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Abstract. The experimental setup of the new measurement of 239Pu fission and
capture cross-section in the n_TOF time-of-flight facility at CERN is presented.
The measurement aims to address the needs and demands of nuclear data users.
The experiment incorporates an innovative fast Fission Fragment Detector and
the n_TOF Total Absorption Calorimeter, enabling the implementation of the
fission tagging technique. Preliminary results exhibit the robust performance
of the detector systems, along with the high quality of the new 239Pu samples.
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These samples were exclusively produced for this measurement by the Euro-
pean Commission’s Joint Research Centre in Geel.

1 Introduction

As the usage and development of nuclear technologies continue to expand, so does the de-
mand for precise and reliable nuclear data. In particular, more accurate neutron-induced
fission and capture cross-section data for 239Pu are required for the design of novel critical
nuclear systems, such as Generation-IV reactors [1] and Accelerator Driven Systems (ADS),
and for the operation of current thermal reactors loaded with mixed oxide (MOX) fuels. Due
to the limited experimental data available and the discrepancies among the main evaluated
nuclear databases [2–6], new measurements of the capture and fission cross-section of 239Pu
are highly recommended, as it is included in the NEA/OECD High Priority Request List [7].

Only two measurements of the 239Pu capture cross-section have been reported with
enough energy resolution to perform a reasonable resonance analysis in the resolved reso-
nance region. The first one was performed by Gwin et al. [8] in 1971, covering the neutron
energy range between 0.02 eV and 30 keV. The second one was performed in 2014 by Mosby
et al. [9–11] at the Los Alamos Neutron Science Center using the DANCE detector, for neu-
tron energies from 10 eV to 1.3 MeV. In the latter, only the shape of the cross-section was
measured, i.e. it was normalized to the ENDF/B-VII.1 [6] cross section at 17-18 eV.

In this work, a new recent measurement of the 239Pu capture and fission cross-section
performed at the neutron time-of-flight facility n_TOF [12] at CERN is presented. The ex-
periment was performed in the 185 m experimental area EAR1. This flight path is nearly 10
times larger than the ones used for previous 239Pu capture measurements, enabling a potential
improvement in the energy resolution of the measured cross-sections. To accomplish this, the
collaborating groups have made use of the expertise obtained in previous capture measure-
ments of fissile samples [13–15] to design a new improved experimental setup, which consists
in the simultaneous operation of the n_TOF Total Absorption Calorimeter (TAC) [16], already
used in previous measurements, and a new fast fission fragment detector (FFD) specifically
fabricated for this experiment.

The rest of this publication is organized as follows. In Section 2, the main properties of
the 239Pu samples used in this work are described. A detailed overview of the novel Fast
Fission Detector is given in Section 3, and a general description of the two experimental
setups, in Section 4. Finally, some preliminary results are shown in Section 5, along with the
conclusions in Section 6.

2 The 239Pu samples

Two different experimental configurations were used. First, ten thin samples and the FFD
were used to efficiently subtract the fission background between 0.02 eV to 1 keV. Reaching
higher neutron energies in this configuration, in the case of the capture cross-section, is lim-
ited by the low statistics and high background. For this reason, a thicker sample was utilized
in the second experimental configuration without the FFD to reach higher neutron energies at
least up to 10 keV (limited also by the gamma-flash effect in the BaF2 crystals of the TAC).

Therefore, a total of 11 PuO2 samples were manufactured at the European Commission
Joint Research Centre (JRC-Geel, Belgium) for this experiment. Ten samples, each of them
with a mass lower than 1 mg, were deposited in aluminum foils with 10 µm thickness (see left
picture in Figure 1) and hold by aluminum rings that were placed inside the fission chamber.
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Table 1. Properties of the 239Pu targets inside the fission chamber used in the n_TOF experiment.

Target position Activity (MBq) Mass (µg) Areal density (µg/cm2)
1 2.24 975 310
2 2.22 965 307
3 2.20 959 305
4 2.09 911 290
5 0.28 122 39
6 1.94 844 268
7 2.19 953 303
8 2.11 920 293
9 2.09 912 290

10 2.25 982 312

Figure 1. Left: picture of the mounting process of one PuO2 sample in the fission chamber. Middle:
design of the aluminum capsule for the 239Pu thick target. Right: picture of the actual capsule containing
the thick sample during its mounting between two aluminum rings with kapton and mylar foils (the top
mylar ring does not appear in this picture).

Some physical properties of these samples are shown in Table 1. Additionally, a thicker target
of 101.69 mg was produced and encapsulated in a two-piece hat-shaped aluminum structure
(see Figure 1, central and right image). The hat-shaped structure minimizes the possible
movements of the sample powder inside the capsule. The same adhesive used to join these
two pieces was utilized for another identical aluminum capsule without plutonium, which
was necessary for the background characterization in dedicated measurements.

3 The fission fragment detector

The new FFD is a multi-section ionization fission chamber. Its main purpose is to serve as a
veto for fission events registered in the TAC. In addition, the FFD was used to measure the
239Pu(n,f) cross-section.

The design of the FFD was optimized to ensure: i) a good discrimination between alpha
particles coming from the radioactive decay of 239Pu(n,f) and the fission fragments emitted
in the nuclear fission reactions, ii) a high time resolution to minimize pile-up effects mainly
due to the high counting rate from the alpha-decays (around 106 counts/s), and iii) as high a
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Figure 2. Left: a simplified 3D model of the fast fission fragment detector with the attachable aluminum
box which houses the motherboard with the preamplifiers. Some critical elements inside the chamber,
such as the aluminum electrodes or cables are omitted. Right: a 3D model of the fast fission fragment
detector mounted inside the TAC. One half of the TAC is hidden for visualization purposes. The neutron
beam would be coming from left in the image.

Figure 3. Photographs of the experimental setup of the 239Pu measurement at n_TOF. Left: mounting
of the Li-doped polyethylene neutron absorber surrounding the FFD, located at the center of the TAC.
Middle: modified version of the dummy fission chamber with the thick plutonium sample for the second
experimental configuration, before mounting inside the TAC. Right: top view of the 239Pu thick sample
in the modified dummy fission chamber.

fission detection efficiency as possible, determined by the restrained dimensions to fit within
the 10 cm inner radius of the TAC (see right image in Figure 2).

The ten 239Pu targets were placed on the cathodes of ten parallel plate ionization detec-
tors arranged within a cylindrical chamber. This design eliminates potential cross-talk or
interdependence between plates, enabling separately detection of the fission fragments from
each target. A gas mixture of 90% Ar and 10% CF4 continuously flows through the chamber,
selected to provide the shortest rise times of the registered signals.

An aluminum box containing some electronics is placed outside the central space but still
inside the TAC assembly structure, and is attached to the FFD, as can be seen on the left hand
side of the left image in Figure 2. This chamber contains the necessary preamplifiers to obtain
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Figure 4. Left: a digitized signal from the FFD in red and the result of the fit of the PSA routine in blue.
The y-axis is in arbitrary units. Right: amplitude spectra of measurements with (red) and without (blue)
beam, representing the fission fragments and decay alphas, respectively, for events of neutron energies
between 0.2 and 0.4 eV.

the desired properties for the electrical signals. Following these preamplifiers, the signals go
through an analogue fast amplifier before reaching the n_TOF digitalization system [17].

An identical dummy fission chamber was built without the plutonium targets to character-
ize the beam-related background of the measurement. This dummy chamber was also used,
after some modifications, as the supporting structure of the thick sample for the second ex-
perimental configuration.

4 Description of the two experimental setups

As previously mentioned, two different experimental setups were used. In the first configu-
ration, both the TAC and the FFD were utilized to simultaneously measure the capture and
fission cross-section of ten 239Pu thin samples, housed within the main chamber of the FFD.
To measure capture, the fission tagging technique [18] was employed by detecting fission
events with the FFD, thereby determining the γ-ray fission background registered in the TAC
crystals. Due to the neutron sensitivity of BaF2 crystals, a Li-doped polyethylene neutron ab-
sorber was built to minimize the neutron background originating from fission and scattering
processes. The neutron absorber comprises two matching halves, with the interior tailored to
the geometry of the FFD chamber (see left picture in Figure 3 which shows one half being
installed).

In the second experimental configuration, the encapsulated thick 239Pu sample was em-
ployed for measuring the capture cross-section above 1 keV with the TAC. Positioning the
sample within the beam trajectory while maintaining stability, alignment, and minimizing
dead material effects, was done by using the dummy fission chamber. To mitigate background
from the dead material of the dummy FFD, some elements such as as cables, aluminum plates,
structural pieces, etc. were removed, as they are not necessary for this configuration. This
new version of the dummy fission chamber (without the aluminum cap for visualization pur-
poses) is displayed in the middle image of Figure 3. The thick sample was placed in a fixed
position corresponding to the estimated center of the TAC. A top view of the encapsulated
sample in its definitive position within the chamber can be seen in the right image of Figure 3.
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Figure 5. Top: total deposited energy spectra in the TAC showing the different contributions (see text
for more details). Bottom: example of the preliminary fission yield obtained with the FFD compared
with main nuclear data evaluations.

The assembly process was similar to the first configuration, including the same neutron ab-
sorber shown in the left image of Figure 3.

5 First results

An example of a characteristic digitized signal of the FFD is shown in the left panel of Fig-
ure 4. A big signal from a fission fragment is observed, accompanied by two small signals
most likely originated by alpha particles from the decay of 239Pu. The result of the fit by the
Pulse Shape Analysis (PSA) routine, shown in blue, is used to discriminate between alphas
and fission fragments, as can be seen in the right panel of Figure 4. The vertical dashed line
represents a possible threshold to select the fission fragments for the data analysis. The com-
parison of the amplitude spectrum with a measurement without beam shows that the overlap
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Figure 6. Preliminary integrated fission yield with 20 bins per decade. The ratio of n_TOF data relative
to ENDF/B-VII.1 is also shown below. The error bars represent only the statistical uncertainties.

between alpha particles and fission fragments is minimal, thus enabling a good discrimination
between particles.

The measured fission events with the FFD are correlated in time with the events in the
TAC, obtaining the prompt fission gamma background in the BaF2 crystals. The tagged fis-
sion in the TAC is displayed in the top panel of Figure 5 as the blue curve together with
different contributions to the events detected in the TAC. This plot includes only events with
more than 2 BaF2 crystals contributing to the total deposited energy in the TAC, commonly
known as crystal multiplicity (mcr). This restriction in the TAC events has been used in pre-
vious measurements to minimize uncorrelated background as ambient activity (see green line
in Figure 5) and other background sources that emit one or two gamma rays. The amplitude
spectrum of all the events registered in the TAC under this condition is represented by the
red line in Figure 5. The gray dashed line is obtained by subtracting the fission background.
The beam related background, measured with the dummy version of the fission chamber with
no sample, is displayed by the orange curve. When all these background contributions are
subtracted, the solid black line is obtained as an estimation of the neutron capture spectrum
in the TAC. Some events above 6.5 MeV -the neutron separation energy of 240Pu- are still
present, and will be studied and subtracted in the final version of the analysis. We attribute
this contribution mainly to neutrons emitted in (n,f) reactions detected out of the TAC-FFD
time coincidence window.

An example of a preliminary fission yield obtained with the FFD compared with the
yields from three different evaluations with the n_TOF resolution function is shown in the
bottom panel of Figure 5. In general, a better agreement with the ENDF/B-VII.1 evaluation
is observed. For this reason, the residuals are calculated relative to ENDF/B-VII.1.

The preliminary integrated fission yield with 20 bins per decade is shown in Figure 6. As
a first approach, the n_TOF data has been normalized to the evaluated ENDF/B-VII.1 yield
in the neutron energy range 17-18 eV, as done in previous measurements [9–11]. A good
agreement is observed along the complete range of neutron energy between 0.02 eV and
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almost 1 MeV. Some corrections are still needed and are currently under investigation. For
instance, the neutron flux in the region below 4 eV has to be determined with more precision.

6 Conclusion

A new measurement of the neutron fission and capture cross-section of 239Pu has been per-
formed in the neutron time-of-flight facility n_TOF at CERN to fulfill the nuclear data de-
mand and requirements by the nuclear technologies. A detailed description of the experimen-
tal setups used for this measurement is given in this publication. Although the data analysis
is still ongoing, some preliminary results have been presented.
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