structures.
The dendroidal model category has been shown in [5] to be Quillen equivalent to the model
category of classical simplicial or topological operads.

A first such comparison was made in [7], where it was shown that if one restricts oneself to
operads without constants, the Lurie model and the dendroidal one are (Quillen) equivalent at
the level of model categories. Moreover, this equivalence respects the monoidal structure of the
associated homotopy categories, which is a shadow of the much richer structure of symmetric
monoidal co-category.

© 2024 The Author(s). Journal of Topology is copyright © London Mathematical Society. This is an open access article under the terms of
the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work
is properly cited.

J. Topol. 2024;17:e70003. wileyonlinelibrary.com/journal/jtop 10f31
https://doi.org/10.1112/topo.70003



20f31 | HINICH and MOERDIJK

In a long paper [1], Barwick constructs another co-category based on his notion of operator
category, and proves this co-category to be equivalent to Lurie’s version mentioned above. A next
comparison was studied in [4], where the dendroidal model was shown to be equivalent to Bar-
wick’s version at the level of co-categories. Combined with Barwick’s equivalence, this gives a
composed equivalence between Lurie’s co-category and the dendroidal one, now avoiding the
condition on the absence of constants of [ 7]. However, the comparison of [4] does not address the
question of equivalence as symmetric monoidal co-categories.

The goal of this paper is to prove a relatively direct and explicit equivalence between two sym-
metric monoidal co-categories. One is the co-category LOp (short for “Lurie operads”) underlying
Lurie’s model category, the other is the co-category DOp (for “dendroidal operads”) underlying the
dendroidal model category. To give the reader a rough idea already at this stage, we remark that
our proof is based on a functor from level forests to forests, denoted

w:.:F->,

see Sections 2.2.2 and 3.1 for the notation. LOp is an co-category of presheaves on F and DOp is one
on @, and the equivalence is simply realized by the functors’

A : DOp — LOp, A(D)(A) = MapDOp(co(A),D),

8 : LOp — DOp, 8(L)(F) = Mapy o, (i(F), L).

Here A, D, F, and L are objects of F, DOp, ®, and LOp, respectively, and i denotes the embedding
of objects of @ as free operads in LOp; see Section 3.1 for detailed definitions. Our main theorem
can then be stated as follows:

Theorem 1.1.1. The functors A and § define an equivalence of symmetric monoidal oo-categories
A :DOp__LOp : 6.

The other comparison proofs mentioned above are also based on the same functor from level
forests to forests, but there are several important differences. First of all, our result is an equiva-
lence of symmetric monoidal co-categories, not just of co-categories. To prove this sharper result,
we use a colax symmetric monoidal structure on the category of copresheaves on an operad,*
which may be of independent interest. Second, our proof uses the category of algebras of an operad
in two essential ways. We use the comparison theorem of Pavlov and Scholbach [16], which states
that the oo-category underlying the category of simplicial algebras over a 2-free operad P in sets is
equivalent to the co-category of algebras over the associated co-operad #(P) in the co-category of
spaces, and similarly for algebras in a symmetric monoidal model category C and its underlying
oo-category C, . We state this result somewhat cryptically as

AlgP(C)oo = Algf(P)(Coo)’

see Section 4.2.1 for a precise formulation. (This result is analogous to an earlier result for lin-
ear operads proved in [11].) Second, we prove and use the following reconstruction theorem for

T As a mnemonic aid, § stands for “dendrification,” A for “Luriefication.”

0r, as it appears in our paper, the category of presheaves on an anti-operad.
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ON THE EQUIVALENCE OF LURIE’S co-OPERADS AND DENDROIDAL co-OPERADS | 3 0f31

oo-operads, stating that a map P — Q between oo-operads, which is essentially surjective on col-
ors is an equivalence whenever it induces an equivalence between the associated co-categories of
algebras in the co-category of spaces; see Theorem 4.1.1 below. (By the result of [16] just mentioned,
this implies the analogous known result for Z-cofibrant simplicial operads, see [3].)

1.2

To conclude this introduction, let us briefly sketch the contents of this paper. In Section 2, we fix
some conventions about our use of co-categorical language, and introduce the co-categories DOp
and LOp featuring in our main theorem above. In Section 3, we state and prove a weaker form of
the main theorem, ignoring the symmetric monoidal structure for the moment. The proof uses
a lemma that is based on the reconstruction theorem, which we postpone until Section 4 where
we discuss algebras over an co-operad. In the final Section 5, we address the different symmetric
monoidal structures involved, and prove that they are respected by the functors § and A. The
structure on DOp is defined in terms of shuffles of trees about which we explain some basic facts
in the Appendix.

2 | PRELIMINARY DEFINITIONS
2.1 | oo-categorical conventions

We present here some basic notation and discuss a few standard recipes for working with oco-
categories.

In what follows, the word “category” means oo-category, operad means oco-operad, functor
means oo-functor, and so on. If we wish to emphasize that an co-category (or an co-operad) can
be modeled by a strict inner Kan complex, we sometimes refer to it as a conventional category (or
operad).

The most basic category is the category of spaces S underlying the Quillen model category of
simplicial sets. Given two categories C, D, there is a category of functors Fun(C, D) satisfying the
standard equivalence

Map(X, Fun(C, D)) = Map(X x C, D).

The category of categories Cat can be realized as a full subcategory of the category of simplicial
spaces P(A) = Fun(A°P, S), spanned by the simplicial presheaves X : A°P — S satisfying the co-
categorical variant of the Segal and completeness properties, see [17]:

1. For any n the natural map
Xy = Xy Xx, x, X X1

is an equivalence.

2. The map Map(J,X) — Map(*,X) induced by a map x— J is an equivalence. (J € P(A) is the
presheaf corresponding to the category having two objects and a unique isomorphism between
them.)
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4 of 31 | HINICH and MOERDIJK

This approach allows one to define the opposite of a category defined by a simplicial space
C : A°°’ - S as the composition of C with the functor op : A — A reversing the ordering of a
finite totally ordered set.

211

Another endofunctor of A, carrying [n] to the join [n]°P % [n] = [2n + 1], gives the construction
of Tw(C), the category of twisted arrows in C. The canonical projection

Tw(C) -» C? x C
is a left fibration; that is, it is classified by a functor
Y:CPxC—S.

This functor can be rewritten as the Yoneda embedding Y : C — P(C) = Fun(C®?, S).

Dealing with co-categories requires extra care when writing formulas. It is in general not
allowed to define functors by describing them on objects and arrows as there is no way
to describe all required compatibilities. However, some standard formulas do define func-
tors. For instance, given a functor f : C — D, one has a functor f : D’ x C — S defined
by the formula f(d,c) = Mapy(d, f(c)). This formula just means that f is defined as the
composition

Y
DPxC—-D°xD—S.

2.1.2

A map of spaces f : X — Y (e.g., modeled by Kan simplicial sets) exhibits X as a subspace of Y if
f induces an equivalence of X with a union of a subset of connected components of Y. This notion
generalizes to any category C: An arrow f : ¢ — d is mono, if for any x € C the induced map of
spaces Map(x, c) - Map.(x, d) is an inclusion of a subspace. In the case when C = Cat, we get
the notion of subcategory: It is defined by a subspace of objects, and a subspace of morphisms for
each pair of objects.

2.1.1 | Subfunctor

The notion of subspace mentioned above allows one to construct a subfunctor of a given functor.
In this context, the following elementary result is useful (see [10], 9.2.3).

Proposition. Let F : C — D be a functor. Let, for each x € C, a subobject G, of F(x) be given, so
that foreach a : x — y the composition G, — F(x) — F(y) factors through G,. Then the collection
of subobjects G,, uniquely glues into a subfunctor G : C - D.
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214

A marked category is a pair C i =(c,C°) where Cisa category and C° is a subcategory of C con-
taining C®9, the maximal subspace of C. The category Cat™ of marked categories is defined as the
full subcategory of Fun([1], Cat) spanned by the embeddings C° — C. We denote by C b= (c,C)
the category C endowed with the minimal marking. The embedding Cat — Cat™ carrying C to
C’ has a left adjoint called localization and denoted

L : Cat®™ — Cat. @

For marked categories represented by a pair of simplicial categories, the localization is represented
by the Dwyer-Kan construction.

2.1.5

Many important co-categories appear as the ones underlying model categories. One such is the
standard model structure on simplicial sets modeling S. Another one is the complete Segal model
for the oo-category of co-categories Cat that has already been mentioned above.

The oo-category of a model category is obtained by a general localization construction as
described in Section 2.1.4, which does not enjoy very nice properties. Fortunately, one can often
present the co-category underlying a model category as a Bousfield localization” of a certain co-
category of presheaves of spaces. For instance, Cat can be presented as a Bousfield localization of
the oco-category P(A) of simplicial spaces. As explained above, this is an oco-categorical reformu-
lation of the fact [17] that the model category of complete Segal spaces is obtained by a Bousfield
localization (in the sense of model categories) from the Reedy model structure on bisimplicial
sets. Below we will present the co-categories DOp and LOp in a similar way, see Sections 2.2.3 and
2.3.5.

Note that by a result of Dugger [6], any co-category underlying a combinatorial model category
is in fact equivalent to such a localization of a category P(C) of simplicial presheaves.

Let CS C Seg C P(A) denote the full subcategories of P(A) spanned by the complete Segal
spaces and by all Segal spaces, respectively. The following easy observation will be used below.

Lemma2.1.6. Let f : X — Bbeanarrowin Segwith B € CS. Then X € CSifand only if the fibers
of f are in CS.

Proof. Recall from Section 2.1 that a Segal space X is complete if and only if the map Map(J, X) —
Map(*,X) induced by a map x— J, is an equivalence. We have a commutative diagram of
spaces

Map(J, X) —— Map(*, X)

| |

Map(J, B) —— Map(*, B)

* A localization that has a fully faithful right adjoint.
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6 of 31 | HINICH and MOERDIJK

and we need to show that the top horizontal arrow is an equivalence. It is obviously so if and only
if the map of fibers at any b € Map(x, B) is an equivalence. These fibers identify with Map(J, X})
and Map(, X, ) where X, denotes the fiber of f at b € B. O

2.2 | Dendroidal co-operads
221

We begin by recalling the definition of the category Q introduced in [14] and discussed in detail in
[8], Section 3.2, see also the Appendix. The objects of Q are finite trees, allowed to have “external”
edges attached to just one vertex. One of these external edges is specified as the root of the tree,
the other external edges are called leaves. The edges of a tree connected to two vertices are called
internal or inner edges. The category Q includes the object 7 consisting of just one edge that is at
the same time the root and the leaf. The choice of a root defines an orientation of each edge in the
tree, toward the root. This specifies for each vertex v an outgoing edge out(v) and a set in(v) of
incoming edges. The cardinality of in(v) is called the valence of the vertex v, and it is allowed to
be zero. Vertices of valence zero are called stumps. To define the morphisms of the category Q, we
observe that each such tree T defines a (symmetric) colored operad o(T). The colors of o(T) are
the edges of T and its operations are generated by the vertices, each vertex v defining an operation
from the set in(v) to out(v). The morphisms S — T in Q are now defined to be the operad maps
0(S) = o(T). In particular, this makes o into a full embedding of Q into the category Op(Set) of
operads in sets.

Alternatively, one may define the morphisms S — T in Q as generated by “elementary
morphisms”: these are

(a) isomorphisms S 5 T;

(b) degeneracies S - T where S is obtained from T by putting a new vertex in the middle of an
edge of T;

(c) inner face maps S » T where S is obtained from T by contracting an inner edge of T; and

(d) outer face maps where S is obtained by chopping off an external vertex from T (i.e., a vertex
attached to just one inner edge). In addition, if T is a corolla, that is, a tree with just one vertex,
each edge of T defines an elementary morphism»n — T.

We observe now that there is a full embedding ¢ : A & Q of the simplex category A into Q,
which assigns to each object [n] of A the linear tree ([n] with n vertices (all of valence 1) and n + 1
edges. Under this identification of A with a subcategory of 2, degeneracies, inner and outer faces
have their usual meaning.

2.2.2

It is convenient to extend the category Q to include disjoint unions of trees. To this end, we define
the category of forests @ similar to Q, as the full subcategory of Op(Set), spanned by o(F) where F
is a disjoint union of trees and o(F) is defined as the coproduct of the operads o(T;) where T; are
the components of F. We will denote by o : ® — Op(Set) the full embedding described above,
see diagram (28). The category @ can be alternatively defined as the category obtained from Q
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by formally adjoining finite coproducts. (Note that our definition of ® is different from that of
[7]. First, our category ® has an empty forest; and, second, the version of [7] has fewer arrows
(independence property) than our version.)

2.2.3

The (o0-) category of dendroidal operads DOp is defined as the full subcategory of the category
P(Q) of presheaves (of spaces) spanned by the presheaves satisfying Segal and completeness
properties:

(D1) For an inner edge b in T let T), and T? be the upper and the lower part of T obtained by
cutting T at b. Then X(T) — X(T},) Xx(p) X (T?) is an equivalence.
(D2) Completeness: t*(X) € P(A) is a complete Segal space.

It will be convenient for us to realize DOp as a full subcategory in P(®) spanned by the presheaves
satisfying the above two properties, as well as the extra (also Segal-type) property.

(D3) The natural map X(F) — [] X(T;) for a forest F consisting of the trees T}, is an equivalence.
In particular, X(#) is contractible.

It is a standard fact that the category DOp is equivalent to the one underlying the model category
of dendroidal complete Segal spaces, or the equivalent one of dendroidal sets, see [5] or [8].

2.3 | Lurie co-operads

In what follows Fin, denotes the conventional category of finite pointed sets. We denote by I, the
finite pointed set I LI {*} and put (n) = {1, ...,n},. An arrow f : I, — J, is called inert if for any
j € J the set f~1(j) consists of one element.

A functor p : P — Fin, is called fibrous if the following conditions are satisfied. In what
follows, we denote by P, (or P;) the fiber of p at (n) (or atI,).

(Fibl) Any inert arrow f : I, — J, has a cocartesian lifting. As a result, a functor f, : P; — P;
is defined (uniquely up to equivalence).
(Fib2) For the collection of standard inerts p! : (n) — (1) defined by (0')~'(1) = {i}, the maps

o
P, =P

form a product diagram.
(Fib3) Let f : (m) — (n) be an arrow in Fin,, x € P, and r' : x — x; the cocartesian liftings of

p' : (n) — (1). Then the natural map

Map/ (v, x) - [ | Map”*/ (v, x,)
i

is an equivalence for any y € P,,,.
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8of31 | HINICH and MOERDIJK

231

Cocartesian liftings of inerts in Fin, are called inerts in 7. The category of Lurie operads LOp is
the subcategory of Cat /5, consisting of fibrous objects and morphisms preserving inerts, see [12,
2.3.3.28] or [9, 2.6.3]. For example, any conventional (colored) operad P in Set with the set of colors
[P] defines an object #(P) of LOp, see [12, 2.1.1.7 and 2.1.1.22]. Its morphisms overamap « : I, —
J, In Fin, are triples (c,d, p) where ¢ : I - [P],d : J — [P], and p = (p; : j €J) where p; €
P(clq1( i) d(j)). These formulas define a functor # : Op(Set) — LOp identifying Op(Set) with the
full subcategory of LOp spanned by fibrous maps p : C — Fin, with C a conventional category,
see diagram (28).

23.2

The category LOp has a symmetric monoidal structure that is induced from the smash prod-
uct operation on Fin,. Following Lurie [12, 2.2.5.9], we will say that a functor F : (Fin,)" —
Fin, is a smash product functor if F({(1),...,{1)) ~ (1) and F preserves coproducts in each
argument. A smash product functor is unique up to a unique isomorphism. An operad
multifunctor(Py, ..., P,)) — Q is defined as a commutative diagram

Plx---xPn%Q

| |

Fin, X --- X Fin, —— Fin,,

where f carries n-tuples of inerts in P; X --- X P, to inerts in Q and F is a smash product. The
notion of operad multifunctor defines on LOp the structure of an operad that turns out to be a
symmetric monoidal category, where the multiple tensor product is defined as the target of the
universal operad multifunctor out of Py, ..., P,,, see [12, 2.2.5.13].

2.3.3

As explained before, the category Cat identifies with the full subcategory of P(A) spanned by
the complete Segal objects. In particular, the (conventional) category Fin, can be viewed as an
object of P(A), which we still denote by Fin,. This identifies Cat /;, with a full subcategory of

P(B)/Fin, -
The following general fact allows one to identify the latter with P(A /;,, ).
LetY : C — P(C) be the Yoneda embedding and let F € P(C). We define

C/r = CXp(ey P(C) 2

and denote by p : C;p — P(C)/p the natural projection. Then p is fully faithful and we denote
by

P P(Cp) = P(C)p 3)

the extension of p to a colimit-preserving functor.
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ON THE EQUIVALENCE OF LURIE’S co-OPERADS AND DENDROIDAL co-OPERADS 9 of 31

Lemma 2.3.4. p, is an equivalence.

Proof. We apply Corollary 5.1.6.11 in [13] to p,. Its restriction p is fully faithful, and the image of
any ¢ : Y(x) - F is absolutely compact as colimits in P(C) /r are detected by colimits in P(C).
Finally, it is clear that the objects Y(x) — F generate P(C) JF under colimits. O

Remark. Note that, by definition (2), A /p;,, = A Xp(p) P(A) /piy, - Since Fin, and all [n] are con-
ventional categories and since the images of conventional categories form a full subcategory of
P(A), A gy, is equivalent to the conventional category of simplices in Fin,.

In this paper, we denote
F = A/Fin* . (4)

Thus, LOp can be identified with a (nonfull) subcategory of P(F).

2.3.5

Here is another presentation of LOp, this time as a Bousfield localization. The category Fin, has a

marking defined by the collection of inert arrows. This marked category is denoted by Fini. There

is a fully faithful functor LOp — Cat;L h carrying a fibrous p : © — Fin, to the marked category
Fin,,

*

O over F ini, with the marking on O defined by the inerts. By [9, 2.6.4] (based on [12, B.0.20]),
LOp is the Bousfield localization with respect to the class of operadic equivalences. An operadic

equivalence is defined asamap f : X - Y in Cau:;r ! inducing an equivalence Map(Y, Q) —
Fin

Map(X, O) for any fibrous O.

2.3.1 | Cocartesian arrows

Let F € Cat. As before, we will identify F with the corresponding complete Segal space in P(A).
Lemma 2.3.4 defines a full embedding of Cat  into P(A ). Let p : X — F be a category over F
and let X € P(A /p) be the corresponding presheaf. By definition, for A : [n] — F,

X(A) = Map([”],X) ><Map([n],F) {A}

Fix a : [1] —» F and let a € X(a). We denote by the same letters a : x > y and a : X - y the
arrows in X and in F. The following lemma is a direct reformulation of the cocartesian property
of the arrow a in our language.

Lemma. The arrow a € X(«) is p-cocartesian if and only if for any o : [2] — F with d,o = «,
dyo =B, dyo =y, the map

W Xxg) X(B) = {x} Xxx) X@)

d ‘v YTOT YTYSESLT

wouy

2SURDIT SUOWIWO)) dANEaIY) d[qearidde oy Aq pauIoA0S a1 s[NIE YO (asn JO $a[nI 10§ KIRIQI AUIUQ KI[IAL UO (SUONIPUOd-PUE-SULI)/WOd* K[ AIeiqroutjuoy/:sdiy) SUONIPUO)) pue SWIA L, 3y 9§ [S707/20/L0] uo Areiqry aurjuQ £aqip 1821 £q €000 0doyZ [ [ 1°01/10p/wod Kaim'.



10 of 31 | HINICH and MOERDIJK

defined as a composition

9} Xy X(B) = 1} Xy X(0) Xy X(B) < {2} X X(0) = Xy X,

is an equivalence.

3 | EQUIVALENCE OF LOp WITH DOp
3.1

In this section, we will construct an equivalence of (o0-) categories between LOp and DOp. (It will
be upgraded to an equivalence of symmetric monoidal categories after some more work.) The
construction is based on a functor

w . A/Fl'}’l* :":_)(b,

see diagram (28), which we will define first. The definition of w is a variant of the one in [7], which
dealt with open trees and forests only.

311

Consider an object A : [n] — Fin, of F, that is, a sequence

ay An
AO* - Al* AR An*

of maps between pointed sets. We write a;; : A;, > A;, for the composition a;o ... oa;,; (fori >
Jj)- The set of edges of the forest w(A) is the disjoint union [ ] A; of the sets A;. This set carries a
partial order defined for a € A; and b € A; by

asbiffjsiandocij(b)za.

The roots of w(A) are the edges minimal in the above order. For each a € 4; in this set of edges
with i > 0, there is a unique vertex v, in the forest w(A) immediately above a. The edge a is
the outgoing edge of v,, while in(v,) = ocl.‘l(a). In particular, the set of leaves in the forest can
be identified with A. The set of roots of w(A) consists of the elements of A, together with the
elements of A; sent to the basepoint * under a;; : A; = A;, fori=0,..,n—1.

Here is an example of the forest corresponding to the map (4) 3 (3) 3 (1) withy(1) =1 =
a;(2), 4;(3) =3 = a;(4), a,(1) = 1 = a,(2), a,(3) ==.
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This defines w : F — & on objects. It extends to morphisms in the obvious way: A face map
d;A — A induces a morphism w(d;A) - w(A) which on each component tree is a composition of
faces; and a degeneracy map A — s5;A induces a morphism w(A) — w(s;A) which is a composition
of degeneracies.

Note the following property of w.

Lemma 3.1.2. Any forest F € @ is a retract of some w(A) for some A € F.

Proof. In order to present a forest F as w(A), one has to assign a nonnegative number h(a) to each
edge a so that h(a) = h(b) — 1 for a immediately under b and so that the a is a leaf precisely when
h(a) = 0. The first condition is achieved easily; to achieve the second, one may need to enlarge
the forest F slightly and construct a forest F/ by adjoining a sequence of unary edges on top of
leaves of F. Then F’ is of the form w(A) and F is a retract of F’. O

3.13

The functor w defines an adjoint pair
w, : P(F)_P(®) : w*.

The functor 4 : DOp — P(F)is defined as the restriction of w* to DOp. This means that for D € DOp
and A € F,

AD)(A) = Mapp(q,(@(A), D). ®)
Define i : ® — LOp as the composition of 0 : ® — Op(Set) with the embedding ¢ : Op(Set) —

LOp discussed in Section 2.3.1. The functor i determines a functor LOp X ®°P — S that yields § :
LOp — P(®) by adjunction. This means that, for P € LOp and F € ®, one has

8(P)(F) = Mapy g, (i(F), P). (6)
Theorem 3.1.4. The functors defined above give a pair of quasi-inverse functors

& : LOp_DOp : A. @)

3.1.5

In Section 5, we will extend this equivalence to an equivalence of symmetric monoidal categories.
The proof of Theorem 3.1.4 is presented in Sections 3.2-3.5 below. We will first of all verify that
8(P) € DOp for any P € LOp and that A carries DOp to LOp. Then we will construct equivalences
Aod — id and id — doA.

3.1 | The functor § has image in DOp

The category DOp is a full subcategory of P(®), so we only have to verify that, for L € LOp, the
presheaf §(L) satisfies the conditions (D1), (D2), and (D3). The functor i carries a finite coproduct
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12 of 31 | HINICH and MOERDIJK

of forests to the corresponding coproduct in LOp (since both o and # above preserve coproducts).
Also, for an inner edge b of a tree T, Proposition 4.3.4 below claims that i(T) is the colimit of the
diagram i(T?) « i(b) — i(T}), where T? and T}, are two halves of the tree T obtained by cutting T
along b. These two facts immediately prove the conditions (D1) and (D3). It remains to verify (D2).
The simplicial space (*o8(L) is just the image of L under the functor P(A g, ) — P(A) defined by
(1) € Fin,. It is complete as L represents a category over Fin,,.

3.2 | The functor A has image in LOp
331

Let us, first of all, verify that (D) € Cat g, for any D € DOp. We have to verify that (D),
considered as an object of P(A p;,, ), satisfies the Segal condition and is complete.

A
For A : [n] - Fin, we denote by A; the composition {i} — [n] — Fin, and by A; ;; the
i—1,i A
composition [1] {l—;} [n] = Fin,. The Segal condition for A(D) means that the natural map

A(D)(A) - A(D)(A()l) Xﬂ.(D)(Al) Xl(D)(An_l) A(D)(An—l,n)

is an equivalence. This easily follows from the Segal properties (D1) and (D3) for D formulated in
Section 2.2.3.
By Lemma 2.1.6 applied to Fin, viewed as a complete Segal space, completeness of (D) means

thatforanyI, € Fin, andthemapy; : A — A, carrying [n] € Ato[n] = [0] I—i Fin,, the map
i P(A /Fm*) — P(A)carries A(D) to acomplete Segal space. Denote D; = t*(D), wheret : A - @
is defined in Section 2.2.3. This is the complete Segal space representing the category underlying
D € DOp. Since t; (4(D)) = D{, it is a complete Segal space. Thus, A(D) is a category over Fin,. We
will denote it explicitly by p : A(D) — Fin,.

Let us now verify that p : A(D) — Fin, is fibrous. The fiber of p at I, is (7 (4(D)) = D{ .

(Fibl) Givena : (m) — (n) inert, the base change A(D),, := [1] Xy, A(D) is a category over [1]
with fibers DI" and D7 at 0 and 1, respectively. This is obviously a cocartesian fibration
classified by the projection p, : DI — D} determined by the inert a. Therefore, a has a
locally cocartesian lifting a : x — p,(x) for each object x € D{". It is now easy to verify
the condition of Lemma 2.3.6 that shows that any such a is in fact cocartesian.

(Fib2) The inert maps p' : (n) — (1) give rise to an equivalence A(D), — [[A(D),. This is
straightforward.

(Fib3) It remains to verify the last property of fibrous objects. Fix A : [1] — Fin, defined by an
arrow f : (m) — (n). Given x € A(D),, and y € A(D),,, the map space Mapﬁ(D)(x,y) can
be expressed as the fiber of the natural map

A(D)(A) = D(w(A)) = A(D)(m) X A(D)(n)

at (x,y). Applying the axiom (D3) to the forest w(A), we deduce the required decomposi-
tion

Map] , (x.y) > [T Map{ 5] Gx. o).
L
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ON THE EQUIVALENCE OF LURIE’S co-OPERADS AND DENDROIDAL co-OPERADS 13 of 31

3.3.2

LOp is not a full subcategory of P(A /g;, ). This means that we have to verify that, given a map
f : D —» D' with D,D’ € DOp, the induced map w*(f) : w*(D) = w*(D") preserves the inerts.
This immediately follows from the description of inerts given above: If f : (m) — (n)isinertand
if f : D — D' is a map, it induces a commutative square

Dy —— Dy

| ]

D" —— pl"

with the vertical arrows induced by f and the horizontal arrows being the projections determined
by f.

3.3 | Anequivalence 406 — id

In this subsection, we construct an equivalence of functors § : 10§ — id. The construction uses,
forany A € F, the canonical sections, : A - j(w(A))in P(F), where j : & — P(F) is the compo-

sition @ — LOp — P(F), see diagram (28). In more detail, for an operad P in sets the corresponding
object #(P) in LOp can be viewed as a presheaf on [F via the embedding LOp < P(F). By the descrip-
tion given in Section 2.3, the value of this presheaf at A € [F is precisely the set of operad maps
o(w(A)) — P. This yields, for P = 0o(w(A)), a canonical section s, : A - j(w(A)).

We will deduce that § is an equivalence from the following result to be proven in 4.3.

Proposition 3.4.1. For A € F and L € LOp, the canonical section
Sq t A= j(w(A)) ®)
in P(F) induces an equivalence

MapLDp(iow(A)vL) - Mapp([F)(A,L).
3.4.2

Just for now, let us write g : LOp & P(F) for the embedding functor. We will first define a mor-
phism of functors 8’ : golod — g from LOp to P(F), and then will show that 8’ factors through a
B Aod — id.

Using the standard equivalence

Fun(A, Fun(B, C)) = Fun(A X B, C),

we will define instead an equivalence E’ : godod — g offunctors from LOp X F°P to S. The functor
goldod carries (L, A) € LOp X F°P to

Mappg, (@(A), 8(L)) = Mapy g, (icw(A), L) C Mapp)(jow(A), g(L)),

whereas g carries (L, A) to Mappg)(4, g(L)).
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The functor E’ is now defined as the precomposition with s, : A — jow(A). According to
Proposition 3.4.1, E’ , and, therefore, 8/, is an equivalence.

Since both godod(L) and ¢(L) belong to LOp C P(F), the natural equivalence [5’]’4 1 gAd(L) —
g(L) between them also belongs to LOp, hence is the image under ¢ of a unique equivalence
B : A6(L) —» L. (Note that the inclusion LOp — P(F) is fully faithful on equivalences since
equivalences automatically preserve cocartesian liftings of inerts.)

343

Note, for further application, the following consequence of Proposition 3.4.1 which relates two
realizations of a forest as an operad, one in DOp and the other in LOp. Define a morphism of func-
tors 0 : A|p — ifrom @ to LOp so that its composition with g : LOp — P(F) is given by the natural
transformation of functors ® x F°P — S defined as in Section 3.4.2,

Mapp)(A, w*(F)) = Mapg (w(A), F) = Map g (iew(A), i(F)) —

MapP([F)(Aa .](F))’

where A€ Fand F € ®.

Proposition 3.4.4. The morphism of functors 6 : A|q — i defined above, from the restriction of
A :DOp — LOpto® < DOpintoi : & < LOp, is an equivalence.

3.4 | An equivalenceid — o4

In this subsection, we construct an equivalence of functors ¢ : id — doA. This will complete the
proof of the equivalence of LOp with DOp.

Let us temporarily write G : DOp — P(®) for the embedding. Since this embedding is fully faith-
ful, it is sufficient to construct an equivalence a’ : G - GoSoA of functors from DOp to P(P). As
in Section 3.4, we will construct instead an equivalence of functors

@ : G — Godold
from DOp X ®°P to S. The functor G carries (D, F) € DOp X ®°P to Mapp,(F, D) whereas Godol
carries (D, F) to MapLOp(i(F ), A(D)) = MapLDp(/l(F ), A(D)), the last equivalence following from

Proposition 3.4.4.
We define the morphism @ simply as the morphism

Mapyg,(F, D) — Mapy g,(A(F), A(D)) 9

induced by A. It remains to verify that (9) is an equivalence. By Lemma 3.1.2, we can choose A € F
so that F is a retract of w(A). Then the composition

MapDDp(w(A)’ D) e MapLUp (/‘I(CU(A)), /‘I(D)) = MapLDp(iow(A)s /‘L(D)) e

Mapp (A, @*(D)),
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is an equivalence. The last map in the composition is also an equivalence by Proposition 3.4.1, so
@’ is an equivalence for w(A), and, therefore, for F.

4 | OPERADIC ALGEBRAS
4.1 | Reconstruction

Recall the category of Lurie operads LOp is a Bousfield localization of Cat™ . The latter category

/Fin

is Cat-enriched with the category of functors from X to Y defined by the formula

Mape,. (K, Fun’(X,Y)) = Mapg,.+ (X XK’,Y).
/Fin,

This Cat-enrichment is used in the definition of the category of operad algebras: Given a pair
P,Q € LOp, the category of P-algebrasin Q, A1g,(Q), is defined as Funu(P, Q). In this subsection,
we prove that a Lurie operad P € LOp can be reconstructed from the category of P-algebras in S
(which is a symmetric monoidal category and therefore can be considered as an object in LOp).
More precisely, one has the following.

Theorem 4.1.1. Let f : P — Q be a morphism of operads which is essentially surjective on colors.
Assume that the functor

f* 1 Algg(S) — Algp(S)
is an equivalence. Then f is an equivalence of operads.
Note that the essential surjectivity condition cannot be dropped: The embedding of a category
into its Karoubian envelope induces an equivalence of the categories of presheaves! The proof of

the theorem is given in 4.1.6.
Note the following easy result.

Lemma 4.1.2. Leta : X — Y be an operadic equivalence in Cat™ ,- Then the map

/Fin

Fun’(Y,S) — Fun!(X, S),

where S is considered as a Lurie operad, is an equivalence.

Proof. Given K € Cat, the category SX = Fun(K, S) has a cartesian symmetric monoidal struc-
ture, so it can be considered as an object of LOp. The operadic equivalence a : X — Y induces an
equivalence

Mapg,.+ (Y,S%) - Mapq,.+ (X, SK).

/Fin* /Fin*
Now the equivalence

Mapg,.+ (X, S%) = Mapg,,+ u(X x K, S)
.

/Fing, /Fing,

yields an equivalence Map(K, Fun'(Y, S)) = Map(K, Funn(X ,S)). O
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Remark 4.1.3. Although Lemma 4.1.2 is sufficient for our purposes, the following more general
result can be proven in the same way. Let O be an arbitrary Lurie operad. Using a full embedding
of @ into a symmetric monoidal category O, see 5.2 below, an operadic equivalence a : X — Y
gives rise to an equivalence

Funt‘(Y, 0) - Fun”(X, 0))

for any ©. Indeed, the induced symmetric monoidal structure on OX defines an operad structure
on the full subcategory OF := Fun(K, ©) XFun(k,Fin,) Fin, asin 4.1.2.

4.1.4

Let I be a set and let P be a Lurie operad. A map r : I — P, is called a recoloring if it induces
a surjective map on the equivalence classes of objects of ;. We define a recolored operad as an
operad P endowed with a recoloringr : I — P;. Anymapr : I — P, defines a forgetful functor

G, : Algy(S) — S

A general theorem [12, 3.1.3.5] implies that G, admits a left adjoint functor of free P-algebra
denoted F, : ST — Alg,(S).

We present below an explicit expression for the free algebra F,.(X) where p : X — I is a map
of sets, considered as a collection of (discrete) spaces X; = p~!(i) € S. This is the free P-algebra
generated by the set X of objects such that the color of x € X is r(p(x)). Note that P-algebras with
values in S can be described by functors A : P — S that are monoid objects in the sense of [12,
2.4.2.1]. Equivalently, this means that the left fibration P, — P classified by A is a left fibration
of operads.

Following [12, 2.1.1.20], we denote by 7T riv C Fin, the subcategory spanned by the inert arrows.
This is the trivial operad on one color. For a given set X, we denote by 7 rivy the coproduct of X
copies of the operad 7 riv, so that T rivy is the trivial operad on X colors. The objects of 7T rivy are
finite sets over X and the arrows are embeddings of these sets, considered as (inert) arrows in the
opposite direction.

The map ¢ :=rop : X - P, extends to ¢ : Trivy — P, see [12, 2.1.3.6], and, therefore, gives
rise to the functor

¢ : Trivy — Left(P) = Fun(P, S) (10)

with values in the category of left fibrations over P, carrying o : U — X in Trivy to the left
fibration P, — P. We finally denote

F.(X) = colim(¢) € Left(P). (11)
Rewriting (11) as a functor F,(X) : P — S, we deduce the formula
F,(X)(d) = colim(¢y), (12)

where ¢; : Trivy) — S is the functor carrying a € Trivy to Mapy(coa, d).
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This can be further rewritten as follows. Let D, be the image of d € P in Fin,. Define the
category 7 rivy , whose objects are the pairs (¢ : U — X, : U, — D,)and morphisms («, §) —
(@ : U - X,p : U, - D,)defined by an embedding U’ — U over X so that the corresponding
inert arrow U, — U/, commutes with the 8s. One has an obvious forgetful functor ¢ : Trivy , —
Trivy and a functor

Cqp : Trivy, = S
carrying (a, §) to Mapf,(coa, d). The fibers of ¢ are discrete, so obviously ¢, is a left Kan extension
of ¢4 p along ¢. Therefore, F,(X)(d) = colim ¢&; = colim ¢, . The category T rivy j, has a subcat-
egory T r1vX p Spanned by the pairs («, 8) with 8 active. This is a groupoid. We denote by c‘aCt the

restriction of ¢; j, to (T r1vaCt p)°P. The embedding 7 r1vaCt — Trivy p is cofinal so that it induces
an equivalence of colimlts

=act

colim¢ D

— colim ¢y p.

We can finally reformulate the description of F,(X)(d) = colim EaCt as follows. Let T rivecl be the

maximal subgroupoid of T rivy (this is just the groupoid of finite sets over X )and let Mapa“(x, y)

denote the space of active arrows in P from x to y. The forgetful functor 7 I‘le;(CtD -7 rleq having

discrete fibers, the left Kan extension of caCt along it yields the functor
&t (T rivi)P - S
assigning to a the space Map’;*(coa, d). We see that
F.(X)(d) = colim(c‘ZCt). (13)
We need yet another version of the above formula.

The functor C;Ct factors through p : 7 I'lVX T I‘lV 9 carrying a : U — X to poa. Therefore,
the colimit of ¢ 'aCt can be rewritten as colim X where X i 1s the left Kan extension of ¢ 'aCt with respect
to p. One eas11y sees that X : (71iv;?)°P — S is defined by the formula

X(y) = Mapy'(roy,d) x Auty(v) Hom (U, X) 14)

fory : U — I. In the special case d € P, this can be rewritten as

X() = P(roy, d) Xy, ) Homy (U, X). 15)

Proposition 4.1.5. F,(X) is a free P-algebra generated by the set X.
Proof. Letq : Q — P be aleft fibration of operads. One has

MapCatp(Fr(X)’ Q)= lim MapCa‘cp( coa/» Q)= lim Qcooc - MapCatp(X Q).
oceTmVX oteTrlv |
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411 | Proofof4.1.1

Choose a recoloring r : I — P;. It will automatically give a recoloring for : I — Q. Thisyields a
commutative diagram

We denote by f, : Alg, — Alg, the functor left adjoint (and inverse) to f*, so we get an
equivalence

Fjor = fioF,.
This yields an equivalence
G,oF, > Gy oF fop. a7

The source and the target of the above map are explicitly given as colimits, see formulas (13) and
(15). Thus, to yield an equivalence (17), one should have, foranyy : U — I'in Triv}® = Finj‘} and
a map of sets X — I, an equivalence

P(roy,d) X Auty (U) Hom;(U,X) — Q(roy,d) X Auty (U) Hom; (U, X).

Choosing X — I large enough for Aut;(U) to have an orbit in Hom;(U, X) with trivial stabilizer
(e.g., choosing X — I to be U — I itself), we deduce that the map P(roy,d) — Q(roy,d) has to
be an equivalence forally : U — I and d € P,;. This implies f : P — Q is an equivalence.

4.2 | Model structures on operad algebras

In this subsection, we present standard results on model structures in categories of algebras and
rectification results.

4.2.1

We will use a special case of the rectification theorem of Pavlov-Scholbach. Let C be a sim-
plicial symmetric monoidal model category. According to [15, A.7], the underlying co-category
C., inherits a symmetric monoidal structure so that the localization functor C — C, is lax
symmetric monoidal.

Let O be a =-free and C-admissible operad in sets.” Then the category of algebras A1g,(C) has
a projective model structure. One has a functor L’ : AlgO(C)Cf — Alg,()(Cy) carrying weak

T Pavlov and Scholbach more generally consider simplicial operads.
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ON THE EQUIVALENCE OF LURIE’S co-OPERADS AND DENDROIDAL co-OPERADS 19 of 31

equivalences of fibrant cofibrant algebras to equivalences, hence inducing a functor

Lt Algo(C)s — Algy()(Cy) (18)
between the underlying co-categories.

Theorem 4.2.2 (see [16], Theorem 7.11). Let C be a simplicial symmetric monoidal model category
and let O be a Z-free C-admissible operad as above. Then the functor L in (18) is an equivalence.

The following Lemma 4.2.3 is used as an inductive step in the proofs of Proposi-
tion 3.4.1 (see Section 4.3) and of Lemma 5.4.2.

Lemma 4.2.3. Let A : [1] — Fin, be presented by an arrow f : I, — J, and let O = o(w(A)).
Let C be a simplicial model category. We endow Alg(C) with the projective model structure. Then
the forgetful functor Alg(C) — C! defined by the source of f induces a fibration of the simplicial
categories of fibrant cofibrant objects

p: Algo(O) — (Y.

Proof. The forest w(A) consists of corollas numbered by j € J and trivial operads 7 numbered
by f~1(*) \ {*} C I. The claim immediately reduces to the case when w(A) is a single corolla C,,.
Thus, from now on we assume O = o(C,,).

A C,-algebra in C is given by an arrow « : D; X...X D, — D, in C. It is a fibrant cofibrant
object if D; are fibrant cofibrant and « is a cofibration. Given two such objects, o as above and
B : E; X..XE, — E, the simplicial set Hom(a, 8) is defined as the fiber product
n

mmc(Di, El) X]_[Dm(n:’l:l Di’EO) 7‘[0m(D0, Eo)
=1

1

The map Hom(x, B) - Hi":l Hom(D;, E;) is a fibration because it is obtained by base change
from the map Hom(Dy, E;) - Hom(I];_, (D;, Ey), which is itself a fibration because it is defined
by the composition with the cofibration a. It remains to verify that the induced map of the
homotopy categories

Ho(Alge, (O)F) — Ho(c!/y"

is an isofibration of conventional categories. This is straightforward. O

4.3 | Proof of Proposition 3.4.1
4.3.1

The map s, : A — j(w(A)) introduced at the beginning of Section 3.4 induces a map sfq A >

i(w(A)) in LOp where A’ > A’ is an operadic equivalence in Cat;r ;> see Section 2.3.5 for the
Fing

notion of operadic equivalence.
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20 of 31 | HINICH and MOERDIJK

By the reconstruction theorem 4.1.1, it is sufficient to verify that sfq induces an equivalence of
the categories of algebras with values in S,

Sy ALy (S) = Algy(S) = Fungy, |, (A, S),

where A and S on the right-hand side of the formula are considered as objects of Cat /5, (the

equality in the last formula follows from the operadic equivalence A’ — A’ and Lemma 4.1.2).
We will prove that s}’j is an equivalence by induction, based on Lemma 4.2.3.

4.3.2 | Pruning a simplex

The following procedure of pruning a simplex A will be used. Define B : [n — 1] - Fin, and C :
[1] — Fin, by the formulas B = Aod,,, C = Aodg_l. Letv : [0] — Fin, be defined by v = Cod,.
The map v is given by an object V. € Fin,.. The decomposition A = BLI” C in Cat /p;, gives rise
to a commutative diagram

ALg;a)(S) P AL ) (S) Xsv ALgi,4(S)

] |

Fung;, (A, S) —— Fung, (B, S) Xgv Fung, (C,S)

so that the lower horizontal arrow is, obviously, an equivalence. In Lemma 4.3.3, we will
verify that the upper horizontal arrow is also an equivalence. This will reduce the claim
of Proposition 3.4.1 that sZ‘ to the case n = 1 which is very easy.

Lemma 4.3.3. The map A1g;,4y)(S) = Alg;,4))(S) Xgv Alg;,,4))(S) defined by the decompo-
sition A = B LI’ C is an equivalence.

Proof. Clearly, o(w(A)) = o(w(B)) U™V o(w(C)) where Trivy, is the trivial operad on V colors.

The operad o(w(A)) is free as an operad in sets. The category Alg;,4)(S) is the co-category

underlying the simplicial model category Alg,, 4)(sSet), where the model structure is the

projective model structure induced from the standard model structure on the simplicial sets.
The category Alg,,4)(sSet) is equivalent to the fiber product

Algo(w(B))(sSet) X(sset)v Algo(w(c))(sSet) (20)

Moreover, anarrow f : X — Y in Algo(w( A))(sSet) is a fibration, cofibration, or weak equivalence
if and only if its components satisfy the same property in the corresponding model categories
Alg, gy (sSet) and Alg, ) (sSet).

Note that one needs to be careful as the fiber product in (20) is taken in the category of con-
ventional categories, and not in Cat. However, the same fiber product formula still holds for the
underlying co-categories. Indeed, the co-category underlying Alg, 4y (sSet) is the homotopy
coherent nerve of the simplicial category of fibrant cofibrant objects which is the fiber product of
the simplicial categories of fibrant cofibrant objects of Alg, 5y (sSet) and Alg, .,y (sSet). By
Lemma 4.2.3, this fiber product calculates the fiber product of the corresponding co-categories in
Cat.

This completes the proof of Proposition 3.4.1. O
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The following result deals with a slightly different type of pruning; it was used in Section 3.2
and its proof is very similar to that of Lemma 4.3.3.

Proposition 4.3.4. Let b be an inner edge of a tree T. Then i(T) € LOp is a pushout
i(T) = i(T?) LU'® i(T},).
Proof. By Theorem 4.1.1, the claim reduces to proving that the natural map
Alg;r)(S) = ALlgrb)(S) Xuig,, (s) ALicr,)(S)

is an equivalence of co-categories. By [16], see Theorem 4.2.2, the co-categories of algebras
involved underly the simplicial model categories of algebras with values in sSet. The category
Alg,(sSet) is equivalent to the fiber product

Alg,(roy(sSet) Xgser Algy(r,)(SSet)

and the reasoning of Lemma 4.3.3 based on Lemma 4.2.3 proves that this equivalence induces an
equivalence of the underlying co-categories. O

5 | MONOIDAL STRUCTURES
51

In Section 2.2, we introduced the category DOp underlying a Quillen model category of simplicial
presheaves. It is known [8] that the associated homotopy category carries a structure of symmetric
monoidal category. Our goal in this section is to explain that this structure can be lifted to the
structure of a symmetric monoidal co-category on DOp, and to prove the following sharpening of
Theorem 3.1.4.

Theorem 5.1.1. The functor A : DOp — LOp is an equivalence of symmetric monoidal categories.

It follows from this theorem thatitsinverse § : LOp — DOp is symmetric monoidal as well. Even
though we already know that A and § form an equivalence of categories, the proof of this stronger
theorem is quite involved, due to the fact that (especially in the co-context!) it is difficult to deal
with the rich structure of a symmetric monoidal category in a direct way.

5.2 | Preliminaries

521

We consider symmetric monoidal categories and operads in the sense of Lurie [12], so “operad”
means object of LOp here.

It is convenient to define symmetric monoidal categories as commutative algebras in Cat,
that is the functors Fin, — Cat satisfying the Segal condition. The (covariant) Grothendieck
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22 0f 31 | HINICH and MOERDIJK

construction then realizes the category Cat™" of symmetric monoidal categories as the sub-
category of LOp whose objects are cocartesian fibrations of operads p : M — Fin,, with the
morphisms preserving cocartesian arrows. It is convenient to have another realization, the one
connected to the contravariant Grothendieck construction. The following terminology is taken
from [2].

Definition 5.2.2. A functorq : C — Fin.’ is called an anti-operad if g°? : C°? — Fin, is fibrous
(i.e., a Lurie operad).

The category of anti-operads will be denoted by Coop. The contravariant realization of Cat™"
identifies Cat>" with the subcategory of Coop whose objects are cartesian fibrations and whose
arrows preserve the cartesian arrows. The categories of operads and of anti-operads are obviously
equivalent. However, if M is a conventional symmetric monoidal category, its operadic realization
M® assigns to Xi,...,X, and Y in M the set Hom,,;(®X;,Y) of operations, whereas its anti-
operadic realization ®M assigns the set Hom,,(Y, ®X;) of “anti-operations.” The passage to the
opposite symmetric monoidal category intertwines between the two realizations: (8M)°P = M°P®,
For an operad L, we denote by L the symmetric monoidal envelope of L. Passing to opposite cat-
egories, we define the enveloping symmetric monoidal category C of an anti-operad C. One has
canonical embeddings L — L® and C —-® C so thatif C = L°P, C = L°P.

We will now define two notions intermediate between the world of (anti) operads and the world
of symmetric monoidal categories.

Definition 5.2.3. An operad p : O — Fin, is called a lax symmetric monoidal category if p is a
locally cocartesian fibration, see [13, 2.4.2.6].

Definition 5.2.4.

1. An anti-operad q : C — Fin}" is called a colax symmetric monoidal category if q is a locally
cartesian fibration.

2. q : C = Fin is called a colax symmetric monoidal category with colimits if, in addition to the
above, the fiber C; has colimits and the maps ®,, : C{' — C; defined by the local cartesian
liftings preserve colimits in each argument.

In the conventional setting, a colax symmetric monoidal category C is given by a collection of
operations ®,, : C" — C, with a compatible collection of natural transformations (not necessarily
equivalences) of the form

®po(Qy, X .. X Q) ) > ®,
with n = Y n;. Note that, since the collections of active and inert arrows in Fin, form a factoriza-
tion system, it is sufficient to require that the active arrows have a locally (co)cartesian lifting.

5.2.5 | Day convolution

The result [12, 4.8.1.10] yields the following.
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Lemma. Let C be a symmetric monoidal category. Then the category of presheaves P(C) inher-
its a symmetric monoidal structure, so that the Yoneda embedding Y : C — P(C) is a symmetric
monoidal functor, universal among symmetric monoidal functors from C to a symmetric monoidal
category with colimits.

5.2.6 | Presheaves on an anti-operad

We will now define, for any anti-operad C, a full embedding of anti-operads C — P where P is a
colax symmetric monoidal category with colimits whose underlying category is P(C,).

Let C be an anti-operad and let C be the symmetric monoidal envelope of C. We write C; for the
category underlying C. Then the full embedding u : C; — (®C), = C induces an adjoint pair

w : P(C)ZP(C) : ',

where u, is again a full embedding. In fact, let f = colim(Yoa), f’ = colim(Yoa') fora : K — C,
and a’ : K’ - C;. Then

Mapp(c,(f. f') = lim colimyse Map(a(k), (k)

The same formula describes MapP(é)(uI( ) w(f), so u, is a full embedding. This implies that
P(C,), as a full subcategory of a symmetric monoidal category, inherits the structure of an anti-
operad from ®P(C). We will denote it by ®P(C;) and we claim that it is a colax symmetric
monoidal category. This means that for any f1, ..., f,, in P(C;), the functor

f € P(Cy) » Map(u,(f), ®u,(f}))
is representable. This is obviously so as
Map(w,(f), ®;w(f;)) = Map(f, u*(®;u(f;)))-

Therefore, the multiple tensor product functor on P(C,) is defined as the composition

”?n u*
P(C)®" — P(C)®" ®n P(C) = P(C)). (21)

Note that by construction the map of anti-operads C —® C factors through the full embedding
®P(C,) »®P(C) and therefore yields a map C —® P(C,).

5.3 | DOp as a symmetric monoidal category

First of all, recall that the conventional category Op(Set) of operads in sets is symmetric monoidal.
Its tensor product is the Boardman-Vogt tensor product of operads, denoted

P®BvQ

for two operads P and Q.
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Next, the full embedding
® — Op(Set), F +— o(F)
gives rise to a full sub-anti-operad ® of ®0p(Set) with ®, = ®. Explicitly,
®(F; F; ..., F,) = Homgy(ger)(0(F), o(F;) @py .. ®py 0(F,))

It follows that P(®) has the structure of a colax symmetric monoidal category as explained
in Section 5.2.6.

An arrow f in P(®) will be called an operadic equivalence if it is carried to equivalence by the
localization functor P(®) — DOp.

Proposition 5.3.1.

1. Multiple tensor products ®,, : P(®)" — P(®) preserve operadic equivalences in each argument.

2. The localization functor P(®) — DOp canonically extends to a map of colax symmetric monoidal
categories.

3. The localization functor P(®) — DOp carries associativity constraints to equivalences. Therefore,
the colax symmetric monoidal structure on DOp is in fact symmetric monoidal.

Proof. This result easily follows from the properties of shuffles of trees presented in the Appendix.
Recall that DOp is a Bousfield localization of P(®) with respect to three types of arrows.

1. T;u¢T? - T, where d is an inner edge of a tree T.
2. x— J, embedding of simplicial sets considered as objects of P(®).
3. UT; —» F where F € ® and T are the tree components of F.

To prove the first claim, we have to show that for all f; € P(®) the functor

®n(f15 s fimts = fier1s 5 fn) + P(@) = P(@) (22)

carries the arrows of types 1-3 to operadic equivalences. Since ®,, preserves colimits and the local-
ization functor P(®) — DOp preserves colimits, it is enough to verify this claim in the case when f;
are representable, that is, forests. To calculate the tensor product, we can replace each forest with
the coproduct of its tree components; in this way, the claim reduces to the case when all f; are
trees. For the arrows of type 1 the result now follows from Proposition A.3.1. The arrow [0] - J
is carried by (22) to a deformation retract of dendroidal sets, so to an operadic equivalence. The
arrows of type 3 are obviously carried to equivalences.

Claim 2. To see that Claim 1 defines a colax symmetric monoidal structure on DOp, we look at
the anti-operadic presentation g : ®P(®) — Fin;’ of P(®). Claim 1implies that the localization of
the total category ®P(®) with respect to operadic equivalences yields a locally cartesian fibration
®D0p — Fin,’; moreover, the localization map preserves locally cartesian arrows.

Claim 3. We now look at the morphisms of functors

®,0(id" x ®, xidT™ 1) 5 ®,, 411 1 P@)PTIT! - P(®) (23)
describing the associativity constraints. Both source and target preserve colimits on each argu-

ment, so the claim is reduced to the case when f = {f;} € P(®)P*9*! is a collection of trees. Then
Proposition A.4.1 implies the result. O
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5.4 | Proof of Theorem 5.1.1

Recall [12] that LOp has the structure of a symmetric monoidal category. For two objects L and M,
their tensor product is characterized by the property that there is an equivalence

Alg; on(S) = Alg; (Algy,(S)).

(This characterizes L @ M uniquely by the reconstruction theorem 5.1.1.) Since LOp is symmetric
monoidal, it has the structure of an anti-operad.

Proposition 5.4.1. The inclusioni : ® — LOp canonically extends to a map of anti-operads.

Proof. Recall that i is the composition @ 5 Op(Set) 4 LOp. Let C be the full subcategory of LOp
spanned by the objects i(F), F € ®. Since LOp is a symmetric monoidal category, C acquires
receives the structure of a anti-suboperad. We will verify that C is a conventional anti-operad
canonically isomorphic to ®.

Given a sequence Oy, ..., O,, of operads in sets, one has a canonical operad multifunctor

£(01) X - X £(0,) = £(0; ®py - gy Op),

expressing the universal property of Boardmann-Vogt tensor product. In particular, a sequence
F,, ..., F, of objects of @ yields an operad multifunctor

iF| X..XIiF, = £(0(F;) gy .- gy 0(F,))
that induces a map of operads (see Section 2.3.2)
0:iF;®..QiF, - £(0(F;) Qgy ... gy o(F,)).

Thus, it suffices to verify that this map is an equivalence in LOp. Indeed, we would then have an
equivalence of anti-operads ® and C since for any object F € ®, the induced map from

Homg,get)(0(F), 0(F) ®py ... ®py 0(F,,)) = Mapy g, (iF, £(0(F;) ®gpy -.. ®py 0(Fy,)))

to MapLDp(iF, iF, ®..®iF,), will be then an equivalence. The fact that 8 is an equivalence now
follows by induction from the following lemma. O

Lemma 5.4.2. Let P = o(F) where F is a forest and let Q be a Z-free operad in Set. Then the
canonical operad bifunctor ¢(P) X £(Q) — £(P Qg Q) exhibits (P Qg Q) as a tensor product
(in the sense of Lurie) of ¢(P) and £(Q).

Proof. By the reconstruction theorem, it is sufficient to verify that the map 6 : Z(P) ® £(Q) —
(P Qg Q) induces an equivalence of the categories of algebras

By the rectification theorem, the left-hand side is the co-category underlying the model category

Algp®BVQ(sSet) = Algp(Algy(sSet)), (24)
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whereas, by definition, the right-hand side is

We denote C = Alg,(sSet). This is a simplicial model category whose underlying co-category
is LC := Alg,()(S). We have the localization functor L : C — LC and we have to verify that the
natural map Algy(C) — Alg,(py(LC) induces an equivalence

L(ALg(C)) — Algy () (LO). (26)

Recall that P = o(F). We endow Alg,(C) with the projective model structure. Note that we cannot
use the result of Pavlov-Scholbach [16] as A1g,(C) is not a monoidal model category. It is easy to
see thatamap f : A - A’ in Alg,(C) is a fibration if and only if its restriction to any corolla of
F is a fibration. Therefore, the simplicial category Alg,(C )if of fibrant cofibrant algebras is the
(naive) fiber product of the simplicial categories of algebras over the corollas contained in P. To
simply the formulas, we will proceed by induction on the number of corollas in F.

We can write F = F; U’ F, (pruning/grafting) where F, is a corolla containing a root of F,
F, is a (smaller) forest and v = {v, ..., U, } is a subset of the set of leaves of F, whose elements
are identified in F with roots of F;. This decomposition yields a decomposition of operads P =
Py U P, where P; = i(F;) for j = 1,2. We have

where the functors g; : Algy (C) — C* are given by the evaluation at v. According to Lemma 4.2.3,
the functor g, : Algy (C) — C induces a fibration of the corresponding simplicial categories

of fibrant-cofibrant objects. So, applying the functor of homotopy coherent nerve, we get a
decomposition

L(Algp(C)) = L(Algp, (C)) Xy L(Algp, (C)),
where one of the structure maps is a categorical fibration of quasicategories, so it represents the

fiber product in Cat. Since, by definition, the same decomposition holds for A1g,(LC), we deduce
that (26) is an equivalence by induction on the number of corollas in P. O

5.4.3 | Proof of Theorem 5.1.1
The diagram

®—' 5 1L0p

L1

P(®) —— DOp

with Y the Yoneda embedding, is commutative by Proposition 3.4.4. The composition i, = AoL
preserves colimits. By Proposition 5.4.1, the functor i : & — LOp has a canonical extension to
a map of anti-operads. We will show that i, canonically extends to a map of colax symmetric
monoidal categories with colimits. If u : ® —®& is the symmetric monoidal envelope of ®, the

d ‘v YTOT YTYSESLT

wouy

2SURDIT SUOWIWO)) dANEaIY) d[qearidde oy Aq pauIoA0S a1 s[NIE YO (asn JO $a[nI 10§ KIRIQI AUIUQ KI[IAL UO (SUONIPUOd-PUE-SULI)/WOd* K[ AIeiqroutjuoy/:sdiy) SUONIPUO)) pue SWIA L, 3y 9§ [S707/20/L0] uo Areiqry aurjuQ £aqip 1821 £q €000 0doyZ [ [ 1°01/10p/wod Kaim'.



ON THE EQUIVALENCE OF LURIE’S co-OPERADS AND DENDROIDAL co-OPERADS | 27 0f 31

map of anti-operadsi : ® —® LOp canonically extends to a symmetric monoidal functor  — LOp
that gives, by Lemma 5.2.5, a colimit preserving symmetric monoidal functor Y : P(&) — LOp.
The composition of Y with u, : P(®) — P(®) yields a map of colax SM categories extending i,
see Section 5.2.6. Since You, = i; = AoL carries operadic equivalences to equivalences, it factors
through a symmetric monoidal functor from DOp to LOp extending A. This proves the theorem.

5.5

We present below, for the convenience of the reader, a diagram presenting some important
categories and functors appearing in the paper.

F—2— & —" 0p(Set)

YonedaJ / \ lé’ (28)

P(F)¢+——— OL0p

APPENDIX: SHUFFLES OF TREES

The category dSet of (set-valued) presheaves on Q carries the “operadic” model structure already
mentioned in Section 2.2.3 above and having DOp as the underlying co-category. The tensor prod-
uct on dSet does not make it a monoidal model category, however, because, for instance, the
functors S ® _ where S is a fixed tree, do not preserve cofibrations (see [8, section 4.3] for a
discussion of this point). The smaller category odSet of presheaves on open trees does have a
homotopically well-behaved tensor product, see [7, section 6.3]. In this appendix, we explain how
some of these good homotopical properties of the open trees extend to arbitrary trees. This will
imply that DOp is a symmetric monoidal co-category by the argument presented in Section 5.

A.1 | Terminology
Recall from 2.2.3 the category Q of trees. For a tree S we denote the set of its maximal edges, that
is, its leaves and stumps, by

max(S).
A treeisopen ifit has no stumps. For an arbitrary tree S, we write S° — S for its “interior”, obtained
by chopping off the stumps. So, S° — S is bijective on edges. (Warning: the assignment of S° to S

is not functorial.) If e is a leaf of S, we denote by S[é] the tree obtained by adding a stump on top
of e. We will also use the similar notation S|E] for a set E of leaves of S. For example,

SN

S S [e] {d e} S°
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The edge e corresponds toamape : 7 — S from the unit tree 7, and e extends toamapé : 7 —
S[e] where 77 = C, is the null-corolla. The tree S[é] is the grafting So,é of C, onto S at e, and the
map

Sute - S[e]

is a weak equivalence (a Segal map) in the model structure mentioned above. For a set E of leaves,
we have a similar weak equivalence

Suf E - S[E], (A1)
where S UF E denotes the pushout of Ll,czn — S along U,cp) — Upep.

A.2 | Shuffles

The n-fold tensor product S; ® ... ® S,, of a sequence of trees Sy, ..., S,, is a union of “shuffles”
(see [8, section 4.4]). A shuffle A > S; ® ... ® S, is a tree whose edges are (labeled by) n-tuples
of edges (ey, ... ,e,) of Sy, ..., S,,, respectively. Not all such tuples will occur in a particular shuffle.
But for us, it is important to note that the root of a shuffle A is the n-tuple (r4, ..., r,,) of roots, and
the set of maximal edges is exactly the set of n-tuples of maximal edges in S;; that is,

max(A) = Hmax(Si). (A.2)
i=1

The fact that $, ® ...® S, = U
colimit

jey Aj is the union of its shuffles can be expressed as a finite

S ®..85S5, =colimA,,

where a ranges over nonempty subsets of J, and

is the corresponding intersection of shuffles. Each such finite intersection A, has property (A.2)
and each map A, — Agfor 8 C a C Jis an inner face map, in fact, a map obtained by contracting
a set of edges other than the maximal edges or the root.

The structure of the set of shuffles does not depend on the stumps that might occur in the trees
S;. More precisely, for a leaf e in S;, there is a bijective correspondence between the shuffles of
$®.®S,andof S; ® ... ® S;[e] ® ... ® S, given by A — A[E;], where E; = {(d;, ...,d,)|d; =
e, d; are all leaves of S;}. The same applies to the intersections of shuffles A, = A,[E;].

In particular, for trees Sy, ..., S,, the tensor product S; ® ... ® S,, can be reconstructed from the
tensor product of their interiors S?, ... Syt Precisely, if S;’ ®..Q8, = U ; A = colim A, then
$1®..08, = Uj Aj[E] = colim A,[E], where

E ={(ey,..,e,)| eache; is a leaf oij, at least one ¢; is a stump of S;}.

From this observation, one easily deduces the following lemma.
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Lemma A.2.1. For trees Sy, ..., S, and the set E as above, the map
(S$;®..9SHUFE-S®..885,
is a weak equivalence.

Proof. Write S; ® ... ® S, as the colimit colim A, of the diagram of finite intersections of shuffles.
This is a Reedy cofibrant diagram, so S;’ R.Q S; is also the homotopy colimit. Then (S f R..Q®
Se)uF E is the colimit of the diagram of the A, together with the inclusions

Nen—>A,
for each e in E and each a. This colimit is the same as the colimit of the pushouts A, UF E. But
A, UE E - A, [E] is a weak equivalence for each a, see (A.1), and S; ® ... ® S,, = colim, A,[E]

is again the homotopy colimit of the corresponding Reedy cofibrant diagram. Therefore, the weak
equivalences A, U E — A_[E] for different « yield the one in the lemma. O

A3 | Segal condition

Consider trees Sy, ..., S,, and a further tree T. Let d be an inner edge in T. Cutting the tree T at d
results in two trees T¢ and T, of which T = T40, T, is a grafting.

Proposition A.3.1. The map

5,®.80S, T UT,)—>5®.80S,QT
is a weak equivalence in the operadic model structure on dSet.
Proof. The claim is known to hold if all the trees are open, see [7], Lemma 6.3.5. The general case
immediately follows from the lemma above, at least if d itself is not a stump in T. Ifitis, T; =79
and T = T9[7], and the map in the proposition is

$®.8S5,Td)-5®.05,8T.
But in this case

$®.08, T d)=(S,®..05,THL" D,

where D = {(e,, ...,e,,d)|e; isaleafin S;}, and the proposition becomes a special case of the
lemma again. O

A.4 | Associativity

The tensor product of dendroidal sets is not associative. For example, cosider trees R, S, and T. If
S @ T is a union of shuffles, say, SQ T = UAJ-, then R (SQT) =R ®AJ- is a union of only
a subset of shuffles making up R ® S ® T, see [8, section 4.4]. More generally, if S; ® ... ® S,, =
U jer Ajas above, then the map

$19..06®..95)®..85, — 5, ®..895, (A3)

is an inclusion of the form (Jcx A = U;e; Aj where K C J.
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Proposition A.4.1. Let Sy,...,S, be trees. Then for any 1 <i < j < n the map (A.3) is a weak
equivalence, and similarly for more nested bracketings.

Proof. This map is a weak equivalence (in fact, inner anodyne) if all the S; are open, and the same
holds for more nested bracketings, see [7, Lemma 6.3.6]. So for general trees Sy, ..., S,,, the map

0.0 ®.05)®..0S, — 5 ®..85;

is a weak equivalence. As before, we can write this map as colim Ag — colim A, where § C K
and a C J are nonempty subsets, and the colimits are the colimits of Reedy cofibrant diagrams.
Taking the pushout along LIy — L7 for E as before yields the top map in the diagram

colim Ag ¥ E —— colim A, ¥ E

T

colim Ag[E] ——— colim A, [E]

The vertical maps are colimits of grafting weak equivalences of the form (A.1), so the bottom map
is a weak equivalence as well. But this is precisely the map in the proposition. O
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