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Abstract 
Technical issues in respect of the observance of detailed balance in the calculation of rate 
coefficients in the circumstellar environment are discussed. The central problem is that of two 
competing heat baths that are at different temperatures (vibrational disequilibrium), and it is not 
immediately clear as to how detailed balance should be applied. This issue is discussed and a 
possible approach to the problem presented. 

Introduction 

In a recent article [1] the problem of silicate formation in the outflow from an oxygen-rich AGB 
star was discussed. Fe–Mg silicate dust is observed to form between two and three stellar radii 
from these stars. The discussion focused on one reaction in particular, that of water with silicon 
dioxide to form meta-silicic acid: 

 H2O + SiO2 ⇄  H2SiO3 (1) 

This association reaction is thought to be one of the first steps in formation of silicates. As 
discussed in [1] the prevailing conditions in the ISM at two stellar radii from the star are such that 
the collision temperature is of the order of 1500 K and at this temperature the equilibrium for 
reaction (1) lies strongly in favour of the reactants. A further complication is that in the gas phase 
the nascent adduct must be stabilized or it will simply fall apart again. A recombination reaction 
such as (1) is normally facilitated by stabilization through collision with a bath gas present in 
excess. In the ISM the concentration of bath gas (H2) is very low (< 0.1 Pa). This has the 
consequence that the formation of the adduct, even if equilibrium was favourable, will be very 
slow. Given this, the question arises how could silicic acid be formed under these conditions? 

In Ref. [1] a possible mechanism was advanced in which coupling to the electromagnetic field 
may represent an alternative stabilization mechanism, that is the presence of a radiation field 
and low gas densities leads to a situation whereby cooling can take place leading to the adducts 
being formed that might not otherwise exist. For this mechanism to work the radiation field at two 
stellar radii must be at an apparent temperature significantly lower than that of the thermal 
collision temperature. It was shown that this mechanism can lead to the stabilization of the 
adduct, a process referred to as optical cooling, leading to the formation of H2SiO3. 
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The purpose of this note is to present some of the underlying technical difficulties associated 
with the proposed mechanism, specifically those related to detailed balance, and show the 
approach taken to resolve them, allowing effective rate coefficients to be obtained. 

Theory 

As discussed in the introduction, the kinetic temperature at two stellar radii is around 1500 K and 
at this temperate the equilibrium of reaction (1) lies strongly in favour of the left-hand side, the 
dissociated state, and so it would appear that this cannot be a route to silicate formation. In Ref. 
[1] a possible solution to this difficulty was presented where the system was not only coupled to 
a collision (thermal) bath of 1500 K but also a radiation bath at a different temperature. In 
terrestrial experiments the impact of radiation is usually neglected as it is small relative to 
collision transitions, but at the concentrations of the bath gas in the ISM (typically 1011molecules 
cm-3 at two stellar radii) the rates of optical transitions are comparable with rate of collisional 
transitions.  

The apparent temperature of the radiation bath at approximately two stellar radii (one stellar 
radius from the surface of the star) was inferred from the vibrational energy and found to be 660 
K, significantly different from that of the collision bath. It is also significantly different from the 
surface temperature of the star which is approximately 2500 K. The apparent radiation 
temperature emerged from master equation calculations, the details of which are described 
shortly. For now, it is sufficient to say that this value is consistent with the observations of Fonfría 
et al [2,3]. 

This difference in bath temperatures is a situation that is clearly not thermodynamically stable: 
in the long term both baths must eventually reach the same temperature (at maybe 100 stellar 
radii) through various mechanisms including adiabatic expansion and radiative emission. 
However, it appears to be a situation that persists for a sufficiently long time so that, to a first 
approximation, the baths can be regarded as being at separate temperatures. Adopting this 
approximation immediately provokes several questions connected with detailed balance: what 
temperature should be used in defining the detailed balance relations and what temperature 
should be used to define the equilibrium constant for the reaction (1)? 

To attempt to address these questions a modified master equation (ME) model [4], as proposed 
in Ref. [1], was developed. Strictly speaking, reaction (1) would lead to a non-linear ME, which is 
difficult to solve and extract rate coefficients from. This difficulty can be addressed in several 
ways, for example by the methods developed by Klippenstein, Miller and co-workers [5]. Here, 
the approximation developed by Pilling and co-workers of assuming that one of the reactants, in 
the present case H2O, can be assumed to be in relative excess concentration will be adopted 
[4,6]. This approximation allows a collisional ME for reaction (1) to be written as follows: 

 ddt ( 𝝆𝑥SiO2) = (𝑴 − 𝑲 𝝋𝒌 −𝑘𝑏[H2O]) ( 𝝆𝑥SiO2) 
(2) 

   

where 𝝆 is the rovibrational distribution of H2SiO3, 𝑥SiO2 is the mole fraction of SiO2, 𝑲 is a diagonal 
matrix of unimolecular microcanonical rate coefficients, 𝒌 is a row vector of same,[H2O] is the 
concentration of H2O, assumed to be in excess and 𝝋 is the partitioning of the forward flux derived 
from detailed balance. In previous work the matrix 𝑴 represented the collision transition operator 
and was subject to detailed balance, but here a modification is made to give a radiation-collision 
transition operator: 



 𝑴 = 𝜔(𝛽𝑐 , [𝐺])[𝑷(𝛽𝑐) − 𝑰] + 𝑹(𝛽𝑟) (3) 
   

where 𝛽𝑐 = 1/𝑘𝑇𝑐 , 𝑇𝑐  being the collision temperature, 𝛽𝑟 is the corresponding quantity for the 
radiation transitions and [𝐺] is the concentration of the collision bath gas. The matrix 𝑷(𝛽𝑐) 
contains the collisional transition probabilities, which are usually modelled using some form of 
empirical model such as the exponential down model, details of which have been discussed 
elsewhere [4]. The coefficient 𝜔(𝛽𝑐 , [𝐺]) is the collision frequency. The matrix 𝑹(𝛽𝑟) represents 
the optical transitions, which are determined by the Einstein 𝐴𝑖𝑗(𝜐) and 𝐵𝑖𝑗(𝜐) coefficients 
associated with each frequency, 𝜐: 

 𝐴𝑖𝑗(𝜐) =  8𝜋𝜐3𝑐2 𝜎𝑖𝑛𝑡  ;  𝐵𝑖𝑗(𝜐) =  𝑐28𝜋ℎ𝜐3 𝐴𝑖𝑗(𝜐)  
 

(4) 

At equilibrium (and in the absence of collision) these coefficients are related by the detailed 
balance expression, 

 𝐵𝑖𝑗𝜌(𝜐, 𝛽𝑟)𝑏𝑗(𝛽𝑟) = (𝐵𝑗𝑖 𝜌(𝜐, 𝛽𝑟) + 𝐴𝑗𝑖 )𝑏𝑖(𝛽𝑟) (5) 
   

where 𝜌(𝜐, 𝛽𝑟)is the radiation density for the frequency 𝜐 and 𝛽𝑟 and 𝑏𝑖(𝛽𝑟) is the Boltzmann 
distribution associated with the reciprocal temperature 𝛽𝑟. Finally, the overall transition matrix of 
the ME on the RHS of Eq. (2) must obey certain constraints: it must conserve mass and its 
elements must obey detailed balance. This latter constraint is exploited in the solution of the ME 
below. 

The functional form of 𝜌(𝜐, 𝛽𝑟) that satisfies Eq. (5) is the Planck distribution. At the stellar surface 
where the temperature is of the order of 2500 K the IR radiation field can, to a good approximation, 
be assumed to be the Planck distribution. However, at a distance from the surface, while the ratio 
between the intensities of any two frequencies remains the same, the absolute intensity of the 
radiation field will decline, and simple geometrical arguments suggest that this decline should 
follow an inverse square model. It therefore follows that 𝜌(𝜐, 𝛽𝑟) at a significant distance from the 
surface cannot, strictly speaking, be a Planck distribution of 2500 K. In Ref. [1], the intensities of 
the radiation field for the vibrational frequencies of H2SiO3 were inferred from the MARCS [7] 
model, by rescaling a Planck distribution of 2500 K to match the MARCS model and used directly 
in a master equation model. In the region where the collision relaxation process is very slow, Eq. 
(5) will determine the approximate equilibrium distribution, the reduced intensities driving the 
system to the apparent vibration temperature of 660 K.  

In more general applications, detailed intensities may not be available; however, the detailed 
balance constraint that Eq. (5) imposes requires a Planck distribution. For a given frequency, the 
only other parameter of the Planck distribution is the temperature, but what temperature should 
be used? For the present example, the above discussion suggests that the stellar surface 
temperature cannot be used, but the attenuated intensity of each frequency, based on the stellar 
surface temperature, is available. Following along similar lines to the rescaling described above, 
the temperature of the Planck distribution is the one such that has intensities that match the 
attenuated 2500 K intensities as closely as possible. An exact match is not possible and in 
practice it was found that more weight needs to be given to the lower frequencies of the molecule 
being studied (in this case, H2SiO3). 

Eq. (2) can be solved in several ways, but the method used here is to determine the eigenvalues 
of the operator of the overall matrix on the RHS of Eq. (2). Typically, a preparatory step in finding 



the eigenvalues is the symmetrisation of the matrix 𝑴 by a Boltzmann distribution, a procedure 
that follows from detailed balance. However, it is at this point that the difficulties described above 
become apparent as it is seen that the operator 𝑴 depends on two temperatures, so which 
Boltzmann distribution should be used? Furthermore, implicit in Eq. (2) is the equilibrium 
constant for the reaction but because of the two temperatures there are two values for this 
quantity; again, which one should be used? 

To make progress it is proposed that there is an effective single temperature for the reaction. At 
the extremes of [𝐺] one or other mechanism will dominate and so the effective temperature is 
straightforward to define. For intermediate values of [𝐺] an alternative approach is needed. In the 
absence of reaction, the distribution of 𝝆 will tend to a stationary state, 𝒇, which is the non-trivial 
solution to the equation, 

 𝑴𝒇 = [𝜔(𝛽𝑐 , [𝐺])[𝑷(𝛽𝑐) − 𝑰] + 𝑹(𝛽𝑟)]𝒇 = 𝟎 (6) 
 

It is likely, and close to the limiting cases of [𝐺] almost certain, that 𝒇 will be similar in form to a 
Boltzmann distribution. So, an initial guess at this distribution would be a Boltzmann distribution, 𝒃(𝛽), of some, as yet unspecified temperature 𝛽. Inserting this initial guess into the RHS of Eq. 
(4) gives, 

 𝑴𝒃(𝛽) = 𝒓 (7) 
   

where the vector 𝒓 , the residual, is a function of 𝛽 (for fixed 𝛽𝑐, 𝛽𝑟 and [𝐺]). It follows that the 
optimal value of 𝛽 is that which minimizes the magnitude of 𝒓. This value of 𝛽 is then the value 
used as the effective temperature in the remainder of a standard ME calculation. 

Application 

The above development was applied to the reaction system given by Eq. (1). The details of the 
model used are the same as in Ref. [1]. Table 1 lists the frequencies used to calculate the density 
of states for H2SiO3 and the corresponding Einstein A coefficients. The Einstein B coefficients for 
stimulated emission were calculated from Eq. (4) and the corresponding absorption coefficients 
follow from Eq. (5). The frequencies were obtained from the Gaussian suite of programs [8] using 
the B3LYP/6-311+g(2d,p) level of theory. The rotational constants for all species were obtained 
from the equilibrium geometries. The two H-O-Si=O internal rotors were treated as independent 
hindered rotors. The bath gas was taken to be H2 (the most abundant species in the ISM). The 
collisional energy transfer probability was modelled as exponential down with average energy 
transferred in a deactivating collision, 〈∆𝐸〉𝑑(𝑇), given by, 

 〈∆𝐸〉𝑑(𝑇) = 200 ( 𝑇300 𝐾)0.25  cm−1
 

(8) 

   

where 𝑇 is the (effective) temperature. The radiation field, 𝜌(𝜐, 𝛽𝑟), was modelled using a Planck 
distribution. The microcanonical rate coefficients that appear in Eq. (2) are obtained using the 
inverse Laplace transformation method applied to the high-pressure association rate coefficient 
using an estimated based on long-range transition state theory [9]:  

 𝑘𝑟𝑒𝑐,∞ = 8.7 × 10−10 ( 𝑇1200)1/6  cm3molecule−1s−1
 

(9) 

 



Mode Number Frequency/cm-1
 Aij/s-1

 

1 313.19 0.4.68 

2 321.27 0.038 

3 361.07 0.21 

4 423.91 - 

5 492.2 3.57 

6 820.78 3.5 

7 836.79 7.24 

8 907.47 8.13 

9 1019.81 5.75 

10 1278.14 18.8 

11 3859.43 243 

12 3861.1 1.91 

Table 1 Frequencies and Einstein A coefficients for H2SiO3 

For applying Eq. (7) a definition of the magnitude of 𝒓 is required. Perhaps the most obvious 
candidate is the standard Euclidean norm: 

 ‖𝒓‖2 = √𝑟12 + 𝑟22 + ⋯ + 𝑟𝑛2  
(10) 

An alternative magnitude definition, and one which is more suitable when dealing with 
probabilities, is the one-norm: 

 ‖𝒓‖1 = ∑|𝑟𝑖|𝑛
𝑖=1  

(11) 

The general structure of the vector 𝒓 reflects the Boltzmann distribution and so those elements 
of the vector associated with lower energies will be the largest values. This has the consequence 
that the ‖𝒓‖2 magnitude tends to give these elements more weight, while the ‖𝒓‖1magnitude 
definition tends to weight the elements more evenly. Both these definitions were implemented 
within the MESMER 7.1 code and compared for reaction (1). It was found that there was in fact 
little obvious distinction between these definitions, but as the ‖𝒓‖1 gave a slightly smoother curve  



 

Fig.1 A plot of ‖𝒓‖1as a function of temperature showing a minimum at 916 K 

 

 

this was the definition adopted for all subsequent calculations. Figure 1 shows a plot of ‖𝒓‖1 
against temperature for the conditions of a radiation field at 626 K, a collision temperature at 1583 
K and a bath gas concentration of 1013 molecules cm-3. A minimum is observed at 916 K and this 
is the effective temperature that is used for the determination of the rate coefficients for these 
conditions.  

This algorithm was applied for a series of gas densities and the effective temperature of the 
adduct (H2SiO3) as a function of the gas concentration is shown as the full red line in figure 2 
(which is in the same format as figure 3a of Ref. [1]). There is an increase in the effective 
temperature (and therefore the internal energy) between bath gas concentrations of 1011 
molecule cm-3 and 1015 molecules cm-3. Also plotted on figure 2 are the rate coefficients for the 
dissociation of the adduct as the full black line. For comparison, the regular fall-off curve is 
plotted as the broken black line. As observed earlier, when the radiation field is present the rate 
coefficient declines in the same concentration interval as the change in internal energy, falling to 
the lower radiation limit. Comparison of figure 2 with figure 3a of Ref. [1] shows the same general 
shape but differences in implementation, particularly of the radiation temperature at two stellar 
radii, make a direct comparison difficult. 



 

Fig.2 The effective temperature (full red line) and dissociation rate coefficient of reaction (1) as a function 
of bath gas concentration 

Conclusion 

In this note the technical issues regarding detailed balance in the ISM have been addressed. The 
difficulty that the ISM presents is that there appear to be two heat baths at different temperatures, 
one is the familiar collisional heat bath, the other is the heat bath due to a radiation field. This 
difference in temperatures poses a problem for standard master equation techniques as it is not 
clear which of these temperatures should be used to implement detailed balance. In this work 
the detailed balance issue has been addressed by finding an effective temperature for a given 
collision density. For the present example of reaction (1), this allows the effective adduct 
dissociation rate coefficient to be determined as a function of bath gas concentration. This 
dissociation rate coefficient is expected to decrease with bath gas concentration as a 
consequence of the usual fall-off mechanism, but it is observed that the decline in the rate 
coefficient is even more rapid for certain concentrations of bath gas. This rapid decline of the 
dissociation rate coefficient has the consequence that the equilibrium of reaction (1) is shifted in 
favour of the adduct and so is a possible first step to the production of silicates in the ISM.  

In future work a wider range of conditions will be explored as well as other possible approaches 
to the problem of two temperature baths, such as the local detailed balance approach discussed 
by Maes [10]. 
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