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ABSTRACT

We consider an infinite system of coupled stochastic differential equations (SDE) describing dynamics of the following infinite particle sys-

tem. Each particle is characterized by its position x ∈ Rd and internal parameter (spin) σx ∈ R. While the positions of particles form a fixed

(“quenched”) locally-finite set (configuration) γ ⊂ R
d, the spins σx and σy interact via a pair potential whenever ∣x − y∣ < ρ, where ρ > 0 is a

fixed interaction radius. The number nx of particles interacting with a particle in position x is finite but unbounded in x. The growth of nx
as ∣x∣ → ∞ creates a major technical problem for solving our SDE system. To overcome this problem, we use a finite volume approximation
combined with a version of the Ovsjannikov method, and prove the existence and uniqueness of the solution in a scale of Banach spaces of
weighted sequences. As an application example, we construct stochastic dynamics associated with Gibbs states of our particle system.

© 2025 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(https://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0169112

I. INTRODUCTION

In recent decades, there has been an increasing interest in studying countable systems of particles randomly distributed in the Euclidean

space R
d. In such systems, each particle is characterized by its position x ∈ X ∶≙ Rd and an internal parameter (spin) σx ∈ S ∶≙ Rn, see for

example Refs. 34, 32 (Sec. 11), 7, 14, and 15 pertaining tomodeling of non-crystalline (amorphous) substances, e.g., ferrofluids and amorphous
magnets. Throughout the paper we suppose, mostly for simplicity, that n ≙ 1.

Let us denote by Γ(X) the space of all locally finite subsets (configurations) of X and consider a particle system with positions forming
a given fixed (“quenched”) configuration γ ∈ Γ(X). Two spins σx and σy, x, y ∈ γ, are allowed to interact via a pair potential if the distance
between x and y is no more than a fixed interaction radius ρ > 0, that is, they are neighbors in the geometric graph defined by γ and ρ. The
evolution of spins is described then by a system of coupled stochastic differential equations (SDE).

Namely, we consider, for a fixed γ ∈ Γ(X), a system of stochastic differential equations in S ≙ R of the following form:

dξx,t ≙ Φx(Ξt)dt +Ψx(Ξt)dWx,t , x ∈ γ, t ≥ 0, (1.1)

where Ξt ≙ (ξx,t)x∈γ and (Wx,t)x∈γ are, respectively, families of real-valued stochastic processes and independent Wiener processes on a

suitable probability space. Here the drift and diffusion coefficients Φx and Ψx are real-valued functions, defined on the Cartesian power
Sγ ∶≙ {σ̄ ≙ (σx)x∈γ∣σx ∈ S, x ∈ γ}. Both Φx and Ψx are constructed using pair interaction between the particles and their self-interaction
potentials, see Sec. II, and are independent of σy if ∣y − x∣ > ρ.

The aim of including the diffusion term in (1.1) is two-fold. On the one hand, it allows to consider the influence of random forces on
our particle system and, on the other hand, to construct and study stochastic dynamics associated with the equilibrium (Gibbs) states of the
system. The Gibbs states of spin systems on unbounded degree graphs have been studied in Refs. 14, 15, and 27, see also references given
there.
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The case where vertex degrees of the graph are globally bounded (in particular, if γ has a regular structure, e.g., γ ≙ Zd) has been well-
studied (in both deterministic and stochastic cases), see e.g., Refs. 2–5, 17, 19, 20, 23, 24, 28, 29, 37, and 39, and references therein. However,
the aforementioned applications to non-crystalline substances require dealing with unbounded vertex degree graphs. An important example
of such graphs is served by configurations γ distributed according to a Poisson or, more generally, Gibbs measure on Γ(X) with a superstable

low regular interaction energy, in which case the typical number of “neighbors” of a particle located at x ∈ X is proportional to
√
1 + log ∣x∣,

see e.g., Refs. 38 and 26 (p. 1047).
There are two main technical difficulties in the study of system (1.1). The first one is related to the fact that the number of particles

interacting with a tagged particle x is finite but unbounded in x ∈ γ. Consequently, the system cannot be considered an equation in a fixed
Banach space and studied by standard methods of e.g., Refs. 12 and 16.

The way around it has been proposed in Ref. 11, where a deterministic version of system (1.1) (with Ψ ≡ 0) was considered in an
expanding scale of embedded Banach spaces of weighted sequences and solved using a version of the Ovsjannikov method.

Originally, the Ovsjannikov method was developed for a linear equation

Ẋt ≙ AXt (1.2)

in a scale of densely embedded Banach spaces Bα, α ∈ A , where A is a real interval, such that Bα ⊂ Bβ if α < β, and A: Bα → Bβ is bounded with
norm satisfying the estimate ∥A∥α,β ≤ L(β − α)−q, α < β, q ≙ 1, (1.3)

for any α,β ∈ A . Then, for X0 ∈ Bα, Eq. (1.2) has a solution Xt ∈ Bβ, t < T, for finite T depending on α and β.
It was noticed in Ref. 11 that, under a stronger norm bound with q < 1 in (1.3), the lifetime of the solution Xt ∈ Bβ is infinite. That fact

allows to find a global uniform bound for a sequence of finite volume approximations of the system of differential equations in question and
prove its convergence, thus proving the existence and uniqueness of the global solution of the deterministic version of (1.1).

The first advances in the study of stochastic equations in the scale {Bα,α ∈ A }, were made in Refs. 10 and 8, where, respectively, local
and global strong solutions of a general stochastic equation had been constructed. In those works, the coefficients are assumed to be Lipschitz
mappings Bα → Bβ for any α < β, with Lipschitz constants L(β − α)−q, q ≙ 1

2
and q < 1

2
, respectively. Observe that the threshold value of q here

is 1
2
instead of 1 as in (1.3) because of the presence of the Itô integral, which makes it necessary to work in L2 spaces instead of L1.
The results of Refs. 10 and 8 are applicable to system (1.1) only in the case where the drift coefficients Φx, x ∈ γ, are globally Lipschitz.

However, to construct the dynamics associated with Gibbs states of interacting particle systems, one has to consider the drift coefficients that
are only locally Lipschitz. The existence of such dynamics, under certain dissipativity conditions on the drift, is known in the situation of a
regular lattice, see Refs. 4 and 5 (observe that those works deal with the more complicated quantum systems but are applicable to classical
systems, too, albeit only for the additive noise).

For deterministic systems on unbounded degree graphs, the dissipative case was considered in the aforementioned paper.11 In the present
work, we revisit the volume approximation approach of that paper. However, the presence of stochastic terms requires the application of very
different techniques. To prove the convergence of finite volume approximations, we have developed a version of the Gronwall inequality
suitable for a scale of Banach spaces. In this way, we have been able to prove the existence and uniqueness of global strong solutions of (1.1)
and their component-wise time continuity, in the case of dissipative single-particle potentials.

The structure of the paper is as follows. In Sec. II we introduce the framework and formulate our main results. Section III is devoted to
the proof of the existence and uniqueness result for (1.1). In a short Sec. III D, we discuss Markov semigroup generated by the solution of
(1.1). In Sec. IV, we study stochastic dynamics associated with Gibbs states of our system.

Finally, the Appendix contains auxiliary results on linear operators in the scales of Banach spaces, estimates of the solutions of system
(1.1) and, notably, a crucial for our techniques generalization of the classical comparison theorem and a Gronwall-type inequality, suitable for
our framework.

II. THE SETUP AND MAIN RESULTS

Let us fix a configuration γ ∈ Γ(X) and a family (Wx,t)x∈γ of independentWiener processes on a suitable filtered and complete probability

space P ∶≙ (Ω,F ,F,P). Our aim is to find a strong solution of SDE system (1.1), that is, a family Ξt ≙ (ξx,t)x∈γ of continuous adapted stochastic
processes on P such that the equality

ξx,t ≙ ζx +∫ t

0
Φx(Ξs)ds +∫ t

0
Ψx(Ξs)dWx,s, x ∈ γ, ζx ∈ S, (2.1)

holds for all t ∈ T ∶≙ ∥0,T∥, T > 0, almost surely, that is, on a common for all t set of probability 1. The coefficients Φx and Ψx are defined

explicitly in Assumption II.1 below, and ∫ t
0 Ψx(Ξs)dWx,s is the continuous version of the Ito integral, cf. Remark II.4.

First, we need to introduce some notations. We fix ρ > 0 and denote by nx, x ∈ γ, the number of elements in the set

γ̄x ∶≙ {y ∈ γ : ∣x − y∣ ≤ ρ}.
Observe that nx ≥ 1 for all x ∈ γ, because x ∈ γ̄x. We will also use the notation γx ∶≙ γ̄x/{x} ≡ {y ∈ γ : ∣x − y∣ ≤ ρ, y ≠ x}.
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For a fixed γ ∈ Γ(X), we will consider the Cartesian product Sγ of identical copies Sx, x ∈ γ, of S, and denote its elements by z̄ ∶≙ (zx)x∈γ,
etc. When dealing with multiple configurations η ∈ Γ(X), we will sometimes write z̄η ∶≙ (zx)x∈η, to emphasize the dependence on η.

We will work under the following assumption.

Assumption II.1

(A) There exists a constant C > 0 such that
nx ≤ C(1 + log (1 + ∣x∣)) for all x ∈ γ. (2.2)

(B) The drift coefficients Φx, x ∈ γ, have the form
Φx(z̄) ∶≙ ϕ(zx) +∑

y∈γ̄x

φx,y(zx, zy), for all x ∈ γ, (2.3)

where ϕ : S→ S is a measurable function and φxy : S
2 → S are also measurable functions satisfying uniform Lipschitz condition

∣φxy(σ1, s1) − φxy(σ2, s2)∣ ≤ ā(∣σ1 − σ2∣ + ∣s1 − s2∣),
∣φxy(σ1, s1))∣ ≤ ā(1 + ∣σ1∣ + ∣s1∣),

for some constant ā > 0 and all x, y ∈ γ, σ1, σ2, s1, s2 ∈ S.
(C) There exist constants c > 0 and R ≥ 2 such that ∣ϕ(σ)∣ ≤ c(1 + ∣σ∣R), σ ∈ S. (2.4)

(D) There exists b > 0 such that (σ1 − σ2)(ϕ(σ1) − ϕ(σ2)) ≤ b(σ1 − σ2)2, σ1, σ2 ∈ S. (2.5)

(E) The diffusion coefficients Ψx, x ∈ γ, have the form
Ψx(z̄) ∶≙ ∑

y ∈ γ̄x

ψxy(zx, zy) for all x ∈ γ, (2.6)

where ψxy : S
2 → S are measurable functions satisfying uniform Lipschitz condition

∣ψxy(σ1, s1) − ψxy(σ2, s2)∣ ≤M(∣σ1 − σ2∣ + ∣s1 − s2∣),
∣ψxy(σ1, s1))∣ ≤M(1 + ∣σ1∣ + ∣s1∣), (2.7)

for some constantM > 0 and all x, y ∈ γ, σ1, σ2, s1, s2 ∈ S.
The specific form of the coefficients requires the development of a special framework. Indeed, we will be looking for a solution of (2.1)

in a scale of expanding Banach spaces of weighted sequences, which we introduce below.
We start with a general definition and consider a family B of Banach spaces Bα indexed by α ∈ �̄� ∶≙ ∥α∗,α∗∥ with fixed 0 ≤ α∗,α∗ <∞,

and denote by ∥⋅∥Bα the corresponding norms. When speaking of these spaces and related objects, we will always assume that the range of

indices is ∥α∗,α∗∥, unless stated otherwise. The interval �̄�remains fixed for the rest of this work.Wewill also use the corresponding semi-open
interval A ∶≙ ∥α∗,α∗).

Definition II.2 The family B is called a scale if

Bα ⊂ Bβ and ∥u∥Bβ ≤ ∥u∥Bα for any α < β, u ∈ Bα, α,β ∈ �̄�,

where the embedding means that Bα is a dense vector subspace of Bβ.

For any α,β ∈ A , we will use the notation
Bα+ ∶≙⋂β>α Bβ.

The two main scales we will be working with are given by the spaces l
p
α of weighted sequences and l

p
α-valued random processes,

respectively, defined as follows.

(1) For all p ≥ 1 and α ∈ �̄� let

l
p
α ∶≙
⎧⎪⎪⎪⎨⎪⎪⎪⎩
z̄ ∈ Sγ

RRRRRRRRRRRRRR
∥z̄∥lpα ∶≙ ⎛⎝∑x∈γw(x)

−1∣zx∣p⎞⎠
1
p <∞

⎫⎪⎪⎪⎬⎪⎪⎪⎭
, (2.8)
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w(x) ≙ ea∣x∣,
and L

p ∶≙ {lpα}α∈A be, respectively, a Banach space of weighted real sequences and the scale of such spaces.

(2) For all p ≥ 1 and α ∈ �̄� let R
p
α denote the Banach space of l

p
α-valued random processes ξ̄t , t ∈ T , on probability space P, with

progressively measurable components and finite norm

∥ξ̄∥R p

α
∶≙ (sup{E∥ξ̄ t∥p

l
p
α
∣ t ∈ T }) 1

p <∞,

and let R
p ∶≙ {R p

α}α∈A be the scale of such spaces.

Remark II.3 The choice of exponential weights in the definition of space l
p
α is dictated by the logarithmic growth condition on numbers nx,

cf . (2.2), which in turn is motivated by the fact that it holds for a typical configuration γ distributed according to a Poisson or, more generally,

Gibbs measure on Γ(X) with a superstable low regular interaction energy, in which case nx is proportional to
√
1 + log ∣x∣, see e.g., Refs. 38 and

26 (p. 1047). In general, an informal balance condition between nx and w(∣x∣) is given by w(∣x∣) ≈ exp(exp(nx)), see Sec. 2.2 of Ref. 11 for
details.

Remark II.4. Note that for p ≥ 2, the definition of norms in R
p
α and l

p
α implies that for any ξ̄ ∈ R

p
α and any x ∈ γ we have E∥∫ T

0 ξ2x,tdt∥ <∞.

Moreover, since each component of ξ̄ is progressively measurable, from the classical theory of integration with respect to the standard Wiener

process we see that for all x ∈ γ the integral ∫ t
0 ξx,sdWs is well defined and so is the integral ∫ t

0 Ψx(ξ̄s)dWx,s, because Ψx is a finite sum of

measurable uniformly Lipschitz functions. Moreover, the process ∫ t
0 Ψx(ξ̄s)dWx,s, t ∈ T , has a (unique) continuous version.

For all p ≥ 1 and α ∈ �̄�we let

L
p
α ≡ Lp(Ω, l

p
α) ∶≙ {X : Ω→ l

p
α ∣ (E∥∥X∥plpα∥) 1

p <∞}
be the space of l

p
α-valued p-integrable random variables.

Our main result is the following theorem.

Theorem II.5. Suppose that Assumption II.1 holds. Then, for all p ≥ R and any F0-measurable ζ̄ ∶≙ (ζx)x∈γ ∈ Lpα, α ∈ A , stochastic system

(2.1) admits a unique (up to indistinguishability) strong solution Ξ ∈ R
p
α+. Moreover, the map

L
p
α ∋ ζ̄ ↦ Ξ ∈ R

p

β

is continuous for any β > α.

Remark II.6. Assumption p ≥ R ensures that given ξ̄ ∈ R
p

β the random variable ϕ(ξ̄t) is integrable for any t ≥ 0.
The proof of Theorem II.5 will be given in Sec. III.
Our second main result is about the construction of non-equilibrium stochastic dynamics associated with Gibbs states of our system.

We consider a Gibbs measure ν on Sγ defined by the pair interaction Wx,y(σx, σy) ≙ a(x − y)σxσy, σx, σy ∈ S, x, y ∈ γ, where a : X → R is a
measurable function with compact support and a single particle potential V : R→ R satisfying the lower bound

V(σ) ≥ aV ∣σ∣R+ε − bV , σ ∈ S, for some aV , bV > 0and ε > 0,
which is supported on l

p
α for some α ∈ A and p ∈ ∥R,R + ε∥, see Sec. IV A for details. Suppose now that ϕ in (2.3) has a gradient form, that is,

ϕ ≙ −∇V , and
⎧⎪⎪⎨⎪⎪⎩
ψxy ≙ 0, x ≠ y

ψxx ≙ 1 for all x, y ∈ γ, so that our noise is additive, cf. (2.6). Let Tt be the Markov semigroup defined by the process

Ξt in a standard way. This semigroup acts in the space Cb(lpα+) of bounded continuous functions on space l
p
α+ ≙ ∩β>αlpβ equipped with the

projective limit topology, see Sec. III D below for details.

Theorem II.7. Gibbs measure ν is a symmetrizing (reversible) distribution for the solution of (2.1), that is,

∫ Tt f (ζ̄)g(ζ̄)ν(dζ̄) ≙ ∫ f (ζ̄)Ttg(ζ̄)ν(dζ̄), t ≥ 0,
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for any α ∈ A and f , g ∈ Cb(lpα+).
The proof of this result will be given in Sec. IV B.
From now on, the constant p ≥ R will be fixed.

III. EXISTENCE, UNIQUENESS AND PROPERTIES OF THE SOLUTION

In this section, we give the proof of Theorem II.5. It will go along the following lines.

(1) Consider a sequence of processes {Ξn
t }n∈N, t ∈ T , that solve finite volume cutoffs of system (2.1), and prove their uniform bound in

R
p

β for any β > α. For this, we use our version of the comparison theorem and Gronwall-type inequality in the scale of spaces, which is

in turn based on the Ovsjannikov method, see Subsection 3 of the Appendix.
(2) The uniform bound above implies the convergence of sequence Ξn, n→∞, to a process Ξ ≙ (ξx)x∈γ ∈ R

p

β, β > α. Our next goal is to
prove that the process Ξ solves system (2.1). The multiplicative noise term does not allow to achieve this by a direct limit transition.
Therefore, we construct an R-valued process ηt that solves an equation describing the dynamics of a tagged particle x, while processes
ξy,t , y ∈ γ, y ≠ x, are fixed, and prove that ηt ≙ ξx,t .

(3) The uniqueness and continuous dependence on the initial data is proved by using our version of a Gronwall-type inequality, as above
in part (1). The continuity of components of Ξ will follow from our work on the dynamics of a tagged particle x in Sec. III B.

Finally, in Subsection III D, we introduce Markov semigroup defined by the solution of (2.1).

A. Truncated system

Let us fix an expanding sequence {Λn}n∈N of finite subsets of γ such that Λn↑ γ as n→∞ and consider the following system of equations:

ξnx,t ≙ ζx + ∫ t

0
Φx(Ξn

s )ds + ∫
t

0
Ψx(Ξn

s )dWx,s, x ∈ Λn, (3.1)

ξnx,t ≙ ζx, x ∉ Λn, t ∈ T ,

where ζ̄ ≙ {ζx}x∈γ ∈ Lpα, α ∈ A , is F0-measurable random initial condition and equality (3.1) holds for all t ∈ T , P-a.s. Observe that for each
n ∈ N system (3.1) is a truncated version of our original stochastic system (2.1).

Theorem III.1. For any n ∈ N system (3.1) admits a unique (up to indistinguishability) solution Ξ
n ∈ R

p
α with continuous sample paths.

Proof. The existence and uniqueness of continuous strong solutions of the non-trivial finite dimensional part of system (3.1) is well-
known, see Ref. 30, Chap. 3. The inclusion Ξ

n ∈ R
p
α follows then from the fact that ξnx,t ≙ ζx, t ∈ T , for x ∉ Λn. ■

Our next goal is to show that the sequence {Ξn}n∈N converges in R
p

β for any β > α. We start with the following uniform estimate, which

is rather similar to the one from Ref. 27, adapted to the framework of the scale of Banach spaces using our version of the Gronwall inequality.

Theorem III.2. Let Ξn ≙ (ξnx)x∈γ, n ∈ N, be the sequence of process defined by Theorem III.1. Then for all β > α we have
∑
x∈γ

e
−β∣x∣

sup
n ∈N

sup
t ∈T

E∥∣ξnx,t ∣p∥ <∞. (3.2)

Proof It follows from the first part of Lemma A.10 in the Appendix (with ξ1 ≡ ξn) that for all x ∈ Λn and t ∈ T we have

E∥∣ξnx,t ∣p∥ ≤ E∣ζx∣p + C1n
2
x∑
y ∈ γ̄x
∫

t

0
E∥∣ξny,s∣p∥ds + Cx

2. (3.3)

We remark that inequality above trivially holds for x ∉ Λn, because in this case ξnx,t ≙ ζx and all terms in the right-hand side of the inequality
are non-negative.

We now define a measurable map ηn : T → l1α via the following formula

ηnx(t) ∶≙ max
m≤n

E∥∣ξmx,t ∣p∥, ∀(t ∈ T ).
It is immediate that its components satisfy inequality similar to (3.3), that is,

ηnx(t) ≤ E∣ζx∣p + C1n
2
x∑
y ∈ γ̄x
∫

t

0
ηny(s)ds + Cx

2.
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Set θx ≙ E∣ζx∣p + Cx
2 and observe that (θx)x∈γ ∈ l1α. Then the map ηn fulfills the conditions of Lemma A.8 in the Appendix, which implies that

for all n ∈ N and β > α we have
∑
x∈γ

e
−β∣x∣

sup
t ∈T

ηnx(t) ≤ KT(α,β)∑
x∈γ

e
−α∣x∣θx <∞.

Observe that the left-hand side forms an increasing sequence, which implies that it converges and

lim
n→∞
∑
x∈γ

e
−β∣x∣

sup
t ∈T

ηnx(t) ≤ KT(α,β)∑
x∈γ

e
−α∣x∣θx <∞.

Then, for any finite set η ⊂ γ, we have
∑
x∈η

e
−β∣x∣

lim
n→∞

sup
t ∈T

ηnx(t) ≙ lim
n→∞
∑
x∈η

e
−β∣x∣

sup
t ∈T

ηnx(t) ≤ KT(α,β)∑
x∈γ

e
−α∣x∣θx.

On the other hand, it is clear that

lim
n→∞

ηnx(t) ≙ sup
n ∈N

max
m≤n

sup
t ∈T

E∥∣ξmx,t ∣p∥ ≙ sup
n ∈N

sup
t ∈T

E∥∣ξnx,t ∣p∥
for any x ∈ γ. Thus

∑
x∈η

e
−β∣x∣

sup
t ∈T

sup
n ∈N

E∥∣ξnx,t ∣p∥ ≤ KT(α,β)∑
x∈γ

e
−α∣x∣θx.

The latter inequality holds for all finite η ⊂ γ, which implies that

∑
x∈γ

e
−β∣x∣

sup
t ∈T

sup
n ∈N

E∥∣ξnx,t ∣p∥ ≤ KT(α,β)∑
x∈γ

e
−α∣x∣θx,

and the proof is complete. ■

Theorem III.3. The sequence {Ξn}n∈N is Cauchy in R
p

β for any β > α.
Proof. Let us fix n,m ∈ N and assume, without loss of generality, that Λn ⊂ Λm. We first consider the situation where x ∈ Λn. It follows

from the second part of Lemma A.10 in the Appendix (with ξ(1) ≡ ξn and ξ(2) ≡ ξm) that for all x ∈ Λn and t ∈ T we have

E∣ξ̄n,mx,t ∣p ≤ Bn2x∑
y ∈ γ̄x
∫

t

0
E∣ξ̄n,my,s ∣pds, (3.4)

ξ̄n,mx,t ≙ ξnx,t − ξmx,t. (3.5)

In the case where x ∈ Λm/Λn we see that for all t ∈ T

∣ξ̄n,mx,t ∣p ≤ (∣ξnx,t ∣ + ∣ξmx,t ∣)p ≤ 2p−1∣ξnx,t ∣p + 2p−1∣ξmx,t ∣p,
so that

E∥∣ξ̄n,mx,t ∣p∥ ≤ 2psup
n ∈N

E∥∣ξnx,t ∣p∥ ≤ 2p1Λm/Λn
(x)sup

n ∈N
sup
t ∈T

E∥∣ξnx,t ∣p∥ <∞ (3.6)

(cf. Theorem III.2). Combining Eqs. (3.4) and (3.6) and taking into account that ξ̄n,mx,t ≙ 0 for x ∉ Λm, we obtain the inequality

E∥∣ξ̄n,mx,t ∣p∥ ≤ B1n
2
x∑
y ∈ γ̄x
∫

t

0
E∥∣ξ̄n,my,s ∣p∥ds + 2p1Λm/Λn

(x)sup
n ∈N

sup
t ∈T

E∥∣ξnx,t ∣p∥
for all x ∈ γ and t ∈ T . We can now proceed as in the Proof of Theorem III.2. Define a measurable map 𝜚n,m : T → l1α via the formula

𝜚
n,m
x (t) ∶≙ E∥∣ξ̄n,mx,t ∣p∥, t ∈ T ,

and set

bx ≙ 2p1Λm/Λn
(x)sup

n ∈N
sup
t ∈T

E∥∣ξnx,t ∣p∥.
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Obviously, (bx)x∈γ ∈ l1α′ for any fixed α′ ∈ (α,β). It therefore follows then from Lemma A.8 in the Appendix that

∑
x∈γ

e
−β∣x∣

sup
t ∈T

ρn,mx (t) ≤ KT(α′,β)∑
x∈γ

e
−α′ ∣x∣

bx.

So we have shown that the following inequality holds:

∥Ξn − Ξm∥p
R

p

β

≤ 2pKT(α′,β) ∑
x ∈Λm/Λn

e
−α′ ∣x∣

sup
n ∈N

sup
t ∈T

E∥∣ξnx,t ∣p∥
≤ 2pKT(α′,β) ∑

x∈γ/Λn

e
−α′ ∣x∣

sup
n ∈N

sup
t ∈T

E∥∣ξnx,t ∣p∥. (3.7)

It follows from Theorem III.2 that the right hand side of (3.7) is the remainder of the convergent series (3.2) (with α′ in place of β), which
completes the proof. ■

B. One dimensional special case

We have shown in Sec. III A that, for any β > α, the sequence {Ξn}n∈N is Cauchy in the Banach spaceR
p

β and thus converges in this space.

So we are now in a position to define the process
in R

p

β³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ
Ξ ∶≙ lim

n→∞
Ξ
n
. (3.8)

This process is a candidate for a solution of the system (2.1). A standard way to show this would be to pass to the limit on both sides of (3.1).
This approach requires however somewhat stronger convergence than that in R

p

β. We are going to overcome this difficulty by considering

special one-dimensional equations.

Consider an arbitrary x ∈ γ. It is convenient to consider elements of Sγ as pairs (σx,Z(x)), where σx ∈ S and Z(x) ≙ (zy)y∈γ/x ∈ Sγ/x. In these
notations, we can write Φx(Ξs) ≙ Φx(ξx,s,Ξ(x)s ) and Ψx(Ξs) ≙ Ψx(ξx,s,Ξ(x)s ), where

Ξ
(x) ∶≙ (ξy)y∈γ/x. (3.9)

Let us now fix process Ξ defined by (3.8) and consider the following one-dimensional equation:

ηx,t ≙ ζx + ∫ t

0
Φx(ηx,s,Ξ(x)s )ds + ∫ t

0
Ψx(ηx,s,Ξ(x)s )dWx(s), (3.10)

for all t ∈ T , P-a.s. The main goal of this section is to prove that the Eq. (3.10) has a unique solution ηx,t .

Remark III.4. Note that, for a fixed x ∈ γ, the principal difference between Eqs. (3.10) and (2.1) is that the process Ξ is fixed in (3.10) and
defined by the limit (3.8), which makes (3.10) a one-dimensional equation w.r.t. ηx.

In order to establish the existence of a solution of Eq. (3.10) we need the following auxiliary result.

Theorem III.5. Let x ∈ γ and ξx be an x-component of the process Ξ defined by (3.8). Then sample paths of ξx are a.s. continuous and

E∥sup
t ∈T

∣ξx,t ∣p∥ <∞. (3.11)

Proof. It is sufficient to show that, for a fixed x ∈ γ, the sequence {ξnx}n∈N, is Cauchy in the norm (E∥supt∈T ∣ ⋅ ∣p∥)1/p because then there

exists a subsequence {ξnkx }k∈N such that
lim
k→∞

sup
t ∈T

∣ξnkx,t − ξx,t ∣ ≙ 0, P − a.s.,
which, together with the path-continuity of processes ξnkx,t , implies the statement of the theorem.

Fix N̄ ∈ N such that x ∈ ΛN̄ and n,m ≥ N̄ and assume, without loss of generality, that n < m so that x ∈ Λn ⊂ Λm Consider the process ξ̄n,mx,t

defined in (3.5) and proceed as in the Appendix, Lemma A.10, with ξ(1) ≡ ξn and ξ(2) ≡ ξm. Taking supt∈T of both sides of the equality (A17)
we obtain the bound

E∥sup
t ∈T

∣ξ̄n,mx,t ∣p∥ ≤ K + E[sup
t ∈T
∫

t

0
p(ξ̄ n,mx,s )p−1Ψn,m

x (s)dWx(s)], (3.12)
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where

K ∶≙ Bn2x∑
y ∈ γ̄x
∫

T

0
E∥∣ξ̄n,my,s ∣p∥ds ≤ Bn2xT∑

y ∈ γ̄x

sup
t ∈T

E∥∣ξ̄n,my,t ∣p∥ (3.13)

and

Ψ
n,m
x (s) ∶≙ Ψx(Ξn

s ) −Ψx(Ξm
s ).

Now using first the Burkholder–Davis–Gundy inequality (see Ref. 31) and then the Jensen inequality we see that the following estimate on the
stochastic term from (3.12) holds.

E[sup
t ∈T
∫

t

0
p(ξ̄ n,mx,s )p−1Ψn,m

x (s)dWx(s)] ≤ E[(∫ t

0
(p(ξ̄ n,mx,s )p−1Ψn,m

x (s))2ds) 1
2 ]

≤ (E[∫ t

0
(p(ξ̄ n,mx,s )p−1Ψn,m

x (s))2ds]) 1
2

. (3.14)

The integrand in the right-hand side of the above inequality can be estimated in a similar way as (A16), so that we obtain

((ξ̄ n,mx,t )p−1Ψn,m
x (t))2 ≤ 2M2(nx + 1)2∣ξ̄n,mx,t ∣2p + 2M2

n
2
x∑
y ∈ γ̄x

∣ξ̄n,my,t ∣2p.
It follows now that inequality (3.14) can be written in the following way:

E[sup
t ∈T
∫

t

0
p(ξ̄ n,mx,s )p−1Ψn,m

x (s)dWx(s)] ≤ C1

√
sup
t ∈T

E∥∣ξ̄n,mx,t ∣2p∥ + C2

√
∑
y ∈ γ̄x

sup
t ∈T

E∥∣ξ̄n,my,t ∣2p∥,
where

C1 ∶≙
√

2p
2
M

2(1 + nx)2T and C2 ∶≙
√

2p
2
M

2
n
2
xT.

Therefore returning to inequalities (3.12) and (3.13) we see that

E∥sup
t ∈T

∣ξ̄n,mx,t ∣p∥ ≤ Bn2xT∑
y ∈ γ̄x

sup
t ∈T

E∥∣ξ̄n,my,t ∣p∥ + C1

√
sup
t ∈T

E∥∣ξ̄n,mx,t ∣2p∥ + C2

√
∑
y ∈ γ̄x

sup
t ∈T

E∥∣ξ̄n,my,t ∣2p∥. (3.15)

Since γ̄x is finite we can now use Theorem III.3 to conclude that, with a suitable choice of n,m ∈ N, the right hand side of the inequality (3.15)
above can be made arbitrary small hence the proof is complete. ■

Theorem III.6. Equation (3.10) admits a unique solution.

Proof. By standard arguments, see e.g., Ref. 1, Proposition 2.9, we conclude that Eq. (3.10) admits a unique local maximal solution ηx
such that

ηx,t∧τn ≙ ζx +∫ t∧τn

0
Φx(ηx,s∧τn ,Ξ(x)s∧τn)ds +∫ t∧τn

0
Ψx(ηx,s∧τn ,Ξ(x)s∧τn)dWx(s),

for all t ∈ T , P-a.s. Here Ξ
(x)
s∧τn is as in (3.9) and by construction, for all n ∈ N, stopping time τn is the first exit time of ηx from the interval(−n,n), defined as

τn ≙
⎧⎪⎪⎨⎪⎪⎩

T, if ∣ηx,t ∣ < n, t ∈ ∥0,T∥
inf{t ∈ ∥0,T∥ : ∣ηx,t ∣ ≥ n}, otherwise

Hence to complete the proof it is sufficient to establish that almost surely limn→∞τn ≙ T. We will prove this fact along the lines of Ref. 1,
Theorem 3.1, using the bound (3.11). We begin by using the Itô Lemma to establish the equality

∣ηx,t∧τn ∣p ≙ ∫ t∧τn

0
p(ηx,s∧τn)p−1Φx(ηx,s∧τn ,Ξ(x)s∧τn)ds

+∫ t∧τn

0

p(p − 1)
2

(ηx,s∧τn)p−2(Ψx(ηx,s∧τn ,Ξ(x)s∧τn))2ds
+∫ t∧τn

0
p(ηx,s∧τn)p−1Ψx(ηx,s∧τn ,Ξ(x)s∧τn)dWx(s),
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for all t ∈ T . Before proceeding we define for convenience the following shorthand notations:

Φ̄
p
x(η, t) ∶≙ (ηx,t∧τn)p−1Φx(ηx,t∧τn ,Ξ(x)t∧τn

),
Ψ̄

p
x(η, t) ∶≙ (ηx,t∧τn)p−2(Ψx(ηx,t∧τn ,Ξ(x)t∧τn

))2,
wx ∶≙ b + 1

2
+ 4ā 2

n
2
x,

ux ∶≙ c + ānx.
An application of Lemma A.9 in the Appendix shows that for all t ∈ T we have

Φ̄
p
x(η, t) ≤ ∣ηx,t∧τn ∣p−2⎛⎝wx∣ηx,t∧τn ∣2 + 1

2
ā
2
nx∑

y ∈ γx

∣ξy,t ∣2 + ∣ηx,t∧τn ∣ux⎞⎠
≤ wx∣ηx,t∧τn ∣p + 1

2
ā
2
nx(ηx,t∧τn)p−2∑

y ∈ γx

∣ξy,t∧τn ∣2 + ∣ηx,t∧τn ∣p−1ux
≤ (wx + 2p−1ux)∣ηx,t∧τn ∣p + 1

2
ā
2
nx∣ηx,t∧τn ∣p−2∑

y ∈ γx

∣ξy,t∧τn ∣2 + 2p−1ux, (3.16)

where constants b and c are defined in Assumption II.1. In the last inequality we used the simple estimate Cp−1 ≤ (1 + C)p−1 ≤ (1 +
C)p ≤ 2p−1(1 + Cp) for any C > 0, which holds because p > 1. We can now use the Hölder inequality and classical estimate (∑m

k≙1 ak)N ≤
mN−1∑m

k≙1 a
N
k (see e.g., Ref. 25) in conjunction with inequality (3.16) above to see that for all t ∈ T we have

E∥Φ̄p
x(η, t)∥ ≤ (wx + 2p−1ux)E∥∣ηx,t∧τn ∣p∥

+ 1

2
ā
2
nx(E∥∣ηx,t∧τn ∣p∥) p−2

p

⎛⎜⎝E
⎡⎢⎢⎢⎢⎢⎣
⎛⎝∑y ∈ γx ∣ξy,t∧τn ∣

2⎞⎠
p

2
⎤⎥⎥⎥⎥⎥⎦
⎞⎟⎠

2
p

+ 2p−1ux

≤ (wx + 2p−1ux)E∥∣ηx,t∧τn ∣p∥
+ 1

2
ā
2
nx(1 + E∥∣ηx,t∧τn ∣p∥)n p−2

p

x

⎛⎝E
⎡⎢⎢⎢⎢⎣∑y ∈ γx ∣ξy,t∧τn ∣

p
⎤⎥⎥⎥⎥⎦
⎞⎠

2
p

+ 2p−1ux.

In a similar way, we obtain the inequality

Ψ̄
p
x(η, t) ≤ 3(M2(nx + 1)2 +M2

n
2
x2

p−1)∣ηx,t∧τn ∣p + 3M2
n
2
x(ηx,t∧τn)p−2∑

y ∈ γx

∣ξy,t∧τn ∣2 + 3M2
n
2
x2

p−1
.

Setting

Ax ∶≙ max{1
2
ā
2
n
1+

p−2

p

x , 3M
2
n
2
x}⎛⎝∑y ∈ γx E∥supt ∈T

∣ξy,t ∣p∥⎞⎠
2
p

,

we get the bounds

E∥Φ̄p
x(η, t)∥ ≤ (wx + 2p−1ux + Ax)E∥∣ηx,t∧τn ∣p∥ + Ax + 2p−1ux

and

E∥Ψ̄p
x(η, t)∥ ≤ (3M2(nx + 1)2 + 3M2

n
2
x2

p−1) + Ax)E∥∣ηx,t∧τn ∣p∥ + Ax + 3M2
n
2
x2

p−1
.

Observe that Ax <∞ by Theorem III.5. Finally letting

D ∶≙ p(wx + 2p−1ux + Ax) + p(p − 2)
2

(3M2(nx + 1)2 + 3M2
n
2
x2

p−1 + Ax),
K ∶≙ pT(Ax + 2p−1ux) + p(p − 2)

2
T(Ax + 3M2

n
2
x2

p−1),
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we see that for all t ∈ ∥0,∞) we have
E∥∣ηx,t∧τn ∣p∥ ≤ D∫ t

0
E∥∣ηx,s∧τn ∣p∥ds + K. (3.17)

Observe that constants K and D are independent of the stopping time τn.
The rest of the proof is standard and can be completed along the lines of Ref. 1, Theorem 3.1. We give its sketch for the convenience of

the reader. Using Gronwall’s inequality together with the inequality (3.17) above we see that for all t ∈ ∥0,T∥ we have
E∥∣ηx,t∧τn ∣p∥ ≤ KeDt.

It follows from the definition of stopping time τn that

E∥∣ηx,t∧τn ∣p∥ ≥ npP(τn < t),
so that, for all t ∈ ∥0,T∥,

P(τn < t) ≤ 1

np
Ke

Dt → 0, n→∞.

Now convergence in probability and the fact that {τn}n∈N is an increasing sequence imply that almost surely limn→∞τn ≙ T, hence the proof
is complete. ■

C. Proof of existence and uniqueness

In this section, we are going to prove Theorem II.5. We will show that, for any β > α, the process
in R

p

β³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ
Ξ ∶≙ lim

n→∞
Ξ
n

(3.18)

solves system (2.1). For this, we will use auxiliary processes ηx constructed in Theorem III.6.

Proof of the existence. According to Theorem III.6, for each x ∈ γ equation
ηx,t ≙ ζx + ∫ t

0
Φx(ηx,s,Ξ(x)s )ds + ∫ t

0
Ψx(ηx,s,Ξ(x)s )dWx,s, for all t ∈ T , P − a.s.

where Ξ
(x)
s is as in (3.9), admits a unique solution ηx,t . Thus it is sufficient to prove that this solution is indistinguishable from the process ξx.

The convergence (3.18) implies that, for any fixed x ∈ γ,
lim
n→∞

E∣ξnx,t − ξx,t ∣p ≙ 0, t ∈ T . (3.19)

Therefore, taking into account that both processes ξx and ηx are continuous, to conclude this proof it remains to show that, for any t ∈ T ,

lim
n→∞

E∣ξnx,t − ηx,t ∣p ≙ 0. (3.20)

Let us fix x ∈ γ and t ∈ T and assume without loss of generality that x ∈ Λn ⊂ γ. Define the following processes:
Φ

n
x(t) ∶≙ Φx(ξnx,t ,Ξn

t ) −Φx(ηx,t ,Ξ(x)t ),
Ψ

n
x(t) ∶≙ Ψx(ξnx,t ,Ξn

t ) −Ψx(ηx,t ,Ξ(x)t ),
X

n
x,t ∶≙ ξnx,t − ηx,t.

The rest of the proof is rather similar to the Proof of Theorem III.6. The Itô Lemma shows that for all t ∈ T we have P-a.s.

∣Xn
x,t ∣p ≙ ∫ t

0
p(Xn

x,s)p−1Φn
x(s)ds + ∫ t

0

p(p − 1)
2

(Xn
x,s)p−2(Ψn

x(s))2ds+
+ ∫

t

0
p(Xn

x,s)p−1Ψn
x(s)dWx(s). (3.21)
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Using Lemma A.10 in the Appendix, we can see that for all t ∈ T

(Xn
x,t)p−1Φn

x(t) ≤ (b + 1

2
+ 4ā 2

n
2
x)∣Xn

x,t ∣p + ā 2
nx∣Xn

x,t ∣p−2∑
y ∈ γx

(ξny,t − ξy,t)2,

and
(Xn

x,t)p−2Ψn
x(t)2 ≤ 2M2(nx + 1)2∣Xn

x,t ∣p + 2M2
nx∣Xn

x,t ∣p−2∑
y ∈ γx

(ξny,t − ξy,t)2.

As in the Proof of Theorem III.6, we see that for all t ∈ T

E∥(Xn
x,t)p−1Φn

x(t)∥ ≤ (b + 1

2
+ 4ā 2

n
2
x + An

x)E∥∣Xn
x,t ∣p∥ + An

x (3.22)

and
E∥(Xn

x,t)p−2(Ψn
x(t))2∥ ≤ (2M2(nx + 1)2 + An

x)E∥∣Xn
x,t ∣p∥ + An

x , (3.23)

where

A
n
x ∶≙ max{ā 2

nx, 2M
2
nx}E

⎡⎢⎢⎢⎢⎣
∑
y ∈ γx

(ξny,t − ξy,t)2
⎤⎥⎥⎥⎥⎦
.

Now, because γx is finite and p ≥ 2 it is clear from Eq. (3.19) that

E∑
y ∈ γx

(ξny,t − ξy,t)2 → 0, n→∞,

so we see that An
x → 0 as n→∞. Therefore using inequality (3.22) and (3.23) above we can conclude from Eq. (3.21) that for all x ∈ γ and all

t ∈ T we have

E∥∣Xn
x,t ∣p∥ ≤ Cn

x∫
t

0
E∥∣Xn

x,s∣p∥ds + Ān
x ,

where

C
n
x ∶≙ p(b + 1

2
+ 4ā 2

n
2
x + An

x) + p(p − 1)
2

(2M2(nx + 1)2 + An
x)

Ā
n
x ∶≙ pTAn

x + p(p − 1)
2

TA
n
x ,

and consequently Cn
x , Ā

n
x → 0 on T as n→∞. Finally using Gronwall inequality we see that for all t ∈ T we have

E∥∣Xn
x,t ∣p∥ ≤ Ān

xe
(Cn

x)T ,

which shows that for all x ∈ γ and uniformly on T

lim
n→∞

E∥∣Xn
x,t ∣p∥ ≙ 0.

Equation (3.20) now follows immediately hence the proof is complete. ■

Proof of the uniqueness and continuous dependence. Suppose that Ξ1
t ≙ (ξ1x,t)x∈γ and Ξ

2
t ≙ (ξ2x,t)x∈γ ∈ R

p
α+, are two solutions of system

(2.1), with initial values Ξ1
0,Ξ

2
0 ∈ Lpα, respectively. Now, for all t ∈ T and all x ∈ γ letting ξ̄x,t ≙ ξ(1)x,t − ξ(2)x,t we see from Lemma A.10 that

E∥∣ξ̄x,t ∣p∥ ≤ E∣ξ̄ x,0∣p + Bn2x∑
y ∈ γ̄x
∫

t

0
E∥∣ξ̄y,s∣p∥ds.

Fix an arbitrary β > α and α1 ∈ (α,β). An application of Lemma A.8 to a bounded measurable map κ : T → l1α1 defined by the formula

κx(t) ∶≙ E∥∣ξ̄x,t ∣p∥.
shows that

∑
x∈γ

e
−β∣x∣

sup
t ∈T

κx(t) ≤ KT(α1,β)∑
x∈γ

e
−α1 ∣x∣∣bx∣, β > α1,
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where bx ≙ E∣ξ̄x,0∣p. Therefore we establish that

∥Ξ1 − Ξ2∥p
R

p

β

≡ sup
t ∈T

E

⎡⎢⎢⎢⎢⎣∑x∈γ
e
−β∣x∣∣ξ̄x,t ∣p

⎤⎥⎥⎥⎥⎦
≤ KT(α1,β)∑

x∈γ

e
−α1 ∣x∣

E∣ξ̄x,0∣p,

which implies both statements. ■

D. Markov semigroup

In this section we denote byΞt(ζ̄) the solution of Eq. (2.1) with initial condition ζ̄. This process generates an operator family Tt : Cb(lpβ)→
Cb(lpα), α < β, t ≥ 0, by standard formula

Tt f (ζ̄) ≙ E f (Ξt(ζ̄)). (3.24)

Consider the space l
p
α+ ≙ ∩β>αlpβ equipped with the projective limit topology, which makes it a Polish space see e.g., Ref. 21.

Theorem III.7. Operator family Tt , t ≥ 0, is a strongly continuous Markov semigroup in Cb(lpα+) for any α ∈ A .

Proof. Continuity of the map L
p
α ∋ ζ̄ ↦ Ξ(ζ̄) ∈ R

p

β, α < β, for an arbitrary T > 0 (cf. Theorem II.5), implies that operators Tt : Cb(lpβ)→
Cb(lpα), t ≥ 0, are bounded, which in turn implies their boundedness as operators in Cb(lpα+), for any α ∈ A . The uniqueness of the solution
(cf. Theorem II.5) implies in the standard way the evolution property

TtTs ≙ Tt+s, t, s ≥ 0.
Observe that the truncated process Ξn

t (ζ̄) generates the strongly continuous semigroup Tn
t : Cb(lpα)→ Cb(lpα), for any α ∈ A . It follows from

the convergence

Ξ
n
t (ζ̄)→ Ξt(ζ̄), n→∞,

in R
p

β for any β > α that
sup
t ∈T

∥Tn
t f (ζ̄) − Tt f (ζ̄)∥Cb(l

p
α+)

, n→∞, for any f ∈ Cb(lpα+)and ζ̄ ∈ lpα+,
which in turn implies that Tt : Cb(lpα+)→ Cb(lpα+) is strongly continuous. ■

Remark III.8. The dominated convergence theorem implies that

∫ T
n
t f (ζ̄)ν(dζ̄)→ ∫ Tt f (ζ̄)ν(dζ̄), n→∞, (3.25)

for any probability measure ν on l
p
α+.

IV. STOCHASTIC DYNAMICS ASSOCIATED WITH GIBBS MEASURES

As an application of our results, we will present a construction of stochastic dynamics associated with Gibbs measures on Sγ. Sufficient
conditions of the existence of these measures were derived in Ref. 14. For the convenience of the reader, we start with a reminder of the general
definition of Gibbs measures, adopted to our framework.

A. Construction of Gibbs measures

In the standard Dobrushin–Lanford–Ruelle (DLR) approach in statistical mechanics,22,33 Gibbs measures (states) are constructed by
means of their local conditional distributions (constituting the so-called Gibbsian specification). We are interested in Gibbs measures describ-

ing equilibrium states of a (quenched) system of particles with positions γ ⊂ X ≙ Rd and spin space S ≙ R, defined by pair and single-particle
potentialsWxy and V , respectively. We assume the following:

● Wxy : S × S→ R, x, y ∈ X, are measurable functions satisfying the polynomial growth estimate

∣Wxy(u, v)∣ ≤ IW(∣u∣r + ∣v∣r) + JW , u, v ∈ S, (4.1)

and the finite range conditionWxy ≡ 0 if ∣x − y∣ ≤ ρ for all x, y ∈ X and some constants IW , JW ,R, r ≥ 0. We assume also thatWxy(u, v)
is symmetric with respect to the permutation of (x,u) and (y, v).
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● the single-particle potential V satisfies the bound

V(u) ≥ aV ∣u∣τ − bV , u ∈ S, (4.2)

for some constants aV , bV > 0, and τ > r.

Example IV.1 A typical example is given by the pair interaction in of the form

Wxy(u, v) ≙ a(x − y)u v, u, v ∈ S,
where a : X → R is as in Sec. II. In this case, r ≙ 2 and so we need τ > 2 in (4.2). The method of Ref. 14 does not allow us to control the case of
τ ≙ 2, even when the underlying particle configuration γ is a typical realization of a homogeneous Poisson random field on Γ(X).

Let F (γ) be the collection of all finite subsets of γ ∈ Γ(X). For any η ∈ F (γ), σ̄η ≙ (σx)x∈η ∈ Sη and z̄γ ≙ (zx)x∈γ ∈ Sγ define the relative
local interaction energy

Eη(σ̄η∣z̄γ ) ≙ ∑
{x,y}⊂η

Wxy(σx, σy) + ∑
x∈η

y∈γ/η

Wxy(σx, zy).

The corresponding specification kernel Πη(dσ̄γ∣z̄γ ) is a probability measure on Sγ of the form

Πη(dσ̄γ∣z̄γ) ≙ μη(dσ̄η∣z̄γ)⊗ δz̄γ/η(dσ̄γ/η), (4.3)

where

μη(dσ̄η∣z̄γ) ∶≙ Z(z̄ γ/η)−1 exp ∥−Eη(σ̄η∣z̄γ )∥⊗
x∈η

e
−V(σx)dσx (4.4)

is a probability measure on Sη. Here Z(z̄η) is the normalizing factor and δz̄γ/η(dσ̄γ/η) is the Dirac measure on Sγ\η concentrated on z̄γ/η. The
family {Πη(dσ̄∣z̄), η ∈ F (γ), z̄ ∈ Sγ} is called the Gibbsian specification (see e.g., Refs. 22 and 33).

A probability measure ν on Sγ is said to be a Gibbs measure associated with the potentialsW and V if it satisfies the DLR equation

ν(B) ≙ ∫
Sγ
Πη(B∣z̄)ν(dz̄), B ∈ B (Sγ), (4.5)

for all η ∈ F (γ). For a given γ ∈ Γ(X), by G (Sγ) we denote the set of all such measures.
By Gα,p(Sγ) ⊂ G (Sγ) we denote the set of all Gibbs measures on Sγ associated withW and V , which are supported on l

p
α.

Theorem IV.2. Assume that conditions (4.1) and (4.2) are satisfied and p ∈ ∥r, τ∥. Then the set Gα,p(Sγ) is non-empty for any α ∈ A .

Proof. It follows in a straightforward manner from condition (2.2) that

aγ,ρ(γ) ≙∑
x∈γ

e
−α∣x∣

n
p1
x ∑
y ∈ γx

n
p1
y <∞

for any p1, p2 ∈ N, which is sufficient for the existence of ν ∈ Gα,p(Sγ) for any p ∈ ∥r, τ∥, see Refs. 27 and 14. ■

Remark IV.3. The result of Refs. 27 and 14 is more refined and states in addition certain bounds on exponential moments of v ∈ Gα,p(Sγ).

Remark IV.4. Conditions of the uniqueness of v ∈ Gα,p(Sγ) are known only in the case of configuration γ with bounded sequence
{nx, x ∈ γ}. Sufficient conditions of non-uniqueness (phase transition) for Poisson-distributed γ are given in Ref. 14.

B. Construction of the stochastic dynamics

In this section, we will construct a process Ξt with invariant measure ν ∈ Gα∗ ,p(Sγ) defined by interaction potentials W and V as in
Example IV.1. By Theorem IV.2, the set Gα∗ ,p(Sγ) is not empty if p ∈ ∥2, τ∥. Then, according to the general paradigm, Ξt will be a solution of
the system (2.1) with the coefficients satisfying the following:
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(1) the drift coefficient has a gradient form, that is, ϕ ≙ −∇V and φx,y(σx, σy) ≙ ∇σxWx,y(σx, σy); moreover, ϕ satisfies Conditions (2.4) and
(2.5), a typical example is given by

ϕ(σ) ≙ −σ2n+1 for any n ≙ 1, 2, ..,
in which case R ≙ 2n + 1 and τ ≙ 2n + 2, cf. (2.4);

(2) for each x ∈ γ, the noise is additive, that is, Ψx ≙ id.
Thus the system (2.1) obtains the form

dξx,t ≙ 1

2

⎡⎢⎢⎢⎢⎣
∇V(ξx,t) + ∑

y ∈ γ̄x

a(x − y)ξy,t
⎤⎥⎥⎥⎥⎦
dt + dWx,t , x ∈ γ.

According to Theorem II.5, this system admits a unique strong solution Ξ ∈ Rα+ for any initial condition σ̄γ ∈ lpα with arbitrary α ∈ A and
p ≥ R.

A standard way of rigorously proving the invariance of νwould require dealing withMarkov processes and semigroups in nuclear spaces.
This difficulty can be avoided by using the limit transition (3.25).

Theorem IV.5 Assume that p ∈ ∥max{2,R}, τ∥ and let Tt be the semigroup defined by the process Ξt , cf. (3.24). Then any ν ∈ Gα∗ ,p(Sγ) is
a reversible (symmetrizing) measure for Tt , that is,

∫ Tt f (σ̄γ)g(ζ̄)ν(dσ̄γ) ≙ ∫ f (σ̄γ)Ttg(ζ̄)ν(dσ̄γ)

for all f , g ∈ Cb(lpα∗+).
Proof. First observe that condition p ∈ ∥max{2,R}, τ∥ ensures that Gα∗ ,p(Sγ) ≠ ∅ and semigroup Tt is well-defined.

Consider the solution Ξ
n ≙ (ξnx)x∈γ of the truncated system (3.1). Its non-trivial part (ξnx)x∈Λn

is a Markov process in SΛn . We denote by

TΛn

t the corresponding Markov semigroup in Cb(SΛn) and observe that, for f ∈ Cb(Sγ) and f z̄γ(σ̄Λn
) ∶≙ f (σΛn

× z̄γ/Λn
), we have

T
n
t f (σ̄Λn

× z̄γ/Λn
) ≙ TΛn

t f z̄γ(σ̄Λn
).

By standard theory of finite dimensional SDEs, μΛn
(dσ̄Λn

∣z̄Λn
) given by (4.4) is a reversible (symmetrizing) measure for the semigroup TΛn

t .
Thus we have

∫ T
n
t f (σ̄Λn

× z̄γ/Λn
)g(σ̄Λn

× z̄γ/Λn
)μΛn
(dσ̄Λn

∣z̄γ) ≙ ∫ f (σ̄Λn
× z̄γ/Λn

)Tn
t g(σ̄Λn

× z̄γ/Λn
)μΛn
(dσ̄Λn

∣z̄γ)
for any z̄γ. The latter implies in turn that

∫ T
n
t f (σ̄γ)g(σ̄γ)ΠΛn

(dσ̄γ∣z̄γ) ≙ ∫ T
n
t f (σ̄γ)g(σ̄γ) μΛn

(dσ̄Λn
∣z̄γ)⊗ δz̄γ/Λn (dσ̄η̄)

≙ ∫ T
n
t f (σΛn

× z̄γ/Λn
)g(σΛn

× z̄γ/Λn
)μΛn
(dσ̄Λn

∣z̄γ)
≙ ∫ f (σ̄γ)Tn

t g(σ̄γ)ΠΛn
(dσ̄γ∣z̄γ),

whereΠΛn
(dσ̄γ∣z̄γ) ≙ μΛn

(dσ̄Λn
∣z̄γ)⊗ δz̄γ/Λn (dσ̄η̄) is the specification kernel, cf. (4.3). Integrating with respect to ν(dz̄γ) and applying the DLR

equation (4.5) we see that

∫ T
n
t f (σ̄γ)g(σ̄γ)ν(dσ̄γ) ≙ ∫ f (σ̄γ)Tn

t g(σ̄γ)ν(dσ̄γ).
Passing to the limit as n→∞ [cf. (3.25)] we obtain the equality

∫ Tt f (σ̄γ)g(σ̄γ)ν(dσ̄γ) ≙ ∫ f (σ̄γ)Ttg(σ̄γ)ν(dσ̄γ).
as required. ■
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Remark IV.6. An alternative way to construct stochastic dynamics associated with ν ∈ Gα∗ ,p(Sγ) is via the theory of Dirichlet forms. Indeed,

ν satisfies an integration-by-parts formula and thus defines a classical Dirichlet form, which is a closed bilinear form in L2(Sγ, ν). The generator
of this form is a non-negative self-adjoint operator in L2(Sγ, ν) and thus defines a strongly continuous semigroup in L2(Sγ, ν), which, in turn,
defines a Markov process in Sγ with invariant measure ν (so-called Hunt process), see Ref. 6 for details. The SDE approach that we use in our
work is, however, more explicit and gives in general better control on properties of the stochastic dynamics.

Remark IV.7. Observe that pairs (γ, (σx)x∈γ) form the marked configuration space Γ(X, S). For the mathematical formalism of these spaces
and discussion of the existence and uniqueness of Gibbs measures and phase transitions, see Refs. 9, 13, 35, and 36 and references therein. The
paper35 considers in particular the case of marks with values in a path space, which gives a complementary way of defining and studying infinite
dimensional interacting diffusions indexed by elements of γ ∈ Γ(X).
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APPENDIX: TECHNICAL DETAILS

1. Linear operators in the spaces of sequences

We start with the formulation of a general result from Ref. 11 on the existence of (infinite-time) solutions for a special class of linear
differential equations, which extends the so-called Ovsjannikov method, see e.g., Ref. 18.

Definition A.1 Let B ≙ {Bα}α∈A be a scale of Banach spaces. A liner operator A : ⋃
α ∈A

Bα → ⋃
α ∈A

Bα is called an Ovsjannikov operator of

order q > 0 if A(Bα) ⊂ Bβ and there exists a constant L > 0 such that
∥Ax∥Bβ ≤ L

(β − α)q ∥x∥Bα , x ∈ Bα, (A1)

for all α < β ∈ A . The space of such operators will be denoted by O (B, q).
Theorem A.2 (Ref. 11, Theorem 3.1 and Remark 3.3). Let A ∈ O (B, q) with q < 1. Then, for any α,β ∈ A such that α < β and f0 ∈ Bα,

there exists a unique continuous function f : ∥0,∞)→ Bβ with f (0) ≙ f0 such that:

(1) f is continuously differentiable on (0,∞);
(2) Af (t) ∈ Bβ for all t ∈ (0,∞);
(3) f solves the differential equation

d

dt
f (t) ≙ Af (t), t > 0.

Moreover,
∥ f (t)∥Bβ ≤ Kt(α,β)∥ f0∥Bα , t > 0, (A2)
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where Kt(α,β) ∶≙ ∑∞n≙0 Lntn

(β−α)qn
nqn

n!
<∞.

Remark A.3 Let us remark that estimate (A2) generalizes the classical estimate ∥etA∥ ≤ et∥A∥ for the exponent of a bounded operator A in a
Banach space and does not take into account possible dissipativity properties of A.

Remark A.4 Function Kt(α,β) can be estimated in the following way, see Ref. 11:

Kt(α,β) ≤ ∞∑
n≙0

Lnentn

(β − α)qn
1

n(1−q)n
. (A3)

The r.h.s. of (A3) is an entire function of order δ ≙ (1 − q)−1 and type σ ≙ (Le)δ(eδ)−1(β − α)−qδ. Thus, for any ε > 0, there exists tε > 0 such
that

Kt(α,β) ≤ e(σ+ε)tδ+ε for all t > tε.
The aim of this section is to give a sufficient condition for the linear operator Q, given by an infinite real matrix {Qx,y}x,y∈γ, to generate

an Ovsjannikov operator in the scale L
1 of spaces of sequences defined by (2.8).

Theorem A.5 Assume that {Qx,y}x,y∈γ is such that for all x, y ∈ γ we have
● Qx,y ≙ 0 if ∣x − y∣ > ρ;● there exist C > 0 and k ≥ 1 such that ∣Qx,y∣ ≤ Cnkx. (A4)

Then Q ∈ O (L 1, q) for any q < 1.
Proof. Since Q is linear, it is sufficient to show that

∥Qz∥β ≤ L

(β − α)q ∥z∥α (A5)

for any α < β ∈ A and z ∈ l1α. By the definition of the norm in l1β we have

∥Qz∥β ≙∑
x∈γ

e
−β∣x∣
RRRRRRRRRRR∑y∈γQx,yzy

RRRRRRRRRRR.
Now, using estimate (A4) we see that

∥Qz∥β ≤∑
x∈γ
∑
y∈γ

∣Qx,y∣e−β∣x∣∣zy∣ ≤ eβρ∑
x∈γ
∑
y ∈ γ̄x

∣Qx,y∣e−β∣y∣∣zy∣
≤ eβρ∑

x∈γ
∑
y ∈ γ̄x

∣Qx,y∣e−(β−α)∣y∣e−α∣y∣∣zy∣
≤ eα∗ρU∥z∥α, (A6)

because Qx,y ≙ 0 for y ∉ γ̄x and −∣x∣ ≤ −∣y∣ + ρ for y ∈ γ̄x. Here

U ∶≙ sup
y∈γ
∑
x∈γ

∣Qx,y∣e−(β−α)∣y∣.
Our next goal is to estimate the constant U. Using condition (A4) we see that for all y ∈ γ

∑
x∈γ

∣Qx,y∣e−(β−α)∣y∣ ≤ C∑
x ∈By

n
k
xe
−(β−α)∣y∣

.

Observe that there exist constantsM,N ∈ N such that

M < ∣x∣ ⇒ nx ≤ N1/k∣x∣q/2k.
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Then, taking into account that ∣x∣q/2 ≤ ∣y∣q/2 + ρq/2 for x ∈ By, we obtain, assuming without loss of generality that ∣y∣ >M, that

∑
x ∈By

n
k
x ≤ ∑

x ∈By

∣x∣>M

N∣x∣q/2 + ∑
x∈γ
∣x∣≤M

n
k
x

≤ N ∑
x ∈By

∣x∣>M

(∣y∣q/2 + ρq/2) + P ≤ Nny(∣y∣q/2 + ρq/2) + P

≤ N2∣y∣q/2(∣y∣q/2 + ρq/2) + P ≤ 2N
2∣y∣q +N2ρq + P, (A7)

where P ≙ P(γ,M, q) ∶≙ ∑ x∈γ
∣x∣≤M

n
q
x <∞. Hence for all y ∈ γ we have

∑
x∈γ

∣Qx,y∣e−(β−α)∣y∣ ≤ C(N2∣y∣q +N2ρq + P)e−(β−α)∣y∣ ≤ a1 + a2∣y∣qe−(β−α)∣y∣

with a1 ≙ C(N2ρq + P) and a2 ≙ CN2. Now we see that

U ≤ a1 + a2 sup{∣y∣qe−(β−α)∣y∣∣ y ∈ γ} ≤ a1 + a2 sup{(he− β−α

q
h)q∣ h > 0}

≤ a1 + a2(sup{he− β−α

q
h ∣ h > 0})q. (A8)

Hence, we can deduce that function he
−

β−α

q
h
, h ∈ R, attains its supremum when d

dh
he
−

β−α

q
h ≙ 0 that is when h ≙ q

(β−α)
. Hence it follows from

inequality (A8) that

U ≤ a1(α∗ − α∗)q + a2(e−1q)q
(β − α)q .

Now, continuing from Eq. (A6) we finally see that (A5) holds with L ≙ eα∗ρ(a1(α∗ − α∗)q + a2qq), and the proof is complete. ■

2. Comparison theorem and Gronwall-type inequality

In this section, we prove generalizations of the classical comparison theorem for differential equations and, as a consequence, a version
of the Gronwall inequality, that works in our scale of Banach spaces of sequences.

Let us consider the linear integral equation

f (t) ≙ z̄ + ∫ t

0
Qf (s)ds, t ∈ T , (A9)

in l1α∗ whereQ ∈ O (L 1, q), q < 1, is a linear operator generated by the infinite matrix {Qx,y}x,y∈γ and z̄ ≙ (zx)x∈γ ∈ l1α for some α < α∗. It follows
from Theorem A.2 that this equation has a unique solution f ∈ l1α+.

The next result is an extension of the classical comparison theorem to our framework.

Theorem A.6 (Comparison Theorem). Suppose that Qx,y ≥ 0 for all x, y ∈ γ and let g : T → l1α be a bounded map such that

gx(t) ≤ zx + [∫ t

0
Qg(s)ds]

x

, t ∈ T , x ∈ γ.
Then for all t ∈ T and all x ∈ γ we have the inequality

gx(t) ≤ fx(t),
where f ≙ ( fx)x∈γ is the solution of (A9).

Proof. Let Ba ∶≙ B (∥0,T∥, l1α), a ∈ A , be the Banach space of bounded measurable functions T → l1α. For any g ∈ Bα define the function

I (g)(t) ∶≙ z̄ + ∫ t

0
Qg(s)ds.
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It is clear that I (g) ∈ Bα+, which implies that the composition power I
n : Ba → Ba+ is well-defined. It follows from (the proof of) Ref. 11,

Theorem 3.1 that
in B (∥0,T∥,l1β)³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ∥ lim
n→∞

I
n(g)∥ ≙ f , β > α. (A10)

Indeed,

I
n(g)(t) ≙ n−1

∑
k≙0

tk

k!
Q

k
z̄ +Qn∫

t

0
. . .∫

tn−1

0
g(tn)dtn . . . dt1

It was proved in Ref. 11, Theorem 3.1, cf. formula (3.5), that the series∑∞n≙0 tn

n!
Qnz̄ converges uniformly in any l1β, β > α, and∑∞n≙0 tn

n!
Qnz̄ ≙ f (t).

On the other hand, dividing the interval ∥α,β∥ into n intervals of equal length and using estimate (A1) on each of them, as in Ref. 11,
Theorem 3.1, we obtain the bound

an ∶≙ ∥Qn∫
t

0
. . .∫

tn−1

0
g(tn)dtn . . . dt1∥

l1
β

≤ sup
t
∥g(t)∥l1α t

n

n!
D

n
n
qn

with D ∶≙ L(β − α)−q. Taking into account that n! ≥ ( n
e
)n we see that an → 0,n→∞, which implies (A10).

We have therefore limn→∞I
n
x(g)(t) ≙ fx(t) for all x ∈ γ and all t ∈ T . Hence to conclude the proof it is sufficient to fix x ∈ γ and prove

by induction that for all t ∈ T we have

gx(t) ≤ I
n
x(g)(t), ∀n ∈ N. (A11)

The case n ≙ 1 is satisfied by the initial assumption on g. Let us now assume that (A11) is true for some n ≥ 1 and proceed by considering the
following chain of inequalities:

I
n+1
x (g)(t) ≙ zx + [∫ t

0
Q(I n(g)(s))ds]

x

≙ zx +∑
y∈γ

Qx,y∫
t

0
I

n
y (g)(s)ds ≥ zx +∑

y∈γ

Qx,y∫
t

0
gy(s)ds

≙ zx + [∫ t

0
Q(g(s))ds]

x

≥ gx(t),
which (since t above is arbitrary) completes the proof. ■

Corollary A.7 (Generalized Gronwall inequality). Suppose in addition that zx ≥ 0 for all x ∈ γ. Moreover assume that components of the
map g are non-negative functions, that is, gx(t) ≥ 0 for all x ∈ γ and all t ∈ T . Then for all β > α we have the inequality

∑
x∈γ

e
−β∣x∣

sup
t ∈T

gx(t) ≤ KT(α,β)∑
x∈γ

e
−α∣x∣

zx,

where KT(α,β) ≙ ∑∞n≙0 LnTn

(β−α)qn
nqn

n!
<∞.

Proof. Using Theorem A.6, we see that for all x ∈ γ and all t ∈ T we have

gx(t) ≤ zx + [∫ t

0
Q(g(s))ds]

x

≤ zx + [∫ t

0
Q( f (s))ds]

x

.

Since functions g and therefore f are non-negative we see that for all x ∈ γ
sup
t ∈T

gx(t) ≤ zx + [∫ T

0
Q( f (s))ds]

x

≙ fx(T).
Hence it follows that

∑
x∈γ

e
−β∣x∣

sup
t ∈T

gx(t) ≤∑
x∈γ

e
−β∣x∣

fx(T) ≤ ∥ f (T)∥l1
β
.

The right-hand side of the inequality above can be estimated using Ref. 11, Theorem 3.1, cf. Theorem A.2. In particular, we get

∥ f (T)∥l1
β
≤ ∞∑

n≙0

LnTn

(β − α)qn n
qn

n!
∥z̄∥l1α <∞.
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Hence letting KT(α,β) ≙ ∑∞n≙0 LnTn

(β−α)qn
nqn

n!
we see that the proof is complete. ■

Lemma A.8 Consider a bounded measurable map ρ : T → l1α, α ∈ A , and assume that its components satisfy the inequality

ρx(t) ≤ Bnkx∑
y ∈ γ̄x
∫

t

0
𝜚y(s)ds + bx, t ∈ T , x ∈ γ, (A12)

for some constants B > 0 and k ≥ 1 and b ∶≙ (bx)x∈γ ∈ l1α, bx ≥ 0. Then we have the estimate

∑
x∈γ

e
−β∣x∣

sup
t ∈T

𝜚x(t) ≤ KT(α,β)∑
x∈γ

e
−α∣x∣

bx (A13)

for any β > α, with KT(α,β) ≙ ∑∞n≙0 LnTn

(β−α)qn
nqn

n!
<∞, cf. Theorem A.2.

Proof. Inequality (A12) can be rewritten in the form

ρx(t) ≤∑
y ∈ γ̄

Qx,y∫
t

0
𝜚y(s)ds + bx, t ∈ T ,

where

Qx,y ≙
⎧⎪⎪⎨⎪⎪⎩
Bn

k
x, ∣x − y∣ ≤ ρ,

0, ∣x − y∣ > ρ
for all x ∈ γ. We have ρ ∈ B (T , l1α), and ∣Qx,y∣ ≤ Bnkx. Therefore using Theorem A.5 we conclude that for any q ∈ (0, 1)matrix (Qx,y) generates
an Ovsjannikov operator of order q on L

1. Therefore we can now use Corollary A.7 to conclude that (A13) holds. ■

3. Estimates of the solutions

We start with the following auxiliary result.

Lemma A.9 Suppose that σ1, σ2 ∈ R and Z1,Z2 ∈ Sγ. Then for all x ∈ γ we have the following inequalities:
∣Ψx(Z1) −Ψx(Z2)∣ ≤M(nx + 1)∣z1,x − z2,x∣ +M∑

y ∈ γx

∣z1,y − z2,y∣,
∣Ψ(0)∣ ≤Mnx,

and

∣Φx(Z1)∣ ≤ c(1 + ∣z1,x∣R) + ānx(1 + 2∣z1,x∣) + ā∑
y ∈ γx

∣z1,y∣,

(z1,x − z2,x)(Φx(Z1) −Φx(Z2)) ≤ (b + 1

2
+ 4ā 2

n
2
x)(z1,x − z2,x)2 + 1

2
ā
2
nx∑

y ∈ γx

(z1,y − z2,y)2,

where constants M, c, b and ā are defined in Assumption II.1.

Proof. The proof can be obtained by a direct calculation using assumptions on Φ and Ψ stated in Sec. II. ■

Let us fix α ∈ A and consider two processes Ξ
(1)
t ≙ (ξ(1)x,t )

x∈γ
and Ξ

(2)
t ≙ (ξ(2)x,t )

x∈γ
, Ξ(1),Ξ(2) ∈ R

p
α+, with initial values Ξ1

0,Ξ
2
0 ∈ Lpα.

Lemma A.10 Let p ≥ 2, x ∈ γ be fixed and assume that R-valued processes ξ
(1)
x,t , ξ

(2)
x,t satisfy Eq. (2.1). Then there exist universal constants

B,C1 and C
x
2 such that

E∣ξ(1)x,t ∣p ≤ E∣ξ(1)x,0 ∣
p + C1n

2
x∑
y ∈ γ̄x
∫

t

0
E∣ξ(1)y,s ∣pds + Cx

2 (A14)

and

E∣ξ̄x,t ∣p ≤ E∣ξ̄ x,0∣p + Bn2x∑
y ∈ γ̄x
∫

t

0
E∣ξ̄y,s∣pds, (A15)
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for all t ∈ T , where ξ̄x,t ∶≙ ξ(1)x,t − ξ(2)x,t . The constants B,C1 and C2 are independent of the processes Ξ
(1),Ξ(2) and x ∈ γ. Moreover

C̄2 ∶≙ {Cx
2}x∈γ ∈ lpα.

Proof. We remark that in this proof all inequalities hold for all t ∈ T and P − a.s., that is on the same same set of measure 1. We now
start with the proof of inequality (A14). Using Itô Lemma we see that if x ∈ Λn then for all t ∈ T

∣ξ(1)x,t ∣p ≙ ∣ξ(1)x,0 ∣p + p∫ t

0
(ξ(1)x,s )p−1Φx(Ξ(1)s )ds + (p − 1)p

2 ∫
t

0
(ξ(1)x,s )p−2(Ψx(Ξ(1)s ))2ds

+ p∫
t

0
(ξ(1)x,s )p−1Ψx(Ξ(1)s )dWx(s).

Now from assumptions (2.4) and (2.5) and Lemma A.9 we can deduce that for all t ∈ T

(ξ(1)x,s )p−1Φx(Ξ(1)s ) ≙ (ξ(1)x,s )p−2(ξ(1)x,s )Φx(Ξ(1)s ) ≤ ∣ξ(1)x,s ∣p−2
⎡⎢⎢⎢⎢⎣
(b + 1

2
+ 4ā 2

n
2
x)∣ξ(1)x,s ∣2 + 1

2
ã
2
x∑
y ∈ γx

∣ξ(1)y,s ∣2 + ∣ξ(1)x,s (ϕ(0) + ānx)∣
⎤⎥⎥⎥⎥⎦

≤ (b + 1

2
+ 4ā 2

n
2
x)∣ξ(1)x,s ∣p + 1

2
ã
2
x∣ξ(1)x,s ∣p−2∑

y ∈ γx

∣ξ(1)y,s ∣2 + ∣ξ(1)x,s ∣p−1(c + ānx)

≤ (b + 1

2
+ 4ā 2

n
2
x)∣ξ(1)x,s ∣p + 1

2
ã
2
xnxmax

y ∈ γ̄x
∣ξ(1)y,s ∣p + (1 + ∣ξ(1)x,s ∣)p(c + ānx).

where ãx ∶≙ ā√nx and constants ā, b and c are defined in Assumption II.1. In the last inequality, we used the simple estimate Cp−1 ≤ (1 +
C)p−1 ≤ (1 + C)p for any C > 0, which holds because p > 1. Taking into account that maxy∈γ̄x ∣ξ(1)y,s ∣p ≤ ∑y∈γ̄x

∣ξ(1)y,s ∣p and using inequality (1 +
α)p ≤ 2p−1(1 + αp) we arrive at the following:

(ξ(1)x,s )p−1Φx(Ξ(1)s ) ≤ (b + 1

2
+ 4ā 2

n
2
x)∣ξ(1)x,s ∣p + 1

2
ã
2
xnx∑

y ∈ γ̄x

∣ξ(1)y,s ∣p + 2p−1(c + ānx) + 2p−1(c + ānx)∣ξ(1)x,s ∣p

≤ (b + 1

2
+ 4ā 2

n
2
x + 2p−1(c + ānx))∣ξ(1)x,s ∣p + 1

2
ā
2
n
2
x∑
y ∈ γ̄x

∣ξ(1)y,s ∣p + 2p−1(c + ānx).

In a similar way, using assumption (2.7) we obtain the estimate

(ξ(1)x,s )p−2(Ψx(Ξ(1)s ))2 ≤ (ξ(1)x,s )p−2
⎡⎢⎢⎢⎢⎣
3M

2(nx + 1)2∣ξ(1)x,s ∣2 + 3M2
nx∑

y ∈ γx

∣ξ(1)y,s ∣2 + 3∣Ψ(0)∣2
⎤⎥⎥⎥⎥⎦

≤ 3M2(nx + 1)2∣ξ(1)x,s ∣p + 3M2
n
2
x∑
y ∈ γ̄x

∣ξ(1)y,s ∣p + 3M2
n
2
x∣ξ(1)x,s ∣p−2

≤ 3(M2(nx + 1)2 +M2
n
2
x2

p−1)∣ξ(1)x,s ∣p + 3M2
n
2
x∑
y ∈ γ̄x

∣ξ(1)y,s ∣p + 3M2
n
2
x2

p−1
. (A16)

Observe that nx ≥ 1. Thus there exist constants C1,C
x
2 > 0 such that

∣ξ(1)x,t ∣p ≤ ∣ξ(1)x,0 ∣p + C1n
2
x∑
y ∈ γ̄x
∫

t

0
∣ξ(1)y,s ∣pds + Cx

2 + p∫
t

0
(ξ(1)x,s )p−1Ψx(Ξ(1)s )dWx(s),

which implies that (A14) holds.
The proof of inequality (A15) can be obtained similarly. Using the relation

ξ̄x,t ≙ ξ̄x,0 + ∫ t

0
(Φx(Ξ(1)s ) −Φx(Ξ(2)s ))ds + ∫ t

0
(Ψx(Ξ(1)s ) −Ψx(Ξ(2)s ))dWx(s),
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t ∈ T , and applying the Itô Lemma to ∣ξ̄x,t ∣p we obtain the inequality

∣ξ̄x,t ∣p ≤ ∣ξ̄ x,0∣p + Bn2x∑
y ∈ γ̄x
∫

t

0
∣ξ̄y,s∣pds + ∫ t

0
p(ξ̄ x,t)p−1(Ψx(Ξ(1)s ) −Ψx(Ξ(2)s ))dWx(s) (A17)

for some constant B > 0, which implies the result. Finally, C̄2 ∈ lpα because (see Assumption II.1) for some constant W we have Cx
2 ≤W(1 +

log (1 + ∣x∣)) and one can use exponential weight to sum up these terms. ■
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