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Chapter 5  

Environmental Data and Modeling for CSI Research in the Arctic 

  

Gia Destouni, Zahra Kalantari, Shaun Quegan, Didier Leibovici, Juha Lemmetyinen, Jaakko Ikonen  

 

Abstract Forecasting the likely future prevalence of CSIs in the Arctic requires prediction of how 

environmental conditions, both aquatic and on the land, will change under a changing climate, 

together with knowledge of how these changes relate to the environmental conditionals for viability 

of CSI host organisms. This requires the use of land surface and hydro-climatic models that have been 

tested against past data and can be driven by climate projections provided by Global Circulation 

Models for a range of climate scenarios (Representative Concentration Pathways). Uncertainties in 

the climate projections combine with uncertainties in the environmental models, and this combined 

uncertainty propagates through into subsequent CSI occurrence modelling. This chapter will describe 

the available environmental models, together with the data needed to drive and test them, and how 

we can address the uncertainty within these models, in the context of Arctic CSI prediction. 

5.1 Introduction 

Understanding and predicting the evolution of CSIs in the Arctic under climate change relies on using 

current data with biophysical or statistical models to identify the factors that control CSIs and then 

predicting how these factors will change in the future. The collection of data on CSI incidence and its 

relation to environmental variables are described in Chapter 4 of this volume. Table 5.1, below, shows 

which variables are considered the most important for a range of potential CSIs. This provides the 

context within which we can evaluate the relevance of datasets and models for predicting CSI 

behaviour.  

Table 5.1 Environmental variables affecting several potential Climate Sensitive Infections (CSIs). 

Quantities derived from these primary variables, such as temperature extremes and values during 

previous years, may also influence the behaviour of CSIs. fAPAR is fraction of absorbed 

photosynthetically active radiation whose possible influence is indicated by parentheses. The second 

row shows the relevant disease vectors 

 

 Borreliosis Brucellosis Tickborne  

encephalitis 

Tularemia 

 ticks domestic animals, air ticks Ticks, deer flies 

land cover x x x x 

fAPAR (x) x (x) x 

leaf area index (LAI) x x x x 

length of growing season x x x x 

soil temperature  x  x 

soil moisture  x x x x 

evapotranspiration  x  x 

runoff    x 

snow covered area x x x x 

snow water equivalent  x  x 

timing of snowmelt x x x x 

soil freeze/thaw    x 

air temperature x x x x 

precipitation x x x x 

humidity x x x x 

solar radiation    x 



soil properties  x   

 

The environmental variables are almost all time-varying and fall into four broad classes: 

1. Climate: air temperature, precipitation, solar radiation, humidity; 

2. Land surface: land cover, fraction of absorbed photosynthetically active radiation (fAPAR), leaf 

area index, length of growing season, soil properties, soil temperature; 

3. Hydrological: soil moisture, evapotranspiration, runoff; 

4. Cryospheric: snow covered area, snow water equivalent, timing of snowmelt, soil 

freeze/thaw. 

These variables interact in complex ways that need to be represented in any attempt to model current 

and future behaviour. 

One of the key approaches to unravelling these interactions and feedbacks is through biophysical 

models that attempt to represent the physical processes involved. This requires land surface and 

hydrological models that typically are driven by climate variables. There are many points of contact 

between these two types of model, since credible models of vegetation processes must represent 

hydrological variables, such as soil moisture, while hydrological models need, for example, 

information on vegetation cover and its dynamics. However, many land surface models do not contain 

elements such as water routing that are fundamental in models devoted to quantifying the water 

cycle.  

For developing and testing models that describe current or past behaviour we can use a wide range 

of datasets provided by meteorological or Global Circulation Models (GCMs), but these are 

increasingly being supplemented by satellite data that provide pan-Arctic datasets on vegetation and 

cryospheric variables. However, for prediction the models must be able to be run independently of 

measurements, which means that all relevant time-dependent processes, such as snow cover, land 

cover change, LAI etc., must be controlled by internal parameters. Hence a crucial use of current data 

is in parameterising the models. 

Naturally, as we look into the future, we become less and less sure of what we predict. Hence a 

essential aspect of modelling is to try to quantify what controls its uncertainty, how this grows with 

time and how this affects our predictions about CSIs. This has many facets. Perhaps most fundamental 

is how humanity will respond to climate change as regards its use of fossil fuels and land management. 

The Intergovernmental Panel on Climate Change (IPCC) encapsulates these different possible 

responses in “Representative Concentration Pathways” (RCPs) that drive the climate models. 

Differences in the RCPs are then exacerbated by differences in the models themselves. There are also 

significant differences in how the land surface and hydrological models represent the ensuing 

processes. In the following Sections we describe how these model-data-uncertainty elements are 

entangled in understanding the future of CSIs in the Arctic. 

5.2 Environmental datasets  

During the past decades, Arctic and subarctic areas have seen increases of mean air temperatures well 

above the globally documented average (IPCC, 2019). Warming of the Arctic has been manifested by 

changes in the Earth’s cryosphere. Earth observation datasets, spanning nearly four decades, show 

reductions in monthly average sea ice extent, in particular for the ice minimum in the summer and 

autumn months (Stroeve et al., 2012). This reduction in sea ice has been shown to contribute strongly 

to increased volatility in winter precipitation patterns; following estimates of continuing sea ice 

decline, this been projected to increase precipitation by more than 50% in the Arctic (Bitanja & Andry, 

2017). These seasonally varying changes are further likely to contribute to increased variability in soil 



moisture and snow cover conditions. This is corroborated by reductions in the extent, duration and 

mass of seasonal snow cover across the northern hemisphere land areas (Brown et al., 2017). These 

changes in snow cover dynamics have potentially significant impacts on the global climate system, 

snow-dependent ecosystems, and the water cycle (Sturm et al., 2017). In spring and summer months, 

the increase of snow-free terrain presents a positive feedback mechanism to warming, as does the 

increase in open sea, which both exhibit increased absorption of solar radiation compared to sea ice 

or snow cover (Derksen and Brown, 2012). On the other hand, in particular mountain watersheds 

storing freshwater provide a vital resource, which may be under threat in a warming climate. 

Currently, seasonal snow provides the main source (> 50%) of freshwater runoff for 1/6th of the world’s 
population (Barnett et al., 2005). Under present RCP scenarios, the increase in greenhouse gas 

emissions will continue to affect Arctic temperatures, potentially further aggravating changes in the 

Earth’s cryosphere. 

Observed and predicted changes in precipitation, soil moisture, snow cover and other components of 

the water cycle are likely to impact also animal and bacterial populations in Arctic and sub-Arctic areas. 

Perceived changes include the introduction of invasive mammal species to Northern areas (Hellmann 

et al. 2008), as especially snow cover is a main factor in the survival of many mammal species. Since 

these species act as carriers of different zoonotic and other diseases, these changes will potentially 

impact the spread of new CSIs across the Arctic. For example, populations of white-tailed (Odocoileus 

virginianus) are strongly dependent on snow cover and have in recent years expanded in Scandinavia 

and Finland; there are indications this species may play an important role in spreading Salmonella, 

Yersinia and STEC (Sauvala et al., 2019). Simultaneously, receding snow cover and changes in winter 

precipitation will likely affect the survival of different native species, such as reindeer. The increase of 

events such rain-on-snow precipitation and Arctic greening have been shown to introduce potential 

hazards to reindeer survival (Fauchald et al., 2017; Langlois et al. 2017), also rendering weakened 

populations vulnerable to infections. Consequently, the monitoring of environmental parameters, in 

particular related to the cryosphere, provide valuable indicators when estimating stress factors 

imposed on Arctic ecosystems by ongoing climate change. 

The CLINF GIS database gathers together a suite of key environmental datasets which serve several 

purposes. Firstly, the data can be used to track past trends in Earth processes over the Arctic, which, 

together with information on disease prevalence, can be used to derive climate-related proxy 

indicators for disease spread and identify potential CSIs. Secondly, the data are needed to drive and 

test climate and hydrological models which predict future scenarios on relevant environmental 

conditions. The data entail a combination of observed and modeled (reanalysis) data, which rely both 

on satellite sensors and ground-based observation networks. Basic climatological information on, e.g., 

air temperature, precipitation, radiation, wind, pressure, and humidity are derived from the ERA-

Interim database; these are atmospheric reanalysis datasets released by the European Centre for 

Medium-range Weather Forecasts (ECMWF). The assembled data cover a period from 1979-2016. The 

data are required as driving data for land surface models, but can also be independently applied to 

derive indicators based on, e.g., variations in air temperature or precipitation over areas of interest. 

Further, accurate land surface information is critical for hydrological modeling and for tracking 

climate-induced and anthropogenic changes in land use. The European Space Agency (ESA) Land Cover 

Climate Change Initiative (CCI) Climate Research Data Package (CRDP), included in the database for 

years 1992-2015, contains an annual time series of consistent global land cover maps at a spatial 

resolution of 300 m. Further land surface related parameters include fAPAR and the leaf area index 

(LAI), derived from satellite observations for the years 2002-2017. These high-resolution (500 m) data 

serve to inform on changing vegetation conditions for tracking, for example, Arctic greening. 

Earth observation is a powerful tool for monitoring Arctic areas, where sparse population and low 

level of infrastructure limit conventional surface (weather station) observations and also the accuracy 

of reanalysis products. While collected ERA-Interim data cover such parameters as snow depth, sea 

ice extent, soil moisture and soil freezing, these are complemented by satellite-observed datasets. 



Data on sea ice extent and Snow Water Equivalent (SWE), i.e., the total amount of freshwater stored 

in snow given by the product of snow depth and density, are derived from an ensemble of satellite 

datasets extending back to 1979. The ESA CCI Soil Moisture products provide harmonized estimates 

of soil moisture variability for 1979 to 2016; similarly to sea ice extent and SWE, the data are compiled 

from observations by several satellite systems. These data are available typically at moderate to 

coarse resolution (tens of km). Several indicators of climatic changes can be derived from the dataset. 

As an example, Figure 5.1 depicts the date of snow clearance (the date when the seasonal snowpack 

has completely melted) in spring over the Northern Hemisphere. Depicted is also the trend of the 

average date of snow clearance for land areas above 40N. Although there is large variability from 

year to year, on average snow clearance occurred two days earlier per decade over the study period.  

 

 

 

Fig. 5.1 Left: Day of snow clearance as day-of-year from January 1st in the year 2000, using method by 

Takala et al. (2009) (from Pulliainen et al. 2017). Right: the trend of mean snow clearance date above 

latitude 40oN. 

 

Table 5.2 Environmental datasets collected for the CLINF GIS database. The table is not exhaustive as 

further datasets continue to be added based on availability and relevance to the spread of CSIs. 

 

Table 5.2 Summary of main environmental datasets in CLINF GIS database. 

Data class Dataset name Temporal range Data source 

Climate air temperature 1979-2016 ERA Interim (ECMWF) 

precipitation 1979-2016 ERA Interim (ECMWF) 

radiation 1979-2016 ERA Interim (ECMWF) 

wind 1979-2016 ERA Interim (ECMWF) 

air pressure 1979-2016 ERA Interim (ECMWF) 

humidity 1979-2016 ERA Interim (ECMWF) 

Land surface land cover 1992-2015 Land Cover CCI Climate 

Research Data Package  

fAPAR 2002-2017 MODIS (Aqua+Terra) 

leaf area index (LAI) 2002-2017 MODIS (Aqua+Terra) 

length of growing 

season 

2002-2017 derived from fAPAR and 

LAI 

soil properties NA ISRIC World Soil 

Information (SoilGrids) 



soil temperature 1979-2016 ERA Interim (ECMWF) 

topography NA Global 30 Arc-Second 

Elevation (GTOPO30) 

Hydrological soil moisture 1979-2010 

1980-2017 

ERA-Interim/Land 

reanalysisa 

GLEAM-3.2a modelb 

evapotranspiration 1979-2010 

1980-2017 

ERA-Interim/Land 

reanalysisa 

GLEAM-3.2a modelb 

runoff 1901-2012 GSIMc 

Cryospheric snow covered area 1995-2010 ESA GlobSnow SE v1.5 

snow water equivalent 1979-2016 ESA GlobSnow SWE v3.0 

sea ice extent 1979-2016 NOAA Sea Ice Index, 

Version 3 

soil freeze/thaw 2009 - 2016 SMOS Level 3 Soil F/T 
a European Centre for Medium-Range Weather Forecasts (ECMWF) Re-Analysis (ERA)-Interim/Land reanalysis 

datasets 
b Global Land Evaporation Amsterdam Model (GLEAM-3.2a) 
c Global Streamflow Indices and Metadata (GSIM) archive 

5.3 Modelling land surface processes for CSI prediction 

The disproportionately increased warming in the Arctic due to climate change will cause (and is 

causing) drastic changes in the terrestrial energy, carbon and water balances of the Arctic, with large 

effects on such biophysical variables as growing season, land cover (including species changes), snow 

cover, soil moisture, soil freeze-thaw and permafrost thaw. Many of these variables and associated 

processes are related to the behaviour of CSIs (see Table 5.1). There are also major consequences for 

insect, animal and human populations in the Arctic. 

These processes are highly inter-dependent, with complex interactions and feedbacks that cannot be 

considered in isolation when trying to assess the effects of climate change on the land surface. For 

example, land cover plays a major role in the energy balance and in the transfers of water, heat and 

trace gases between the surface and the atmosphere. However, vegetation activity has exhibited 

major changes over recent decades, as evidenced by the greening of the tundra but browning of high 

latitude forest systems (Miles and Esau 2016). Because it has much lower albedo than snow, 

vegetation contributes to Arctic warming, with increased effects as low vegetation is replaced by 

shrubs that emerge from the snow cover. Such vegetation changes modify the niches available for CSI 

vectors such as ticks. Vegetation is also important in the heat input to the soil from the atmosphere 

both by shading and, as in the case of Arctic mosses, providing an insulating layer between the 

atmosphere and the soil, hence affecting diseases like brucellosis and tularemia (Table 5.1). 

Furthermore, the vegetation-soil system plays a major role in the hydrological cycle through 

evapotranspiration to the atmosphere (Section 5.4). For CSI prediction it is therefore essential to 

quantify the spatial and temporal variation in vegetation, and how this is linked to other biophysical 

variables. Similar considerations apply to all the variables affecting CSIs. 

Simultaneous consideration of the multiple interacting high latitude processes and feedbacks relevant 

to CSIs requires the use of land surface models (LSMs) that can treat all these processes within a 

consistent framework. The development of LSMs has been driven largely by the need to understand 

interchanges of trace gases, water and energy between the land and the atmosphere under a changing 

climate and, as such, they form a core component of the Earth System Models (ESMs) used to inform 

IPCC projections of future climate. However, the enormous international effort in climate modelling 

has led to numerous LSMs, which differ in the processes they try to represent (e.g. fire, the nitrogen 



cycle, permafrost, etc.) and in how these processes are parameterised. A key consideration in CLINF 

is whether any of these models are suitable for use in CSI prediction. 

A generic diagram of the structure of the type of LSM used in CLINF is shown in Fig. 5.2 below. Its 

emphasis is on vegetation, soil and water processes, rather than energy balance, although vegetation 

and soil temperature and temperature gradients are accounted for. The versions of the LSMs used 

(JULES [Comyn-Platt et al. 2019], CLM5 [Lawrence et al. 2019], LPJ-GUESS [Hickler et al. 2012] and two 

forms of the ORCHIDEE model [Druel et al. 2017; Guimberteau et al. 2018]) were chosen because they 

include specific components relevant to high latitudes, including Arctic vegetation types and 

permafrost, unlike many LSMs designed for global application. In a full Earth System Model, each of 

them would be coupled with an atmosphere-ocean model, but in CLINF we run the models separately 

and drive them with climate variables provided by one of the Global Circulation Models. They are all 

designed to be predictive, which means that all processes within them are parameterised, including 

land cover change, vegetation activity, fire, snowmelt, etc., which can be observed at large scales from 

satellites (see Section 2); such observations can then be used to constrain model parameters.  

 

 

 

 

 

 

 

 

 

Of the environmental variables identified as affecting potential CSIs (Table 5.1), the atmospheric 

variables and soil properties (the last five entries in the table), together with atmospheric carbon 

dioxide concentration, are drivers of the LSMs; all other variables are calculated (the models may be 

initialised with current land cover but land cover change is then under the control of the model). 

However, different models use different process representations and parameters, so make different 

predictions, not just the future but also about past behaviour.  To assess their value for CSI prediction 

we therefore need to evaluate the variability in the models across the range of variables in Table 5.1. 

Methods to quantify such spatio-temporal variability (Leibovici  2010, Leibovici et al. 2019) allow the 

inter-model variability to be decomposed into its common spatial, temporal and model-specific 

components. An example is shown in Fig. 5.3 for Net Primary Production, which is the amount of 

biomass produced by photosynthesis, so is strongly related to the length of the growing season, fAPAR 

and LAI. The analysis shows that 90% of the variation between the models is captured by the product 

of a single spatial pattern (Fig. 5.3a) and a single temporal pattern (Fig. 5.3b), together with a model-

specific multiplier varying by less than 14% between the LSMs (Leibovici et al. 2019). Hence using 

different LSMs introduces little uncertainty into subsequent CSI predictions based on the variables 

associated with NPP, i.e. fAPAR, LAI and growing season.  

Fig. 5.2 Generic structure of the 

vegetation-soil-atmosphere 

component of a Land Surface 

Model. Flows of water and 

carbon are shown by blue and 

brown arrows respectively. EVT 

is evapotranspiration, GPP is 

Gross Primary Production 

(photosynthesis) and NPP is Net 

Primary Production. 
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Fig. 5.3 The spatial and temporal patterns capturing 90% of the variability in Net Primary Production 

from the Land Surface Models over the CLINF region for the period from 1998 to 2013  

 

The same type of analysis applied to the differences between the LSMs provides specific information 

on how the LSMs disagree. Fig. 5.4 shows the spatio-temporal pattern that most closely captures these 

differences (Leibovici et al. 2019). Within this pattern, all the LSMs give similar values except that due 

to Druel et al. (2017), which over the whole time-period gives smaller values of NPP than the other 

LSMs in the red regions (Fig. 5.4a) and greater in the green regions. 

 

                
Fig. 5.4 Spatial and temporal patterns capturing the main differences in Net Primary Production for 

the Land Surface Models used in CLINF over the CLINF region for the period from 1998 to 2013. 

 

However, for other variables the models do not show the same level of consistency. One of the most 

important is land cover. This is driven by model-specific parameters that control the suitability of a 

given plant functional type to exist in a grid-cell under the given climate and soil conditions, and hence 

its ability to colonize new ground as this becomes available due to plant mortality or improved growth 

conditions. The extent of model differences is illustrated in Fig. 5.5, which shows the predicted 

changes in the dominant proportion of vegetation type in the CLINF region over the 21st century for 

the LPJ-GUESS and ORCHIDEE models (both with climate forcing provided by IPSL-CM5A-LR under RCP 

8.5). The most obvious difference is that LPJ-GUESS predicts far more cover by C3 grass than ORCHIDEE 

and a significantly increasing area of boreal needleleaf evergreen forest. The only clear point of 

agreement is that both LSMs predict a decline in shrub cover over the century, but this contradicts 

current observations of the spread of shrub cover in the Arctic (Myers-Smith et al. 2011). The 

differences between the LSMs and their inconsistency with data indicate that the parameters 

controlling land cover dynamics in both models need significant reappraisal. Similar remarks apply to 



the other LSMs considered. This type of analysis therefore provides significant motivation for the 

community to improve their models, with the study of CSIs giving an important underpinning 

requirement for such improvement. 

 

 

 

 

 

 

 

 

 

 

    

Fig. 5.5 Changes in the proportions of dominant plant functional types (pfts) across the CLINF region 

as predicted over the 21st century by LPJ-GUESS (left) and ORCHIDEE (right). The pft numbering is as 

follows: 1: bare ground; 4: temperate needleleaf evergreen; 5: temperate broadleaf evergreen; 6: 

temperate broadleaf summergreen; 7: boreal needleleaf evergreen; 8: boreal broadleaf 

summergreen; 9: boreal needleleaf summergreen; 10: C3 grass; 11: C4 grass; 12: nonvascular moss & 

lichen; 13: boreal broadleaf shrubs; 14: C3 arctic grass. The right-hand fig. is from Leibovici and 

Claramunt (2019). 

5.4 Hydrological surface and subsurface changes influencing communities 

The climate in the Arctic is changing at almost three times the rate and magnitude experienced in the 

rest of the world and this is affecting Arctic peoples, animals and the environment (Hoberg et al., 

2015). The Arctic region also comprises a range of different ecological and physical environments that 

interact with, and feed back on, the global climate system. These changes can threaten northern 

societies but also open new opportunities: for example, warming may open new local sources of 

moisture, such as open water previously under ice (Bintanja & Selten, 2014), while the melting of 

glaciers (Dyurgerov et al., 2010) and permafrost thaw can strongly influence both water (Karlsson et 

al., 2012) and carbon (Schuur et al., 2015) cycling conditions throughout the Arctic. Furthermore, 

ecosystem regimes may shift (Karlsson et al., 2011; Wrona et al., 2016), and infrastructure damages 

may occur, with critical consequences for regional water security and health (Daley et al., 2014).  

Wetlands constitute a large proportion of the Arctic landmass and play an important role in 

sustainable regional development, as they are linked to ecosystem services and the livelihoods of local 

people, and their opportunities to adapt to climate change (Seifollahi-Aghmiuni et al., 2019). There is 

so far weak evidence for the correlation of observed changes in Arctic vegetation density with 

hydroclimatic changes over the Arctic region (Groß et al., 2018 ), but hydroclimatic changes are known 

to considerably affect the resilience of Arctic wetland ecosystems and are causing shifts in current 

regimes (Karlsson et al., 2011). Nevertheless, the combined effects of natural and human pressures 

and management efforts on Arctic wetland ecosystems, their biodiversity and functioning, and the 

benefits they provide to human wellbeing and health, are still poorly understood (Seifollahi-Aghmiuni 

et al., 2019).  
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Permafrost in the northern circumpolar region has been disappearing in recent decades (Romanovsky 

et al., 2010), with important surface implications. Thawing of permafrost can release large amounts 

of carbon to the atmosphere (Schuur et al., 2015) and lead to re-emergence of long-frozen pathogens, 

posing increased risks to the health and wellbeing of animals and humans (Revich et al., 2012). There 

is thus an urgent need to quantify and predict permafrost changes under ongoing and future warming 

conditions. Systematic model simulations of different surface warming trends combined with various 

local soil-permafrost conditions have indicated that thaw-driven regime shifts in wetland/lake 

ecosystems, and associated releases of previously frozen carbon and pathogens, may be expected to 

occur in and be more severe for peatlands than for other soils (Selroos et al., 2019). 

Use of GCM and ESM projections for water-related change assessment and planning typically relies 

on regional downscaling, either through physically-based regional climate models (Sun et al., 2016) or 

by various statistical means (Mizukami et al., 2016), sometimes further processed through 

hydrological models. However, all downscaled results ultimately depend on the ability of the driving 

GCM/ESM to adequately represent the hydroclimate of land areas at relevant scales (Bring et al., 

2015). Direct GCM/ESM use to simulate and project hydroclimatic changes has been found to 

represent observed temperature better than observed water conditions, in terms of precipitation, 

evapotranspiration and runoff (Asokan et al., 2016). The spatial scale of process resolution may be a 

reason for such differences between modelled and observed values, although some studies have 

found small or no effects of scale on GCM performance for hydroclimate on land (Asokan et al., 2016; 

Bring et al., 2015). 

In view of the key role of hydroclimatic conditions for different types of changes in the Nordic-Arctic 

region, Bring et al. (2019) tested the performance of GCMs/ESMs specifically for the hydroclimate of 

this region, extending from Western Greenland to Eastern Siberia, and including Sweden, Finland, 

Norway, Iceland, Greenland and Russia. There were four main reasons for this geographic delineation. 

First, it includes a gradient of Arctic environments, including ice caps and glaciers, tundra and boreal 

forests. Second, it covers a range of Arctic communities, including Inuit, Sami and several indigenous 

peoples in Russia, but also several of the largest Arctic urban areas, such as Reykjavik, Tromsø and 

Murmansk. Third, it enables use of the longest time series of data from direct hydroclimatological 

observations (Bring and Destouni, 2014) and the most detailed global and downscaled climate model 

simulations (Figure X1). Fourth, the selected region includes most of the areas identified as hotspots 

of projected future hydroclimatic change (Bring et al., 2017). These hotspots coincide with a relatively 

high concentration of population compared to other parts of the pan-Arctic region, indicating that the 

highest density of change impacts on humans in the Arctic may be concentrated here.  



Fig. 5.6 Hydrological basins (red) within the pan-Northern region for which extensive and complete 

hydroclimatic data series are openly available.  

Over this region, Bring et al. (2019) investigated available data from 64 Nordic-Arctic hydrological 

basins, and compared climate model results to observations across different scales and variables. They 

found an unexpectedly similar level of model-observation agreement for runoff and temperature, with 

model outputs for both having relatively small error and bias for different basins and on whole-region 

scale, compared to the other water cycle variables of precipitation and evapotranspiration. The results 

did not show clear or consistent differences in model performance for different basin sizes across the 

different hydroclimatic variables. However, the better performance of the temperature-runoff 

variable pair compared with the poorer performance of the precipitation-evapotranspiration variable 

pair only emerged fully at the whole-region scale. Moreover, a tendency was found for better model 

performance with increasing basin size for runoff and to some degree also for precipitation.  

Performance ranking of the multiple GCMs/ESMs tested against hydroclimatic observations by Bring 

et al. (2019) showed no single climate model performed best across all studied variables. The overall 

poor climate model performance as regards precipitation and evapotranspiration has important 

implications for modelling of hydroclimatic responses. Specifically, it points at options for direct use 

of relatively good GCM/ESM results for regional runoff projections, instead of driving downscaled 

hydrological modelling of runoff by much poorer GCM/ESM results for precipitation and 

evapotranspiration. 

5.4.1 Infectious disease sensitivity to hydroclimatic changes 

Hydroclimatic changes, which may be particularly large at high latitudes, can also affect regional 

outbreaks of infectious diseases, jeopardising human and animal health. To assess the risk to health 

of such changes, it is necessary to identify the sensitivities of various diseases to variability and change 

in hydroclimatic conditions. Ma et al. (2019) developed a method for analysing this sensitivity for 

tularemia and its possible endemic disease level (N* in Fig. 5.7, top panels) under different prevailing 

hydroclimatic conditions.  



 

Fig. 5.7 (Top) Schematic diagrams of how the number of tularemia outbreaks, under any given 

combination of disease-relevant long-term average hydroclimatic conditions, converges to an 

expected endemic level N*: (top left) from each year to the next (blue line; the black line indicates 

the same number of cases in both years); (top right) over time, starting from any initial number 

of cases, N01 or N02, the number still converges to the same N* level (dashed line) for the same 

hydroclimatic conditions. (Bottom) Schematic diagram of past and future values of expected 

endemic level, depending on prevailing/projected hydroclimatic conditions, which can/should be 

compared with some societally accepted endemic level (dashed line), beyond which projected 

disease changes are unacceptable and mitigation measures are required. 

Ma et al. (2019) considered the case of tularemia based on a previously tested and established 

statistical model for this disease, developed by Rydén et al. (2012). Fig. 5.7 illustrates schematically 

how the number of disease outbreaks converges to the expected endemic level N* associated with 

the considered combination of hydroclimatic conditions, and how that level may go beyond some 

societally acceptable threshold value under changed hydroclimatic conditions in future years.  

Tularemia is one of the most well-researched endemic diseases in high-latitude regions (Waits et al., 

2018) with outbreak numbers quantitatively related to hydroclimatic conditions by the statistical 

disease model of Rydén et al. (2012). In their study of the implications of this model for possible future 

hydroclimatic changes, Ma et al. (2019) found high disease sensitivity to different combinations of 

hydroclimatic variable values, and the possibility of shifts in major disease increases even for relatively 

small changes from current average conditions, with variable values still remaining within the range 

of past regional observations.  

Fig. 5.7 also illustrates the possibility of identifying threshold hydroclimatic conditions beyond which 

the endemic level of the disease goes above some societally accepted level, for instance defined by 

the World Health Organization. Further research is required on how projected hydroclimatic changes 

may affect outbreaks of various infectious diseases, with particular focus on potential threshold 

combinations of driving variable values, and on the spatio-temporal generality and transferability of 

quantitative disease models that can be used for such projections. 
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5.5 Conclusions and prospects 

Fundamental to understanding and predicting the viability and spread of CSIs is identification of the 

environmental envelopes within which they can flourish, though this will almost certainly need to be 

supplemented by knowledge about the host and affected species and their risk of exposure to the 

disease (including for humans). Coherent, integrated environmental information is increasingly 

becoming available both from enhanced observational capabilities, especially from satellites, and 

advances in bio-geophysical models. Hence the framework needed to assess CSI risk and how this will 

develop is essentially in place. However, the value of this framework for CSI prediction is limited by 

two factors, spatial scale and uncertainty. 

As regards CSI analysis, spatial scale is not a major limitation for many of the variables derived from 

satellite data (Table 5.2), since in many cases the observations have spatial resolution around a few 

hundred m. However, a basic factor in the spatial resolution of the LSMs and hydrological models is 

the grid-size of the climate models used to drive them, which for GCMs is typically around 0.5o (around 

50 km in latitude by 25 km in longitude at 60oN). The models may attain an effective finer resolution 

by exploiting higher resolution land cover, for example, but this may still be insufficient to characterise 

the variety of environmental conditions within a landscape that affect CSI viability. Nonetheless, the 

analysis of tularemia described in Section 5.4 makes clear that while detailed mapping of disease 

hotspots are unlikely to be provided by models, the effect of changing conditions can be investigated 

by these models and this yields significant policy-relevant conclusions. 

Uncertainty is intrinsic to any measurement or model estimate. For measurements, uncertainty 

describes the statistical distribution of estimated values of a given quantity, so is conceptually simple, 

though may be hard to quantify in practice. For example, estimating LAI from satellite measurements 

relies on a model for how solar radiation interacts with the vegetation canopy. Flaws in this model 

combine with effects such as sensor noise to give LAI estimates that may be biased as well as having 

significant dispersion. Nonetheless, this type of uncertainty is well understood and can be 

characterised if there are sufficient reference data to calibrate the estimates. 

Uncertainty in LSM or hydrological model calculations is much harder to characterise because it 

contains many cumulative factors that cannot be adequately described simply by statistical methods, 

especially when it comes to prediction. First and foremost is how humanity will respond to climate 

change. Although the four Representative Concentration Pathways (RCPs) defined by the IPCC set out 

possible atmospheric greenhouse gas concentration trajectories, no probability is attached to them. 

Secondly, for a given RCP different GCMs make different predictions about how climate will behave, 

with particular disagreement as regards precipitation. The ensuing uncertainty feeds through into the 

climate drivers of LSMs and hydrological models. However, as we have shown above, the models 

themselves differ, even with the same drivers, either because of differences in process representation 

or in model parameterization. This adds another layer of uncertainty, all of which propagates into CSI 

models based on the values of land surface and hydrological variables. The implication is that, at our 

current level of understanding and capability, long-term prediction of CSI behavior is probably of little 

value for policy decisions. Much more useful will be the development of predictions looking no more 

than a decade or two into the future, since these will be strongly constrained by current observations 

of the state of the Arctic. Furthermore, the large set of observations we already have provide a major 

resource to winnow out the models that do not perform very well and to motivate model 

improvement. 

As noted in Chapter 4 of this volume, addressing the complex effects of climate change on diseases in 

the Arctic and the ensuing societal impacts requires a highly multi-disciplinary team with expertise in 

health, geospatial statistics, data analysis, environmental observations from space, ecology, 

environmental modelling, and numerous aspects of social science. In addition, to have real impact 

CLINF needs to understand how to translate its findings into forms that can be assimilated by the many 

https://en.wikipedia.org/wiki/Greenhouse_gas


political, economic and social groups that intersect in the Arctic. One of the key contributions of CLINF 

is assembly of the necessary range of capabilities and, over time, learning how to make them interact 

with a common goal and within a common framework. This has inevitably been a slow process because 

of the lack of common methodologies, or even a common language, shared by different research 

communities. Equally inevitably, it has involved researchers moving out of their comfort zone and 

tackling questions that they have not been faced with before. However, doing so is both scientifically 

stimulating and leads to better understanding of the strengths and limitations of their own approaches 

to Arctic questions. Such insight is a prerequisite for improvement, with implications well beyond the 

CLINF project itself. 
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