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Abstract

In this paper, we prove the equivalence of two symmetric

monoidal ∞-categories of ∞-operads, the one defined

in Lurie [Higher algebra, available at the author’s

homepage, http://math.ias.edu/∼lurie/, September 2017

version] and the one based on dendroidal spaces.
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1 INTRODUCTION

1.1

In this paper, we return to the question of the comparison of various notions of∞-operad occur-

ring in the literature. One such notion is the one defined by Lurie in terms of simplicial sets over

the nerve of the category of finite pointed sets, see [section 2]; another is the one defined in terms

of dendroidal sets, or dendroidal spaces [5]. Lurie’s∞-category and the dendroidal one are in fact

symmetric monoidal∞-categories where the monoidal structures resemble the Boardman–Vogt

tensor product of operads. The∞-categories themselves are underlying Quillenmodel structures.

The dendroidal model category has been shown in [5] to be Quillen equivalent to the model

category of classical simplicial or topological operads.

A first such comparison was made in [7], where it was shown that if one restricts oneself to

operads without constants, the Lurie model and the dendroidal one are (Quillen) equivalent at

the level of model categories. Moreover, this equivalence respects the monoidal structure of the

associated homotopy categories, which is a shadow of the much richer structure of symmetric

monoidal∞-category.

© 2024 The Author(s). Journal of Topology is copyright © London Mathematical Society. This is an open access article under the terms of

the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work
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In a long paper [1], Barwick constructs another ∞-category based on his notion of operator

category, and proves this∞-category to be equivalent to Lurie’s version mentioned above. A next

comparison was studied in [4], where the dendroidal model was shown to be equivalent to Bar-

wick’s version at the level of ∞-categories. Combined with Barwick’s equivalence, this gives a

composed equivalence between Lurie’s ∞-category and the dendroidal one, now avoiding the

condition on the absence of constants of [7]. However, the comparison of [4] does not address the

question of equivalence as symmetric monoidal∞-categories.

The goal of this paper is to prove a relatively direct and explicit equivalence between two sym-

metric monoidal∞-categories. One is the∞-category 𝙻𝙾𝚙 (short for “Lurie operads”) underlying

Lurie’s model category, the other is the∞-category 𝙳𝙾𝚙 (for “dendroidal operads”) underlying the

dendroidal model category. To give the reader a rough idea already at this stage, we remark that

our proof is based on a functor from level forests to forests, denoted

𝜔 ∶ 𝔽 → Φ,

see Sections 2.2.2 and 3.1 for the notation. 𝙻𝙾𝚙 is an∞-category of presheaves on 𝔽 and 𝙳𝙾𝚙 is one

on Φ, and the equivalence is simply realized by the functors†

𝜆 ∶ 𝙳𝙾𝚙 → 𝙻𝙾𝚙, 𝜆(𝐷)(𝐴) = Map𝙳𝙾𝚙(𝜔(𝐴), 𝐷),

𝛿 ∶ 𝙻𝙾𝚙 → 𝙳𝙾𝚙, 𝛿(𝐿)(𝐹) = Map𝙻𝙾𝚙(𝑖(𝐹), 𝐿).

Here𝐴,𝐷, 𝐹, and 𝐿 are objects of 𝔽, 𝙳𝙾𝚙,Φ, and 𝙻𝙾𝚙, respectively, and 𝑖 denotes the embedding

of objects of Φ as free operads in 𝙻𝙾𝚙; see Section 3.1 for detailed definitions. Our main theorem

can then be stated as follows:

Theorem 1.1.1. The functors 𝜆 and 𝛿 define an equivalence of symmetric monoidal∞-categories

𝜆 ∶ 𝙳𝙾𝚙⟶⟵𝙻𝙾𝚙 ∶ 𝛿.

The other comparison proofs mentioned above are also based on the same functor from level

forests to forests, but there are several important differences. First of all, our result is an equiva-

lence of symmetric monoidal∞-categories, not just of∞-categories. To prove this sharper result,

we use a colax symmetric monoidal structure on the category of copresheaves on an operad,‡

whichmay be of independent interest. Second, our proof uses the category of algebras of an operad

in two essential ways. We use the comparison theorem of Pavlov and Scholbach [16], which states

that the∞-category underlying the category of simplicial algebras over a Σ-free operad 𝑃 in sets is

equivalent to the∞-category of algebras over the associated∞-operad 𝓁(𝑃) in the∞-category of

spaces, and similarly for algebras in a symmetric monoidal model category  and its underlying

∞-category ∞. We state this result somewhat cryptically as

𝙰𝚕𝚐𝑃()∞ = 𝙰𝚕𝚐𝓁(𝑃)(∞),

see Section 4.2.1 for a precise formulation. (This result is analogous to an earlier result for lin-

ear operads proved in [11].) Second, we prove and use the following reconstruction theorem for

†As a mnemonic aid, 𝛿 stands for “dendrification,” 𝜆 for “Luriefication.”

‡Or, as it appears in our paper, the category of presheaves on an anti-operad.

 1
7
5
3
8
4
2
4
, 2

0
2
4
, 4

, D
o
w

n
lo

ad
ed

 fro
m

 h
ttp

s://lo
n
d
m

ath
so

c.o
n
lin

elib
rary

.w
iley

.co
m

/d
o
i/1

0
.1

1
1

2
/to

p
o

.7
0

0
0

3
 b

y
 T

est, W
iley

 O
n

lin
e L

ib
rary

 o
n

 [0
7

/0
2

/2
0

2
5

]. S
ee th

e T
erm

s an
d

 C
o

n
d

itio
n

s (h
ttp

s://o
n

lin
elib

rary
.w

iley
.co

m
/term

s-an
d

-co
n

d
itio

n
s) o

n
 W

iley
 O

n
lin

e L
ib

rary
 fo

r ru
les o

f u
se; O

A
 articles are g

o
v
ern

ed
 b

y
 th

e ap
p

licab
le C

reativ
e C

o
m

m
o

n
s L

icen
se



ON THE EQUIVALENCE OF LURIE’S∞-OPERADS AND DENDROIDAL∞-OPERADS 3 of 31

∞-operads, stating that a map  →  between∞-operads, which is essentially surjective on col-

ors is an equivalence whenever it induces an equivalence between the associated∞-categories of

algebras in the∞-category of spaces; see Theorem4.1.1 below. (By the result of [16] justmentioned,

this implies the analogous known result for Σ-cofibrant simplicial operads, see [3].)

1.2

To conclude this introduction, let us briefly sketch the contents of this paper. In Section 2, we fix

some conventions about our use of∞-categorical language, and introduce the∞-categories 𝙳𝙾𝚙

and 𝙻𝙾𝚙 featuring in our main theorem above. In Section 3, we state and prove a weaker form of

the main theorem, ignoring the symmetric monoidal structure for the moment. The proof uses

a lemma that is based on the reconstruction theorem, which we postpone until Section 4 where

we discuss algebras over an∞-operad. In the final Section 5, we address the different symmetric

monoidal structures involved, and prove that they are respected by the functors 𝛿 and 𝜆. The

structure on 𝙳𝙾𝚙 is defined in terms of shuffles of trees about which we explain some basic facts

in the Appendix.

2 PRELIMINARY DEFINITIONS

2.1 ∞-categorical conventions

We present here some basic notation and discuss a few standard recipes for working with ∞-

categories.

In what follows, the word “category” means ∞-category, operad means ∞-operad, functor

means∞-functor, and so on. If we wish to emphasize that an∞-category (or an∞-operad) can

be modeled by a strict inner Kan complex, we sometimes refer to it as a conventional category (or

operad).

The most basic category is the category of spaces  underlying the Quillen model category of

simplicial sets. Given two categories ,, there is a category of functors Fun(,) satisfying the

standard equivalence

Map( , Fun(,)) = Map( × ,).

The category of categories 𝙲𝚊𝚝 can be realized as a full subcategory of the category of simplicial

spaces 𝑃(Δ) = Fun(Δop,), spanned by the simplicial presheaves 𝑋 ∶ Δop →  satisfying the∞-

categorical variant of the Segal and completeness properties, see [17]:

1. For any 𝑛 the natural map

𝑋𝑛 → 𝑋1 ×𝑋0 ⋯𝑋0
× 𝑋1

is an equivalence.

2. The map Map(𝐽, 𝑋) → Map(∗, 𝑋) induced by a map ∗→ 𝐽 is an equivalence. (𝐽 ∈ 𝑃(Δ) is the

presheaf corresponding to the category having two objects and a unique isomorphism between

them.)
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4 of 31 HINICH and MOERDIJK

This approach allows one to define the opposite of a category defined by a simplicial space

 ∶ Δop →  as the composition of  with the functor op ∶ Δ → Δ reversing the ordering of a

finite totally ordered set.

2.1.1

Another endofunctor of Δ, carrying [𝑛] to the join [𝑛]op ⋆ [𝑛] = [2𝑛 + 1], gives the construction

of 𝚃𝚠(), the category of twisted arrows in . The canonical projection

𝚃𝚠() → op × 

is a left fibration; that is, it is classified by a functor

𝑌 ∶ op ×  →  .

This functor can be rewritten as the Yoneda embedding 𝑌 ∶  → 𝑃() = Fun(op,).

Dealing with ∞-categories requires extra care when writing formulas. It is in general not

allowed to define functors by describing them on objects and arrows as there is no way

to describe all required compatibilities. However, some standard formulas do define func-

tors. For instance, given a functor 𝑓 ∶  → , one has a functor 𝑓 ∶ op ×  →  defined

by the formula 𝑓(𝑑, 𝑐) = Map(𝑑, 𝑓(𝑐)). This formula just means that 𝑓 is defined as the

composition

op ×  → op ×
𝑌
→  .

2.1.2

Amap of spaces 𝑓 ∶ 𝑋 → 𝑌 (e.g., modeled by Kan simplicial sets) exhibits 𝑋 as a subspace of 𝑌 if

𝑓 induces an equivalence of𝑋 with a union of a subset of connected components of𝑌. This notion

generalizes to any category : An arrow 𝑓 ∶ 𝑐 → 𝑑 is mono, if for any 𝑥 ∈  the induced map of

spacesMap(𝑥, 𝑐) → Map(𝑥, 𝑑) is an inclusion of a subspace. In the case when  = 𝙲𝚊𝚝, we get

the notion of subcategory: It is defined by a subspace of objects, and a subspace of morphisms for

each pair of objects.

2.1.1 Subfunctor

The notion of subspace mentioned above allows one to construct a subfunctor of a given functor.

In this context, the following elementary result is useful (see [10], 9.2.3).

Proposition. Let 𝐹 ∶  →  be a functor. Let, for each 𝑥 ∈ , a subobject 𝐺𝑥 of 𝐹(𝑥) be given, so

that for each 𝑎 ∶ 𝑥 → 𝑦 the composition 𝐺𝑥 → 𝐹(𝑥) → 𝐹(𝑦) factors through 𝐺𝑦 . Then the collection

of subobjects 𝐺𝑦 uniquely glues into a subfunctor 𝐺 ∶  → .
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2.1.4

A marked category is a pair ♮ = (,◦) where  is a category and ◦ is a subcategory of  con-

taining eq, the maximal subspace of . The category 𝙲𝚊𝚝+ of marked categories is defined as the

full subcategory of Fun([1], 𝙲𝚊𝚝) spanned by the embeddings ◦ → . We denote by ♭ = (,eq)

the category  endowed with the minimal marking. The embedding 𝙲𝚊𝚝 → 𝙲𝚊𝚝+ carrying  to

♭ has a left adjoint called localization and denoted

𝐿 ∶ 𝙲𝚊𝚝+ → 𝙲𝚊𝚝. (1)

Formarked categories represented by a pair of simplicial categories, the localization is represented

by the Dwyer–Kan construction.

2.1.5

Many important ∞-categories appear as the ones underlying model categories. One such is the

standardmodel structure on simplicial sets modeling  . Another one is the complete Segal model

for the∞-category of∞-categories 𝙲𝚊𝚝 that has already been mentioned above.

The ∞-category of a model category is obtained by a general localization construction as

described in Section 2.1.4, which does not enjoy very nice properties. Fortunately, one can often

present the∞-category underlying a model category as a Bousfield localization† of a certain∞-

category of presheaves of spaces. For instance, 𝙲𝚊𝚝 can be presented as a Bousfield localization of

the∞-category 𝑃(Δ) of simplicial spaces. As explained above, this is an∞-categorical reformu-

lation of the fact [17] that the model category of complete Segal spaces is obtained by a Bousfield

localization (in the sense of model categories) from the Reedy model structure on bisimplicial

sets. Below we will present the∞-categories 𝙳𝙾𝚙 and 𝙻𝙾𝚙 in a similar way, see Sections 2.2.3 and

2.3.5.

Note that by a result of Dugger [6], any∞-category underlying a combinatorial model category

is in fact equivalent to such a localization of a category 𝑃() of simplicial presheaves.

Let 𝙲𝚂 ⊂ 𝚂𝚎𝚐 ⊂ 𝑃(Δ) denote the full subcategories of 𝑃(Δ) spanned by the complete Segal

spaces and by all Segal spaces, respectively. The following easy observation will be used below.

Lemma 2.1.6. Let 𝑓 ∶ 𝑋 → 𝐵 be an arrow in 𝚂𝚎𝚐with𝐵 ∈ 𝙲𝚂. Then𝑋 ∈ 𝙲𝚂 if and only if the fibers

of 𝑓 are in 𝙲𝚂.

Proof. Recall from Section 2.1 that a Segal space𝑋 is complete if and only if the mapMap(𝐽, 𝑋) →

Map(∗, 𝑋) induced by a map ∗→ 𝐽, is an equivalence. We have a commutative diagram of

spaces

†A localization that has a fully faithful right adjoint.
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6 of 31 HINICH and MOERDIJK

and we need to show that the top horizontal arrow is an equivalence. It is obviously so if and only

if the map of fibers at any 𝑏 ∈ Map(∗, 𝐵) is an equivalence. These fibers identify withMap(𝐽, 𝑋𝑏)

andMap(∗, 𝑋𝑏) where 𝑋𝑏 denotes the fiber of 𝑓 at 𝑏 ∈ 𝐵. □

2.2 Dendroidal∞-operads

2.2.1

We begin by recalling the definition of the categoryΩ introduced in [14] and discussed in detail in

[8], Section 3.2, see also the Appendix. The objects ofΩ are finite trees, allowed to have “external”

edges attached to just one vertex. One of these external edges is specified as the root of the tree,

the other external edges are called leaves. The edges of a tree connected to two vertices are called

internal or inner edges. The category Ω includes the object 𝜂 consisting of just one edge that is at

the same time the root and the leaf. The choice of a root defines an orientation of each edge in the

tree, toward the root. This specifies for each vertex 𝑣 an outgoing edge 𝑜𝑢𝑡(𝑣) and a set 𝑖𝑛(𝑣) of

incoming edges. The cardinality of 𝑖𝑛(𝑣) is called the valence of the vertex 𝑣, and it is allowed to

be zero. Vertices of valence zero are called stumps. To define the morphisms of the categoryΩ, we

observe that each such tree 𝑇 defines a (symmetric) colored operad 𝑜(𝑇). The colors of 𝑜(𝑇) are

the edges of 𝑇 and its operations are generated by the vertices, each vertex 𝑣 defining an operation

from the set 𝑖𝑛(𝑣) to 𝑜𝑢𝑡(𝑣). The morphisms 𝑆 → 𝑇 in Ω are now defined to be the operad maps

𝑜(𝑆) → 𝑜(𝑇). In particular, this makes 𝑜 into a full embedding of Ω into the category 𝙾𝚙(𝚂𝚎𝚝) of

operads in sets.

Alternatively, one may define the morphisms 𝑆 → 𝑇 in Ω as generated by “elementary

morphisms”: these are

(a) isomorphisms 𝑆
∼
→ 𝑇;

(b) degeneracies 𝑆 ↠ 𝑇 where 𝑆 is obtained from 𝑇 by putting a new vertex in the middle of an

edge of 𝑇;

(c) inner face maps 𝑆 ↣ 𝑇 where 𝑆 is obtained from 𝑇 by contracting an inner edge of 𝑇; and

(d) outer face maps where 𝑆 is obtained by chopping off an external vertex from 𝑇 (i.e., a vertex

attached to just one inner edge). In addition, if𝑇 is a corolla, that is, a tree with just one vertex,

each edge of 𝑇 defines an elementary morphism 𝜂 → 𝑇.

We observe now that there is a full embedding 𝜄 ∶ Δ ↪ Ω of the simplex category Δ into Ω,

which assigns to each object [𝑛] of Δ the linear tree 𝜄[𝑛]with 𝑛 vertices (all of valence 1) and 𝑛 + 1

edges. Under this identification of Δwith a subcategory ofΩ, degeneracies, inner and outer faces

have their usual meaning.

2.2.2

It is convenient to extend the categoryΩ to include disjoint unions of trees. To this end, we define

the category of forestsΦ similar toΩ, as the full subcategory of 𝙾𝚙(𝚂𝚎𝚝), spanned by 𝑜(𝐹)where 𝐹

is a disjoint union of trees and 𝑜(𝐹) is defined as the coproduct of the operads 𝑜(𝑇𝑖) where 𝑇𝑖 are

the components of 𝐹. We will denote by 𝑜 ∶ Φ → 𝙾𝚙(𝚂𝚎𝚝) the full embedding described above,

see diagram (28). The category Φ can be alternatively defined as the category obtained from Ω
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ON THE EQUIVALENCE OF LURIE’S∞-OPERADS AND DENDROIDAL∞-OPERADS 7 of 31

by formally adjoining finite coproducts. (Note that our definition of Φ is different from that of

[7]. First, our category Φ has an empty forest; and, second, the version of [7] has fewer arrows

(independence property) than our version.)

2.2.3

The (∞-) category of dendroidal operads 𝙳𝙾𝚙 is defined as the full subcategory of the category

𝑃(Ω) of presheaves (of spaces) spanned by the presheaves satisfying Segal and completeness

properties:

(D1) For an inner edge 𝑏 in 𝑇 let 𝑇𝑏 and 𝑇
𝑏 be the upper and the lower part of 𝑇 obtained by

cutting 𝑇 at 𝑏. Then 𝑋(𝑇) → 𝑋(𝑇𝑏) ×𝑋(𝑏) 𝑋(𝑇
𝑏) is an equivalence.

(D2) Completeness: 𝜄∗(𝑋) ∈ 𝑃(Δ) is a complete Segal space.

Itwill be convenient for us to realize𝙳𝙾𝚙 as a full subcategory in𝑃(Φ) spanned by the presheaves

satisfying the above two properties, as well as the extra (also Segal-type) property.

(D3) The natural map𝑋(𝐹) →
∏

𝑋(𝑇𝑖) for a forest 𝐹 consisting of the trees 𝑇𝑖 , is an equivalence.

In particular, 𝑋(∅) is contractible.

It is a standard fact that the category 𝙳𝙾𝚙 is equivalent to the one underlying the model category

of dendroidal complete Segal spaces, or the equivalent one of dendroidal sets, see [5] or [8].

2.3 Lurie∞-operads

In what follows 𝐹𝑖𝑛∗ denotes the conventional category of finite pointed sets. We denote by 𝐼∗ the

finite pointed set 𝐼 ⊔ {∗} and put ⟨𝑛⟩ = {1, … , 𝑛}∗. An arrow 𝑓 ∶ 𝐼∗ → 𝐽∗ is called inert if for any

𝑗 ∈ 𝐽 the set 𝑓−1(𝑗) consists of one element.

A functor 𝑝 ∶  → 𝐹𝑖𝑛∗ is called fibrous if the following conditions are satisfied. In what

follows, we denote by 𝑛 (or 𝐼) the fiber of 𝑝 at ⟨𝑛⟩ (or at 𝐼∗).

(Fib1) Any inert arrow 𝑓 ∶ 𝐼∗ → 𝐽∗ has a cocartesian lifting. As a result, a functor 𝑓! ∶ 𝐼 → 𝐽

is defined (uniquely up to equivalence).

(Fib2) For the collection of standard inerts 𝜌𝑖 ∶ ⟨𝑛⟩ → ⟨1⟩ defined by (𝜌𝑖)−1(1) = {𝑖}, the maps

𝑛

𝜌𝑖
!
→ 1

form a product diagram.

(Fib3) Let 𝑓 ∶ ⟨𝑚⟩ → ⟨𝑛⟩ be an arrow in 𝐹𝑖𝑛∗, 𝑥 ∈ 𝑛 and 𝑟
𝑖 ∶ 𝑥 → 𝑥𝑖 the cocartesian liftings of

𝜌𝑖 ∶ ⟨𝑛⟩ → ⟨1⟩. Then the natural map

Map𝑓(𝑦, 𝑥) →
∏

𝑖

Map𝜌
𝑖◦𝑓(𝑦, 𝑥𝑖)

is an equivalence for any 𝑦 ∈ 𝑚.
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2.3.1

Cocartesian liftings of inerts in 𝐹𝑖𝑛∗ are called inerts in  . The category of Lurie operads 𝙻𝙾𝚙 is

the subcategory of 𝙲𝚊𝚝∕𝐹𝑖𝑛∗ consisting of fibrous objects andmorphisms preserving inerts, see [12,

2.3.3.28] or [9, 2.6.3]. For example, any conventional (colored) operad𝑃 in 𝚂𝚎𝚝with the set of colors

[𝑃] defines an object 𝓁(𝑃) of 𝙻𝙾𝚙, see [12, 2.1.1.7 and 2.1.1.22]. Its morphisms over a map 𝛼 ∶ 𝐼∗ →

𝐽∗ in 𝐹𝑖𝑛∗ are triples (𝑐, 𝑑, 𝑝) where 𝑐 ∶ 𝐼 → [𝑃], 𝑑 ∶ 𝐽 → [𝑃], and 𝑝 = (𝑝𝑗 ∶ 𝑗 ∈ 𝐽) where 𝑝𝑗 ∈

𝑃(𝑐|𝛼−1(𝑗), 𝑑(𝑗)). These formulas define a functor 𝓁 ∶ 𝙾𝚙(𝚂𝚎𝚝) → 𝙻𝙾𝚙 identifying 𝙾𝚙(𝚂𝚎𝚝)with the

full subcategory of 𝙻𝙾𝚙 spanned by fibrous maps 𝑝 ∶ 𝐶 → 𝐹𝑖𝑛∗ with 𝐶 a conventional category,

see diagram (28).

2.3.2

The category 𝙻𝙾𝚙 has a symmetric monoidal structure that is induced from the smash prod-

uct operation on 𝐹𝑖𝑛∗. Following Lurie [12, 2.2.5.9], we will say that a functor 𝐹 ∶ (𝐹𝑖𝑛∗)
𝑛 →

𝐹𝑖𝑛∗ is a smash product functor if 𝐹(⟨1⟩, … , ⟨1⟩) ≈ ⟨1⟩ and 𝐹 preserves coproducts in each

argument. A smash product functor is unique up to a unique isomorphism. An operad

multifunctor(𝑃1, … , 𝑃𝑛) → 𝑄 is defined as a commutative diagram

where 𝑓 carries 𝑛-tuples of inerts in 𝑃1 ×⋯ × 𝑃𝑛 to inerts in 𝑄 and 𝐹 is a smash product. The

notion of operad multifunctor defines on 𝙻𝙾𝚙 the structure of an operad that turns out to be a

symmetric monoidal category, where the multiple tensor product is defined as the target of the

universal operad multifunctor out of 𝑃1, … , 𝑃𝑛, see [12, 2.2.5.13].

2.3.3

As explained before, the category 𝙲𝚊𝚝 identifies with the full subcategory of 𝑃(Δ) spanned by

the complete Segal objects. In particular, the (conventional) category 𝐹𝑖𝑛∗ can be viewed as an

object of 𝑃(Δ), which we still denote by 𝐹𝑖𝑛∗. This identifies 𝙲𝚊𝚝∕𝐹𝑖𝑛∗ with a full subcategory of

𝑃(Δ)∕𝐹𝑖𝑛∗ .

The following general fact allows one to identify the latter with 𝑃(Δ∕𝐹𝑖𝑛∗).

Let 𝑌 ∶  → 𝑃() be the Yoneda embedding and let 𝐹 ∈ 𝑃(). We define

∕𝐹 =  ×𝑃() 𝑃()∕𝐹 (2)

and denote by 𝑝 ∶ ∕𝐹 → 𝑃()∕𝐹 the natural projection. Then 𝑝 is fully faithful and we denote

by

𝑝! ∶ 𝑃(∕𝐹) → 𝑃()∕𝐹 (3)

the extension of 𝑝 to a colimit-preserving functor.
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Lemma 2.3.4. 𝑝! is an equivalence.

Proof. We apply Corollary 5.1.6.11 in [13] to 𝑝!. Its restriction 𝑝 is fully faithful, and the image of

any 𝜙 ∶ 𝑌(𝑥) → 𝐹 is absolutely compact as colimits in 𝑃()∕𝐹 are detected by colimits in 𝑃().

Finally, it is clear that the objects 𝑌(𝑥) → 𝐹 generate 𝑃()∕𝐹 under colimits. □

Remark. Note that, by definition (2), Δ∕𝐹𝑖𝑛∗ = Δ ×𝑃(Δ) 𝑃(Δ)∕𝐹𝑖𝑛∗ . Since 𝐹𝑖𝑛∗ and all [𝑛] are con-

ventional categories and since the images of conventional categories form a full subcategory of

𝑃(Δ), Δ∕𝐹𝑖𝑛∗ is equivalent to the conventional category of simplices in 𝐹𝑖𝑛∗.

In this paper, we denote

𝔽 = Δ∕𝐹𝑖𝑛∗ . (4)

Thus, 𝙻𝙾𝚙 can be identified with a (nonfull) subcategory of 𝑃(𝔽).

2.3.5

Here is another presentation of 𝙻𝙾𝚙, this time as a Bousfield localization. The category 𝐹𝑖𝑛∗ has a

marking defined by the collection of inert arrows. Thismarked category is denoted by𝐹𝑖𝑛♮∗. There

is a fully faithful functor 𝙻𝙾𝚙 → 𝙲𝚊𝚝+
∕𝐹𝑖𝑛♮∗

carrying a fibrous 𝑝 ∶  → 𝐹𝑖𝑛∗ to the marked category

♮ over 𝐹𝑖𝑛♮∗, with the marking on  defined by the inerts. By [9, 2.6.4] (based on [12, B.0.20]),

𝙻𝙾𝚙 is the Bousfield localization with respect to the class of operadic equivalences. An operadic

equivalence is defined as a map 𝑓 ∶ 𝑋 → 𝑌 in 𝙲𝚊𝚝+
∕𝐹𝑖𝑛♮∗

inducing an equivalence Map(𝑌,) →

Map(𝑋,) for any fibrous .

2.3.1 Cocartesian arrows

Let 𝐹 ∈ 𝙲𝚊𝚝. As before, we will identify 𝐹 with the corresponding complete Segal space in 𝑃(Δ).

Lemma 2.3.4 defines a full embedding of 𝙲𝚊𝚝∕𝐹 into 𝑃(Δ∕𝐹). Let 𝑝 ∶ 𝑋 → 𝐹 be a category over 𝐹

and let  ∈ 𝑃(Δ∕𝐹) be the corresponding presheaf. By definition, for 𝐴 ∶ [𝑛] → 𝐹,

(𝐴) = Map([𝑛], 𝑋) ×Map([𝑛],𝐹) {𝐴}.

Fix 𝛼 ∶ [1] → 𝐹 and let 𝑎 ∈ (𝛼). We denote by the same letters 𝑎 ∶ 𝑥 → 𝑦 and 𝛼 ∶ �̄� → �̄� the

arrows in 𝑋 and in 𝐹. The following lemma is a direct reformulation of the cocartesian property

of the arrow 𝑎 in our language.

Lemma. The arrow 𝑎 ∈ (𝛼) is 𝑝-cocartesian if and only if for any 𝜎 ∶ [2] → 𝐹 with 𝑑2𝜎 = 𝛼,

𝑑0𝜎 = 𝛽, 𝑑1𝜎 = 𝛾, the map

{𝑦} ×(�̄�) (𝛽) → {𝑥} ×(�̄�) (𝛾)
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10 of 31 HINICH and MOERDIJK

defined as a composition

{𝑦} ×(�̄�) (𝛽) → {𝑥} ×(�̄�) (𝛼) ×(�̄�) (𝛽)
∼
← {𝑥} ×(�̄�) (𝜎)

𝑑1
→ {𝑥} ×(�̄�) (𝛾),

is an equivalence.

3 EQUIVALENCE OF 𝙻𝙾𝚙WITH 𝙳𝙾𝚙

3.1

In this section, we will construct an equivalence of (∞-) categories between 𝙻𝙾𝚙 and 𝙳𝙾𝚙. (It will

be upgraded to an equivalence of symmetric monoidal categories after some more work.) The

construction is based on a functor

𝜔 ∶ Δ∕𝐹𝑖𝑛∗ = 𝔽 → Φ,

see diagram (28), which wewill define first. The definition of𝜔 is a variant of the one in [7], which

dealt with open trees and forests only.

3.1.1

Consider an object 𝐴 ∶ [𝑛] → 𝐹𝑖𝑛∗ of 𝔽, that is, a sequence

𝐴0∗

𝛼1
→ 𝐴1∗ → …

𝛼𝑛
→ 𝐴𝑛∗

of maps between pointed sets. We write 𝛼𝑖𝑗 ∶ 𝐴𝑗∗ → 𝐴𝑖∗ for the composition 𝛼𝑖◦… ◦𝛼𝑗+1 (for 𝑖 ⩾

𝑗). The set of edges of the forest 𝜔(𝐴) is the disjoint union
∐

𝐴𝑖 of the sets 𝐴𝑖 . This set carries a

partial order defined for 𝑎 ∈ 𝐴𝑖 and 𝑏 ∈ 𝐴𝑗 by

𝑎 ⩽ 𝑏 iff 𝑗 ⩽ 𝑖 and 𝛼𝑖𝑗(𝑏) = 𝑎.

The roots of 𝜔(𝐴) are the edges minimal in the above order. For each 𝑎 ∈ 𝐴𝑖 in this set of edges

with 𝑖 > 0, there is a unique vertex 𝑣𝑎 in the forest 𝜔(𝐴) immediately above 𝑎. The edge 𝑎 is

the outgoing edge of 𝑣𝑎, while 𝑖𝑛(𝑣𝑎) = 𝛼−1
𝑖
(𝑎). In particular, the set of leaves in the forest can

be identified with 𝐴0. The set of roots of 𝜔(𝐴) consists of the elements of 𝐴𝑛 together with the

elements of 𝐴𝑖 sent to the basepoint ∗ under 𝛼𝑖+1 ∶ 𝐴𝑖 → 𝐴𝑖+1 for 𝑖 = 0, … , 𝑛 − 1.

Here is an example of the forest corresponding to the map ⟨4⟩
𝛼1
→ ⟨3⟩

𝛼2
→ ⟨1⟩ with 𝛼1(1) = 1 =

𝛼1(2), 𝛼1(3) = 3 = 𝛼1(4), 𝛼2(1) = 1 = 𝛼2(2), 𝛼2(3) =∗.
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This defines 𝜔 ∶ 𝔽 → Φ on objects. It extends to morphisms in the obvious way: A face map

𝑑𝑖𝐴 → 𝐴 induces a morphism 𝜔(𝑑𝑖𝐴) → 𝜔(𝐴)which on each component tree is a composition of

faces; and a degeneracymap𝐴 → 𝑠𝑖𝐴 induces amorphism𝜔(𝐴) → 𝜔(𝑠𝑖𝐴)which is a composition

of degeneracies.

Note the following property of 𝜔.

Lemma 3.1.2. Any forest 𝐹 ∈ Φ is a retract of some 𝜔(𝐴) for some 𝐴 ∈ 𝔽.

Proof. In order to present a forest 𝐹 as 𝜔(𝐴), one has to assign a nonnegative number ℎ(𝑎) to each

edge 𝑎 so that ℎ(𝑎) = ℎ(𝑏) − 1 for 𝑎 immediately under 𝑏 and so that the 𝑎 is a leaf precisely when

ℎ(𝑎) = 0. The first condition is achieved easily; to achieve the second, one may need to enlarge

the forest 𝐹 slightly and construct a forest 𝐹′ by adjoining a sequence of unary edges on top of

leaves of 𝐹. Then 𝐹′ is of the form 𝜔(𝐴) and 𝐹 is a retract of 𝐹′. □

3.1.3

The functor 𝜔 defines an adjoint pair

𝜔! ∶ 𝑃(𝔽)
⟶
⟵𝑃(Φ) ∶ 𝜔∗.

The functor 𝜆 ∶ 𝙳𝙾𝚙 → 𝑃(𝔽) is defined as the restriction of𝜔∗ to 𝙳𝙾𝚙. Thismeans that for𝐷 ∈ 𝙳𝙾𝚙

and 𝐴 ∈ 𝔽,

𝜆(𝐷)(𝐴) = Map𝑃(Φ)(𝜔(𝐴), 𝐷). (5)

Define 𝑖 ∶ Φ → 𝙻𝙾𝚙 as the composition of 𝑜 ∶ Φ → 𝙾𝚙(𝚂𝚎𝚝) with the embedding 𝓁 ∶ 𝙾𝚙(𝚂𝚎𝚝) →

𝙻𝙾𝚙 discussed in Section 2.3.1. The functor 𝑖 determines a functor 𝙻𝙾𝚙 × Φop →  that yields 𝛿 ∶

𝙻𝙾𝚙 → 𝑃(Φ) by adjunction. This means that, for 𝑃 ∈ 𝙻𝙾𝚙 and 𝐹 ∈ Φ, one has

𝛿(𝑃)(𝐹) = Map𝙻𝙾𝚙(𝑖(𝐹), 𝑃). (6)

Theorem 3.1.4. The functors defined above give a pair of quasi-inverse functors

𝛿 ∶ 𝙻𝙾𝚙⟶⟵𝙳𝙾𝚙 ∶ 𝜆. (7)

3.1.5

In Section 5, we will extend this equivalence to an equivalence of symmetric monoidal categories.

The proof of Theorem 3.1.4 is presented in Sections 3.2–3.5 below. We will first of all verify that

𝛿(𝑃) ∈ 𝙳𝙾𝚙 for any 𝑃 ∈ 𝙻𝙾𝚙 and that 𝜆 carries 𝙳𝙾𝚙 to 𝙻𝙾𝚙. Then we will construct equivalences

𝜆◦𝛿 → id and id → 𝛿◦𝜆.

3.1 The functor 𝜹 has image in 𝙳𝙾𝚙

The category 𝙳𝙾𝚙 is a full subcategory of 𝑃(Φ), so we only have to verify that, for 𝐿 ∈ 𝙻𝙾𝚙, the

presheaf 𝛿(𝐿) satisfies the conditions (D1), (D2), and (D3). The functor 𝑖 carries a finite coproduct
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of forests to the corresponding coproduct in 𝙻𝙾𝚙 (since both 𝑜 and 𝓁 above preserve coproducts).

Also, for an inner edge 𝑏 of a tree 𝑇, Proposition 4.3.4 below claims that 𝑖(𝑇) is the colimit of the

diagram 𝑖(𝑇𝑏) ← 𝑖(𝑏) → 𝑖(𝑇𝑏), where 𝑇
𝑏 and 𝑇𝑏 are two halves of the tree 𝑇 obtained by cutting 𝑇

along 𝑏. These two facts immediately prove the conditions (D1) and (D3). It remains to verify (D2).

The simplicial space 𝜄∗◦𝛿(𝐿) is just the image of 𝐿 under the functor 𝑃(Δ∕𝐹𝑖𝑛∗) → 𝑃(Δ) defined by

⟨1⟩ ∈ 𝐹𝑖𝑛∗. It is complete as 𝐿 represents a category over 𝐹𝑖𝑛∗.

3.2 The functor 𝝀 has image in 𝙻𝙾𝚙

3.3.1

Let us, first of all, verify that 𝜆(𝐷) ∈ 𝙲𝚊𝚝∕𝐹𝑖𝑛∗ for any 𝐷 ∈ 𝙳𝙾𝚙. We have to verify that 𝜆(𝐷),

considered as an object of 𝑃(Δ∕𝐹𝑖𝑛∗), satisfies the Segal condition and is complete.

For 𝐴 ∶ [𝑛] → 𝐹𝑖𝑛∗ we denote by 𝐴𝑖 the composition {𝑖} → [𝑛]
𝐴
→ 𝐹𝑖𝑛∗ and by 𝐴𝑖−1,𝑖 the

composition [1]
{𝑖−1,𝑖}
⟶ [𝑛]

𝐴
→ 𝐹𝑖𝑛∗. The Segal condition for 𝜆(𝐷)means that the natural map

𝜆(𝐷)(𝐴) → 𝜆(𝐷)(𝐴01) ×𝜆(𝐷)(𝐴1)
… ×𝜆(𝐷)(𝐴𝑛−1)

𝜆(𝐷)(𝐴𝑛−1,𝑛)

is an equivalence. This easily follows from the Segal properties (D1) and (D3) for 𝐷 formulated in

Section 2.2.3.

By Lemma 2.1.6 applied to 𝐹𝑖𝑛∗ viewed as a complete Segal space, completeness of 𝜆(𝐷)means

that for any 𝐼∗ ∈ 𝐹𝑖𝑛∗ and themap 𝜄𝐼 ∶ Δ → Δ∕𝐹𝑖𝑛∗ carrying [𝑛] ∈ Δ to [𝑛] → [0]
𝐼∗
→ 𝐹𝑖𝑛∗, themap

𝜄∗
𝐼
∶ 𝑃(Δ∕𝐹𝑖𝑛∗) → 𝑃(Δ) carries𝜆(𝐷) to a complete Segal space.Denote𝐷1 = 𝜄∗(𝐷), where 𝜄 ∶ Δ → Φ

is defined in Section 2.2.3. This is the complete Segal space representing the category underlying

𝐷 ∈ 𝙳𝙾𝚙. Since 𝜄∗
𝐼
(𝜆(𝐷)) = 𝐷𝐼

1
, it is a complete Segal space. Thus, 𝜆(𝐷) is a category over 𝐹𝑖𝑛∗. We

will denote it explicitly by 𝑝 ∶ 𝜆(𝐷) → 𝐹𝑖𝑛∗.

Let us now verify that 𝑝 ∶ 𝜆(𝐷) → 𝐹𝑖𝑛∗ is fibrous. The fiber of 𝑝 at 𝐼∗ is 𝜄
∗
𝐼
(𝜆(𝐷)) = 𝐷𝐼

1
.

(Fib1) Given 𝛼 ∶ ⟨𝑚⟩ → ⟨𝑛⟩ inert, the base change 𝜆(𝐷)𝛼 ∶= [1] ×𝐹𝑖𝑛∗ 𝜆(𝐷) is a category over [1]

with fibers 𝐷𝑚
1
and 𝐷𝑛

1
at 0 and 1, respectively. This is obviously a cocartesian fibration

classified by the projection 𝑝𝛼 ∶ 𝐷
𝑚
1
→ 𝐷𝑛

1
determined by the inert 𝛼. Therefore, 𝛼 has a

locally cocartesian lifting 𝑎 ∶ 𝑥 → 𝑝𝛼(𝑥) for each object 𝑥 ∈ 𝐷𝑚
1
. It is now easy to verify

the condition of Lemma 2.3.6 that shows that any such 𝑎 is in fact cocartesian.

(Fib2) The inert maps 𝜌𝑖 ∶ ⟨𝑛⟩ → ⟨1⟩ give rise to an equivalence 𝜆(𝐷)𝑛 →
∏

𝜆(𝐷)1. This is

straightforward.

(Fib3) It remains to verify the last property of fibrous objects. Fix 𝐴 ∶ [1] → 𝐹𝑖𝑛∗ defined by an

arrow 𝑓 ∶ ⟨𝑚⟩ → ⟨𝑛⟩. Given 𝑥 ∈ 𝜆(𝐷)𝑚 and 𝑦 ∈ 𝜆(𝐷)𝑛, the map spaceMap
𝑓

𝜆(𝐷)
(𝑥, 𝑦) can

be expressed as the fiber of the natural map

𝜆(𝐷)(𝐴) = 𝐷(𝜔(𝐴)) → 𝜆(𝐷)(𝑚) × 𝜆(𝐷)(𝑛)

at (𝑥, 𝑦). Applying the axiom (D3) to the forest 𝜔(𝐴), we deduce the required decomposi-

tion

Map
𝑓

𝜆(𝐷)
(𝑥, 𝑦) →

∏

𝑖

Map
𝜌𝑖◦𝑓

𝜆(𝐷)
(𝑥, 𝜌𝑖(𝑦)).
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3.3.2

𝙻𝙾𝚙 is not a full subcategory of 𝑃(Δ∕𝐹𝑖𝑛∗). This means that we have to verify that, given a map

𝑓 ∶ 𝐷 → 𝐷′ with 𝐷,𝐷′ ∈ 𝙳𝙾𝚙, the induced map 𝜔∗(𝑓) ∶ 𝜔∗(𝐷) → 𝜔∗(𝐷′) preserves the inerts.

This immediately follows from the description of inerts given above: If 𝑓 ∶ ⟨𝑚⟩ → ⟨𝑛⟩ is inert and
if 𝑓 ∶ 𝐷 → 𝐷′ is a map, it induces a commutative square

with the vertical arrows induced by 𝑓 and the horizontal arrows being the projections determined

by 𝑓.

3.3 An equivalence 𝝀◦𝜹 → 𝐢𝐝

In this subsection, we construct an equivalence of functors 𝛽 ∶ 𝜆◦𝛿 → id. The construction uses,

for any𝐴 ∈ 𝔽, the canonical section 𝑠𝐴 ∶ 𝐴 → 𝑗(𝜔(𝐴)) in 𝑃(𝔽), where 𝑗 ∶ Φ → 𝑃(𝔽) is the compo-

sitionΦ
𝑖
→ 𝙻𝙾𝚙 → 𝑃(𝔽), see diagram (28). Inmore detail, for an operad𝑃 in sets the corresponding

object𝓁(𝑃) in 𝙻𝙾𝚙 can be viewed as a presheaf on 𝔽 via the embedding 𝙻𝙾𝚙 ↪ 𝑃(𝔽). By the descrip-

tion given in Section 2.3, the value of this presheaf at 𝐴 ∈ 𝔽 is precisely the set of operad maps

𝑜(𝜔(𝐴)) → 𝑃. This yields, for 𝑃 = 𝑜(𝜔(𝐴)), a canonical section 𝑠𝐴 ∶ 𝐴 → 𝑗(𝜔(𝐴)).

We will deduce that 𝛽 is an equivalence from the following result to be proven in 4.3.

Proposition 3.4.1. For 𝐴 ∈ 𝔽 and 𝐿 ∈ 𝙻𝙾𝚙, the canonical section

𝑠𝐴 ∶ 𝐴 → 𝑗(𝜔(𝐴)) (8)

in 𝑃(𝔽) induces an equivalence

Map𝙻𝙾𝚙(𝑖◦𝜔(𝐴), 𝐿) → Map𝑃(𝔽)(𝐴, 𝐿).

3.4.2

Just for now, let us write g ∶ 𝙻𝙾𝚙 ↪ 𝑃(𝔽) for the embedding functor. We will first define a mor-

phism of functors 𝛽′ ∶ g◦𝜆◦𝛿 → g from 𝙻𝙾𝚙 to 𝑃(𝔽), and then will show that 𝛽′ factors through a

𝛽 ∶ 𝜆◦𝛿 → id.

Using the standard equivalence

Fun(𝐴, Fun(𝐵, 𝐶)) = Fun(𝐴 × 𝐵, 𝐶),

wewill define instead an equivalence𝛽′ ∶ g̃◦𝜆◦𝛿 → g̃ of functors from𝙻𝙾𝚙 × 𝔽op to . The functor

g̃◦𝜆◦𝛿 carries (𝐿, 𝐴) ∈ 𝙻𝙾𝚙 × 𝔽op to

Map𝙳𝙾𝚙(𝜔(𝐴), 𝛿(𝐿)) = Map𝙻𝙾𝚙(𝑖◦𝜔(𝐴), 𝐿) ⊂ Map𝑃(𝔽)(𝑗◦𝜔(𝐴), g(𝐿)),

whereas g̃ carries (𝐿, 𝐴) toMap𝑃(𝔽)(𝐴, g(𝐿)).
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The functor 𝛽′ is now defined as the precomposition with 𝑠𝐴 ∶ 𝐴 → 𝑗◦𝜔(𝐴). According to

Proposition 3.4.1, 𝛽′, and, therefore, 𝛽′, is an equivalence.

Since both g◦𝜆◦𝛿(𝐿) and g(𝐿) belong to 𝙻𝙾𝚙 ⊂ 𝑃(𝔽), the natural equivalence 𝛽′
𝐿
∶ g𝜆𝛿(𝐿) →

g(𝐿) between them also belongs to 𝙻𝙾𝚙, hence is the image under g of a unique equivalence

𝛽𝐿 ∶ 𝜆𝛿(𝐿) → 𝐿. (Note that the inclusion 𝙻𝙾𝚙 → 𝑃(𝔽) is fully faithful on equivalences since

equivalences automatically preserve cocartesian liftings of inerts.)

3.4.3

Note, for further application, the following consequence of Proposition 3.4.1 which relates two

realizations of a forest as an operad, one in 𝙳𝙾𝚙 and the other in 𝙻𝙾𝚙. Define a morphism of func-

tors 𝜃 ∶ 𝜆|Φ → 𝑖 fromΦ to 𝙻𝙾𝚙 so that its composition with g ∶ 𝙻𝙾𝚙 → 𝑃(𝔽) is given by the natural

transformation of functors Φ × 𝔽op →  defined as in Section 3.4.2,

Map𝑃(𝔽)(𝐴, 𝜔
∗(𝐹)) = MapΦ(𝜔(𝐴), 𝐹) = Map𝙻𝙾𝚙(𝑖◦𝜔(𝐴), 𝑖(𝐹)) →

Map𝑃(𝔽)(𝐴, 𝑗(𝐹)),

where 𝐴 ∈ 𝔽 and 𝐹 ∈ Φ.

Proposition 3.4.4. The morphism of functors 𝜃 ∶ 𝜆|Φ → 𝑖 defined above, from the restriction of

𝜆 ∶ 𝙳𝙾𝚙 → 𝙻𝙾𝚙 to Φ ↪ 𝙳𝙾𝚙 into 𝑖 ∶ Φ ↪ 𝙻𝙾𝚙, is an equivalence.

3.4 An equivalence 𝐢𝐝 → 𝜹◦𝝀

In this subsection, we construct an equivalence of functors 𝛼 ∶ id → 𝛿◦𝜆. This will complete the

proof of the equivalence of 𝙻𝙾𝚙 with 𝙳𝙾𝚙.

Let us temporarilywrite𝐺 ∶ 𝙳𝙾𝚙 → 𝑃(Φ) for the embedding. Since this embedding is fully faith-

ful, it is sufficient to construct an equivalence 𝛼′ ∶ 𝐺 → 𝐺◦𝛿◦𝜆 of functors from 𝙳𝙾𝚙 to 𝑃(Φ). As

in Section 3.4, we will construct instead an equivalence of functors

�̃�′ ∶ 𝐺 → 𝐺◦𝛿◦𝜆

from 𝙳𝙾𝚙 × Φop to  . The functor 𝐺 carries (𝐷, 𝐹) ∈ 𝙳𝙾𝚙 × Φop toMap𝙳𝙾𝚙(𝐹, 𝐷) whereas 𝐺◦𝛿◦𝜆

carries (𝐷, 𝐹) to Map𝙻𝙾𝚙(𝑖(𝐹), 𝜆(𝐷)) = Map𝙻𝙾𝚙(𝜆(𝐹), 𝜆(𝐷)), the last equivalence following from

Proposition 3.4.4.

We define the morphism �̃�′ simply as the morphism

Map𝙳𝙾𝚙(𝐹, 𝐷) → Map𝙻𝙾𝚙(𝜆(𝐹), 𝜆(𝐷)) (9)

induced by 𝜆. It remains to verify that (9) is an equivalence. By Lemma 3.1.2, we can choose𝐴 ∈ 𝔽

so that 𝐹 is a retract of 𝜔(𝐴). Then the composition

Map𝙳𝙾𝚙(𝜔(𝐴), 𝐷) → Map𝙻𝙾𝚙(𝜆(𝜔(𝐴)), 𝜆(𝐷)) = Map𝙻𝙾𝚙(𝑖◦𝜔(𝐴), 𝜆(𝐷)) →

Map𝑃(𝔽)(𝐴, 𝜔
∗(𝐷)),
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is an equivalence. The last map in the composition is also an equivalence by Proposition 3.4.1, so

�̃�′ is an equivalence for 𝜔(𝐴), and, therefore, for 𝐹.

4 OPERADIC ALGEBRAS

4.1 Reconstruction

Recall the category of Lurie operads 𝙻𝙾𝚙 is a Bousfield localization of 𝙲𝚊𝚝+
∕𝐹𝑖𝑛♮∗

. The latter category

is 𝙲𝚊𝚝-enriched with the category of functors from 𝑋 to 𝑌 defined by the formula

Map𝙲𝚊𝚝(𝐾, Fun
♮(𝑋, 𝑌)) = Map𝙲𝚊𝚝+

∕𝐹𝑖𝑛
♮
∗

(𝑋 × 𝐾♭, 𝑌).

This 𝙲𝚊𝚝-enrichment is used in the definition of the category of operad algebras: Given a pair

 , ∈ 𝙻𝙾𝚙, the category of-algebras in𝑄, 𝙰𝚕𝚐 (), is defined as Fun
♮( ,). In this subsection,

we prove that a Lurie operad  ∈ 𝙻𝙾𝚙 can be reconstructed from the category of -algebras in 

(which is a symmetric monoidal category and therefore can be considered as an object in 𝙻𝙾𝚙).

More precisely, one has the following.

Theorem 4.1.1. Let 𝑓 ∶  →  be a morphism of operads which is essentially surjective on colors.

Assume that the functor

𝑓∗ ∶ 𝙰𝚕𝚐() → 𝙰𝚕𝚐 ()

is an equivalence. Then 𝑓 is an equivalence of operads.

Note that the essential surjectivity condition cannot be dropped: The embedding of a category

into its Karoubian envelope induces an equivalence of the categories of presheaves! The proof of

the theorem is given in 4.1.6.

Note the following easy result.

Lemma 4.1.2. Let 𝛼 ∶ 𝑋 → 𝑌 be an operadic equivalence in 𝙲𝚊𝚝+
∕𝐹𝑖𝑛♮∗

. Then the map

Fun♮(𝑌,) → Fun♮(𝑋,),

where  is considered as a Lurie operad, is an equivalence.

Proof. Given 𝐾 ∈ 𝙲𝚊𝚝, the category 𝐾 = Fun(𝐾,) has a cartesian symmetric monoidal struc-

ture, so it can be considered as an object of 𝙻𝙾𝚙. The operadic equivalence 𝛼 ∶ 𝑋 → 𝑌 induces an

equivalence

Map𝙲𝚊𝚝+
∕𝐹𝑖𝑛

♮
∗

(𝑌,𝐾) → Map𝙲𝚊𝚝+
∕𝐹𝑖𝑛

♮
∗

(𝑋,𝐾).

Now the equivalence

Map𝙲𝚊𝚝+
∕𝐹𝑖𝑛

♮
∗

(𝑋,𝐾) = Map𝙲𝚊𝚝+
∕𝐹𝑖𝑛

♮
∗

(𝑋 × 𝐾♭,)

yields an equivalenceMap(𝐾, Fun♮(𝑌,)) = Map(𝐾, Fun♮(𝑋,)). □
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16 of 31 HINICH and MOERDIJK

Remark 4.1.3. Although Lemma 4.1.2 is sufficient for our purposes, the following more general

result can be proven in the same way. Let  be an arbitrary Lurie operad. Using a full embedding

of  into a symmetric monoidal category ̂, see 5.2 below, an operadic equivalence 𝛼 ∶ 𝑋 → 𝑌

gives rise to an equivalence

Fun♮(𝑌,) → Fun♮(𝑋,)

for any . Indeed, the induced symmetric monoidal structure on ̂𝐾 defines an operad structure

on the full subcategory 𝐾 ∶= Fun(𝐾,) ×Fun(𝐾,𝐹𝑖𝑛∗) 𝐹𝑖𝑛∗ as in 4.1.2.

4.1.4

Let 𝐼 be a set and let  be a Lurie operad. A map 𝑟 ∶ 𝐼 → 1 is called a recoloring if it induces

a surjective map on the equivalence classes of objects of 1. We define a recolored operad as an

operad  endowed with a recoloring 𝑟 ∶ 𝐼 → 1. Any map 𝑟 ∶ 𝐼 → 1 defines a forgetful functor

𝐺𝑟 ∶ 𝙰𝚕𝚐 () → 𝐼 .

A general theorem [12, 3.1.3.5] implies that 𝐺𝑟 admits a left adjoint functor of free -algebra

denoted 𝐹𝑟 ∶ 𝐼 → 𝙰𝚕𝚐 ().

We present below an explicit expression for the free algebra 𝐹𝑟(𝑋) where 𝑝 ∶ 𝑋 → 𝐼 is a map

of sets, considered as a collection of (discrete) spaces 𝑋𝑖 = 𝑝−1(𝑖) ∈  . This is the free -algebra

generated by the set𝑋 of objects such that the color of 𝑥 ∈ 𝑋 is 𝑟(𝑝(𝑥)). Note that-algebras with

values in  can be described by functors 𝐴 ∶  →  that are monoid objects in the sense of [12,

2.4.2.1]. Equivalently, this means that the left fibration 𝐴 →  classified by 𝐴 is a left fibration

of operads.

Following [12, 2.1.1.20], we denote by  riv ⊂ 𝐹𝑖𝑛∗ the subcategory spanned by the inert arrows.

This is the trivial operad on one color. For a given set 𝑋, we denote by  riv𝑋 the coproduct of 𝑋

copies of the operad  riv, so that  riv𝑋 is the trivial operad on 𝑋 colors. The objects of  riv𝑋 are

finite sets over 𝑋 and the arrows are embeddings of these sets, considered as (inert) arrows in the

opposite direction.

The map 𝑐 ∶= 𝑟◦𝑝 ∶ 𝑋 → 1 extends to 𝑐 ∶  riv𝑋 →  , see [12, 2.1.3.6], and, therefore, gives

rise to the functor

𝑐 ∶  riv
op
𝑋
→ 𝙻𝚎𝚏𝚝() = Fun( ,) (10)

with values in the category of left fibrations over  , carrying 𝛼 ∶ 𝑈 → 𝑋 in  riv𝑋 to the left

fibration 𝑐𝛼∕ →  . We finally denote

𝐹𝑟(𝑋) = colim(𝑐) ∈ 𝙻𝚎𝚏𝚝(). (11)

Rewriting (11) as a functor 𝐹𝑟(𝑋) ∶  →  , we deduce the formula

𝐹𝑟(𝑋)(𝑑) = colim(𝑐𝑑), (12)

where 𝑐𝑑 ∶  riv
op
𝑋
→  is the functor carrying 𝛼 ∈  riv𝑋 toMap (𝑐◦𝛼, 𝑑).
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This can be further rewritten as follows. Let 𝐷∗ be the image of 𝑑 ∈  in 𝐹𝑖𝑛∗. Define the

category  riv𝑋,𝐷 whose objects are the pairs (𝛼 ∶ 𝑈 → 𝑋, 𝛽 ∶ 𝑈∗ → 𝐷∗) andmorphisms (𝛼, 𝛽) →

(𝛼′ ∶ 𝑈′ → 𝑋, 𝛽′ ∶ 𝑈′
∗ → 𝐷∗) defined by an embedding𝑈

′ → 𝑈 over𝑋 so that the corresponding

inert arrow𝑈∗ → 𝑈′
∗ commutes with the 𝛽s. One has an obvious forgetful functor 𝜙 ∶  riv𝑋,𝐷 →

 riv𝑋 and a functor

𝑐𝑑,𝐷 ∶  riv
op
𝑋,𝐷

→ 

carrying (𝛼, 𝛽) toMap
𝛽

(𝑐◦𝛼, 𝑑). The fibers of 𝜙 are discrete, so obviously 𝑐𝑑 is a left Kan extension

of 𝑐𝑑,𝐷 along 𝜙. Therefore, 𝐹𝑟(𝑋)(𝑑) = colim 𝑐𝑑 = colim 𝑐𝑑,𝐷 . The category  riv𝑋,𝐷 has a subcat-

egory  rivact𝑋,𝐷 spanned by the pairs (𝛼, 𝛽)with 𝛽 active. This is a groupoid. We denote by 𝑐
act
𝑑,𝐷

the

restriction of 𝑐𝑑,𝐷 to ( riv
act
𝑋,𝐷)

op. The embedding  rivact𝑋,𝐷 →  riv𝑋,𝐷 is cofinal so that it induces

an equivalence of colimits

colim 𝑐act
𝑑,𝐷

→ colim 𝑐𝑑,𝐷 .

We can finally reformulate the description of 𝐹𝑟(𝑋)(𝑑) = colim 𝑐act
𝑑,𝐷

as follows. Let  riv
eq
𝑋
be the

maximal subgroupoid of  riv𝑋 (this is just the groupoid of finite sets over 𝑋) and letMapact

(𝑥, 𝑦)

denote the space of active arrows in from 𝑥 to 𝑦. The forgetful functor  rivact𝑋,𝐷 →  riv
eq
𝑋
having

discrete fibers, the left Kan extension of 𝑐act
𝑑,𝐷

along it yields the functor

𝑐act
𝑑

∶ ( riv
eq
𝑋
)op → 

assigning to 𝛼 the spaceMapact

(𝑐◦𝛼, 𝑑). We see that

𝐹𝑟(𝑋)(𝑑) = colim(𝑐act
𝑑
). (13)

We need yet another version of the above formula.

The functor 𝑐act
𝑑

factors through �̄� ∶  riv
eq
𝑋
→  riv

eq
𝐼
carrying 𝛼 ∶ 𝑈 → 𝑋 to 𝑝◦𝛼. Therefore,

the colimit of 𝑐act
𝑑
can be rewritten as colim �̄� where �̄� is the left Kan extension of 𝑐act

𝑑
with respect

to �̄�. One easily sees that �̄� ∶ ( riv
eq
𝐼
)op →  is defined by the formula

�̄�(𝛾) = Mapact

(𝑟◦𝛾, 𝑑) ×Aut𝐼(𝑈) Hom𝐼(𝑈, 𝑋) (14)

for 𝛾 ∶ 𝑈 → 𝐼. In the special case 𝑑 ∈ 1, this can be rewritten as

�̄�(𝛾) = (𝑟◦𝛾, 𝑑) ×Aut𝐼(𝑈) Hom𝐼(𝑈, 𝑋). (15)

Proposition 4.1.5. 𝐹𝑟(𝑋) is a free -algebra generated by the set 𝑋.

Proof. Let 𝑞 ∶  →  be a left fibration of operads. One has

Map𝙲𝚊𝚝 (𝐹𝑟(𝑋),) = lim
𝛼∈ riv

op
𝑋

Map𝙲𝚊𝚝 (𝑐◦𝛼∕,) = lim
𝛼∈ riv

op
𝑋

𝑐◦𝛼 = Map𝙲𝚊𝚝 (𝑋,).
□
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4.1.1 Proof of 4.1.1

Choose a recoloring 𝑟 ∶ 𝐼 → 1. It will automatically give a recoloring 𝑓◦𝑟 ∶ 𝐼 → . This yields a

commutative diagram

(16)

We denote by 𝑓! ∶ 𝙰𝚕𝚐 → 𝙰𝚕𝚐 the functor left adjoint (and inverse) to 𝑓∗, so we get an

equivalence

𝐹𝑓◦𝑟 = 𝑓!◦𝐹𝑟.

This yields an equivalence

𝐺𝑟◦𝐹𝑟 → 𝐺𝑓◦𝑟◦𝐹𝑓◦𝑟. (17)

The source and the target of the above map are explicitly given as colimits, see formulas (13) and

(15). Thus, to yield an equivalence (17), one should have, for any 𝛾 ∶ 𝑈 → 𝐼 in  riv
eq
𝐼
= 𝐹𝑖𝑛

eq

∕𝐼
and

a map of sets 𝑋 → 𝐼, an equivalence

(𝑟◦𝛾, 𝑑) ×Aut𝐼(𝑈) Hom𝐼(𝑈, 𝑋) → (𝑟◦𝛾, 𝑑) ×Aut𝐼(𝑈) Hom𝐼(𝑈, 𝑋).

Choosing𝑋 → 𝐼 large enough forAut𝐼(𝑈) to have an orbit inHom𝐼(𝑈, 𝑋)with trivial stabilizer

(e.g., choosing 𝑋 → 𝐼 to be 𝑈 → 𝐼 itself), we deduce that the map (𝑟◦𝛾, 𝑑) → (𝑟◦𝛾, 𝑑) has to

be an equivalence for all 𝛾 ∶ 𝑈 → 𝐼 and 𝑑 ∈ 1. This implies 𝑓 ∶  →  is an equivalence.

4.2 Model structures on operad algebras

In this subsection, we present standard results on model structures in categories of algebras and

rectification results.

4.2.1

We will use a special case of the rectification theorem of Pavlov–Scholbach. Let  be a sim-

plicial symmetric monoidal model category. According to [15, A.7], the underlying ∞-category

∞ inherits a symmetric monoidal structure so that the localization functor  → ∞ is lax

symmetric monoidal.

Let  be a Σ-free and -admissible operad in sets.† Then the category of algebras 𝙰𝚕𝚐() has

a projective model structure. One has a functor 𝐿′ ∶ 𝙰𝚕𝚐()
𝑐𝑓 → 𝙰𝚕𝚐𝓁()(∞) carrying weak

† Pavlov and Scholbach more generally consider simplicial operads.
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equivalences of fibrant cofibrant algebras to equivalences, hence inducing a functor

𝐿 ∶ 𝙰𝚕𝚐()∞ → 𝙰𝚕𝚐𝓁()(∞) (18)

between the underlying∞-categories.

Theorem 4.2.2 (see [16], Theorem 7.11). Let  be a simplicial symmetric monoidal model category

and let  be a Σ-free -admissible operad as above. Then the functor 𝐿 in (18) is an equivalence.

The following Lemma 4.2.3 is used as an inductive step in the proofs of Proposi-

tion 3.4.1 (see Section 4.3) and of Lemma 5.4.2.

Lemma 4.2.3. Let 𝐴 ∶ [1] → 𝐹𝑖𝑛∗ be presented by an arrow 𝑓 ∶ 𝐼∗ → 𝐽∗ and let  = 𝑜(𝜔(𝐴)).

Let  be a simplicial model category. We endow 𝙰𝚕𝚐() with the projective model structure. Then

the forgetful functor 𝙰𝚕𝚐() → 𝐼 defined by the source of 𝑓 induces a fibration of the simplicial

categories of fibrant cofibrant objects

𝑝 ∶ 𝙰𝚕𝚐()
𝑐𝑓
∗ → (

𝑐𝑓
∗ )𝐼 .

Proof. The forest 𝜔(𝐴) consists of corollas numbered by 𝑗 ∈ 𝐽 and trivial operads 𝜂 numbered

by 𝑓−1(∗) ⧵ {∗} ⊂ 𝐼. The claim immediately reduces to the case when 𝜔(𝐴) is a single corolla 𝐶𝑛.

Thus, from now on we assume  = 𝑜(𝐶𝑛).

A 𝐶𝑛-algebra in  is given by an arrow 𝛼 ∶ 𝐷1 × … × 𝐷𝑛 → 𝐷0 in . It is a fibrant cofibrant

object if 𝐷𝑖 are fibrant cofibrant and 𝛼 is a cofibration. Given two such objects, 𝛼 as above and

𝛽 ∶ 𝐸1 × … × 𝐸𝑛 → 𝐸0, the simplicial set𝑜𝑚(𝛼, 𝛽) is defined as the fiber product

𝑛∏

𝑖=1

𝑜𝑚(𝐷𝑖 , 𝐸𝑖) ×𝑜𝑚(
∏𝑛

𝑖=1 𝐷𝑖 ,𝐸0)
𝑜𝑚(𝐷0, 𝐸0).

The map 𝑜𝑚(𝛼, 𝛽) →
∏𝑛

𝑖=1𝑜𝑚(𝐷𝑖 , 𝐸𝑖) is a fibration because it is obtained by base change

from the map𝑜𝑚(𝐷0, 𝐸0) → 𝑜𝑚(
∏𝑛

𝑖=1(𝐷𝑖 , 𝐸0), which is itself a fibration because it is defined

by the composition with the cofibration 𝛼. It remains to verify that the induced map of the

homotopy categories

Ho(𝙰𝚕𝚐𝐶𝑛 ()
𝑐𝑓
∗ ) → Ho(

𝑐𝑓
∗ )𝑛

is an isofibration of conventional categories. This is straightforward. □

4.3 Proof of Proposition 3.4.1

4.3.1

The map 𝑠𝐴 ∶ 𝐴 → 𝑗(𝜔(𝐴)) introduced at the beginning of Section 3.4 induces a map 𝑠′
𝐴
∶ 𝐴′ →

𝑖(𝜔(𝐴)) in 𝙻𝙾𝚙 where 𝐴♭ → 𝐴′ is an operadic equivalence in 𝙲𝚊𝚝+
∕𝐹𝑖𝑛♮∗

; see Section 2.3.5 for the

notion of operadic equivalence.
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20 of 31 HINICH and MOERDIJK

By the reconstruction theorem 4.1.1, it is sufficient to verify that 𝑠′
𝐴
induces an equivalence of

the categories of algebras with values in  ,

𝑠′∗𝐴 ∶ 𝙰𝚕𝚐𝑖(𝜔(𝐴))() → 𝙰𝚕𝚐𝐴′() = Fun𝙲𝚊𝚝∕𝐹𝑖𝑛∗
(𝐴,),

where 𝐴 and  on the right-hand side of the formula are considered as objects of 𝙲𝚊𝚝∕𝐹𝑖𝑛∗ (the

equality in the last formula follows from the operadic equivalence 𝐴♭ → 𝐴′ and Lemma 4.1.2).

We will prove that 𝑠′∗
𝐴
is an equivalence by induction, based on Lemma 4.2.3.

4.3.2 Pruning a simplex

The following procedure of pruning a simplex𝐴will be used. Define 𝐵 ∶ [𝑛 − 1] → 𝐹𝑖𝑛∗ and 𝐶 ∶

[1] → 𝐹𝑖𝑛∗ by the formulas 𝐵 = 𝐴◦𝑑𝑛, 𝐶 = 𝐴◦𝑑𝑛−1
0

. Let 𝑣 ∶ [0] → 𝐹𝑖𝑛∗ be defined by 𝑣 = 𝐶◦𝑑1.

The map 𝑣 is given by an object 𝑉∗ ∈ 𝐹𝑖𝑛∗. The decomposition 𝐴 = 𝐵 ⊔𝑣 𝐶 in 𝙲𝚊𝚝∕𝐹𝑖𝑛∗ gives rise

to a commutative diagram

(19)

so that the lower horizontal arrow is, obviously, an equivalence. In Lemma 4.3.3, we will

verify that the upper horizontal arrow is also an equivalence. This will reduce the claim

of Proposition 3.4.1 that 𝑠′∗
𝐴
to the case 𝑛 = 1 which is very easy.

Lemma 4.3.3. The map 𝙰𝚕𝚐𝑖(𝜔(𝐴))() → 𝙰𝚕𝚐𝑖(𝜔(𝐴))() ×𝑉 𝙰𝚕𝚐𝑖(𝜔(𝐴))() defined by the decompo-

sition 𝐴 = 𝐵 ⊔𝑣 𝐶 is an equivalence.

Proof. Clearly, 𝑜(𝜔(𝐴)) = 𝑜(𝜔(𝐵)) ⊔ riv𝑉 𝑜(𝜔(𝐶)) where  riv𝑉 is the trivial operad on 𝑉 colors.

The operad 𝑜(𝜔(𝐴)) is free as an operad in sets. The category 𝙰𝚕𝚐𝑖(𝜔(𝐴))() is the ∞-category

underlying the simplicial model category 𝙰𝚕𝚐𝑜(𝜔(𝐴))(𝚜𝚂𝚎𝚝), where the model structure is the

projective model structure induced from the standard model structure on the simplicial sets.

The category 𝙰𝚕𝚐𝑜(𝜔(𝐴))(𝚜𝚂𝚎𝚝) is equivalent to the fiber product

𝙰𝚕𝚐𝑜(𝜔(𝐵))(𝚜𝚂𝚎𝚝) ×(𝚜𝚂𝚎𝚝)𝑉 𝙰𝚕𝚐𝑜(𝜔(𝐶))(𝚜𝚂𝚎𝚝). (20)

Moreover, an arrow𝑓 ∶ 𝑋 → 𝑌 in 𝙰𝚕𝚐𝑜(𝜔(𝐴))(𝚜𝚂𝚎𝚝) is a fibration, cofibration, orweak equivalence

if and only if its components satisfy the same property in the corresponding model categories

𝙰𝚕𝚐𝑜(𝜔(𝐵))(𝚜𝚂𝚎𝚝) and 𝙰𝚕𝚐𝑜(𝜔(𝐶))(𝚜𝚂𝚎𝚝).

Note that one needs to be careful as the fiber product in (20) is taken in the category of con-

ventional categories, and not in 𝙲𝚊𝚝. However, the same fiber product formula still holds for the

underlying ∞-categories. Indeed, the ∞-category underlying 𝙰𝚕𝚐𝑜(𝜔(𝐴))(𝚜𝚂𝚎𝚝) is the homotopy

coherent nerve of the simplicial category of fibrant cofibrant objects which is the fiber product of

the simplicial categories of fibrant cofibrant objects of 𝙰𝚕𝚐𝑜(𝜔(𝐵))(𝚜𝚂𝚎𝚝) and 𝙰𝚕𝚐𝑜(𝜔(𝐶))(𝚜𝚂𝚎𝚝). By

Lemma 4.2.3, this fiber product calculates the fiber product of the corresponding∞-categories in

𝙲𝚊𝚝.

This completes the proof of Proposition 3.4.1. □
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The following result deals with a slightly different type of pruning; it was used in Section 3.2

and its proof is very similar to that of Lemma 4.3.3.

Proposition 4.3.4. Let 𝑏 be an inner edge of a tree 𝑇. Then 𝑖(𝑇) ∈ 𝙻𝙾𝚙 is a pushout

𝑖(𝑇) = 𝑖(𝑇𝑏) ⊔𝑖(𝑏) 𝑖(𝑇𝑏).

Proof. By Theorem 4.1.1, the claim reduces to proving that the natural map

𝙰𝚕𝚐𝑖(𝑇)() → 𝙰𝚕𝚐𝑖(𝑇𝑏)() ×𝙰𝚕𝚐𝑖(𝑏)() 𝙰𝚕𝚐𝑖(𝑇𝑏)()

is an equivalence of ∞-categories. By [16], see Theorem 4.2.2, the ∞-categories of algebras

involved underly the simplicial model categories of algebras with values in 𝚜𝚂𝚎𝚝. The category

𝙰𝚕𝚐𝑜(𝑇)(𝚜𝚂𝚎𝚝) is equivalent to the fiber product

𝙰𝚕𝚐𝑜(𝑇𝑏)(𝚜𝚂𝚎𝚝) ×𝚜𝚂𝚎𝚝 𝙰𝚕𝚐𝑜(𝑇𝑏)(𝚜𝚂𝚎𝚝)

and the reasoning of Lemma 4.3.3 based on Lemma 4.2.3 proves that this equivalence induces an

equivalence of the underlying∞-categories. □

5 MONOIDAL STRUCTURES

5.1

In Section 2.2, we introduced the category 𝙳𝙾𝚙 underlying a Quillen model category of simplicial

presheaves. It is known [8] that the associated homotopy category carries a structure of symmetric

monoidal category. Our goal in this section is to explain that this structure can be lifted to the

structure of a symmetric monoidal∞-category on 𝙳𝙾𝚙, and to prove the following sharpening of

Theorem 3.1.4.

Theorem 5.1.1. The functor 𝜆 ∶ 𝙳𝙾𝚙 → 𝙻𝙾𝚙 is an equivalence of symmetric monoidal categories.

It follows from this theorem that its inverse 𝛿 ∶ 𝙻𝙾𝚙 → 𝙳𝙾𝚙 is symmetricmonoidal aswell. Even

though we already know that 𝜆 and 𝛿 form an equivalence of categories, the proof of this stronger

theorem is quite involved, due to the fact that (especially in the∞-context!) it is difficult to deal

with the rich structure of a symmetric monoidal category in a direct way.

5.2 Preliminaries

5.2.1

We consider symmetric monoidal categories and operads in the sense of Lurie [12], so “operad”

means object of 𝙻𝙾𝚙 here.

It is convenient to define symmetric monoidal categories as commutative algebras in 𝙲𝚊𝚝,

that is the functors 𝐹𝑖𝑛∗ → 𝙲𝚊𝚝 satisfying the Segal condition. The (covariant) Grothendieck
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construction then realizes the category 𝙲𝚊𝚝𝚂𝙼 of symmetric monoidal categories as the sub-

category of 𝙻𝙾𝚙 whose objects are cocartesian fibrations of operads 𝑝 ∶ 𝑀 → 𝐹𝑖𝑛∗, with the

morphisms preserving cocartesian arrows. It is convenient to have another realization, the one

connected to the contravariant Grothendieck construction. The following terminology is taken

from [2].

Definition 5.2.2. A functor 𝑞 ∶  → 𝐹𝑖𝑛
op
∗ is called an anti-operad if 𝑞op ∶ op → 𝐹𝑖𝑛∗ is fibrous

(i.e., a Lurie operad).

The category of anti-operads will be denoted by 𝙲𝚘𝚘𝚙. The contravariant realization of 𝙲𝚊𝚝𝚂𝙼

identifies 𝙲𝚊𝚝𝚂𝙼 with the subcategory of 𝙲𝚘𝚘𝚙 whose objects are cartesian fibrations and whose

arrows preserve the cartesian arrows. The categories of operads and of anti-operads are obviously

equivalent. However, if𝑀 is a conventional symmetric monoidal category, its operadic realization

𝑀⊗ assigns to 𝑋1, … , 𝑋𝑛 and 𝑌 in 𝑀 the set Hom𝑀(⊗𝑋𝑖 , 𝑌) of operations, whereas its anti-

operadic realization ⊗𝑀 assigns the set Hom𝑀(𝑌,⊗𝑋𝑖) of “anti-operations.” The passage to the

opposite symmetricmonoidal category intertwines between the two realizations: (⊗𝑀)op = 𝑀op⊗.

For an operad 𝐿, we denote by �̂� the symmetric monoidal envelope of 𝐿. Passing to opposite cat-

egories, we define the enveloping symmetric monoidal category �̂� of an anti-operad 𝐶. One has

canonical embeddings 𝐿 → �̂�⊗ and 𝐶 →⊗ �̂� so that if 𝐶 = 𝐿op, �̂� = �̂�op.

Wewill now define two notions intermediate between theworld of (anti) operads and theworld

of symmetric monoidal categories.

Definition 5.2.3. An operad 𝑝 ∶  → 𝐹𝑖𝑛∗ is called a lax symmetric monoidal category if 𝑝 is a

locally cocartesian fibration, see [13, 2.4.2.6].

Definition 5.2.4.

1. An anti-operad 𝑞 ∶  → 𝐹𝑖𝑛
op
∗ is called a colax symmetric monoidal category if 𝑞 is a locally

cartesian fibration.

2. 𝑞 ∶  → 𝐹𝑖𝑛
op
∗ is called a colax symmetric monoidal category with colimits if, in addition to the

above, the fiber 1 has colimits and the maps ⊗𝑛 ∶ 𝑛
1
→ 1 defined by the local cartesian

liftings preserve colimits in each argument.

In the conventional setting, a colax symmetric monoidal category  is given by a collection of

operations⊗𝑛 ∶ 𝑛 → , with a compatible collection of natural transformations (not necessarily

equivalences) of the form

⊗𝑚◦(⊗𝑛1
× … ×⊗𝑛𝑚

) → ⊗𝑛

with 𝑛 =
∑
𝑛𝑖 . Note that, since the collections of active and inert arrows in 𝐹𝑖𝑛∗ form a factoriza-

tion system, it is sufficient to require that the active arrows have a locally (co)cartesian lifting.

5.2.5 Day convolution

The result [12, 4.8.1.10] yields the following.
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Lemma. Let  be a symmetric monoidal category. Then the category of presheaves 𝑃() inher-

its a symmetric monoidal structure, so that the Yoneda embedding 𝑌 ∶  → 𝑃() is a symmetric

monoidal functor, universal among symmetric monoidal functors from  to a symmetric monoidal

category with colimits.

5.2.6 Presheaves on an anti-operad

We will now define, for any anti-operad 𝐶, a full embedding of anti-operads 𝐶 → 𝑃 where 𝑃 is a

colax symmetric monoidal category with colimits whose underlying category is 𝑃(𝐶1).

Let𝐶 be an anti-operad and let �̂� be the symmetric monoidal envelope of𝐶. Wewrite𝐶1 for the

category underlying 𝐶. Then the full embedding 𝑢 ∶ 𝐶1 → (⊗�̂�)1 = �̂� induces an adjoint pair

𝑢! ∶ 𝑃(𝐶1)
⟶
⟵𝑃(�̂�) ∶ 𝑢∗,

where 𝑢! is again a full embedding. In fact, let 𝑓 = colim(𝑌◦𝑎), 𝑓′ = colim(𝑌◦𝑎′) for 𝑎 ∶ 𝐾 → 𝐶1
and 𝑎′ ∶ 𝐾′ → 𝐶1. Then

Map𝑃(𝐶1)(𝑓, 𝑓
′) = lim

𝑘∈𝐾
colim𝑘′∈𝐾′ Map(𝑎(𝑘), 𝑎′(𝑘′)).

The same formula describes Map𝑃(�̂�)(𝑢!(𝑓), 𝑢!(𝑓
′)), so 𝑢! is a full embedding. This implies that

𝑃(𝐶1), as a full subcategory of a symmetric monoidal category, inherits the structure of an anti-

operad from ⊗𝑃(�̂�). We will denote it by ⊗𝑃(𝐶1) and we claim that it is a colax symmetric

monoidal category. This means that for any 𝑓1, … , 𝑓𝑛 in 𝑃(𝐶1), the functor

𝑓 ∈ 𝑃(𝐶1) ↦ Map(𝑢!(𝑓),⊗𝑖𝑢!(𝑓𝑖))

is representable. This is obviously so as

Map(𝑢!(𝑓),⊗𝑖𝑢!(𝑓𝑖)) = Map(𝑓, 𝑢∗(⊗𝑖𝑢!(𝑓𝑖))).

Therefore, the multiple tensor product functor on 𝑃(𝐶1) is defined as the composition

𝑃(𝐶1)
⊗𝑛

𝑢⊗𝑛
!
⟶𝑃(�̂�)⊗𝑛

⊗𝑛
→ 𝑃(�̂�)

𝑢∗

→ 𝑃(𝐶1). (21)

Note that by construction the map of anti-operads 𝐶 →⊗ �̂� factors through the full embedding
⊗𝑃(𝐶1) →

⊗𝑃(�̂�) and therefore yields a map 𝐶 →⊗𝑃(𝐶1).

5.3 𝙳𝙾𝚙 as a symmetric monoidal category

First of all, recall that the conventional category 𝙾𝚙(𝚂𝚎𝚝) of operads in sets is symmetricmonoidal.

Its tensor product is the Boardman–Vogt tensor product of operads, denoted

𝑃 ⊗𝐵𝑉 𝑄

for two operads 𝑃 and 𝑄.
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Next, the full embedding

Φ → 𝙾𝚙(𝚂𝚎𝚝), 𝐹 ↦ 𝑜(𝐹)

gives rise to a full sub-anti-operad 𝚽 of ⊗𝙾𝚙(𝚂𝚎𝚝) with 𝚽1 = Φ. Explicitly,

𝚽(𝐹; 𝐹1 … ,𝐹𝑛) = Hom𝙾𝚙(𝚂𝚎𝚝)(𝑜(𝐹), 𝑜(𝐹1) ⊗𝐵𝑉 …⊗𝐵𝑉 𝑜(𝐹𝑛)).

It follows that 𝑃(Φ) has the structure of a colax symmetric monoidal category as explained

in Section 5.2.6.

An arrow 𝑓 in 𝑃(Φ) will be called an operadic equivalence if it is carried to equivalence by the

localization functor 𝑃(Φ) → 𝙳𝙾𝚙.

Proposition 5.3.1.

1. Multiple tensor products⊗𝑛 ∶ 𝑃(Φ)
𝑛 → 𝑃(Φ) preserve operadic equivalences in each argument.

2. The localization functor 𝑃(Φ) → 𝙳𝙾𝚙 canonically extends to a map of colax symmetric monoidal

categories.

3. The localization functor 𝑃(Φ) → 𝙳𝙾𝚙 carries associativity constraints to equivalences. Therefore,

the colax symmetric monoidal structure on 𝙳𝙾𝚙 is in fact symmetric monoidal.

Proof. This result easily follows from the properties of shuffles of trees presented in the Appendix.

Recall that 𝙳𝙾𝚙 is a Bousfield localization of 𝑃(Φ) with respect to three types of arrows.

1. 𝑇𝑑 ⊔
𝑑 𝑇𝑑 → 𝑇, where 𝑑 is an inner edge of a tree 𝑇.

2. ∗→ 𝐽, embedding of simplicial sets considered as objects of 𝑃(Φ).

3. ⊔ 𝑇𝑖 → 𝐹 where 𝐹 ∈ Φ and 𝑇𝑖 are the tree components of 𝐹.

To prove the first claim, we have to show that for all 𝑓𝑖 ∈ 𝑃(Φ) the functor

⊗𝑛(𝑓1, … , 𝑓𝑘−1, −, 𝑓𝑘+1, … , 𝑓𝑛) ∶ 𝑃(Φ) → 𝑃(Φ) (22)

carries the arrows of types 1–3 to operadic equivalences. Since⊗𝑛 preserves colimits and the local-

ization functor 𝑃(Φ) → 𝙳𝙾𝚙 preserves colimits, it is enough to verify this claim in the case when 𝑓𝑖
are representable, that is, forests. To calculate the tensor product, we can replace each forest with

the coproduct of its tree components; in this way, the claim reduces to the case when all 𝑓𝑖 are

trees. For the arrows of type 1 the result now follows from Proposition A.3.1. The arrow [0] → 𝐽

is carried by (22) to a deformation retract of dendroidal sets, so to an operadic equivalence. The

arrows of type 3 are obviously carried to equivalences.

Claim 2. To see that Claim 1 defines a colax symmetric monoidal structure on 𝙳𝙾𝚙, we look at

the anti-operadic presentation 𝑞 ∶⊗𝑃(Φ) → 𝐹𝑖𝑛
op
∗ of 𝑃(Φ). Claim 1 implies that the localization of

the total category ⊗𝑃(Φ) with respect to operadic equivalences yields a locally cartesian fibration
⊗𝙳𝙾𝚙 → 𝐹𝑖𝑛

op
∗ ; moreover, the localization map preserves locally cartesian arrows.

Claim 3.We now look at the morphisms of functors

⊗𝑞◦(id
𝑘 ×⊗𝑝 × id𝑞−𝑘−1) → ⊗𝑝+𝑞+1 ∶ 𝑃(Φ)

𝑝+𝑞+1 → 𝑃(Φ) (23)

describing the associativity constraints. Both source and target preserve colimits on each argu-

ment, so the claim is reduced to the case when 𝑓 = {𝑓𝑖} ∈ 𝑃(Φ)𝑝+𝑞+1 is a collection of trees. Then

Proposition A.4.1 implies the result. □
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5.4 Proof of Theorem 5.1.1

Recall [12] that 𝙻𝙾𝚙 has the structure of a symmetric monoidal category. For two objects 𝐿 and𝑀,

their tensor product is characterized by the property that there is an equivalence

𝙰𝚕𝚐𝐿⊗𝑀() = 𝙰𝚕𝚐𝐿(𝙰𝚕𝚐𝑀()).

(This characterizes 𝐿 ⊗𝑀 uniquely by the reconstruction theorem 5.1.1.) Since 𝙻𝙾𝚙 is symmetric

monoidal, it has the structure of an anti-operad.

Proposition 5.4.1. The inclusion 𝑖 ∶ Φ → 𝙻𝙾𝚙 canonically extends to a map of anti-operads.

Proof. Recall that 𝑖 is the composition Φ
𝑜
→ 𝙾𝚙(𝚂𝚎𝚝)

𝓁
→ 𝙻𝙾𝚙. Let  be the full subcategory of 𝙻𝙾𝚙

spanned by the objects 𝑖(𝐹), 𝐹 ∈ Φ. Since 𝙻𝙾𝚙 is a symmetric monoidal category,  acquires

receives the structure of a anti-suboperad. We will verify that  is a conventional anti-operad

canonically isomorphic to 𝚽.

Given a sequence 𝑂1, … , 𝑂𝑛 of operads in sets, one has a canonical operad multifunctor

𝓁(𝑂1) ×⋯ × 𝓁(𝑂𝑛) → 𝓁(𝑂1 ⊗𝐵𝑉 ⋯⊗𝐵𝑉 𝑂𝑛),

expressing the universal property of Boardmann–Vogt tensor product. In particular, a sequence

𝐹1, … , 𝐹𝑛 of objects of Φ yields an operad multifunctor

𝑖𝐹1 × … × 𝑖𝐹𝑛 → 𝓁(𝑜(𝐹1) ⊗𝐵𝑉 …⊗𝐵𝑉 𝑜(𝐹𝑛))

that induces a map of operads (see Section 2.3.2)

𝜃 ∶ 𝑖𝐹1 ⊗…⊗ 𝑖𝐹𝑛 → 𝓁(𝑜(𝐹1) ⊗𝐵𝑉 …⊗𝐵𝑉 𝑜(𝐹𝑛)).

Thus, it suffices to verify that this map is an equivalence in 𝙻𝙾𝚙. Indeed, we would then have an

equivalence of anti-operads Φ and  since for any object 𝐹 ∈ Φ, the induced map from

Hom𝙾𝚙(𝚂𝚎𝚝)(𝑜(𝐹), 𝑜(𝐹1) ⊗𝐵𝑉 …⊗𝐵𝑉 𝑜(𝐹𝑛)) = Map𝙻𝙾𝚙(𝑖𝐹,𝓁(𝑜(𝐹1) ⊗𝐵𝑉 …⊗𝐵𝑉 𝑜(𝐹𝑛)))

toMap𝙻𝙾𝚙(𝑖𝐹, 𝑖𝐹1 ⊗…⊗ 𝑖𝐹𝑛), will be then an equivalence. The fact that 𝜃 is an equivalence now

follows by induction from the following lemma. □

Lemma 5.4.2. Let  = 𝑜(𝐹) where 𝐹 is a forest and let  be a Σ-free operad in 𝚂𝚎𝚝. Then the

canonical operad bifunctor 𝓁() × 𝓁() → 𝓁( ⊗𝐵𝑉 ) exhibits 𝓁( ⊗𝐵𝑉 ) as a tensor product

(in the sense of Lurie) of 𝓁() and 𝓁().

Proof. By the reconstruction theorem, it is sufficient to verify that the map 𝜃 ∶ 𝓁() ⊗ 𝓁() →

𝓁( ⊗𝐵𝑉 ) induces an equivalence of the categories of algebras

𝜃∗ ∶ 𝙰𝚕𝚐𝓁(⊗𝐵𝑉)
() → 𝙰𝚕𝚐𝓁()⊗𝓁()().

By the rectification theorem, the left-hand side is the∞-category underlying themodel category

𝙰𝚕𝚐⊗𝐵𝑉
(𝚜𝚂𝚎𝚝) = 𝙰𝚕𝚐 (𝙰𝚕𝚐(𝚜𝚂𝚎𝚝)), (24)
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26 of 31 HINICH and MOERDIJK

whereas, by definition, the right-hand side is

𝙰𝚕𝚐𝓁()(𝙰𝚕𝚐𝓁()()). (25)

We denote  = 𝙰𝚕𝚐(𝚜𝚂𝚎𝚝). This is a simplicial model category whose underlying∞-category

is 𝐿 ∶= 𝙰𝚕𝚐𝓁()(). We have the localization functor 𝐿 ∶  → 𝐿 and we have to verify that the

natural map 𝙰𝚕𝚐 () → 𝙰𝚕𝚐𝓁()(𝐿) induces an equivalence

𝐿(𝙰𝚕𝚐 ()) → 𝙰𝚕𝚐𝓁()(𝐿). (26)

Recall that = 𝑜(𝐹).We endow 𝙰𝚕𝚐 ()with the projectivemodel structure. Note thatwe cannot

use the result of Pavlov–Scholbach [16] as 𝙰𝚕𝚐 () is not a monoidal model category. It is easy to

see that a map 𝑓 ∶ 𝐴 → 𝐴′ in 𝙰𝚕𝚐 () is a fibration if and only if its restriction to any corolla of

𝐹 is a fibration. Therefore, the simplicial category 𝙰𝚕𝚐 ()
𝑐𝑓
∗ of fibrant cofibrant algebras is the

(naive) fiber product of the simplicial categories of algebras over the corollas contained in  . To

simply the formulas, we will proceed by induction on the number of corollas in 𝐹.

We can write 𝐹 = 𝐹1 ∪
𝑣 𝐹2 (pruning/grafting) where 𝐹2 is a corolla containing a root of 𝐹,

𝐹1 is a (smaller) forest and 𝑣 = {𝑣1, … , 𝑣𝑘} is a subset of the set of leaves of 𝐹2 whose elements

are identified in 𝐹 with roots of 𝐹1. This decomposition yields a decomposition of operads  =

1 ⊔
𝑣 2 where 𝑗 = 𝑖(𝐹𝑗) for 𝑗 = 1, 2. We have

𝙰𝚕𝚐 () = 𝙰𝚕𝚐1() ×𝑘 𝙰𝚕𝚐2(),

where the functors g𝑖 ∶ 𝙰𝚕𝚐𝑖 () → 𝑘 are given by the evaluation at 𝑣. According to Lemma4.2.3,

the functor g2 ∶ 𝙰𝚕𝚐2() →  induces a fibration of the corresponding simplicial categories

of fibrant–cofibrant objects. So, applying the functor of homotopy coherent nerve, we get a

decomposition

𝐿(𝙰𝚕𝚐 ()) = 𝐿(𝙰𝚕𝚐1()) ×𝐿()𝑘 𝐿(𝙰𝚕𝚐2()),

where one of the structure maps is a categorical fibration of quasicategories, so it represents the

fiber product in 𝙲𝚊𝚝. Since, by definition, the same decomposition holds for 𝙰𝚕𝚐 (𝐿), we deduce

that (26) is an equivalence by induction on the number of corollas in  . □

5.4.3 Proof of Theorem 5.1.1

The diagram

(27)

with 𝑌 the Yoneda embedding, is commutative by Proposition 3.4.4. The composition 𝑖! = 𝜆◦𝐿

preserves colimits. By Proposition 5.4.1, the functor 𝑖 ∶ Φ → 𝙻𝙾𝚙 has a canonical extension to

a map of anti-operads. We will show that 𝑖! canonically extends to a map of colax symmetric

monoidal categories with colimits. If 𝑢 ∶ 𝚽 →⊗�̂� is the symmetric monoidal envelope of 𝚽, the
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map of anti-operads 𝑖 ∶ 𝚽 →⊗ 𝙻𝙾𝚙 canonically extends to a symmetricmonoidal functor �̂� → 𝙻𝙾𝚙

that gives, by Lemma 5.2.5, a colimit preserving symmetric monoidal functor Υ ∶ 𝑃(�̂�) → 𝙻𝙾𝚙.

The composition of Υ with 𝑢! ∶ 𝑃(Φ) → 𝑃(�̂�) yields a map of colax SM categories extending 𝑖!,

see Section 5.2.6. Since Υ◦𝑢! = 𝑖! = 𝜆◦𝐿 carries operadic equivalences to equivalences, it factors

through a symmetric monoidal functor from 𝙳𝙾𝚙 to 𝙻𝙾𝚙 extending 𝜆. This proves the theorem.

5.5

We present below, for the convenience of the reader, a diagram presenting some important

categories and functors appearing in the paper.

(28)

APPENDIX: SHUFFLES OF TREES

The category 𝚍𝚂𝚎𝚝 of (set-valued) presheaves onΩ carries the “operadic” model structure already

mentioned in Section 2.2.3 above and having 𝙳𝙾𝚙 as the underlying∞-category. The tensor prod-

uct on 𝚍𝚂𝚎𝚝 does not make it a monoidal model category, however, because, for instance, the

functors 𝑆 ⊗ _ where 𝑆 is a fixed tree, do not preserve cofibrations (see [8, section 4.3] for a

discussion of this point). The smaller category 𝚘𝚍𝚂𝚎𝚝 of presheaves on open trees does have a

homotopically well-behaved tensor product, see [7, section 6.3]. In this appendix, we explain how

some of these good homotopical properties of the open trees extend to arbitrary trees. This will

imply that 𝙳𝙾𝚙 is a symmetric monoidal∞-category by the argument presented in Section 5.

A.1 Terminology

Recall from 2.2.3 the category Ω of trees. For a tree 𝑆 we denote the set of its maximal edges, that

is, its leaves and stumps, by

max(𝑆).

A tree is open if it has no stumps. For an arbitrary tree𝑆, wewrite𝑆◦ → 𝑆 for its “interior”, obtained

by chopping off the stumps. So, 𝑆◦ → 𝑆 is bijective on edges. (Warning: the assignment of 𝑆◦ to 𝑆

is not functorial.) If 𝑒 is a leaf of 𝑆, we denote by 𝑆[𝑒] the tree obtained by adding a stump on top

of 𝑒. We will also use the similar notation 𝑆[�̄�] for a set 𝐸 of leaves of 𝑆. For example,
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The edge 𝑒 corresponds to amap 𝑒 ∶ 𝜂 → 𝑆 from the unit tree 𝜂, and 𝑒 extends to amap 𝑒 ∶ 𝜂 →

𝑆[𝑒] where 𝜂 = 𝐶0 is the null-corolla. The tree 𝑆[𝑒] is the grafting 𝑆◦𝑒𝑒 of 𝐶0 onto 𝑆 at 𝑒, and the

map

𝑆 ⊔𝑒 𝑒 → 𝑆[𝑒]

is a weak equivalence (a Segal map) in themodel structurementioned above. For a set 𝐸 of leaves,

we have a similar weak equivalence

𝑆 ⊔𝐸 �̄� → 𝑆[�̄�], (A.1)

where 𝑆 ⊔𝐸 �̄� denotes the pushout of ⊔𝑒∈𝐸𝜂 → 𝑆 along ⊔𝑒∈𝐸𝜂 → ⊔𝑒∈𝐸𝜂.

A.2 Shuffles

The 𝑛-fold tensor product 𝑆1 ⊗…⊗ 𝑆𝑛 of a sequence of trees 𝑆1, … , 𝑆𝑛 is a union of “shuffles”

(see [8, section 4.4]). A shuffle 𝐴 → 𝑆1 ⊗…⊗ 𝑆𝑛 is a tree whose edges are (labeled by) 𝑛-tuples

of edges (𝑒1, … , 𝑒𝑛) of 𝑆1, … , 𝑆𝑛, respectively. Not all such tuples will occur in a particular shuffle.

But for us, it is important to note that the root of a shuffle 𝐴 is the 𝑛-tuple (𝑟1, … , 𝑟𝑛) of roots, and

the set of maximal edges is exactly the set of 𝑛-tuples of maximal edges in 𝑆𝑖; that is,

max(𝐴) =

𝑛∏

𝑖=1

max(𝑆𝑖). (A.2)

The fact that 𝑆1 ⊗…⊗ 𝑆𝑛 =
⋃

𝑗∈𝐽 𝐴𝑗 is the union of its shuffles can be expressed as a finite

colimit

𝑆1 ⊗…⊗ 𝑆𝑛 = colim𝐴𝛼,

where 𝛼 ranges over nonempty subsets of 𝐽, and

𝐴𝛼 =
⋂

𝑗∈𝛼

𝐴𝑗

is the corresponding intersection of shuffles. Each such finite intersection 𝐴𝛼 has property (A.2)

and eachmap𝐴𝛼 → 𝐴𝛽 for 𝛽 ⊆ 𝛼 ⊆ 𝐽 is an inner face map, in fact, a map obtained by contracting

a set of edges other than the maximal edges or the root.

The structure of the set of shuffles does not depend on the stumps that might occur in the trees

𝑆𝑖 . More precisely, for a leaf 𝑒 in 𝑆𝑖 , there is a bijective correspondence between the shuffles of

𝑆1 ⊗…⊗ 𝑆𝑛 and of 𝑆1 ⊗…⊗ 𝑆𝑖[𝑒] ⊗ …⊗ 𝑆𝑛, given by 𝐴 ↦ 𝐴[�̄�𝑖], where 𝐸𝑖 = {(𝑑1, … , 𝑑𝑛)|𝑑𝑖 =
𝑒, 𝑑𝑗 are all leaves of 𝑆𝑗}. The same applies to the intersections of shuffles 𝐴𝛼 ↦ 𝐴𝛼[�̄�𝑖].

In particular, for trees 𝑆1, … , 𝑆𝑛 the tensor product 𝑆1 ⊗…⊗ 𝑆𝑛 can be reconstructed from the

tensor product of their interiors 𝑆◦
1
, … , 𝑆◦𝑛: Precisely, if 𝑆

◦
1
⊗…⊗ 𝑆◦𝑛 =

⋃
𝑗 𝐴𝑗 = colim𝐴𝛼, then

𝑆1 ⊗…⊗ 𝑆𝑛 =
⋃

𝑗 𝐴𝑗[�̄�] = colim𝐴𝛼[�̄�], where

𝐸 = {(𝑒1, … , 𝑒𝑛)| each 𝑒𝑗 is a leaf of 𝑆◦𝑗 , at least one 𝑒𝑖 is a stump of 𝑆𝑖}.

From this observation, one easily deduces the following lemma.
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Lemma A.2.1. For trees 𝑆1, … , 𝑆𝑛 and the set 𝐸 as above, the map

(𝑆◦1 ⊗…⊗ 𝑆◦𝑛) ⊔
𝐸 �̄� → 𝑆1 ⊗…⊗ 𝑆𝑛

is a weak equivalence.

Proof. Write 𝑆1 ⊗…⊗ 𝑆𝑛 as the colimit colim𝐴𝛼 of the diagram of finite intersections of shuffles.

This is a Reedy cofibrant diagram, so 𝑆◦
1
⊗…⊗ 𝑆◦𝑛 is also the homotopy colimit. Then (𝑆

◦
1
⊗…⊗

𝑆◦𝑛) ⊔
𝐸 �̄� is the colimit of the diagram of the 𝐴𝛼 together with the inclusions

𝜂 ← 𝜂
𝑒
→ 𝐴𝛼

for each 𝑒 in 𝐸 and each 𝛼. This colimit is the same as the colimit of the pushouts 𝐴𝛼 ⊔
𝐸 �̄�. But

𝐴𝛼 ⊔
𝐸 �̄� → 𝐴𝛼[�̄�] is a weak equivalence for each 𝛼, see (A.1), and 𝑆1 ⊗…⊗ 𝑆𝑛 = colim𝛼 𝐴𝛼[�̄�]

is again the homotopy colimit of the corresponding Reedy cofibrant diagram. Therefore, the weak

equivalences 𝐴𝛼 ⊔
𝐸 �̄� → 𝐴𝛼[�̄�] for different 𝛼 yield the one in the lemma. □

A.3 Segal condition

Consider trees 𝑆1, … , 𝑆𝑛 and a further tree 𝑇. Let 𝑑 be an inner edge in 𝑇. Cutting the tree 𝑇 at 𝑑

results in two trees 𝑇𝑑 and 𝑇𝑑 of which 𝑇 = 𝑇𝑑◦𝑑𝑇𝑑 is a grafting.

Proposition A.3.1. The map

𝑆1 ⊗…⊗ 𝑆𝑛 ⊗ (𝑇𝑑 ∪ 𝑇𝑑) → 𝑆1 ⊗…⊗ 𝑆𝑛 ⊗ 𝑇

is a weak equivalence in the operadic model structure on 𝚍𝚂𝚎𝚝.

Proof. The claim is known to hold if all the trees are open, see [7], Lemma 6.3.5. The general case

immediately follows from the lemma above, at least if 𝑑 itself is not a stump in 𝑇. If it is, 𝑇𝑑 = 𝜂

and 𝑇 = 𝑇𝑑[𝜂], and the map in the proposition is

𝑆1 ⊗…⊗ 𝑆𝑛 ⊗ (𝑇𝑑 ⊔𝑑 𝑑) → 𝑆1 ⊗…⊗ 𝑆𝑛 ⊗ 𝑇.

But in this case

𝑆1 ⊗…⊗ 𝑆𝑛 ⊗ (𝑇𝑑 ⊔𝑑 𝑑)
∼
= (𝑆1 ⊗…⊗ 𝑆𝑛 ⊗ 𝑇𝑑) ⊔𝐷 �̄�,

where 𝐷 = {(𝑒1, … , 𝑒𝑛, 𝑑)|𝑒𝑖 is a leaf in 𝑆𝑖}, and the proposition becomes a special case of the

lemma again. □

A.4 Associativity

The tensor product of dendroidal sets is not associative. For example, cosider trees ¢, 𝑆, and 𝑇. If

𝑆 ⊗ 𝑇 is a union of shuffles, say, 𝑆 ⊗ 𝑇 =
⋃
𝐴𝑗 , then ¢ ⊗ (𝑆 ⊗ 𝑇) =

⋃
¢ ⊗ 𝐴𝑗 is a union of only

a subset of shuffles making up ¢ ⊗ 𝑆 ⊗ 𝑇, see [8, section 4.4]. More generally, if 𝑆1 ⊗…⊗ 𝑆𝑛 =⋃
𝑗∈𝐽 𝐴𝑗 as above, then the map

𝑆1 ⊗…⊗ (𝑆𝑖 ⊗…⊗ 𝑆𝑗) ⊗ …⊗ 𝑆𝑛 ⟶𝑆1 ⊗…⊗ 𝑆𝑛 (A.3)

is an inclusion of the form
⋃

𝑘∈𝐾 𝐴𝑘 →
⋃

𝑗∈𝐽 𝐴𝑗 where 𝐾 ⊆ 𝐽.
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Proposition A.4.1. Let 𝑆1, … , 𝑆𝑛 be trees. Then for any 1 ⩽ 𝑖 < 𝑗 ⩽ 𝑛 the map (A.3) is a weak

equivalence, and similarly for more nested bracketings.

Proof. This map is a weak equivalence (in fact, inner anodyne) if all the 𝑆𝑖 are open, and the same

holds for more nested bracketings, see [7, Lemma 6.3.6]. So for general trees 𝑆1, … , 𝑆𝑛, the map

𝑆◦1 ⊗…⊗ (𝑆◦𝑖 ⊗…⊗ 𝑆◦𝑗 ) ⊗ …⊗ 𝑆◦𝑛 ⟶𝑆◦1 ⊗…⊗ 𝑆◦𝑛

is a weak equivalence. As before, we can write this map as colim𝐴𝛽 → colim𝐴𝛼 where 𝛽 ⊆ 𝐾

and 𝛼 ⊆ 𝐽 are nonempty subsets, and the colimits are the colimits of Reedy cofibrant diagrams.

Taking the pushout along ⊔𝐸𝜂 → ⊔𝐸𝜂 for 𝐸 as before yields the top map in the diagram

(A.4)

The vertical maps are colimits of grafting weak equivalences of the form (A.1), so the bottommap

is a weak equivalence as well. But this is precisely the map in the proposition. □
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