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Abstract—In Autonomous Driving Systems (ADS) testing, a test
scenario is a pre-defined, specific sequence of events, including
static entities (e.g., road shapes and traffic signs) and dynamic
entities (e.g., traffic lights and the trajectories of surrounding
vehicles). By creating an environment according to a test scenario
and running the ADS under test in that environment, we
can verify whether the ADS causes any safety violations (e.g.,
collisions with other vehicles) or not. Due to the high cost and
risks associated with setting up test scenarios in the real world,
simulation-based testing, which relies on driving simulators that
can create various virtual driving environments, has gained
significant attention. Since simulated environments can be more
deterministic than the real world, simulation-based testing can
provide non-flaky tests, i.e., the same test outcome for the same
test scenario (and the same ADS), in theory. However, do we
really have no flaky tests in simulation-based ADS testing?

This paper empirically investigates flaky tests in simulation-
based ADS testing using two widely used, open-source driving
simulators: CARLA and MetaDrive. Our results show that,
surprisingly, 31.3% of benchmark test scenarios are potentially
flaky due to nondeterministic simulations in CARLA, whereas
MetaDrive does not yield any flaky tests. We further discuss
potential causes of nondeterministic simulations, implications of
flaky tests in ADS testing, and practical strategies for mitigating
flakiness in future works.

I. INTRODUCTION

To ensure the safety and reliability of Autonomous Driving

Systems (ADS), test scenarios play an essential role in ADS

testing. A test scenario is a pre-defined, specific sequence

of events, including static entities (e.g., road shapes, traffic

lights, and background buildings) and dynamic entities (e.g.,

traffic lights and the trajectories of surrounding vehicles and

pedestrians). It defines an environment where the ADS under

test can operate, and we can verify whether the ADS causes

any safety violations (e.g., collisions with other vehicles or

pedestrians) by operating the ADS in the environment. Consid-

ering the high cost and risks associated with setting up various

(and possibly extreme) test scenarios in the real world, driving

simulators that can create various virtual driving environments

have been increasingly used in ADS testing [1, 2, 3].

The benefits of simulation-based ADS testing are more

than low cost and risk; using deterministic simulations can

effectively suppress flaky tests. In other words, we can expect

the same test outcome (pass or fail) for the same ADS1 when

the same test scenario is used. For example, open-source

driving simulators, such as CARLA [4] (a high-fidelity driving

simulator based on Unreal Engine 4) and MetaDrive [5]

1Although ADS might have nondeterministic behaviors, it can be easily
controlled by fixing random seeds.

(a lightweight-simulator developed for training reinforcement

learning based driving agents), support deterministic simula-

tions [6, 7]. We can, therefore, expect reliable, non-flaky tests

using CARLA and MetaDrive.

However, as shown by Chance et al. [8], CARLA exhibits

intrinsic nondeterminism due to its reliance on the game en-

gine (Unreal Engine 4) for physics and rendering calculations.

Specifically, their evaluation results on six test scenarios based

on a T-junction road show that the deviation in the trajectories

of vehicles and pedestrians before and after collisions across

multiple simulations is significant at the centimetre level. This

raises questions about flaky tests.

In this paper, we empirically investigate flaky tests in

simulation-based ADS testing using CARLA and MetaDrive,

two open-source driving simulators widely used in relevant

studies. Specifically, we aim to answer the following research

questions:

RQ1 How many test scenarios are potentially flaky due to

simulators’ nondeterminism?

RQ2 How flaky are test results from the potentially flaky test

scenarios?

RQ1 is to understand to what extent driving scenarios are

flaky due to (unintentionally) nondeterministic simulations.

We call a test scenario potentially flaky if the scenario can

pass or fail without changes to the test scenario itself and

the ADS under test. If there are no potentially flaky tests, it

implies that the corresponding simulator can provide reliable

test results.

RQ2 is to investigate further the degree to which individual

test scenarios are potentially flaky due to nondeterministic

simulations. This is an essential question since even if there

were many flaky test scenarios for a driving simulator, their

degrees of flakiness is insignificant, making the potentially

flaky tests relatively harmless.

Our evaluation results show that, on the one hand, over

30% of the scenarios executed in CARLA exhibit potentially

flaky behaviors. In particular, collisions with other vehicles

and route timeout are the two most frequent safety violation

types in flaky test scenarios. Given the importance of collision-

related safety requirements, the frequency of potentially flaky

tests in CARLA is quite surprising. On the other hand, all test

scenarios in MetaDrive exhibit no flaky behaviors.

We further discuss the potential causes and implications of

nondeterministic simulations in simulation-based ADS test-

ing. We also discuss steps to mitigate flaky tests to make

simulation-based ADS testing more reliable.
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Fig. 1. An overview of scenario-based ADS testing in high-fidelity simulation.
Adapted from Zhong et al. [1].

To summarize, the main contributions of this paper are:

(1) The empirical investigation of flaky tests in simulation-

based testing with CARLA and MetaDrive, two widely

used driving simulators in the research community.

(2) A discussion on the implications of potentially flaky tests

on simulation-based ADS testing.

(3) Guidelines to mitigate potentially flaky tests in simulation-

based ADS testing.

This paper is structured as follows. Section II provides

the necessary background on scenario-based ADS testing

in simulated environments. Section III defines intentional

and unintentional nondeterminism and their relationship with

flaky tests. Section IV contains two case studies with their

methodology and results. Section V discusses potential causes

and implications of nondeterministic simulations on ADS

testing and provides guidelines for addressing unintentional

nondeterminism in future works on ADS testing. Section VI

concludes the paper and includes ideas for future work.

II. BACKGROUND

A. ADS Testing in Simulated Environments

Automated Driving Systems (ADS) have seen rapid de-

velopment in recent years. To ensure their safety, they are

extensively tested before future deployment. Field testing (e.g.,

testing on the proving grounds) is the closest to the real-world

application but is incredibly costly. Test engineers naturally

leverage simulators that promise safe, cheap and reproducible

evaluation.

Figure 1 illustrates a general ADS testing workflow in

simulated environments presented by Zhong et al. [1].

Simulation-based ADS testing typically starts with a test

(driving) scenario (i.e., test input) that defines a sequence of

events (e.g., trajectories of other vehicles from the start to

the end of the scenario) happening in a specific environment

(e.g., a T-junction with no traffic lights on a foggy day).

In practice, a test scenario can be represented as an array

of multiple variables, each representing different static and

dynamic entities considered in the scenario.

Given a test scenario, a high-fidelity simulator, such as

CARLA [4] or MetaDrive [5], creates a virtual environment

according to the scenario description. The ADS under test is

embedded into the virtual world, fully controlling one of the

virtual vehicles, commonly called as the ego vehicle. ADS

under test takes as input sensor data generated by the simulator

(e.g. images from virtual cameras mounted on ego vehicle)

and outputs a driving command (e.g., throttle control and

steering angle). To process sensor data and update the virtual

environment, scenario execution is discretized into small time

steps and runs into a synchronous state-action loop; at every

step, the virtual environment is updated, and the ADS gets

sensor data and outputs driving commands. The simulation

stops when the ego vehicle reaches its destination or when a

pre-defined timeout occurs.

At the end of the simulation, the results of the scenario run

are evaluated to see if the ego vehicle committed any safety

violations (e.g., colliding with another vehicle or drifting out

of its lane). Naturally, the expected test result is no violations

(or fewer than a certain number of violations if there is a

tolerance threshold).

The evaluation results (i.e., test outcomes) are often used

to generate more test scenarios with the aim of maximizing

objectives (e.g., degree of safety violations), therefore closing

the testing loop.

Driving simulators often support deterministic simulations

to achieve reproducible results [8]. Given the same input

scenario and a deterministic driving system, scenario execution

and evaluation results should be precisely the same in the

deterministic simulation mode. However, not all simulations

must be deterministic; some simulators might support inten-

tional nondeterminism. To make things clear, we will further

define and distinguish intentional and unintentional determin-

ism in Section III.

III. DEFINITIONS

Nondeterminism in simulators is when, given the same

inputs, starting configuration and environmental conditions,

different behaviors are exhibited in different simulation runs.

In this section, we draw a distinction between intentional and

unintentional determinism.

In some cases, simulators are intentionally nondeterministic.

This is because the reasons behind the simulated element (for

example, an insect, an animal, or even a human) choosing

to perform a particular behavior are not fully understood. In

order to model these elements, therefore, a scientist or engineer

may program the element to select randomly from a set of

behaviors observed in real life, according to some probability

distribution.

In other cases, simulators may be unintentionally nonde-

terministic. This could, for example, be due to bugs in the

simulator or due to the use of components (e.g., the rendering

engine) that themselves are nondeterministic for unaccounted

and potentially undesirable reasons.

A software test that involves a nondeterministic simulator

may be flaky for intentional or unintentional nondeterminism

— test runs may involve different behaviors being exhib-

ited, which, depending on the assertions or checks made,

may lead to different test outcomes. From a testing perspec-

tive, intentional nondeterminism is easier to account for by

fixing random seeds, allowing for degrees of tolerance in



checks/assertions, or by making checks probabilistic. Uninten-

tional nondeterminism, on the other hand, is hard to predict

and allow for in tests. In this paper, we focus on flaky tests

that result from unintentional nondeterminism in simulators.

Such flaky tests are likely to be difficult to track down and

debug.

Note that flaky tests are based on scenario evaluation results

in Fig. 1; even if scenario execution results vary due to

unintentional nondeterminism in simulators, the corresponding

scenario evaluation results could remain the same depending

on safety requirements and tolerance thresholds used. For

instance, if the ego vehicle takes slightly different paths in

two test repetitions but runs a red light in each, both are

evaluated as the same type of test failure. Therefore, we will

focus on evaluation results rather than execution results in our

evaluation in Section IV.

Luo et al. [9] performed the earliest empirical studies of

test flakiness and categorize different causes. The reasons

for unintentional nondeterminism in simulators may be due

to several of the causes mentioned (e.g., due to the use

of unpredictable thread orders and inaccuracies in floating-

point computations) as discussed in V-A. However, from an

ADS testing perspective, infrastructure flakiness is the most

fitting type of flakiness for describing tests failing due to

unintentional nondeterminism in driving simulators. Eck et al.

[10] define infrastructure flakiness as test flakiness due to

issues outside of project code (i.e., the ADS) but inside the

execution environment (i.e., the driving simulator used to

simulate scenarios using the ADS). Infrastructure flakiness is

usually used, however, to describe flakiness due to containers

and/or the local host. We argue in this paper, therefore, that

simulator flakiness to be a new source of test flakiness due to

unintentional nondeterminism in a simulator that is most apt

for describing the type of flakiness encountered when testing

ADSs evaluated in this paper.

IV. EVALUATION

To recap, we aim to answer the two research questions on

frequency of potentially flaky test scenarios and the degree of

their flakiness.

We performed two independent case studies using two pop-

ular open-source autonomous driving simulation frameworks:

CARLA [4] and MetaDrive [5].

The replication package for our case studies, as well as the

analyzed data, can be found at https://figshare.com/s/365106

68ad05ffa8c0bd.

A. Case study: CARLA

1) Simulator: To answer our research question, we use

CARLA 0.9.10.1 [4] with Leaderboard 1.0 [11] which together

form a popular framework to benchmark ADS used in many

existing studies [12, 13, 14, 15, 16]. CARLA features a flexible

interface that allows the embedding of driving systems for

training and testing purposes. In CARLA, one can control

various elements that make up a virtual environment, such

as weather, lighting, traffic, road shapes, and surrounding

buildings. To make the virtual environments more realistic,

CARLA provides built-in, hand-crafted maps, ranging from

complex city areas with roundabouts to long-stretching high-

ways, including realistic static entities, such as traffic signs,

buildings, and trees. This flexibility and controllability is

needed for scenario-based testing, where testers try to identify

sets of conditions that cause ADS under test to malfunction.

2) ADS under Test: For the ADS, we use TransFuser++

(TF++) [16], a state-of-the-art driving system, capable of

driving in CARLA. TF++ is an end-to-end driving model that

takes input from sensors (i.e., a front RGB camera, Lidar and

speedometer) and outputs steering control for throttle, braking,

and lateral steering. TF++ takes advantage of transformer

decoder [17] and path-based outputs, outperforming other

models and setting new records on Longest6 [13] and LAV

benchmarks [15].

Upon further investigation, we concluded that TF++ does

not contribute to flaky tests for the following reasons:

• Jaeger et al. [16] emphasized ensuring determinism dur-

ing model training;

• The pre-trained model’s weights during scenario execu-

tion are frozen, and the model is set in inference mode

where we can control its randomness.

Therefore, we can safely conclude that flaky test results, if

any, are due to unintentional nondeterminism in simulations.

3) Test Scenarios: To evaluate the frequency and the degree

of simulation flakiness, we need a benchmark set of test

scenarios to run in the simulator with the ADS under test.

To mitigate any bias, we use pre-defined scenarios available

in CARLA Leaderboard 1.0 [11], an official test benchmark

which provides 25 challenging driving scenarios in three dif-

ferent maps called Towns. Each town defines the static layout

of the map, i.e., road network, traffic signs, lane markings, as

well as surrounding buildings and parks to create a realistic

environment. We have chosen this benchmark as it is the most

popular validation suite among researchers developing driving

systems with CARLA. At the time of writing, the official

leaderboard has received over 20 unique submissions.

Each scenario includes (1) a route the ADS under test must

follow to reach its goal and (2) a list of events the ADS

must face along a set route. For example, one scenario would

specify that the ego vehicle must handle sudden lane changes

of surrounding cars or pedestrians stepping out from parked

cars. All scenarios include road users (e.g., cars, cyclists, and

pedestrians) managed by a simulator built-in module, Traffic-

Manager. At every simulation step, TrafficManager controls

the behaviors of all road users.

Since the original scenarios in the Leaderboard benchmark

are too long (around 30 minutes to run each), we sliced them

into smaller segments (around 5 minutes to run each), resulting

in 128 scenarios. This is to reduce the execution time of

each individual scenario while maintaining the challenging

nature of the original. During the simulation of each (sliced)

scenario, we set the timeout, as the CARLA Leaderboard does,

to avoid an indefinite run if, for example, the ADS gets stuck.

To answer our research questions, we repeated each scenario



Fig. 2. Sequence of frames from replaying “Scenario 8”, the most flaky
scenario found in CARLA. The ego vehicle passes through the street barrier
in one of the scenarios due to a software bug.

simulation 10 times to see how scenario evaluation results vary

from one rollout to another.

4) Safety Requirements: For each scenario, we evaluate the

ADS by counting the number of infractions for the following

safety requirements in CARLA: (RC1) no collisions with

static objects; (RC2) no collisions with pedestrians; (RC3) no

collisions with other vehicles; (RC4) no out-of-lane episodes;

(RC5) no running a red light; (RC6) no running a stop

sign; (RC7) no block-other-vehicles episodes; (RC8) no route

time-out. We have chosen the above requirements as they

capture the most important requirements of safe autonomous

driving. The same requirements were used in CARLA Leader-

board [11], a popular driving benchmark.

5) Methodology: To answer RQ1, we count the number of

potentially flaky scenarios among the 128 scenarios described

in IV-A3. Recall that, as established in Section III, a flaky

test happens when, given the same test scenario, different

evaluation results are exhibited in different simulation runs.

To check if a test scenario is potentially flaky, we count the

number of unique “behaviors” observed during the repeated

evaluation of the scenario. If the number of unique behaviors

is greater than one, we consider that scenario potentially flaky.

We consider two test runs having the same “behavior”

when the number of safety violations committed for each

requirement is the same. For example, if a car runs a red light

consistently in 10 repetitions, we call it a single behavior (non-

flaky scenario). On the other hand, if we observe zero, one,

and two red light violations in 3, 4, 3 repetitions, respectively,

for a single scenario, we have three unique behaviors, and

the scenario is marked as potentially flaky. We use this

weak notion of determinism (instead of comparing the exact

state of the simulation at all timestamps), as it is directly

connected with the safety requirements we test against. As

noted in Section III, scenario evaluation results, not execution

results, matter. We do not require the simulator to be perfectly

deterministic as long as the infractions reported are consistent

across repetitions.

To answer RQ2, we investigate the degree of flakiness of

each potentially flaky scenario we found in RQ1. We quantify

the degree by calculating the standard deviation for each

Fig. 3. Frames from replaying four representative repetitions of “Scenario 61”
showing four unique behaviors. Each time, the ego vehicle (black sedan)
approaches a four-way stop junction from one side and faces a red car that
came on its way. Due to simulator nondeterminism, we can observe four
alternative behaviors that happen next: 1) Top left: the ego vehicle ends
up in a deadlock where neither car can move, triggering a ‘vehicle blocked’
infraction. 2) Top right: the ego vehicle manages to pass through the junction
safely 3) Bottom left: the ego vehicle tries to pass through but collides with
the red car 4) Bottom right: the ego vehicle ends up in a deadlock, causing
more traffic, but tries to drive through, resulting in multiple collisions with
both the red car and the motorcyclist.

infraction count across 10 repetitions. It implies how far each

repetition result is from the average result. The higher the

standard deviation, the more potentially flaky the scenario

is for the given safety requirement. Specifically, for each

potentially flaky scenario s and safety requirement r, we com-

pute: σ(s, r) =
√

1

n

∑n

i (InfractionCount(s, r)i − µ(s, r))2

where σ(s, r) is the standard deviation of s for r,

InfractionCount(s, r)i is the infraction count of s for r at

i-th repetition, µ(s, r) = 1

n

∑n

i InfractionCount(s, r)i is the

mean of the infraction counts of s for r, and n = 10 is the

total number of repetitions. For example, consider a potentially

flaky scenario se and the no collision with pedestrians require-

ment rp where InfractionCount(se, rp)i = 0 for i = 1, . . . , 5
and InfractionCount(se, rp)j = 2 for j = 6, . . . , 10. Then

µ(se, rp) = 1, and therefore, σ(se, rp) = 1. This means, on

average, the difference between the infraction count of the

potentially flaky scenario for the given safety requirement and

the average infraction count is one.

6) Results: Figure 4 shows the distribution of unique be-

haviors observed. Our results show that only 88 out of 128

test scenarios exihibit a single unique behavior. It means that

31.3% (40/128) of the benchmark scenarios are potentially

flaky in CARLA. It is worth noting that our notion of flaky

tests is “weaker” than simulation determinism since we rely

on scenario evaluation results instead of scenario execution

results, as discussed in Section IV-A5. This implies that test

evaluation results could have been flaky for around one-third

of any scenarios in the CARLA Leaderboard benchmark [11],

which is quite surprising. Interestingly, 12 of the 40 potential

risk scenarios even have three or more unique behaviours. To

better understand the nature of the potentially flaky scenarios,

we manually investigated the 12 scenarios which exhibit three

or more unique behaviors. For the most potentially flaky
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Fig. 4. Distribution of unique behaviors observed when evaluating TF++ [16]
using CARLA [4] 10 times on 128 benchmark test scenarios.

scenario (i.e., “Scenario 8” exhibiting 5 different behaviors),

we found that it is due to a bug2 that allows the ADS to pass

through a street barrier. Figure 2 presents scenario replay. We

observed that the bug actually occurs at every repetition, but

the evaluation results vary due to the collision detection sensor

counts in CARLA. While the car’s behavior looks consistent

(the ego vehicle always passes through the barrier), CARLA

reports a different number of collisions, between zero and five.

Figure 3 shows another potentially flaky scenario, “Scenario

61”, exhibiting four different unique behaviors. For the given

scenario, we found that the ego vehicle approaching chal-

lenging encounters at the junction can take different actions

due to slight differences in vehicle positioning across multiple

simulations. We suspect slight differences caused by simulator

nondeterminism can trigger a butterfly effect, leading cars to

exhibit completely different behaviors.

In the CARLA case study, the answer to RQ1 is that

31.3% (40/128) of scenarios are potentially flaky, showing

a surprisingly high rate of potentially flaky test scenarios.

Figure 5 shows the standard deviation of the 40 potentially

flaky scenarios from RQ1 for each infraction count. Table I

summarizes the key statistics (min/mean/max) of the standard

deviation values.

For most safety requirements (i.e., RC2, RC4, RC5, RC6,

RC7), the mean degree of flakiness is less than 0.05. RC1

is shown to have relatively high mean degree of flakiness of

0.07, but this results is highly skewed due to a few outliers

like “Scenario 8” described earlier. This implies that the

degree of flakiness for the potentially flaky scenarios is indeed

quite small for many safety requirements, making those safety

requirements reliably testable in CARLA without worrying

about flaky tests.

However, we have RC3 “no collisions with other vehicles”

exhibiting a mean standard deviation of 0.3. RC3 is arguably

one of the most essential safety requirements, yet the result

implies it would be too unreliable to test in CARLA due to

the high degree of flakiness. RC8 “no route time-out” also

exhibits a mean standard deviation of 0.09, but it might be

ignorable with a reasonable tolerance threshold for deciding a

test failure.

2We reported the issue to CARLA leaderboard maintainers: https://github
.com/carla-simulator/leaderboard/issues/185.
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Fig. 5. The degree of flakiness of 40 potentially flaky test scenarios in CARLA
for each infraction type.

In the CARLA case study, the answer to RQ2 is that

CARLA results in a high degree of flakiness, i.e., a mean

standard deviation of 0.3, for one of the most important

safety requirements, i.e., no collisions with other vehicles.

This calls for paying attention to test scenario evaluation

results in CARLA.

B. Case study: MetaDrive

1) Simulator: For a second case study, we use

MetaDrive [5], an actively maintained open-source driving

simulator capable of realistic perception [18]. MetaDrive is

lightweight and allows to easily generate scenarios or to build

them from open-source trajectories datasets.

2) ADS under Test: TF++, or any other ADS developed for

CARLA, is not easily executable with MetaDrive. Since our

objective is not to compare CARLA and MetaDrive, we simply

use another driving system (agent) for MetaDrive. We use

an expert policy, a simple, 3-layered neural network driving

agent provided in MetaDrive by default. It inputs the ray-based

sensor data (Lidar, side scanner, and lane line detector) and

outputs the throttle, braking, and lateral steering control. It

is pre-trained using Proximal policy optimization (PPO) [19]

reinforcement learning algorithm.

3) Test Scenarios: For the test scenarios, we use a built-

in procedural map generator (PG) to generate 200 randomly

seeded scenarios. PG generate a road network (a map) using

unit blocks (e.g., straight road, curve, and a roundabout) that

can be further parametrized by length, the radius of curvature,

etc. [5]. The simulator controls the traffic of background

vehicles, the density of which we set to the default value.

By default, the initial position of the background vehicle is

randomly seeded. Given a map, the ego vehicle is tasked with

driving from the first roadblock to the last while keeping the

lane and avoiding collisions with other vehicles.

4) Safety Requirements: In MetaDrive, driving scenarios

are simplified compared to CARLA’s i.e., there are no pedes-

trians, cyclists and many static objects. Therefore, we per-

form our evaluation by testing against the following safety

requirements in MetaDrive: (RM1) no collisions with other



TABLE I
STATISTICS OF THE STANDARD DEVIATION VALUES FOR EACH

INFRACTION TYPE IN CARLA

Infraction Type Min Mean Max

(RC1) Collisions with static objects 0.00 0.07 1.64
(RC2) Collisions with pedestrians 0.00 0.00 0.00
(RC3) Collisions with vehicles 0.00 0.30 1.58
(RC4) Out-of-lane episodes 0.00 0.01 0.42
(RC5) Running a red light 0.00 0.03 0.52
(RC6) Running a stop sign 0.00 0.03 0.52
(RC7) Block-other-vehicles episodes 0.00 0.04 0.42
(RC8) Route time-out 0.00 0.09 0.52

vehicles; (RM2) no collisions with sidewalk; (RM3) no out-

of-lane episodes; (RM4) no route time-out.

5) Methodology: To answer RQ1 and RQ2, we use the

same methodology as used in the CARLA case study (see

Section IV-A5).

6) Results: Figure 6 shows the distribution of unique

behaviors. All 200 test scenarios exhibit only one unique

behavior when repeated 10 times, meaning that there are no

potentially flaky tests.

To examine further how deterministic MetaDrive evaluation

results are, we additionally investigated the test scenario

execution results (i.e., the trajectories of all moving vehicles,

including the ego vehicle, for all time steps). The result

confirmed that MetaDrive is fully deterministic3.

The answer to RQ1 and RQ2 in MetaDrive is that 100%

(200/200) of test scenarios executed are non-flaky. Upon

further investigation, we found that the simulation is fully

deterministic regarding test scenario execution results.

V. DISCUSSION

In Section IV, we confirmed potentially flaky test scenarios

in simulation-based ADS testing. Although we already know

that they are due to nondeterministic simulations, we go one

more step to understand the potential causes of such nondeter-

ministic simulations below. We then discuss the implications

of flaky tests in simulation-based ADS testing for triaging risks

that have been under-appreciated. We also present strategies

to mitigate such potentially flaky tests.

A. Potential Causes of Nondeterministic Simulations

Based on our observations, along with existing research on

game engines used in driving simulators [8], we propose po-

tential causes of nondeterministic simulations: asynchronous

behavior, floating point, time, and game engines.

1) Asynchronous Behavior: Comprehensive driving simu-

lators are complex software systems that schedule and coordi-

nate many tasks, such as 3D rendering, physics simulation,

and background traffic control [18]. Many of those tasks

3In fact, we found that the driving environment was not initializing properly
when running multiple scenarios in sequence following the guideline. How-
ever, we could easily resolve it by explicitly re-initialising the environment
before each scenario simulation. The issue is reported to the MetaDrive
repository: https://github.com/metadriverse/metadrive/issues/758.

200

# unique behaviors
1

Fig. 6. Distribution of unique behaviors observed when evaluating
MetaDrive’s ‘PPO expert agent’ in MetaDrive [5] 10 times on 200 proce-
durally generated scenarios.

can be executed simultaneously, e.g., reading sensor data

while calculating vehicle trajectories, making them nonde-

terministic. To avoid such nondeterministic simulations, they

often implement a stepped (synchronous) mode, where the

simulation is discretized into smaller steps. Using the steps,

all tasks can be scheduled in order, e.g., reading sensor data

followed by calculating vehicle trajectories. However, even

with the stepped mode, a potentially faulty implementation

can still introduce unintentional nondeterminism. For example,

CARLA 0.9.10.1 has a bug in the collision sensor that could

generate multiple collision events per frame. We suspect this

fault is responsible for the flaky behavior observed in executing

“Scenario 8” described in Section IV-A6.

2) Floating Point: Simulators often involve floating point

calculations, which can have unexpected results, such as non-

associative addition [20]. We suspect these slight differences in

the positions of surrounding vehicles controlled by simulators

(e.g., TrafficManager in CARLA) can trigger a butterfly effect

resulting in a crash observed in “Scenario 61” presented in

Figure 3.

3) Time: Another common pitfall that can introduce non-

determinism is a dependency on ‘system time’ (i.e., real-

world time) instead of ‘in-simulation time’ to schedule code

execution. This can lead to nondeterminism due to hardware

dependencies. For example, a low-spec machine might take 10

seconds of the real world to simulate 1 second of the virtual

world, whereas another high-spec machine might take only 2

seconds of the real world for the same simulation. Therefore,

using real time to schedule threads that coordinate the simula-

tion processes can be a source of unexpected nondeterminism.

4) Game Engines: High-fidelity driving simulators often

leverage game engines [18], such as Unity Engine used by

LGSVL [21] and Unreal Engine 4 used by CARLA [4]. These

game engines were specifically designed and optimized for

game and movie production applications. For example, they

might prioritize 3D rendering performance over determinism.

Chance et al. [8] empirically confirmed that some degree of

nondeterminism is unavoidable in game engine-based simu-

lators and extensively discussed the shortcomings of game

engines in driving simulators.

B. Implications of Simulator Flakiness

To better understand the implications of flaky tests in

simulation-based ADS testing, let us consider the critical

scenario generation problem, one of the most widely studied

problems in simulation-based testing [2, 3].



Critical scenario generation is to automatically generate

scenarios that are likely to expose the critical safety violations

of the ADS under test. A driving simulator runs the generated

scenarios and evaluates the degree of safety violations they

expose. If generated scenarios are flaky, the evaluation results

may be unreliable. For example, a flaky test scenario may

expose a critical safety violation in one run but not in the other.

During the scenario generation process, this can decrease the

effectiveness of scenario generation approaches, which often

rely on the evaluation results of the previously generated sce-

narios to guide the generation of new scenarios. At the end of

the scenario generation process, it can also lead to an under- or

overestimation of the effectiveness of the scenario generation

approaches, possibly leading to incorrect conclusions when

comparing different approaches.

The same implications can be extended to other simulation-

based testing problems, such as test scenario selection and

prioritization [22], that rely on the evaluation results of poten-

tially flaky scenarios due to nondeterministic simulations.

It is worth noting that this implication does not nullify the

value of existing simulation-based studies and their evaluation

results. The results may still be valid depending on the fre-

quency of flaky scenarios and the degree of flakiness. However,

it is important to be aware of the issue of potentially flaky test

scenarios and consider it when interpreting the results.

After conducting our research, we found a closely related

study of Amini et al. [23], empirically evaluating the impact

of flaky simulations on automated testing. They have also

acknowledged that flakiness is a persistent issue in simulation-

based ADS testing, highlighting the importance of mitigation

strategies, which will be discussed in Section V-C.

C. Possible Mitigation Strategy

To mitigate the risks of flaky tests in simulation-based ADS

testing, we propose the following strategy: (1) Acknowledge,

(2) Prepare, (3) Check and (4) Respond.

1) Acknowledge the flakiness: First of all, it is important

to acknowledge that driving simulators can be flaky. For

example, despite the flaky behaviors of CARLA shown in

Section IV-A, existing CARLA-based studies do not report

flaky test results, understandably due to their unawareness of

simulator flakiness. Acknowledging the possibility of flaky

tests allows us to, for example, allocate time before designing

experiments to check and respond to any flaky tests, which

will be discussed below.

2) Prepare for flakiness: Secondly, we should prepare for

potentially flaky tests. This involves using the latest release of

the simulator and running regression tests provided with the

simulator to assess its determinism. For example, the latest

CARLA release claims to support improved deterministic

simulations, especially in traffic management, and includes a

few smoke tests for determinism. Running these tests before

the main experiments can help identify simulator flakiness. If

these tests include some set-up steps, e.g., applying correct

settings, ensuring the simulator is in deterministic mode, and

seeding randomness, be sure to include them in your main

experiment. However, these tests might not be inadequate to

guarantee deterministic simulations for all possible scenarios.

Thus, the next steps will be useful.

3) Check for flakiness: As a third step, we should check

for flaky tests. This can be done by running each test scenario

multiple times and assessing both the frequency and degree of

its flakiness. Note that not all scenarios are necessarily flaky,

and the frequency and degree of flakiness may vary among

scenarios. Therefore, it is important to check as many scenar-

ios as possible. For instance, one could randomly generate n

scenarios and run each scenario r times to evaluate flakiness

prior to the main experiments. While a larger n and r yield

better results, simulation time and available resources should

be considered. As a rule of thumb, we recommend that n and

r be at least 30 and 10, respectively. This means the checks

should ideally be completed within approximately 25 hours

if each scenario takes 5 minutes to run. If potentially flaky

scenarios are found, it may be necessary to increase n and/or

r to gain a clearer understanding of flaky tests. For example,

if 7 unique behaviors are observed among 10 runs of one

scenario, one should consider increasing r to at least double

the number of observed unique behaviors.

4) Respond to flakiness: Lastly, we should respond to any

flaky tests identified in the previous step. Ideally, every test

scenario used in the experiments should be run multiple times,

and the results should be compared using statistical tests to

ensure reliability. For example, when comparing two scenario

generation approaches, each generated scenario could be run

10 times, in addition to comparing multiple runs of each

approach [24], using tests such as the Mann-Whitney U tests.

However, given limited simulation time and resources, this

may not always be feasible.

VI. CONCLUSIONS AND FUTURE WORK

One of the key requirements for any autonomous driving

verification, performed in simulation is that the simulation can

be deterministic. Deterministic simulation guarantees that the

tests executed are not flaky.

In this paper, we empirically investigated frequency and de-

gree of potentially flaky driving scenarios in two open-source

driving simulators: CARLA and MetaDrive. We identified the

potentially flaky driving scenarios by observing infractions that

the driving system is committing in benchmark scenarios. We

found that over 30% of driving scenarios executed in CARLA

are potentially flaky due to unintentional nondeterminism. On

the contrary, we found that MetaDrive is capable of fully de-

terministic execution resulting in non-flaky evaluation. Lastly,

we included discussion section in which we consider potential

causes of nondeterministic simulations, their implications and

possible mitigation strategy, where we provide guidelines to

mitigate potentially flaky scenarios.

As future work, we will extend our study to further simula-

tion platforms. Another avenue for future work is developing

a statistical testing framework for evaluating driving systems

that takes potential flakiness into account.
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