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Review 

Computer-aided chemical engineering research 
advances in precision fermentation
Tom Vinestock1, Michael Short2, Keeran Ward3 and Miao Guo1

Precision fermentation is a promising food production 
technology that uses micro-organisms to produce specific 
proteins, fats, and vitamins, offering a more sustainable 
alternative to animal agriculture. This review explores recent 
advances in computer-aided chemical engineering research 
within precision fermentation, focusing on process systems 
engineering (PSE), process control, and artificial intelligence. 
PSE offers important process synthesis and process 
optimisation tools for fermentation, helping evaluate 
environmental impacts and economic feasibility during design. 
Advanced control strategies, such as soft sensors, can improve 
productivity and yield. Artificial intelligence methods, such as 
surrogate modelling, enable rapid experimentation, process 
optimisation, and scale-up, accelerating development. These 
advances pave the way for precision fermentation to play a 
greater role in the food production system of the future.
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Introduction
Fermentation can be defined as the use of micro-organ-
isms to produce value-added products in the presence of 
an organic carbon source [1]. It is an important industrial 
process used in the production of food, biochemicals, and 
pharmaceuticals [2]. The carbon source, often referred to 

as a substrate, is most commonly a carbohydrate, such as 
glucose, although simpler substrates such as methane can 
also be used [3]. While fermentation has a long history, 
with evidence for wine-making stretching back at least 
7000 years [4], this review will focus on modern, precision 
fermentation, rather than traditional fermentation or bio-
mass fermentation.

Precision fermentation systems are biologically optimised 
to produce specific high-value biomolecules, such as 
proteins, vitamins, enzymes, natural pigments, and fats 
using naturally occurring or genetically modified organ-
isms as microbial ‘factories’ [5]. Because of this, precision 
fermentation lends itself to the production of food com-
ponents that mimic those obtained in traditional animal 
agriculture, such as animal fats and proteins [6]. It can be 
distinguished from biomass fermentation as the desired 
product is a metabolite, rather than the microbial biomass 
itself. Interest in precision fermentation, and the related 
term ‘cellular agriculture’ has increased exponentially in 
recent years. This can be seen as being driven by the 
application of methods developed in the pharmaceutical 
industry to optimise fermentation-based drug production, 
such as metabolic engineering, to the food industry. Ex-
amples of products currently produced by precision fer-
mentation include rennet, an enzyme used in cheese- 
making; whey and casein proteins, components of milk; 
and soy leghemoglobin, a haem analogue used to improve 
the taste of plant-based burgers [7].

Relative to conventional methods of food production, 
fermentation-derived food has several advantages as a 
source of dietary fats and proteins, particularly when 
compared with animal agriculture. On a per-unit protein 
basis, relative to meat, eggs, and dairy, fermentation-de-
rived protein has significantly lower carbon and nitrogen 
emissions [8], reduced land use [9], and lower water use 
[7], largely as a result of microbial fermentation being 
more efficient than livestock at converting carbohydrate- 
based feedstocks into protein. Fermentation also has ad-
vantages in terms of food and health security by decou-
pling food production from animal husbandry. By 
avoiding use of livestock, fermentation-based protein 
production reduces the risk zoonotic infections pose to 
human health [10] and avoids the problems of antibiotic 
pollution [11]. Additionally, fermentation can produce 
vastly more protein per unit area than animal agriculture 
[9], potentially allowing small, densely populated areas to 
be more self-sufficient in protein supply.
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An important distinction in the design, operation, and 
control of fermentation processes is between batch, fed- 
batch, and continuous fermentations. In batch fermen-
tation, all the nutrients available to the micro-organisms 
during the course of the fermentation are present in the 
reactor vessel at the point of inoculation. The system is 
partially closed, with no feeding or discharge [1]. In fed- 
batch operation, the substrate concentration in the re-
actor is controlled over the course of the batch fermen-
tation by varying the rate at which a substrate solution is 
added to the reactor. This avoids substrate inhibition of 
growth and can improve productivity [1]. In continuous 
fermentation, the reactor is fed with a substrate solution, 
as in fed-batch, but product is also drained from the 
reactor on an ongoing basis. Precision fermentation can, 
in theory, be run in any of these three configurations. 
However, research to date has focused on the operation 
and control of batch and fed-batch precision fermenta-
tion, often to produce pharmaceutical products.

Despite widespread adoption of precision fermentation 
to produce high-value products such as vitamins and 
antibiotics, for precision fermentation to become a sig-
nificant part of the food production system, several 
challenges will need to be addressed. Process improve-
ments and scale-up are needed to enable fermentation to 
be cost competitive with conventional alternatives at 
scale; food products such as fats and proteins are much 
less valuable, gram for gram, than pharmaceuticals and 
vitamins, leading to a greater need for cost-efficient 
operation. Indeed, it has been estimated that food fer-
mentations require production titres several orders of 
magnitude higher than those for pharmaceuticals in 

order to be cost competitive with conventionally pro-
duced alternatives [12]. Product development, including 
selection and engineering of novel variants of target 
molecules, is also important to allow fermentation-de-
rived ingredients to compete with a wider set of con-
ventional foods. These challenges may be addressed in 
many different ways, with cost reductions possible 
through improvements in strain development, feedstock 
optimisation, and bioprocess design and operation.

Currently, the majority of precision fermentations rely 
on a small number of legacy hosts, fed on a refined sugar 
substrate, in a continually stirred tank reactor. However, 
strain selection and development could result in higher 
titres and yields, greater robustness, and faster growth, 
making precision fermentation more cost-efficient. 
Strain selection and improvement could be accelerated 
by combining computational modelling, design of ex-
periments, and high-throughput screening to efficiently 
explore the design space. Equally, the use of alternative 
substrates such as agricultural waste products and by- 
products could significantly reduce feedstock costs, one 
of the main costs of manufacture [7], but this relies on 
research and design tools to model the trade-offs of 
different host–substrate–product combinations. This 
cross-disciplinary review provides an overview of recent 
research relevant to precision fermentation. Figure 1
shows common keywords in the range of literature re-
viewed. The perspectives of three different research 
disciplines are considered: process systems engineering 
(PSE), process control, and artificial intelligence (AI). 
Some of the tools and methodologies associated with 
each of these areas are shown in Figure 2. In each 

Figure 1  

Current Opinion in Food Science

Visualisation of keywords from cited works. The frequency of words and phrases in this corpus is indicated by their size. Created using wordclouds. 
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section, research frontiers are highlighted that can ulti-
mately enable a step change in precision fermentation in 
the food industry.

Process systems engineering
Bioprocess design and optimisation is key to both de-
velopment of new fermentation products and improve-
ment of existing fermentation processes. Traditional 
process synthesis and design provides an established set 
of methodologies founded on heuristics driven by che-
mical engineering expertise. These heuristics often se-
parate product design from process synthesis. Product 
design focuses on consumer demand, which in the 
context of precision fermentation may consist of identi-
fying specific desirable biomolecules, such as proteins, 
while process synthesis involves planning and 

optimisation of the operations required to produce effi-
ciently at scale.

Sustainable design considering multiple objectives, such as 
sustainability and profitability, is challenging, as it requires 
comprehensive assessment of the alternative biosynthetic 
pathways and the wider process systems. To address these 
challenges, rigorous methodologies that can embed sus-
tainability metrics into product and process design are 
needed. Heuristic process synthesis (HPS) and process 
optimisation (PO) are key strategies in conceptualising a 
process flowsheet. HPS aims to find a pathway for con-
verting raw materials into useful products, combining 
multiple unit operations [13]. It defines the topology of the 
process and outlines the design strategies that solve the 
desired objectives. While HPS is fast, simple, and provides 
good solutions to process design problems, it requires 

Figure 2  
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Research methodologies/tools relevant to precision fermentation and associated research disciplines.  
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extensive heuristic rules that are sensitive to the emer-
gence of new technologies. On the other hand, PO is a 
more systematic tool to deliver optimal solutions to mul-
tiobjective problems by using mathematical programming 
in the process and product design [14].

Life cycle assessment (LCA) offers a useful tool to 
quantify the environmental impacts of products and 
processes and highlight potential improvement spaces 
for precision fermentation. LCA is now commonplace, 
having been standardised in technical standards such as 
ISO14040/44 [15], and the systems thinking that it has 
brought about has led to reductions in the environmental 
impacts of many processes. Previous studies have high-
lighted that products produced via precision fermenta-
tion result in environmental benefits due to the 
increased yields and increased efficiency particularly 
when the synergies between fermentation and other 
parts of the process are considered [16]. Additionally, 
new market mechanisms may be able to finance novel 
fermentation processes that deliver significant carbon 
reductions but would not otherwise be financially viable 
[17]; if LCA can be used to demonstrate that fermen-
tation can produce environmentally preferable sub-
stitutes for foods such as meat, carbon credits could offer 
a way of monetising this advantage.

To facilitate sustainable design and operation, LCA and 
technoeconomic analysis [18] can be incorporated into 
the process optimisation. More sophisticated algorithms 
have increased the speed and robustness of PO, enabling 
solutions to process design that simultaneously solve 
both the process flowsheet and the operating conditions. 
However, PO does come with shortcomings such as 
oversimplification of complex process designs and high 
computational cost. Additionally, optimal solutions can 
only be found if the design space allows for an optimal 
pathway. In some cases, heuristic and mathematical ap-
proaches can be hybridised, yielding a reduced process 
design space that can be optimised more easily [19]. The 
process can be split into two phases, the first providing 
early stage elimination of unacceptable process designs 
and the second solving for an optimal design of the re-
sulting superstructure.

While PO and HPS methods have been used extensively 
in chemical engineering for decades, several challenges 

lie ahead for new products and processes, including 
precision fermentation. Process synthesis and optimisa-
tion will be important in enabling the use of new sub-
strates and alternative reactor designs, as well as the 
systematic incorporation of economic and environmental 
objectives into decision-making [20]. The current drive 
for greater sustainability and circularity in design has 
motivated the development of robust and adaptive PS 
and PO methods that can optimise multiple objectives 
throughout the process and product design life cycle 
[21]. Furthermore, newer, more sustainable technologies 
are being developed that utilise greener supply chains, 
renewable energy, and low-carbon feedstocks. However, 
these technologies have their own limitations [20], such 
as increased complexity in design of unit operations and 
separations, low yield and conversion, and difficult 
scaling-up considerations. The use of modelling tools 
that employ both mechanistic [22] and data-driven 
methods [23] can significantly improve the process de-
sign of these technologies.

Fermentation process control
In recent years, there has been significant innovation in 
fermentation process control, with advances in sensing, 
process modelling, and machine learning being used to 
improve productivity, sustainability, and efficiency. 
While the bounds for many process operating parameters 
are set by the reactor, process design, and the choice of 
host species, within these bounds improved control can 
result in increased output, higher titres, and improved 
yields at lower capital costs when compared with mod-
ifications to the reactor design.

The dynamics of fermentation control depend on whe-
ther the fermentation is run in batch, fed-batch, or 
continuous operation. Table 1 gives an overview of 
common state and manipulated variables in each op-
erational mode, partially based on a literature review 
conducted by Chai et al. [1]. Batch operation has tradi-
tionally been favoured by the pharmaceutical industry, 
as this minimises the risk of contamination. It typically 
also has a smaller number of manipulated variables. 
However, batch productivity is much lower than for 
continuous fermentation, as the time-average biomass 
concentration will be much lower in the batch fermen-
tation. In continuous fermentation, the biomass con-
centration can be maintained at the productivity- 

Table 1 

Common state and manipulated variables in fermentation based partially on works reviewed by Ref. [1]. T: temperature; S: substrate 
concentration; X: biomass concentration; P: product concentration; DO: dissolved oxygen concentration; N: nitrogen concentration; V: 
broth volume; EtOH: ethanol concentration. 

Type Common state variables Common manipulated variables

Batch T, pH, DO Cooling water flow rate acid flow rate base flow rate oxygen-source flow rate
Fed-batch T, pH, S, X, P, DO, N, V, EtOH As above + substrate feed rate nitrogen-source feed rate stir rate
Continuous As above As above + outlet flow rate
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maximising level. Indeed, Anand and Srivastava [24]
found the productivity of the continuous fermentation of 
mycophenolic acid was more than four times higher than 
the productivity of the batch fermentation. Fed-batch 
offers a compromise, with some additional complexity 
resulting in higher productivity than is possible for 
batch, while still lower than that obtained in continuous 
fermentation.

Model predictive control (MPC) combines a model and 
mathematical optimisation to control a plant. It is based 
on a receding-time horizon and aims to find the optimum 
sequence of control actions to maximise the objective 
function over the chosen time window. While the 
method itself is not new, having originally been devel-
oped in the 1970s, research on its application to the 
control of bioprocesses is ongoing. MPC can either be 
used to track a reference or to calculate its own reference 
based on the cost function and constraints of the pro-
blem. Jorgensen and Petersen successfully applied MPC 
to set the inlet and outlet flow rates in a single-cell 
protein fermentation to maximise the value of the 
output [25]. More recently, Wang et al. [26] employed a 
nonlinear MPC, in combination with a support vector 
machine predictor, to control product concentration in a 
lysine fermentation.

Reinforcement learning (RL) is emerging as a control 
approach in fermentation. While RL is, in theory, a 
model-free technique, often a model-based emulator 
will be used to train the RL controller. After this initial 
training, the controller will be applied to a plant. Li et al. 
[27] and Pandian et al. [28] explored the application of 
RL to computational models of batch and fed-batch 
fermentations, while other authors have examined the 
use of RL to control microbial cocultures [29]. Oh et al. 
[30] combine RL and MPC to control the substrate feed 
rate in a fed-batch fermentation of penicillin, finding 
that the hybrid outperformed various RL strategies. 
Panjapornpon et al. [31] investigated the use of a deep 
deterministic policy gradient algorithm for pH-con-
trolled processes, including fermentation, but this was 
limited to the control of pH and liquid level. Future 
work will likely widen the number of variables con-
trolled using RL methods, although this is complicated 
by the curse of dimensionality, which makes learning 
much harder in higher dimensional decision spaces.

Increasing application of machine learning methods, 
particularly neural networks, to control is another clear 
trend. Khaleghi et al. [36] provide an excellent review of 
machine learning methods for fermentation optimisation 
and control. They identify synergies and challenges in 
implementing machine learning in combination with 
mechanistic modelling for fermentation processes, 
highlighting the potential for these hybrid methods to 
improve predictability. Shah et al. [32] developed a 

hybrid predictive model for fed-batch fermentation 
using a neural network trained on plant data to predict 
critical time-varying parameters in a complex kinetic 
model based on the current state and control action. The 
hybrid model has better predictive accuracy than the 
fixed mechanistic model and, when used as the model in 
MPC, is found to result in higher product concentra-
tions. A similar hybrid predictive approach was devel-
oped by Winz et al. [33] to describe the growth and 
sporulation of B. subtilis, with a neural network trained to 
predict the specific growth rate as a function of cell 
concentration and temperature, with biological knowl-
edge incorporated to this function using a penalty term. 
This model is found to describe the process dynamics 
sufficiently well, fitting experimental data well. Time 
series–based machine learning methods have also been 
applied in fermentation control, such as by Wang et al. 
[37], who used a recurrent neural network to accurately 
predict glucose and ethanol concentrations from elec-
tronic nose signals in an ethanol fermentation.

Another area of advance is in fermentation sensors and 
soft sensors. Increasingly, the line between online and 
offline sampling is being blurred, with chemical analysis 
techniques such as High-performance liquid chromato-
graphy, Raman spectroscopy, and infrared spectroscopy 
used to estimate product and substrate concentrations 
for process control purposes, as well as quality control 
[1]. Another emerging alternative to estimate these 
concentrations is to use soft sensors [2] based on an ac-
curate process model that may be mechanistic, data 
based, or hybrid.

Another control approach looks at deriving insights from 
metabolic models. Dynamic flux balance analysis 
(dFBA) combines a flux balance model that describes 
known intracellular reaction pathways with substrate 
uptake kinetics and extracellular mass balances on sub-
strates and products [34]. A linear programming model is 
then used to determine the fluxes associated with each 
reaction. This can be combined with MPC to optimise 
fermentation control in real time. Within precision fer-
mentation, methods combining MPC and dFBA have 
been demonstrated in the control of fed-batch fermen-
tations of Saccharomyces cerevisiae to produce ethanol [34]
and Chinese Hamster Ovary cells to produce antibodies 
[35], with both studies finding improved production ti-
tres relative to simpler comparison controllers. An over-
view of the fermentation process control research 
reviewed here is provided in Table 2.

Artificial intelligence in precision fermentation
The hype generated around AI and digital twins has led 
to renewed industrial interest in use modelling and data- 
driven insights to support modelling new technologies, 
pathway selection and bio-process design. Precision 
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fermentation has been an early adopter of machine 
learning and advanced statistical methods, with meta-
bolic engineering requiring sequencing, high- 
throughput screening, and ‘omics’ to optimise metabolic 
pathways, strains, and yields [5].

Machine learning techniques such as Gaussian process 
regression, support vector machines, and neural net-
works have all been shown to be effective for modelling 
complex relationships between experimental parameters 
and performance [38]. To screen for experimental de-
signs, Pensupa et al. [39] developed machine learning 
models by data mining existing literature to find the key 
experimental parameters for maximising biomass con-
centration in a fermentation of Yarrowia lipolytica, with 
Gaussian processes providing the most accurate pre-
dictive capability. Similarly, Packiam et al. [40] devel-
oped PERISCOPE-Opt for predicting optimal 
fermentation conditions using XGBoost, random forest, 
and support vector machines, demonstrating the poten-
tial for these approaches.

Another recent trend is use of AI techniques to speed up 
the solving of physics-based models [41]. By using ma-
chine learning and data-driven modelling to obtain faster 
input–output relations, ML-assisted CFD makes it 
possible to simulate larger models by using computa-
tional resources more efficiently [42]. These approaches 
have yet to see widespread use in the fermentation 
community but could be helpful in addressing current 
challenges around scale-up, in which gas transfer is often 
a key problem.

With the rise in importance of renewable feedstocks, 
there has been increased interest in low-carbon feed-
stocks and waste valorisation to create circular processes. 
A core challenge of modelling these systems is the 
complexity of the biological system [43] and the com-
plexity and variability of the feedstock composition [44]. 
New approaches, tools, and techniques are required to 
address this, as often the traditional approaches are in-
accurate or inapplicable. Data-driven approaches to 
modelling, improved experimental design via Bayesian 
optimisation, and application of tools from synthetic 
biology were suggested to hold the key to unlocking 
higher productivity from such systems [45].

In the last 5 years, the major trend in engineering 
modelling research has been development of predictive 
surrogate models, for complex processes that are either 
poorly understood with large amounts of experimental 
data or are computationally intensive to simulate me-
chanistically. Embedding surrogate models into larger 
optimisation problems is now commonplace [46], in-
cluding for the modelling of complex physical processes 
[47]. A major challenge in this area is the accuracy of 
such models, particularly when there is limited data T
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availability, or when extrapolating outside the domain of 
the training data [48]. Recent advances in Bayesian op-
timisation [49] and physics-informed [50] AI may unlock 
the benefits of both traditional modelling and modern 
data-driven approaches.

Conclusion
In conclusion, recent advances in AI, from optimisation 
to machine learning and reinforcement learning, are 
being employed widely in precision fermentation, with 
applications in process synthesis, process optimisation, 
control and state estimation (see Figure 2). This is ac-
companied by increased use of predictive surrogate 
models and complex metabolic models, leading to 
powerful multiscale models that capture the relation-
ships between metabolism and process control. Another 
development is the increased role of LCA in process 
design, driven by the greater importance of sustain-
ability. Together, these approaches are accelerating the 
development of sustainable fermentation technologies, 
by facilitating experimentation, process optimisation, 
and scale-up, paving the way for a increased role for 
precision fermentation as part of a more efficient, sus-
tainable, and resilient food system.
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