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A B S T R A C T

The widespread adoption of low-carbon technologies (LCTs) by residential consumers is a cornerstone of net zero
targets worldwide; however, LCT adoption may not be equally distributed across socioeconomic groups. Our
paper contributes to the related literature by exploring socioeconomic inequality in LCT adoption and its un-
derlying sources. We exploit nationally representative longitudinal data on the adoption of three key LCTs (solar
photovoltaics, solar water heating, and electric vehicles) in the UK. We investigate the aggregate role of pre-
determined socioeconomic factors in determining socioeconomic inequalities in LCT adoption. We further
contribute to the literature by employing Shapley-decomposition techniques to reveal the relative contribution of
each individual socioeconomic factor to the total estimated socioeconomic inequality. Our results suggest that
socioeconomic inequalities in LCT adoption have fallen over the last decade but remain prevalent, non-negligible
in magnitude and highly statistically significant. Our analysis of longitudinal LCT adoption patterns shows that
those consumers who have recently adopted LCTs, are contributing to the reduction in the observed socioeco-
nomic inequalities over time. Policies targeting groups with the most disadvantaged socioeconomic background
are crucial in order to mitigate the observed inequalities, potentially hindering a more rapid low-carbon
transition.

1. Introduction

The adoption of low-carbon technologies (LCTs) by residential con-
sumers is central to the UK’s legally binding commitment to achieving
net zero by 2050. It is difficult to overstate the role of consumers, as their
potential adoption of LCTs, such as electric vehicles and solar panels,
would represent nearly half (47 %) of the UK’s 2035 abatement target
for the power sector (Committee on Climate Change (CCC), 2022). It is
clear therefore that decarbonisation in the automotive and housing
sectors is paramount for the success of the low-carbon transition.1
Indeed, according to the Climate Change Committee (Committee on
Climate Change (CCC), 2022), surface transport and buildings contrib-
uted 43 % of the UK’s emissions in 2021. Despite these sectors being the
UK’s two largest sources of emissions, there are positive signs that some
consumers have increasingly embraced more sustainable ways to live
and travel.

Whilst consumer adoption has been identified as a driver in the

development of eco-innovations (Kesidou and Demirel, 2018), making
environmentally sustainable choices is subject to financial and techno-
logical constraints, which are encountered to different extents across
society. The evidence from the United States, and California in partic-
ular, where the adoption of LCTs has been relatively rapid thanks to the
subsidies of the State’s Government, reveals that ownership of LCTs is
more prevalent among high-income households (Borenstein and Davis,
2016; Barbose et al., 2022); this may lead to questioning the equity of
such subsidies (Borenstein et al., 2021). The present paper aims to
bridge a gap in the literature by exploring socioeconomic inequality in
LCT adoption and its underlying sources.

Since 2010, the cost of installing domestic solar panels in the UK has
decreased by 60 % (Department for Business Energy and Industrial
Strategy (BEIS), 2021). Even though the UK’s flagship subsidy scheme
ended in 2019, the cumulative number of installations broke the 1
million threshold and has achieved a similar capacity to that of some
nuclear power stations (MCS, 2022). The continued strength of the
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1 It is important to note that the UK Government’s Heat and Buildings Strategy (HM Government, 2021a) endorses a target of 600,000 yearly heat pump in-
stallations up to 2028, but this target is perceived as unlikely to be achieved, e.g., see House of Lords Environment and Climate Change Committee (HM Government,
2023a).
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unsubsidised demand for residential solar panels is perhaps unsurprising
as consumers were able to achieve significant levels of savings in the
face of a rapid rise in wholesale energy prices during 2021 and 2022
(HM Government, 2023b).

All the while, the electric vehicle (EV) market gained traction. In
2021, fully electric vehicles (EV) and plug-in hybrids (PHEV) made up
12 % and 7 % of all new vehicles sold in the UK respectively (Committee
on Climate Change (CCC), 2022). As of today, the UK has around
250,000 EVs on its roads and is expected to reach 10 million by 2030
(Office for Gas and Electricity Markets (OFGEM), 2023), which is
consistent with the UK’s ban on all new petrol and diesel vehicles by
2030. Yet, alongside increasing annual costs of EV charging, potential
adopters will also focus on the upfront cost of EVs, which is only ex-
pected to reach parity with similar-sized petrol or diesel engines later
this decade (HM Government, 2023c).

A few studies have explored the presence of socioeconomic
inequality in the diffusion of LCTs. Barbose et al. (2022) provide insights
into how inequality may influence solar technology adoption by map-
ping the heterogeneous socioeconomic and demographic trends across
regions and time in the United States (US). They find that residential
solar adoption appears favoured by white, highly educated, and high-
income households working in the professional or business/financial
sectors; however, the authors argue that these disparities have been
slowly reducing in recent years. Likewise, solar panel installations
appeared unequally distributed in the population by age, gender, edu-
cation and, ethnicity (see Sunter et al., 2019; Sovacool et al., 2022)
while similar socioeconomic factors matter for EV adoption according to
Axsen and Sovacool (2019), Qiao and Dowell (2022) and Sovacool et al.
(2022). Steadman et al. (2023) investigate local factors in the adoption
of solar PV in the UK. They identify the significant role of community PV
installation and the presence of newly built dwellings in the pattern of
adoption. They also find evidence of clusters of high adoption in specific
regions of the country, potentially related to local economic conditions.
More broadly, recent research established positive effects of education
on pro-climate outcomes, which include attitudes towards renewable
energy and energy efficiency, although the authors do not focus
explicitly on the adoption of specific LCTs (Angrist et al., 2023). By
investigating early-life educational attainment, Angrist et al. (2023)
capture the effect of education on climate change outcomes (including
energy efficiency behaviours and renewable energy attitudes), as well as
the role of socioeconomic position in later life and other mediators,
associated with an exogenous increase in schooling.

Other scholars have suggested that the role of education, gender and
ethnicity may be only weakly associated with solar panel uptake (Best
et al., 2023). Much more limited is the work on the association between
childhood socioeconomic status (SES) and LCTs, which focuses on
developing countries and cleaner domestic fuel use (Mussida and Sciulli,
2022). Despite the lack of evidence on the association between parental
SES and LCT adoption, parents have been found to influence the energy
literacy (Pearce et al., 2020), environmental attitudes and energy-saving
behaviour of their children (Karatepe et al., 2012; Fell and Chiu, 2014).

Overall, the presence of socioeconomic inequalities in LCT adoption
is understudied, with most of the existing literature focusing on specific
disparities involving certain socioeconomic characteristics, often relying
on non- representative samples and on reported LCT-related behaviours
rather than actual purchases or installations (e.g., Alipour et al., 2020;
Barbose et al., 2022; Best et al., 2023; Sunter et al., 2019). In this study,
we aim to contribute to the literature by providing evidence of the
evolution of socioeconomic inequality in LCT adoption over time, using
nationally representative UK longitudinal data. Examining socioeco-
nomic inequalities in LCT adoption in the UK—a country responsible for
the fifth-largest per capita contributions to climate change (Committee
on Climate Change (CCC), 2019)—has significant policy implications for
the low-carbon transition.

There is a dearth of evidence not only on inequality in LCT adoption
but also on which members of society have been at a disadvantage to

adopt, as argued by scholars of the “just transition” to a low-carbon
future (Carley and Konisky, 2020). Our analysis provides novel evi-
dence on how early-life circumstances could directly and indirectly in-
fluence the adoption of LCTs, and, thereby, identify “sections of society”

that may have been hitherto overlooked in the processes aimed at pro-
moting the energy transition (Jenkins et al., 2021).

Our paper contributes to the literature in a number of ways. First, we
exploit the availability of nationally representative longitudinal data for
the UK to explore the evolution in the adoption of three key LCTs (solar
photovoltaics, solar water heating, and electric vehicles) in light of their
cost reductions and of the increasing consumer awareness of their merits
(Committee on Climate Change (CCC), 2022).

Second, we explore the aggregate role of observed socioeconomic
characteristics in determining socioeconomic inequalities in LCT adop-
tion, as opposed to focusing on disparities in adoption due to a specific
socio-demographic factor. Relying on the inequality of opportunity
(IOp) approach (e.g., Roemer, 1998, 2002; Bourguignon et al., 2007;
Ferreira and Gignoux, 2011), we employ factors that are economically
exogenous to a large extent and beyond an individual’s control, which
include family background (labelled as socioeconomic circumstances in
the IOp framework). Focusing on predetermined circumstance variables,
such as parental socioeconomic background, may alleviate endogeneity
concerns in our analysis. Exploring later-life socioeconomic factors, such
as housing tenure or income, is more likely to result in endogeneity is-
sues. For example, it can be argued that tenure decisions may be
determined by consumers’ willingness and effort to improve their
housing conditions, e.g. via the installation of LCTs for water heating
and electricity; but at the same time the adoption of these LCTs may be
determined by housing tenure given the limited agency of tenants to
install home improving technologies.

The IOp framework is based on a broad inequality concept but fo-
cuses specifically on disentangling inequalities due to predetermined
circumstances, such as parental socioeconomic background. Aside from
alleviating endogeneity concerns, this approach is of particular interest
from a normative point of view – normative views often suggest that
government policies need not aim to eliminate all outcome inequalities
but may be justified in seeking to reduce those that arise from unequal,
predetermined opportunities. It is often argued that inequalities due to
factors beyond an individual’s responsibility are inequitable, and should
be compensated by society (Peragine, 2004). Specifically, within the
context of socioeconomic inequality in LCT adoption, the IOp frame-
work allows us to explore factors which are beyond an individual’s
control, and which create disadvantages when adopting LCTs. For
example, if disparities in LCT adoption which can be attributed to a
disadvantaged parental background were identified this may point to
potential benefits of policy interventions targeting vulnerable families
with adolescents and young children. The extent to which these early life
disadvantages can influence the LTC adoption behaviour of these chil-
dren and adolescents in later life, and thus affect the general level of LCT
adoption, is of particular interest. On the other hand, disparities in LCT
adoption that are solely and directly attributed to effort (such as moti-
vation patterns and efforts to gather information) may be regarded as
more legitimate sources of the observed inequalities in LCTs. In this
study, by utilising an inequality framework and employing pre-
determined socioeconomic characteristics, we are able to explore the
total role of predetermined socioeconomic characteristics in deter-
mining current LCT inequalities, which includes their direct role in LCT
adoption as well as their indirect role, to the extent that these pre-
determined characteristics partially affect later life’s efforts related to
LCT adoption.

Overall, we found systematic and relatively large socioeconomic
inequality in LCTs that remained evident but reduced in magnitude over
the last decade, during which an increase in the levels of LCT adoption
was observed. We further contribute to the literature by employing
Shapley-decomposition techniques to explore the relative contribution
of each socioeconomic variable to the total estimated socioeconomic
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inequality.
We also tested our inequality results by restricting our sample to

specific longitudinal sequences of LCT adoption. A comparison of the
level of socioeconomic inequality between the subsample of those who
persistently adopt/do-not-adopt LCTs (i.e., do not change their adoption
pattern) with subsamples of those with transitory adoption patterns (to
or from LCT adoption) gives us insights about what drives the observed
reduction in socioeconomic inequality in LCTs over time, happening at a
time of increasing LCT adoption. Overall, our results reveal that those
following transitory LCT adoption patterns, and in particular those who
have recently adopted LCTs, seem to be contributing to the recent
reduction in the observed socioeconomic inequalities over the last
decade.

The rest of the paper is organised as follows. Section 2 describes the
methods and data used in our analysis. The results of our analysis are
presented and discussed in Section 3 and Section 4 concludes.

2. Methodology and data

2.1. Measuring socioeconomic inequality in LCT adoption

We model LCT adoption as a function of socioeconomic circum-
stances, in line with the IOp framework (Roemer, 1998, 2002; Bour-
guignon et al., 2007; Ferreira and Gignoux, 2011). Specifically, we
assume that LCT adoption is a function of: a) circumstances which are
beyond individuals’ control and b) effort factors for which individuals
are partially responsible. Circumstance variables are assumed to be
economically exogenous by definition, while “effort” variables can be
affected by circumstances and other unobserved factors (vi); therefore,
each of our LCT adoption outcomes can be expressed as:
yi = f(ci, e(ci, vi) , ui) (1)

where, yi denotes the adoption of a specific LCT by individual (i). The
vector c stands for the observed circumstances for each individual (i)
that are assumed to affect LCT adoption, while e represents the effort
variables. The decision to invest in energy and carbon-saving technol-
ogies is complex, and the time and effort required to make an optimal
decision are costly (Allcott and Greenstone, 2017). Effort can influence
underinvestment in even more salient ways particularly if one faces
hassle – such as going through the seemingly cumbersome process of
applying for eligible government support (Fowlie et al., 2015). The
unobserved error term vi captures random variations in effort that are
independent of c, while ui represents random variation on the LCT
adoption, including measurement error which is independent of both c
and e2; these unobserved error terms are often labelled as ‘luck’ in the
literature (e.g., Lefranc and Trannoy, 2017).

In this study, we aim to measure overall socioeconomic inequality in
LCT adoption which can be attributed to our set of circumstance vari-
ables, as a share of total inequality. This approach characterises socio-
economic equality as a situation where all individuals face the same
opportunity set, prior to their effort and outcomes being realised; in
other words, equality indicates no differences in the LCT adoption due to
different (socioeconomic) circumstances. In this case, a reduced-form
equation can be derived from Eq. (1), which does not require the in-
clusion of effort variables (e.g., Aaberge et al., 2011; Fleurbaey and
Peragine, 2013; Davillas and Jones, 2021):

y*i = a+ βci + εi (2)

where, y*i stands for the relevant latent LCT outcome variable for our
regression models,3 and β represents the total contribution of circum-
stances that include both the direct influence of circumstances on LCT
adoption, and the indirect effect of circumstances through efforts.4
Specifically, this analysis implicitly assumes that the partial correlations
between effort (e) and circumstances (c) should also be treated as a
circumstance; this embodies the indirect effect of the circumstances on
our LCT outcomes that is channelled through effort and (along with the
direct role of circumstances) is reflected in our reduced form specifica-
tion so that β (in Eq. (2)) captures both the direct and indirect contri-
butions. For example, assuming that acquiring LCT literacy is a form of
“effort” affecting an individual’s adoption of solar panels, the potential
influence of parental education (a key socioeconomic circumstance) that
comes through the impact of parental education on an individual’s LCT
literacy should be also treated as a circumstance which affects LCT
adoption.

Taking the predicted outcome from Eq. (2) (ŷ), the observed socio-
economic inequality in our LCT adoption can be estimated by applying a
suitable inequality measure, I(.), to ŷ:
θI = I(ŷ) (3)

Given that the variation in vector ŷ is exclusively due to circum-
stances, Eq. (3) refers to variations in LCT adoption outcomes attributed
to socioeconomic variables reflecting the circumstances captured in our
analysis. The choice of the inequality measure I(.) depends on the type of
the outcome variable being examined. Following Davillas and Jones
(2021) and Chávez Juárez and Soloaga (2014), given the binary nature
of our outcomes we employ a dissimilarity index. An estimator of the
dissimilarity index (Fajardo-Gonzalez, 2016) can be given by:

I(.) = 2
ny

∑n
i=1|ŷi − y| (4)

where, ŷi = E(yi|ci
) and y = E(ŷi

). The dissimilarity index ranges from
zero to one, with zero indicating full socioeconomic equality and one
indicating full inequality. The index can be interpreted as the minimum
fraction of the number of LCT adopters that need to be redistributed
across socioeconomic groups to achieve equality (Fajardo-Gonzalez,
2016). It should be noted here that in the presence of unobserved cir-
cumstances not accounted for in Eq. (2), our measure of socioeconomic
inequality in LCT adoption should be considered as the lower-bound
estimate of overall socioeconomic inequality, i.e., the inequality due
to all socioeconomic circumstances in LCT adoption, not only to those
observed in our analysis (Ferreira and Gignoux, 2011).

Our set of LCT measures are obtained from Wave 4 (January 2012 –

May 2014) and Wave 10 (January 2018 – May 2020) of Understanding
Society – the UK Household Longitudinal Study (UKHLS) data. We es-
timate socioeconomic inequality in LCT adoption separately for each
wave for a balanced sample (valid responses at both Wave 4 and 10),
which allows us to compare the evolution in socioeconomic inequality as
LCT adoption progresses over time.

In subsequent analysis, we capitalise on our longitudinal data to
explore patterns of LCT adoption for the same individuals over time. We
also estimate and compare socioeconomic inequality measures (based
on Eqs. (2), (3) and (4)) by restricting the sample to persistent in-
novators and non-adopters (i.e., those who always report adoption or

2 LCT adoption outcomes are the realisations of random processes; in our
socioeconomic inequality analysis we are unable to assess whether the unex-
plained component of these outcomes is attributed to unobserved circum-
stances, unobserved effort, measurement error or pure chance. It should be
explicitly noted that in this study we aim to measure the component of LCT
adoption decisions attributed to the variables capturing observed
circumstances.

3 We adopt Probit models in our analysis but, as a sensitivity analysis, we also
estimated equation 2 using Logit regression models obtaining almost identical
results (details are provided in the Results section and the Appendix).
4 Details on the derivation of the reduced form equation 2 from equation 1, a

common practice in the relevant IOp literature, are available elsewhere
(Bourguignon et al., 2007; Carrieri et al., 2020).
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non-adoption of LCTs in Waves 4 and 10), and to sub-samples succes-
sively augmented by population groups that transition between adop-
tion and non-adoption of LCTs between Wave 4 and 10. This analysis
allows us to compare the level of socioeconomic inequality between
those who persistently adopt/do-not-adopt LCTs over time (i.e., do not
change their adoption patterns) and when including those who exhibit
transitory adoption patterns. These comparisons may provide insights
on whether those transitory adoption patterns drive the observed vari-
ations in socioeconomic inequality in LCT adoption over time (i.e., be-
tween Wave 4 and 10).

2.2. Decomposing the socioeconomic inequality in LCT adoption

Shapley-Shorrocks decomposition analysis is employed to measure
the contribution of circumstances variables (c) to overall socioeconomic
inequality (Shorrocks, 2013; Chávez Juárez and Soloaga, 2014; Davillas
and Jones, 2021). The Shapley-Shorrocks decomposition is imple-
mented by estimating inequality measures for all possible permutations
of the socioeconomic variables in our analysis prior to calculating the
average marginal effect of each socioeconomic variable on the overall
socioeconomic inequality in LCT adoption. Typically, the contribution
of each specific factor can be calculated by keeping all socioeconomic
variables, but not the one of interest, constant or by only keeping the
socioeconomic variable of interest constant and defining its contribution
as a residual from the total inequality; either path is conceptually valid.
Unlike other decomposition methods, the Shapley-Shorrocks averaging
procedure allows a path-independent additive decomposition
(Shorrocks, 2013; Chávez Juárez and Soloaga, 2014; Davillas and Jones,
2020). Moreover, the Shapley-Shorrocks decomposition is exactly ad-
ditive as it can decompose socioeconomic inequality into positive, pro-
portional contributions from individual covariates. The decomposition
analysis is applied to the dissimilarity indices for the measurement of
socioeconomic inequality in LCT adoption in Waves 4 and 10, as well as
across our sub-sample analysis based on longitudinal patterns of LCT
adoption.

2.3. Data

The data are obtained from Wave 4 (January 2012 – May 2014) and
Wave 10 (January 2018 – May 2020) of UKHLS – a longitudinal, na-
tionally representative UK survey (University of Essex, Institute for So-
cial and Economic Research, 2022). Our study requires valid
(individual-level) adoption measures for all three LCTs (solar photo-
voltaics, solar water heating, and electric vehicles) that are consistently
measured across successive UKHLS waves. Given that questions
regarding LCT adoption measures are administered only in selected
UKHLS waves, the availability of data on the relevant LCT adoption
measures (the outcome variables in this study) constrained our analysis
to UKHLS Waves 4 and 10. Specifically, the survey questions used to
measure the presence of any electric/hybrid vehicles were not collected
until UKHLS Wave 4 (and, thus, we need to focus on UKHLS Wave 4 and
beyond); within this range of UKHLS waves, solar photovoltaics and
solar water heating measures are also available in UKHLS Waves 4 and
10.5

As we aim to measure and compare the evolution of the socioeco-
nomic inequality in LCT adoption between UKHLS Wave 4 and 10, we
restrict our main analysis to a balanced sample of respondents between
the two waves; this allows us to compare the levels of socioeconomic
inequality in LCT adoption at different times, as well as analyse sub-
samples with distinct longitudinal LCT adoption patterns. After
excluding all missing cases in our LCT measures, and the circumstance
variables included in our analysis, our final balanced sample contains
25,167 individuals in each wave (corresponding to 50,334 person-year
observations for the two UKHLS waves).

Sample weights are used to ensure that our findings are representa-
tive of the UK population. The weights were calculated using backward
stepwise logistic regressions on observed predictors, adjusting the
published UKHLS sample weights to account for attrition between
Waves 4 and 10 (given our balanced sample), item missingness and unit
nonresponse for all variables used in our analysis.

2.4. Low-carbon technology (LCT) outcomes

Our set of outcome variables refers to three LCTs adopted by
households: a) solar photovoltaics for electricity (SOLARPV) installed by
households; b) solar water heating (SOLARHEAT) installed by house-
holds; and c) hybrid or electric vehicles (HYBRIDEV) owned or contin-
uously used by households.

Specifically, the SOLARPV variable takes the value of one if the re-
spondent’s household has installed solar panels for electricity; and zero
otherwise. Similarly, SOLARHEAT takes the value of one if the re-
spondent’s household has installed solar panels for the purpose of
heating water and zero otherwise. It is important to note here that for
both SOLARPV and SOLARHEAT, individuals from households who are
unable to adopt these technologies due to living in rented accommo-
dation, those who are considering but have not yet adopted these LCTs,
and those who have not yet considered installing these technologies are
coded as zero. Our third outcome variable HYBRIDEV takes the value of
one if the respondent’s household owns or has continuous use of either a
hybrid (i.e., petrol and electric) or electric battery-operated vehicle (i.e.,
a car or van) and zero otherwise.

Table 1 provides the description of our set of LCT adoption variables
along with their mean values separately for UKHLS Wave 4 and 10. Our
results show an increase in those adopting solar panels for electricity and
for water heating between Wave 4 and 10. Specifically, within six years,
the proportion of individuals using solar panels for electricity generation
more than doubled (from 3.0 % to 6.5 %); similarly, the proportion of
respondents reporting solar water heating technology increased from
1.4 % in Wave 4 to 2.1 % in Wave 10. Table 1 also shows an increase in
the proportion of our sample reporting at least one electric or hybrid-
electric vehicle available at the household level — from less than 1 %
in 2012–2014 (Wave 4) to 2.8 % in 2018–2020 (Wave 10), reflecting the

Table 1
Definitions and mean values – LCT outcomes.

Wave
4

Wave
10

Variables Definition Mean
SOLARPV 1 = Individual belongs to a household which

has installed solar panels for electricity; 0 =

otherwise or not applicable/living in rented
accommodation.

0.030 0.065

SOLARHEAT 1 = Individual belongs to a household which
has installed solar water heating; 0 =

otherwise or not applicable/living in rented
accommodation.

0.014 0.021

HYBRIDEV 1 = Individual belongs to a household which
has at least one electric vehicle or hybrid-
electric vehicle; 0 otherwise.

0.004 0.028

Note: Mean values are weighted using sample weights. Balanced sample of
UKHLS Waves 4 and 10.

5 Beyond data availability, the choice of which UKHLS waves to include in
our analysis is also influenced by practical considerations. For example, plug-in
or hybrid vehicles did not reach more than 1.5 % of the new vehicle registra-
tions/purchases (and, thus, a much smaller share of the total number of all
licensed vehicles in the UK) until after December 2013 (Society of Motor
Manufacturers and Traders, 2015). Given that UKHLS Waves 1–3 were collected
between January 2009 and July 2013, these UKHLS waves would not provide a
sufficient sample size for conducting meaningful analysis on electric/hybrid
vehicles, even if the data on such vehicles had been collected during these
waves.
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growing adoption of new low-emission vehicles.

2.5. Socioeconomic circumstances

All our socioeconomic variables are obtained from UKHLS Wave 4
(unless otherwise stated below) and are treated as time-invariant vari-
ables. The choice of our circumstance variables reflects factors regarded
as sources of socioeconomic inequality in LCT adoption that are beyond
an individual’s control.6 Limiting our inequality analysis to pre-
determined factors may help mitigate any endogeneity concerns; this
also allows us to obtain the total contribution of these predetermined
characteristics to the inequalities in LCT adoption, i.e., the contribution
coming directly from predetermined circumstances, as well as from their
indirect effects via later life factors (such as “efforts” and related po-
tential mediators) which are also correlated with LCT adoption.

Birth cohort7 and gender are included in our set of circumstances, as
existing literature has shown systematic differences in low-carbon en-
ergy adoption patterns by gender and across birth cohorts (Day, 2015;
Fraune, 2015; Berkeley et al., 2018; Petrova and Simcock, 2021; Han
et al., 2022).8 Ethnicity is also treated as a circumstance variable and
defined as equal to one for white ethnicity and zero otherwise; it has
been shown that those of minority ethnic backgrounds tend to have a
lower rate of adoption of low carbon technologies in the United States,
and even more so in low- and middle-income countries (Sovacool et al.,
2022).

Socioeconomic status (SES) in childhood is regarded as an important
source of inequality within the broad IOp framework (for example,
Bourguignon et al., 2007; Ferreira and Gignoux, 2011). With respect to
LCTs, although there is limited literature that directly assesses the effect
of parental SES on LCT adoption, there is evidence that parents influence
childhood energy literacy (Pearce et al., 2020), environmental attitudes
and energy saving behaviour (Karatepe et al., 2012; Fell and Chiu,
2014), and the choice of heating fuel in young households established
outside of the home (Mussida and Sciulli, 2022). For the purpose of our
study, parental occupational status when the respondent was aged 14 is
used to proxy childhood SES. Specifically, we employ one categorical
variable for the mother’s occupational status and one for the father’s:
not working, four occupation skill levels and a category for missing
data.9 Parental education is also employed as an additional indicator of
childhood SES. A combined categorical variable for the highest parental
education level is employed, given the high correlation between
mother’s and father’s education (Kenkel et al., 2006); this is a four-
category variable defined as: left school with no/some qualification,
post-school qualification/certificate, degree, and a missing data
category.

We include an individual’s own education as a socioeconomic
circumstance variable based on a normative assumption that the level of
secondary schooling achieved by age 18 is highly influenced by parental
and environmental factors during earlier life and, thus, is (at least
partially) beyond an individual’s responsibility (Davillas and Jones,
2020). Bar Gai et al. (2021) found education to be among the key

barriers to solar adoption at the community level in the US; yet, in
China, highly educated households were associated with EVs’ but not
with solar panels’ uptake (Wen et al., 2023). Although they do not focus
on the adoption of specific LCTs explicitly, Angrist et al. (2023) found a
positive causal effect of education on pro-climate outcomes that include
energy efficiency behaviours and attitudes towards renewable energy.
The individual’s own education is measured using a 5-category variable:
no qualification, basic qualification, O-Level, A-Level/post-secondary
and degree. Given that there is a small proportion of our sample still
enrolled in education or who completed their degree between UKHLS
Waves 4 and 10, the highest recorded educational attainment is used for
the needs of our analysis. Summary statistics for all the socioeconomic
variables used in our analysis can be found in Table A1 (Appendix).

It should be noted that although our set of socioeconomic circum-
stance variables is carefully selected to reflect predetermined circum-
stances, omitted unobserved circumstances may be a concern of
potential bias. Even if this was the case, our socioeconomic inequality
measures can be interpreted as the lower-bound estimates of the overall
inequality due to all circumstances, not only those that are observed
(Davillas and Jones, 2020).

3. Results

3.1. Socioeconomic inequality in LCT adoption and its evolution over time

Table 2 presents the dissimilarity indexes for our three LCT outcomes
and their evolution over time (UKHLS Wave 4 vs Wave 10).10 Overall,
our results reveal systematic socioeconomic inequalities in the adoption
of solar panels for electricity (SOLARPV), solar water heating (SOLAR-
HEAT) and electric vehicle/hybrid-electric vehicle (HYBRIDEV), with
highly statistically significant dissimilarity indexes for both UKHLS
Waves 4 and 10. For example, the estimated dissimilarity index for low-
carbon vehicle adoption forWave 4 is 0.382. This dissimilarity index can
be interpreted as the minimum fraction (about 38 %) of LCT adopters
that need to be redistributed across socioeconomic groups to achieve
socioeconomic equality in LCT adoption. Overall, our results show that
the observed socioeconomic inequalities in LCT in Wave 4 are not only
systematic but of non-negligible magnitude (with the relevant dissimi-
larity indexes ranging between 0.277 and 0.382 across LCT measures).

However, we also observe a reduction in the level of socioeconomic
inequality over time across all three LCT measures (p-value<0.001 for
the pairwise tests of differences in dissimilarity indexes between Wave 4
and 10, separately for each of the LCT measures); this may indicate that
the increased LCT adoption over time (as evident in Table 1) has also

Table 2
Measures of socioeconomic inequality (Dissimilarity Indices) for the adoption of
LCTs.
Specifications SOLARPV

(1)
SOLARHEAT
(2)

HYBRIDEV
(3)

Panel A. Wave 4
θI 0.277*** 0.362*** 0.382***

(0.004) (0.003) (0.002)

Panel B. Wave 10
θI 0.203*** 0.260*** 0.298***

(0.005) (0.003) (0.004)
Notes: Bootstrapped standard errors in parentheses (500 replications). Analysis
is weighted using sample weights.
*** p < 0.01.

6 Although income is potentially correlated with LCT adoption inequalities, it
is important to emphasise that we focus on predetermined circumstances. Income
is a later life outcome determined by one’s effort and idiosyncratic
characteristics.
7 We create seven indicator variables for the following birth cohorts: those

born before 1934; born between 1935 and 1944; born between 1945 and 1954;
born between 1955 and 1964; born between 1965 and 1974; born between
1975 and 1984; and born after 1985.
8 Age may be used as an alternative variable instead of birth cohorts. How-

ever, we believe that birth cohorts provide a more relevant interpretation as
they better reflect the hypothesised variations in adoption patterns across
generations.
9 The occupational skill levels used to construct these variables are based on

the Standard Occupational Classification 2010.
10 Tables A3-A8 in the Appendix present the underlying reduced-form
regression models (Equation 2).
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been associated with a more equal distribution of these technologies
across our set of socioeconomic factors. Specifically, the estimated
dissimilarity index for solar panels used for electricity has declined from
0.277 in Wave 4 to 0.203 in Wave 10, a 27 % reduction in the level of
socioeconomic inequalities. Similarly, we observe a 28 % (22 %)
reduction in socioeconomic inequality in solar water heating adoption
(low-carbon vehicles) over the same period (i.e., over a 6-year period
from baseline Wave 4, collected in January 2012 – May 2014, to Wave
10). Overall, despite the observed reduction in magnitude, the observed
socioeconomic inequalities in LCT are still non-negligible in magnitude
at Wave 10.11

3.2. Decomposition of the observed socioeconomic inequality in LCTs

The results of the Shapley-Shorrocks decomposition in Table 3 allow
us to explore the relative contribution of each of our circumstance
variables to overall socioeconomic inequality. We note that the Shapley-
Shorrocks decomposition allows us to estimate the contribution of each
of our circumstances variables to the total explained socioeconomic
inequality12 and does not account for any potential unexplained varia-
tions in outcome variables that are not attributed to our set of socio-
economic circumstances. A graphical representation of these results is
available in the Appendix (Fig. A1). Overall, along with the observed
reduction in socioeconomic inequality in the adoption of LCTs over time
(Table 2), we also observe variations in the contribution of the
circumstance variables within the explained socioeconomic inequality.

With respect to the explained socioeconomic inequality in the
adoption of solar panels for electricity (Column 1), birth cohort is the
most notable contributor to socioeconomic inequality, but its relative
contribution has decreased over time (47 % in Wave 4 vs 42 % in Wave

10); an individual’s education remained the second most important
contributor (20 % in Wave 10), while parental education and ethnicity
became the third joint most important contributors at around 11 % in
Wave 10.

Turning to solar water heating in Column 2, we observe variations in
the most important contributors to socioeconomic inequality over time.
Birth cohort (about 30 %), parental occupation (22 %), parental edu-
cation (21 %) and an individual’s education (19 %) are the most
important contributors to socioeconomic inequality in the adoption of
solar for heating water at the baseline (Wave 4); yet there is a shift in the
top contributors in Wave 10, with parental occupation (38 %), parental
education (21 %) and an individual’s education (17 %) being the first,
second and third contributing factors to socioeconomic inequality.

A shift in the order of the top contributing factors in socioeconomic
inequality is also observed in the adoption of low-carbon vehicles
(Column 3). Specifically, an individual’s education (about 41 %), birth
cohorts (19 %) and parental occupation (16 %) became the first, second
and third in the order of contributing factors in Wave 10; the corre-
sponding order of their relative contribution to socioeconomic
inequality in low-carbon vehicles adoption in the baseline case (Wave 4)
is parental occupation (at almost 39 %), followed by an individual’s
education (26 %) and parental education (22 %).

Across all LCTs we also observe a shift towards a larger contribution
of gender and ethnicity in explaining the reduced socioeconomic in-
equalities over time, however, their contributions remain relatively low
compared to all other circumstances. Overall, along with the observed
reduction in socioeconomic inequality in LCT adoption over time, our
decomposition results show that an individual’s own education,
parental occupation and education (and birth cohort for the case of solar
panels for electricity) remained the most prominent contributors.

3.3. Distributional patterns of adoption of LCTs over time and by
socioeconomic inequality

Our analysis so far shows the presence of systematic socioeconomic
inequality in LCTs, which has reduced in magnitude over the last decade
along with increased LCT adoption levels. However, a closer examina-
tion of the longitudinal LCT adoption patterns, along with the socio-
economic inequalities observed among those who consistently adopt/
do-not-adopt LCTs and those transitioning into or out of LCT adoption,
could provide valuable insights into the factors driving the observed
reduction in socioeconomic inequality in LCT adoption over time.

Table 4 describes the distribution of adoption of LCTs over time in
our sample; it presents all the observed sequences of adoption of LCTs in
Waves 4 and 10, resulting in (22 = 4) distinct sequences for each tech-
nology adoption outcome. Across all LCT outcomes, most respondents
are characterised as persistent non-adopters (“No, No” sequences)
within Wave 4 and Wave 10, with the corresponding proportions

Table 3
Decomposition of socioeconomic inequality (Dissimilarity Indices) in adoption
of LCT outcomes.
Specifications SOLARPV

(1)
SOLARHEAT
(2)

HYBRIDEV
(3)

Panel A. Wave 4
θI 0.277 0.362 0.382

Contributions to inequality (%)
Gender 4.98 % 6.08 % 3.18 %
Birth cohort 47.19 % 29.80 % 9.88 %
Ethnicity 5.67 % 3.03 % 0.02 %
Education 17.74 % 19.22 % 26.12 %
Parental occupation 17.72 % 21.69 % 38.60 %
Parental education 6.70 % 20.18 % 22.20 %
Total 100 % 100 % 100 %

Panel B. Wave 10
θI 0.203 0.260 0.298

Contributions to inequality (%)
Gender 8.39 % 7.22 % 5.69 %
Birth cohort 41.89 % 5.76 % 19.00 %
Ethnicity 10.99 % 9.75 % 3.83 %
Education 20.36 % 17.88 % 40.83 %
Parental occupation 7.19 % 38.01 % 16.41 %
Parental education 11.18 % 21.39 % 14.24 %
Total 100 % 100 % 100 %

Table 4
Distribution of adoption of LCTs across Waves 4 and 10 (balanced sample =

25,167).
Low-carbon technology Distribution

Variables Wave 4 Wave 10 Frequency Percent
SOLARPV No No 23,635 93.91

Yes No 148 0.59
No Yes 926 3.68
Yes Yes 458 1.82

SOLARHEAT No No 24,587 97.70
Yes No 117 0.46
No Yes 267 1.06
Yes Yes 196 0.78

HYBRIDEV No No 24,513 97.40
Yes No 45 0.18
No Yes 562 2.23
Yes Yes 47 0.19

11 Table A2 in the Appendix presents the corresponding inequality results
(based on eq. 2 and 3 in our Methodology and Data section) from dissimilarity
indexes applied to predictions from Logit, rather than Probit, regression models
as in our base-case presented in Table 2. The socio-economic inequality in LCTs
adoption results from our sensitivity analysis using Logit regression models
(Table A2 in the Appendix) are practically identical to those presented in
Table 2.
12 As defined using the predicted counterfactual of our outcome variables in
equation (3).
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ranging between 93.9 % and 97.7 %; persistent adopters (“Yes, Yes”
sequences) constitute between 0.2 % and 1.8 % of our sample across the
LCT measures. Turning to sequences reflecting transitions over time,
transitions towards adoption of LCT from non-adoption at the baseline
(“No, Yes” sequences in Table 4) are the dominant sequences. For
example, about 3.7 % of our sample reported no solar panels for elec-
tricity at the baseline (Wave 4) but have adopted this technology at
Wave 10; the proportion transitioning to the adoption of solar for water
heating and the ownership of low-carbon vehicles is about 1.1 % and 2.2
%, respectively.

Fig. 1 presents estimates of socioeconomic inequality measures when
restricting our sample to certain longitudinal sequences of LCT adop-
tion.13 For all our LCT adoption outcomes, socioeconomic inequalities
are systematically higher when considering the sample of persistent
adopters and non-adopters (“NNYY”) compared to the full sample for
Waves 4 and 10 (presented in Table 2 and as “Main Sample (Table 2)” in
Fig. 1 for comparison purposes). This shows that socioeconomic in-
equalities are much larger for those who do not make LCT adoption
transitions over time. It should be noted that, as expected, the increased
socioeconomic inequalities observed when restricting our sample to
persistent adopters and non-adopters (“NNYY”) are identical in both
Waves 4 and 10, because there are no variations in the outcome vari-
ables and given that time-invariant set of circumstances are employed.

To provide insights on what drives the aforementioned larger so-
cioeconomic inequalities for persistent adopters and non-adopters, we
augment our sample of persistent adopters and non-adopters (“NNYY”)
to include (separately) those transiting to a) non-adoption (“NNYYYN”)
and b) adoption of LCTs (“NNYYNY”).14 Fig. 1 shows the impact of
augmenting the sample of persistent non-adopters and adopters with
respondents transitioning towards adopting an LCT between Waves 4
and 10 (“NNYYNY”). The socioeconomic inequality measures observed
for the “NNYYNY” sub-sample follow similar patterns to those observed
for our full sample, confirming higher socioeconomic inequalities in
Wave 4 compared to Wave 10. Specifically, when comparing inequality
results (across all LCT measures) between the “NNYY” and “NNYYNY”

sub-samples, a substantial reduction in inequality is evident in the
“NNYYNY” sub-sample for Wave 10 relative to the “NNYY” results. This
suggests that the new adopters at Wave 10 tend to make LCT adoption
less unequally distributed across our predetermined socioeconomic
circumstances; this is also reflected in the observed broadly similar
inequality patterns between “NNYYNY” and our “Main Sample
(Table 2)” for both Waves 4 and 10 (Fig. 1).

On the other hand, Fig. 1 also shows a marked increase in LCT in-
equalities in Wave 10 when augmenting the sample of persistent non-
adopters and adopters with those transitioning to non-adoption
(“NNYYYN”) across all LCTs compared to our “Main Sample” results.
Hence, we may infer that the more disadvantaged individuals were
unable to retain LCTs, as inequalities increase in Wave 10 when re-
spondents who relinquished LCTs over time are included.

Overall, these results seem to indicate that the observed reduction in

inequalities over time (between Waves 4 and 10) in the main sample
(Table 2) is driven by those displaying transitory LCT adoption patterns
between Waves 4 and 10, and more specifically those who recently
adopted LCTs. The latter can be inferred by the similarity between the
“NNYYNY” and the main sample results for both Waves 4 and 10 in
Fig. 1 and given that the respondents who relinquished LCTs between
the two waves are likely to be mostly socioeconomically disadvantaged.

Finally, the Shapley-Shorrocks decomposition is implemented to
explore the underlying sources of socioeconomic inequality in those who
never change their LCT adoption patterns (i.e., the persistent adopters
and non-adopters) – this is of particular interest given that higher so-
cioeconomic inequality is observed for this sub-sample of the popula-
tion. The corresponding decomposition results are presented in
Table 5.15

Table 5 shows that birth cohort, parental occupation, and parental
education are the top three sources of the higher socioeconomic in-
equalities observed in the adoption of solar panels for the use of elec-
tricity (SOLARPV) in the sample of persistent adopters and non-
adopters. In contrast, parental occupation, parental education, birth
cohort and an individual’s education are the key contributing factors to
the observed inequalities in solar water heating (SOLARHEAT).

For low-carbon vehicles’ ownership (Table 5, Column 3), parental
occupation, an individual’s education and parental education are the
first, second and third contributing factors in order of magnitude.
Compared to the corresponding decomposition results for Wave 10 in
our full sample, we observe a notable shift towards a larger contribution
of parental occupation and a reduced contribution of an individual’s
own education when excluding any individuals who changed their
adoption pattern (Table 5, Column 3 vs Table 3, Column 3).

4. Discussion and conclusions

The adoption of LCTs by residential consumers is a cornerstone of the
UK’s target of net zero carbon emissions by 2050. However, the adop-
tion of LCTs may not be equally distributed across socioeconomic groups
in the UK population. Using a set of predetermined socioeconomic fac-
tors, we identified systematic and relatively large (in magnitude) so-
cioeconomic inequalities in the adoption of LCTs. Our findings add to
the existing literature by revealing that the socioeconomic inequality in
LCT adoption is decreasing over time: for all LCTs considered (solar
photovoltaics for electricity, solar water heating, and hybrid/electric
vehicles) our measures of socioeconomic inequality decreased over the
last decade while remaining highly statistically significant.

Socioeconomic inequality has fallen for solar water heating and solar
panels for electricity over the last decade (about a 28 % reduction in
their inequality levels). This could lead to important policy implications
not least because heating forms the largest share of UK household energy
bills. The percentage reduction in socioeconomic inequality in the
adoption of hybrid/electric vehicles is lower (22 %) than for the other
LCTs over the same time period. The UK government still subsidises
some types of EVs at the point of sale, but these subsidies could be better
targeted towards individuals (or communities) in disadvantaged socio-
economic circumstances. For example, the plug-in van grant, offering a
discount on the price of new low-emission vehicles, and the govern-
ment’s subsidy towards the cost of homeplace charge-points for people
living in flats are mainly independent of the socioeconomic status of the
recipients (HM Government, 2021b). Our analysis, revealing socioeco-
nomic inequality in EV ownership, suggests that they are still more likely
to be adopted by the higher socioeconomic groups; thus, the imple-
mentation of unconditional subsidisation schemes may not sufficiently

13 A table of the corresponding results is available in the Appendix (Table A9).
As a sensitivity analysis, the corresponding inequality results based on
dissimilarity indexes applied to predictions from Logit regression models are
presented in Table A10 in the Appendix. These results are practically identical
to our base-case results presented in Figure 1 and Table A9 in the Appendix.
14 This analysis allows us to compare inequality results of the sub-sample of
persistent adopters/non-adopters augmented with those transiting to LCTs non-
adoption (NNYYYN) as well as the sub-sample of persistent adopters/non-
adopters augmented with those transiting to LCT adoption (NNYYNY) with
our main sample results. Thereby allowing for inferences about the role of LCT
transistors (to adoption vs to non-adoption) when exploring the observed
evolution of socioeconomic inequality patterns over time. Sample size prevents
us from analysing socioeconomic inequality for the LCT transistors to adoption
vs non-adoption itself (i.e., estimate socioeconomic inequality separately for the
LCT transistors to adoption vs the LCT transistors to non-adoption).

15 As noted earlier (and expected), socioeconomic inequalities are identical
for both Waves 4 and 10 when restricting our sample to persistent adopters and
non-adopters and, thus, the same holds for the corresponding decomposition
results.
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increase take-up among disadvantaged socioeconomic groups. On the
other hand, more targeted policy interventions for those of lower so-
cioeconomic position, broader policies covering more LCTs and policies
to increase awareness of the benefits of LCTs may be more effective in
mitigating socioeconomic inequalities in the adoption of LCTs which,
although reduced over time, are still more prevalent among those from a
more disadvantaged socioeconomic background.

By exploiting the availability of longitudinal data, we established
further important empirical findings: a) socioeconomic inequality is
highest for those persistently adopting (innovators) and those persis-
tently not adopting; b) the innovators that relinquished their LCTs over
time are more likely to experience disadvantaged socioeconomic cir-
cumstances; and c) more recent adopters (early-adopters) contributed to
the reduced socioeconomic inequality in LCT adoption over the last
decade. This last observation would suggest that the low-carbon tran-
sition is being increasingly made by more disadvantaged individuals.

The decomposition analysis of the observed socioeconomic
inequality in LCT adoption shows that while birth cohort, own educa-
tion, parental education and parental occupation remain the four main
contributors, gender and ethnicity represent a smaller but growing share
of socioeconomic inequality. These results reveal the total contribution
of predetermined factors in shaping inequalities in LCT adoption — via
their direct and indirect effects on people’s later life efforts and socio-
economic circumstances that may affect LCT adoption.

From a normative point of view, inequalities in LCT adoption which
are driven by socioeconomic background during childhood are consid-
ered unfair sources of inequality leading to calls for regulatory

interventions. The limited related literature aligns broadly with our
findings, suggesting, for instance, that early-life education can serve as a
pathway to improving technology adoption (Kämpfen and Maurer,
2018). Hence a multifaceted approach to policy design which accounts
for intergenerational effects is necessary to support the low-carbon
transition (Schot and Kanger, 2018).

Our findings also add to the growing debate on the potential eco-
nomic (in)efficiency of individual uptake of LCTs, and on the problems
created for vulnerable consumers by these inefficiencies compared to
the effects of an unequal distribution of LCTs. For example, in the
context of solar panel adoption, rather than advocate for solar panels for
individual households, Borenstein (2022) argues for a shift towards
community or utility-scale installations; these community/utility-scale
installations could alleviate the burden of costly adoption and help to
reduce energy bills. Other scholars suggest that targeted cost-based in-
terventions could be introduced to level the playing field (Best et al.,
2021; Ravigné et al., 2022). It is crucial therefore to promote LCT
adoption by the most vulnerable, either at the household or community
level, not least because socioeconomic inequality in LCTs may hinder
successful pathways to carbon abatement.

Our study is not free of limitations and should be viewed as an
attempt to measure socioeconomic inequality in LCT adoption and its
underlying sources, rather than providing a causal analysis of the link
between adverse circumstances and LCT adoption. Endogeneity con-
cerns may arise, for example, due to the omission of relevant unob-
servable circumstances, although we employ a set of carefully selected
predetermined variables. Even in the presence of such unobserved cir-
cumstances, our inequality measures can be interpreted as lower-bound
estimates of the overall inequality due to all (observed and unobserved)
circumstances (Davillas and Jones, 2020; Ferreira and Gignoux, 2011).
Exploring the role of socioeconomic inequalities in the adoption of en-
ergy efficiency measures is beyond the scope of the present paper, as the
relevant data is currently unavailable in UKHLS. Nonetheless, this is a
worthy avenue for future research given the need for improved energy
efficiency in order to achieve net zero targets.

Finally, it is important to emphasise that the presence of socioeco-
nomic inequalities in LCT adoption may exacerbate broader socioeco-
nomic inequalities by limiting the ability of the most disadvantaged to
invest in technology which could lower their energy costs. Our results
lead us to support policies targeting specific disadvantaged socioeco-
nomic groups; this is not only crucial to mitigate the observed in-
equalities in LCT adoption but also relevant in promoting energy
efficiency and resilience to high energy prices as we transition towards a

Fig. 1. Socioeconomic inequality of LCT adoption: analysis by subsets of longitudinal adoption patterns.
Note: This figure presents estimates of socioeconomic inequality measures when restricting our sample to specific longitudinal sequences of adoption of LCTs. For
each Panel, corresponding to each of our LCT adoption outcomes, the results under the label “Main Sample (Table 2)” present our socioeconomic inequality results
for our main sample separately for Wave 4 and Wave 10 (also available in Table 2). Then, we present socioeconomic inequality results when focusing only on those
who are persistently adopters/non-adopters (NNYY) – as they are the same individuals and we employ time invariant predetermined circumstances, these results are
by definition identical for both Wave 4 and Wave 10. Under the label “NNYYYN” we present inequality results augmenting the sample of persistent adopters/non-
adopters (NNYY) to include those transiting to non-adoption; these results are presented separately for the Wave 4 and Wave 10 samples. Finally, under the label
“NNYYNY” we present inequality results (separately for Wave 4 and 10) augmenting the sample of persistent adopters/non-adopters (NNYY) to include those
transiting to LCTs adoption.

Table 5
Decomposition of socioeconomic inequality (Dissimilarity Indices) in measures
of adoption of low-carbon technology: sub-sample constrained to persistent
adopters/non-adopters (YES, YES; NO, NO).
Specifications SOLARPV

(1)
SOLARHEAT
(2)

HYBRIDEV
(3)

θI 0.317 0.425 0.408
Contributions to inequality (%)

Gender 5.44 % 5.94 % 2.49 %
Birth cohort 49.24 % 16.66 % 10.68 %
Ethnicity 6.74 % 9.04 % 0.52 %
Education 14.71 % 13.99 % 19.90 %
Parental occupation 16.12 % 31.57 % 48.16 %
Parental education 7.75 % 22.80 % 18.24 %
Total 100 % 100 % 100 %
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Appendix A. Appendix

Table A1
Variables’ definitions and mean values (balanced sample).

Mean
Definition

Gender
FEMALE (reference) 1 if female; 0 otherwise 0.588
MALE 1 if male; 0 otherwise 0.412
Birth cohort
BEFORE-1934 (reference) 1 if born before 1934; 0 otherwise 0.045
1935–1944 1 if born between 1935 and 1944; 0 otherwise 0.149
1945–1954 1 if born between 1945 and 1954; 0 otherwise 0.252
1955–1964 1 if born between 1955 and 1964; 0 otherwise 0.236
1965–1974 1 if born between 1965 and 1974; 0 otherwise 0.197
1975–1984 1 if born between 1975 and 1984; 0 otherwise 0.094
AFTER_1985 1 if born after 1985; 0 otherwise 0.028
Ethnicity
NON-WHITE (reference) 1 if non-white; 0 otherwise 0.085
WHITE 1 if white; 0 otherwise 0.915
Education
NOQUALS (reference) 1 if no qualifications; 0 otherwise 0.309
BASICQUALS 1 if basic qualifications; 0 otherwise 0.322
OLEVELS 1 if O-level qualification; 0 otherwise 0.180
ALEVELS 1 if A-level qualification; 0 otherwise 0.096
DEGREE 1 if degree qualification; 0 otherwise 0.092
Parental occupation
MOTHER-OCCUPATION- NOTWORKING 1 if mother was not working (when respondent was 14), 0 otherwise 0.417

SLEVEL1 1 if mother’s job was skilled level 1 (when respondent was 14), 0 otherwise 0.065
SLEVEL2 1 if mother’s job was skilled level 2 (when respondent was 14), 0 otherwise 0.055
SLEVEL3 1 if mother’s job was skilled level 3 (when respondent was 14), 0 otherwise 0.183
SLEVEL4(reference) 1 if mother’s job was skilled level 4 (when respondent was 14), 0 otherwise 0.097
MISSING 1 if mother’s job market status is missing, 0 otherwise 0.183

FATHER-OCCUPATION NOTWORKING 1 if father was not working (when respondent was 14), 0 otherwise 0.044
SLEVEL1 1 if father’s job was skilled level 1 (when respondent was 14), 0 otherwise 0.125
SLEVEL2 1 if father’s job was skilled level 2 (when respondent was 14), 0 otherwise 0.283
SLEVEL3 1 if father’s job was skilled level 3 (when respondent was 14), 0 otherwise 0.162
SLEVEL4(reference) 1 if father’s job was skilled level 4 (when respondent was 14), 0 otherwise 0.057
MISSING 1 if father’s job market status is missing, 0 otherwise 0.329

Parental education
HIGHEST EDUCATION NONE (reference) 1 if parents’ highest qualification is left school with no/some qualification, 0 otherwise 0.528

POSTSCHOOL 1 if parents’ highest qualification is post-school/certificate, 0 otherwise 0.254
DEGREE 1 if parents’ highest qualification is degree level, 0 otherwise 0.103
EDUMISSING 1 if parents’ highest is unknown or missing, 0 otherwise 0.115

Notes: Mean values are weighted using sample weights. Balanced sample of UKHLS Waves 4 and 10.
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Table A2
Measures of socioeconomic inequality (Dissimilarity Indices) for the adoption of LCTs: Logit regression
for prediction.
Specifications SOLARPV

(1)
SOLARHEAT
(2)

HYBRIDEV
(3)

Panel A. Wave 4
θI 0.278*** 0.362*** 0.383***

(0.004) (0.003) (0.002)

Panel B. Wave 10
θI 0.203*** 0.260*** 0.291***

(0.005) (0.003) (0.004)
Notes: Bootstrapped standard errors in parentheses (500 replications). Analysis is weighted using sample
weights.
*** p < 0.01.

Table A3
Reduced-form models (Probit and Logit): SOLARPV (Wave 4).

Probit Logit
Coef. Std. Err. Coef. Std. Err.

MALE 0.048 0.035 0.110 0.083
BIRTH COHORT††
1935–1944 0.000 0.100 0.004 0.233
1945–1954 0.020 0.096 0.035 0.223
1955–1964 −0.142 0.098 −0.339 0.231
1965–1974 −0.342*** 0.101 −0.820*** 0.240
1975–1984 −0.607*** 0.114 −1.521*** 0.280
AFTER_1985 −0.327*** 0.109 −0.779*** 0.258
WHITE 0.061 0.061 0.146 0.150
EDUCATION††

BASICQUALS 0.005 0.087 0.013 0.216
OLEVELS 0.144* 0.075 0.352* 0.185
ALEVELS 0.252*** 0.070 0.602*** 0.169
DEGREE 0.291*** 0.074 0.706*** 0.179
MOTHER-OCCUPATION
NOTWORKING 0.113 0.080 0.271 0.193
SLEVEL1 0.079 0.098 0.173 0.237
SLEVEL2 0.106 0.085 0.250 0.204
SLEVEL3 0.142 0.102 0.331 0.244
MISSING 0.130 0.093 0.308 0.225
FATHER-OCCUPATION††

NOTWORKING −0.013 0.093 −0.021 0.218
SLEVEL1 −0.015 0.089 −0.033 0.208
SLEVEL2 −0.096 0.067 −0.213 0.158
SLEVEL3 −0.150*** 0.056 −0.339*** 0.130
MISSING −0.171*** 0.066 −0.393** 0.154
PARENTAL-EDUCATION††

POSTSCHOOL 0.103** 0.046 0.251** 0.109
DEGREE 0.176*** 0.066 0.417*** 0.157
EDUMISSING 0.055 0.052 0.133 0.126
Constant −2.111*** 0.146 −4.050*** 0.350

Likelihood ratio (LR) tests for the covariates included in the Probit and Logit models: p-value = 0.000.
*** p < 0.01; ** p < 0.05; * p < 0.10.
Note: Robust standard errors are presented in the table.

†† For each of these categorical variables, the relevant coefficients are jointly statistically significant at least at the 5 % level.
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Table A4
Reduced-form models (Probit and Logit): SOLARPV (Wave 10).

Probit Logit
Coef. Std. Err. Coef. Std. Err.

MALE 0.071*** 0.026 0.150*** 0.054
BIRTH COHORT††
1935–1944 0.201** 0.083 0.449** 0.190
1945–1954 0.347*** 0.080 0.751*** 0.183
1955–1964 0.368*** 0.081 0.789*** 0.185
1965–1974 0.213** 0.084 0.473** 0.190
1975–1984 0.051 0.092 0.114 0.209
AFTER_1985 −0.011 0.123 −0.012 0.278
WHITE 0.255*** 0.056 0.548*** 0.124
EDUCATION††

BASICQUALS 0.201*** 0.069 0.443*** 0.153
OLEVELS 0.288*** 0.062 0.635*** 0.139
ALEVELS 0.328*** 0.060 0.704*** 0.134
DEGREE 0.353*** 0.062 0.757*** 0.138
MOTHER-OCCUPATION
NOTWORKING 0.046 0.056 0.097 0.116
SLEVEL1 0.075 0.067 0.159 0.138
SLEVEL2 0.036 0.059 0.079 0.122
SLEVEL3 0.096 0.073 0.206 0.151
MISSING 0.039 0.066 0.084 0.138
FATHER-OCCUPATION
NOTWORKING −0.002 0.074 −0.006 0.155
SLEVEL1 0.092 0.066 0.163 0.134
SLEVEL2 0.005 0.050 0.010 0.102
SLEVEL3 −0.028 0.044 −0.061 0.091
MISSING −0.028 0.049 −0.060 0.100
PARENTAL-EDUCATION††

POSTSCHOOL 0.084*** 0.032 0.176*** 0.065
DEGREE 0.154*** 0.047 0.322*** 0.096
EDUMISSING 0.041 0.044 0.068 0.091
Constant −2.416*** 0.122 −4.615*** 0.271

Likelihood ratio (LR) tests for the covariates included in the Probit and Logit models: p-value = 0.000.
*** p < 0.01; ** p < 0.05; * p < 0.10.
Note: Robust standard errors are presented in the table.

†† For each of these categorical variables, the relevant coefficients are jointly statistically significant at least at the 5 % level.

Table A5
Reduced-form models (Probit and Logit): SOLARHEAT (Wave 4).

Probit Logit
Coef. Std. Err. Coef. Std. Err.

MALE 0.046 0.045 0.115 0.114
BIRTH COHORT††
1935–1944 −0.015 0.106 −0.031 0.260
1945–1954 −0.216** 0.104 −0.547** 0.259
1955–1964 −0.258*** 0.107 −0.665*** 0.266
1965–1974 −0.399*** 0.113 −1.009*** 0.281
1975–1984 −0.811*** 0.152 −2.108*** 0.410
AFTER_1985 −0.748*** 0.219 −1.971*** 0.613
WHITE 0.080 0.096 0.193 0.251
EDUCATION††

BASICQUALS 0.178 0.122 0.458 0.334
OLEVELS 0.318*** 0.110 0.859*** 0.300
ALEVELS 0.332*** 0.105 0.890*** 0.287
DEGREE 0.478*** 0.107 1.255*** 0.292
MOTHER-OCCUPATION
NOTWORKING −0.005 0.090 −0.002 0.219
SLEVEL1 −0.120 0.119 −0.321 0.305
SLEVEL2 −0.045 0.098 −0.082 0.242
SLEVEL3 −0.070 0.127 −0.183 0.323
MISSING 0.045 0.110 0.130 0.276
FATHER-OCCUPATION††

NOTWORKING −0.124 0.126 −0.269 0.318
SLEVEL1 −0.018 0.108 −0.014 0.268
SLEVEL2 −0.264*** 0.085 −0.642*** 0.216
SLEVEL3 −0.159** 0.069 −0.370** 0.170
MISSING −0.257*** 0.079 −0.631*** 0.197
PARENTAL-EDUCATION††

POSTSCHOOL 0.158*** 0.055 0.425*** 0.141
DEGREE 0.236*** 0.078 0.593*** 0.193

(continued on next page)
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Table A5 (continued )
Probit Logit
Coef. Std. Err. Coef. Std. Err.

EDUMISSING 0.215*** 0.073 0.550*** 0.186
Constant −2.305*** 0.185 −4.621*** 0.480

Likelihood ratio (LR) tests for the covariates included in the Probit and Logit models: p-value = 0.000.
*** p < 0.01; ** p < 0.05; * p < 0.10.
Note: Robust standard errors are presented in the table.

†† For each of these categorical variables, the relevant coefficients are jointly statistically significant at least at the 5 % level.

Table A6
Reduced-form models (Probit and Logit): SOLARHEAT (Wave 10).

Probit Logit
Coef. Std. Err. Coef. Std. Err.

MALE 0.065 0.053 0.150 0.129
BIRTH COHORT
1935–1944 0.152 0.144 0.382 0.363
1945–1954 0.061 0.143 0.151 0.364
1955–1964 0.062 0.149 0.141 0.376
1965–1974 0.079 0.150 0.171 0.378
1975–1984 −0.002 0.167 −0.030 0.422
AFTER_1985 0.067 0.225 0.145 0.560
WHITE 0.300** 0.116 0.744** 0.305
EDUCATION††

BASICQUALS 0.142 0.142 0.362 0.374
OLEVELS 0.243* 0.129 0.626* 0.337
ALEVELS 0.268** 0.123 0.685** 0.326
DEGREE 0.315** 0.127 0.800** 0.335
MOTHER-OCCUPATION
NOTWORKING 0.197 0.127 0.446 0.384
SLEVEL1 0.045 0.145 0.081 0.358
SLEVEL2 0.056 0.127 0.127 0.314
SLEVEL3 −0.004 0.161 −0.008 0.398
MISSING 0.234* 0.136 0.551* 0.335
FATHER-OCCUPATION††

NOTWORKING −0.353** 0.165 −0.861** 0.430
SLEVEL1 −0.098 0.144 −0.256 0.352
SLEVEL2 −0.209** 0.105 −0.502** 0.249
SLEVEL3 −0.010 0.087 −0.024 0.206
MISSING −0.266*** 0.095 −0.643*** 0.227
PARENTAL-EDUCATION††

POSTSCHOOL 0.109* 0.062 0.269* 0.152
DEGREE 0.188** 0.094 0.441* 0.226
EDUMISSING 0.093 0.085 0.227 0.210
Constant −2.733*** 0.230 −5.572*** 0.588

Likelihood ratio (LR) tests for the covariates included in the Probit and Logit models: p-value = 0.000.
*** p < 0.01; ** p < 0.05; * p < 0.10.
Note: Robust standard errors are presented in the table.

†† For each of these categorical variables, the relevant coefficients are jointly statistically significant at least at the 5 % level.

Table A7
Reduced-form models (Probit and Logit): HYBRIDEV (Wave 4).

Probit Logit
Coef. Std. Err. Coef. Std. Err.

MALE −0.011 0.072 −0.045 0.214
BIRTH COHORT
1935–1944 0.037 0.249 0.196 0.762
1945–1954 0.009 0.237 0.084 0.720
1955–1964 0.044 0.233 0.202 0.704
1965–1974 −0.016 0.236 0.015 0.709
1975–1984 −0.268 0.244 −0.694 0.744
AFTER_1985 −0.117 0.247 −0.249 0.747
WHITE −0.048 0.102 −0.115 0.301
EDUCATION††

BASICQUALS 0.410* 0.235 1.353* 0.796
OLEVELS 0.208 0.231 0.713 0.795
ALEVELS 0.511** 0.210 1.667** 0.726
DEGREE 0.668*** 0.215 2.093*** 0.737
MOTHER-OCCUPATION

(continued on next page)
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Table A7 (continued )
Probit Logit
Coef. Std. Err. Coef. Std. Err.

NOTWORKING 0.143 0.152 0.431 0.448
SLEVEL1 0.278 0.180 0.793 0.531
SLEVEL2 0.189 0.157 0.558 0.462
SLEVEL3 −0.021 0.210 −0.051 0.636
MISSING 0.029 0.181 0.067 0.544
FATHER-OCCUPATION
NOTWORKING 0.036 0.182 0.133 0.531
SLEVEL1 −0.188 0.210 −0.515 0.650
SLEVEL2 −0.034 0.135 −0.088 0.394
SLEVEL3 0.066 0.117 0.204 0.336
MISSING −0.142 0.136 −0.396 0.407
PARENTAL-EDUCATION
POSTSCHOOL 0.119 0.091 0.371 0.271
DEGREE 0.223* 0.121 0.642* 0.348
EDUMISSING 0.128 0.105 0.362 0.314
Constant −3.273*** 0.397 −7.608*** 1.276

Likelihood ratio (LR) tests for the covariates included in the Probit and Logit models: p-value = 0.000.
Note: Robust standard errors are presented in the table.
*** p < 0.01; ** p < 0.05; * p < 0.10.

†† For each of these categorical variables, the relevant coefficients are jointly statistically significant at least at the 5 % level.

Table A8
Reduced-form models (Probit and Logit): HYBRIDEV (Wave 10).

Probit Logit
Coef. Std. Err. Coef. Std. Err.

MALE 0.093** 0.040 0.217** 0.093
BIRTH COHORT††
1935–1944 0.095 0.150 0.272 0.393
1945–1954 0.245** 0.143 0.641* 0.373
1955–1964 0.284** 0.144 0.729** 0.364
1965–1974 0.284** 0.145 0.729** 0.365
1975–1984 0.247* 0.149 0.662* 0.385
AFTER_1985 0.062 0.162 0.221 0.416
WHITE −0.196*** 0.055 −0.431*** 0.123
EDUCATION††

BASICQUALS 0.099 0.117 0.235 0.299
OLEVELS 0.109 0.104 0.268 0.266
ALEVELS 0.213** 0.097 0.520** 0.248
DEGREE 0.426*** 0.097 1.011*** 0.246
MOTHER-OCCUPATION
NOTWORKING 0.052 0.080 0.111 0.179
SLEVEL1 0.067 0.101 0.125 0.232
SLEVEL2 0.054 0.085 0.108 0.191
SLEVEL3 −0.142 0.117 −0.348 0.274
MISSING 0.013 0.097 0.017 0.223
FATHER-OCCUPATION
NOTWORKING −0.027 0.101 −0.045 0.231
SLEVEL1 −0.076 0.106 −0.169 0.248
SLEVEL2 −0.106 0.076 −0.253 0.176
SLEVEL3 −0.005 0.065 −0.002 0.147
MISSING −0.165* 0.073 −0.381** 0.169
PARENTAL-EDUCATION†

POSTSCHOOL −0.004 0.052 −0.006 0.123
DEGREE 0.157** 0.067 0.323** 0.151
EDUMISSING −0.003 0.059 −0.012 0.139
Constant −2.274*** 0.186 −4.504*** 0.470

Likelihood ratio (LR) tests for the covariates included in the Probit and Logit models: p-value = 0.000.
*** p < 0.01; ** p < 0.05; * p < 0.10.
Note: Robust standard errors are presented in the table.

†† For each of these categorical variables, the relevant coefficients are jointly statistically significant at least at the 5 % level.
† The relevant coefficient for the parental education categorical variable are jointly statistically significant at the 10 % level.
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Table A9
Socioeconomic inequality (Dissimilarity Indices) in LCT adoption: constrained to different subsets of
longitudinal adoption patterns.
Specifications SOLARPV

(1)
SOLARHEAT
(2)

HYBRIDEV
(3)

Panel A. Wave 4
θI: ALL 0.277*** 0.362*** 0.382***

(0.004) (0.003) (0.002)
θI: NNYY 0.317*** 0.425*** 0.408***

(0.004) (0.003) (0.002)
θI: NNYYYN 0.279*** 0.363*** 0.387***

(0.004) (0.002) (0.002)
θI: NNYYNY 0.316*** 0.423*** 0.404***

(0.004) (0.002) (0.002)

Panel B. Wave 10
θI ALL 0.203*** 0.260*** 0.298***

(0.005) (0.003) (0.004)
θI: NNYY 0.317*** 0.425*** 0.408***

(0.004) (0.002) (0.002)
θI: NNYYYN 0.318*** 0.424*** 0.408***

(0.004) (0.002) (0.002)
θI: NNYYNY 0.202*** 0.26*** 0.298***

(0.005) (0.003) (0.004)
Notes: Bootstrapped standard errors in parentheses (500 replications). Analysis is weighted using sample
weights.
*** p < 0.01.

Table A10
Socioeconomic inequality (Dissimilarity Indices) in LCT adoption using Logit regression for prediction:
constrained to different subsets of longitudinal adoption patterns.
Specifications SOLARPV

(1)
SOLARHEAT
(2)

HYBRIDEV
(3)

Panel A. Wave 4
θI: ALL 0.278*** 0.362*** 0.383***

(0.004) (0.003) (0.002)
θI: NNYY 0.318*** 0.424*** 0.406***

(0.004) (0.002) (0.002)
θI: NNYYYN 0.280*** 0.363*** 0.388***

(0.004) (0.003) (0.002)
θI: NNYYNY 0.316*** 0.422*** 0.402***

(0.004) (0.003) (0.002)

Panel B. Wave 10
θI ALL 0.203*** 0.260*** 0.291***

(0.005) (0.003) (0.004)
θI: NNYY 0.319*** 0.424*** 0.405***

(0.004) (0.002) (0.002)
θI: NNYYYN 0.318*** 0.424*** 0.408***

(0.004) (0.002) (0.002)
θI: NNYYNY 0.203*** 0.260*** 0.292***

(0.005) (0.003) (0.004)
Notes: Bootstrapped standard errors in parentheses (500 replications). Analysis is weighted using sample
weights.
*** p < 0.01.
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Fig. A1. Decomposition of socioeconomic inequality in LCT adoption outcomes.

Appendix B. Supplementary data

Supplementary data to this article can be found online at https://doi.org/10.1016/j.eneco.2025.108244.
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