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Modelling the effects of vegetation and urban form on air quality in real urban 

environments: A systematic review of measurements, methods, and predictions 

 

Abstract 

Air pollution poses a significant threat to public health and well-being. In recent decades, researchers have used 

direct measurements and predictive modelling to assess urban air quality. However, the impact of vegetation 

and urban form on air quality remains uncertain, particularly regarding their interconnected roles. This paper 

systematically reviews studies on real urban environments, focusing on how vegetation and urban form 

influence air quality assessment and prediction. It highlights key variables and their importance, as reported 

in the literature, and identifies areas needing further research to improve predictions of vegetation’s effects 

on urban air quality in relation to urban morphology. 

Keywords: Urban air quality, Air pollutants, Vegetation indices, Urban morphological indicators, Air quality 

predictions 

 

1. Introduction 

1.1. Background and importance 

Air pollution has long been a by-product of energy extraction from carbon-based combustion, driving 

production and consumption at scales that significantly threaten human and ecological health (Perera, 2018, 

Myers et al., 2013, Tong et al., 2022). As social-economic developments evolve, the sources and interactions 

of air pollutants have become more diverse and complex. For instance, the primary air pollutants commonly 

observed in Europe include particulate matter (PM), black carbon (BC), sulphur oxides (SOx), nitrogen 

oxides (NOx), ammonia (NH3), carbon monoxide (CO), methane (CH4), non-methane volatile organic 

compounds and certain metals and poly-cyclic aromatic hydrocarbons (EEA). The main known sources of 

air pollution are associated with human activities, including industrial emissions (Azarov et al., 2017), traffic 

emissions (Bai et al., 2022), agricultural fires (Khanal et al., 2022), and household emissions (Apte and 

Salvi, 2016). Natural processes, such as volcanic eruptions, dust storms, atmospheric inversions, can also 

cause or exacerbate air pollution (Burhan and Mukminin, 2020). 

According to the “State of Global Air 2020” report (hei, 2020), air pollution ranks as one of the leading 

causes of premature death and is closely linked to a variety of diseases. Exposure to air pollution has been 

strongly associated with specific health outcomes, including stroke, ischemic heart disease, chronic 

obstructive pulmonary disease, lung cancer, and pneumonia. Air quality has been a focus of global attention, 

and a number of air quality control standards, guidelines, laws, policies and agreements have been signed, 

such as the WHO Global Air Quality Guidelines (Organization, 2021), the Clean Air Programme for Europe 

(Amann et al., 2005), and the UK Clean Air Act (Act, 1970). 

The relationship between urban form and air quality began to attract researchers’ attention as early as the 
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1970s (Tolley and Cohen, 1976, Capannelli et al., 1977), including studies on urban vegetation (Nadel et al., 

1977, Smith and Staskawicz, 1977). However, the relationships between vegetation and built urban form 

(i.e., urban morphological characteristics) affecting air quality are far from conclusive. In some studies, 

vegetation was considered a component of urban form, influencing aspects of vertical structures of an urban 

environment. On the other hand, vegetation was distinguished from urban form due to functional differences 

(e.g., natural vs. man-made and ecosystem services vs. structural functions) and the use of different metrics 

of measurement and analysis (e.g., biomass vs. construction density). Consequently, the impact of 

vegetation on air quality is often assessed under the influences of built urban form, intentionally or 

otherwise, making it challenging to isolate and quantify the effects of vegetation. Better understanding of 

the effects on air quality due to vegetation in real urban environments is required to inform urban greening 

planning and design decision-making. 

1.2. Objectives and scope 

This research aligns with the United Nations Sustainable Development Goals. Specifically, it supports 

Indicator 11.6.2 under Target 11.6, which specifies the annual mean levels of fine particulate matter (e.g. 

PM2.5 and PM10) in cities (population weighted) (Division, 2023). By addressing critical gaps in 

understanding the relationships between vegetation and air quality in real urban environments, this review 

contributes to actionable insights that can guide urban planning and policy development to achieve this 

target. We focus on the studies of urban air quality that examine the effects of vegetation in relation to (built) 

urban form characteristics. In Section 2, we first summarise the questions and findings from the previous 

review articles published during 2015-2023, to identify the areas for a new systematic review. In Section 3, 

we explain how the PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) 

principles and protocol were applied to identify a set of 79 papers meeting the inclusion and exclusion 

criteria. Section 4 comprises five subsections that provide detailed analyses of the study methods and results 

under review: each corresponding to specific review questions. In Section 5, we discuss the key findings 

and implications of this systemic review in terms of the research transitions observed and the limitations of 

our review. We then conclude in Section 6 the significance of this review and the key pointers to further 

research. 

2. Summary of previous reviews published in 2015-2023 

We identified 23 review articles published during 2015-2023 that focused on vegetation, urban form and air 

quality. To inform our systematic review, we grouped and summarised these 23 review papers into four 

tables according to the keywords used by the authors (Supplementary Tables S1.a – S1.d). The first set of 

eight reviews (listed in Table S1.a) focused on vegetation’s capacity to mitigate and remove air pollutants. 

The main questions discussed were the mitigation capacities of different vegetation strategies, such as green 

walls, green roofs, and green spaces/parks. Particulate matter (PM) was most discussed, along with O3, 

NO2, and poly-cyclic aromatic hydrocarbons (PAHs). These reviews also compared air cleaning effects 

according to vegetation species and traits. 

The second set of six reviews in Table S1.b shows a common interest in the processes and effects of 

vegetation on air pollution removal through deposition and dispersion. The deposition effect is considered 

an air pollutant capture mechanism via plant surfaces, while the dispersion effect involves transporting air 

pollutants through air flows, changing pollutants concentrations at different locations within the urban 

environment. This group of reviews discusses the deposition and aerodynamic dispersion models of green 
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infrastructure at different scales, which include various research methods – on-site studies, wind tunnel 

research, and numerical simulations. Key parameters were discussed among different processes and models. 

Table S1.c contains seven reviews concerning the effects of vegetation in urban street canyons or open 

streets with or without buildings or other structures on both sides. Here, traffic emissions were the main 

source of air pollutants; trees and hedges planted in these urban spaces could function as porous obstacles. 

Other green infrastructure, such as green walls and green roofs, were of interest. Considering the combined 

effects of the built forms, emission patterns, there were noticeable characteristics in the concentration of air 

pollutants in urban streets (enclosed or open). Vegetation porosity was suggested as a parameter influencing 

whether barriers or obstacles reduce or increase air pollution concentrations in urban street spaces. 

Finally, there are two review papers (Table S1.d) summarising the studies that investigated the influence of 

vegetation not only on air pollution but also on other aspects of urban ecological systems, including runoff 

pollution removal and interactions with the intensity of urban heat and pollution islands. The reviews 

highlighted the increasingly multidisciplinary approaches to assessing urban vegetation as an ecosystem 

service.  

In summary, the previous reviews have identified five focal areas of urban air quality research: (1) mitigation 

processes (deposition, dispersion); (2) models and parameters (numerical simulation, wind tunnel); (3) 

macro- and micro-structure of vegetation (e.g., leaf traits, porosity); (4) effects of plants in different urban 

forms and scales (street canyon, open road); and (5) ecological roles of plants in urban environments. 

However, these reviews also show some limitations. First, only five reviews were conducted following the 

PRISMA protocols (Diener and Mudu, 2021, Corada et al., 2021, Buccolieri et al., 2022, Chaudhuri and 

Kumar, 2022, Ernst et al., 2022). Second, the reviews reporting the effects of vegetation did not provide 

hierarchical correlation or regression accounts of the vegetation’s effects on mitigating concentrations of air 

pollutants. Third, it is difficult to draw clear implications from reviews that mixed theoretical studies with 

studies of real urban environments. These limitations highlight key research gaps in previous reviews, 

including the limited focus on real urban environments and the lack of exploration into the hierarchical 

relationships between vegetation and air pollutants. To address these gaps, we have identified the following 

questions that necessitate a new systematic review: 

1. What urban air quality indicators and data sources were used in the studies examining the 

effects of vegetation on urban air quality? 

2. What metrics or indices were used to quantify the morphological characteristics of urban 

vegetation in studies on air quality? 

3. What metrics or indices were used to quantify urban forms of real cities for air quality studies? 

4. What data sources and methods were used for developing predictive models for assessing urban 

air quality of real urban environments? 

3. Method and materials 

Our systematic review follows the PRISMA framework, which provides a structured and transparent 

approach to reviewing the literature. This methodology addresses inconsistencies in prior reviews by 

ensuring that all included studies are systematically identified, screened, and evaluated based on predefined 

eligibility criteria. By focusing on quantitative studies conducted in real urban environments, we aim to 

overcome the lack of real-world validation highlighted in previous reviews. Additionally, the use of 

standardised metrics and comprehensive data extraction protocols ensures consistency across the studies 
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analysed, facilitating more robust comparisons and actionable insights for urban planning and policy 

development. 

We first explain how the PRISMA guidelines (Preferred Reporting Items for Systematic Reviews and Meta-

Analyses) were applied in this systematic review (Section 3.1). We then introduce the core materials that 

appeared in the articles identified by the search and selection criteria (Section 3.2). 

3.1. Method: The PRISMA guidelines applied 

The PRISMA guidelines were applied in three stages: (1) identification, (2) two-step selection – initial 

selection by abstract and title search, followed by selection via full-text search, and (3) grouping the 

identified articles into two main categories: Correlation/Regression Studies, and Prediction Models. 

The following keywords were used in the initial search: ‘air quality’ OR ‘air pollution’ OR ‘air pollutant’ 

OR ‘air pollutants’, AND ‘vegetation’ OR ‘green infrastructure’ OR ‘plant’, AND ‘urban’ OR ‘outdoor’. 

Publication dates were limited to 2012-2023. Scopus was selected as the database. The search focused on 

journal articles, including other relevant literature such as book chapters and conference papers. The initial 

search returned 3,456 papers. 

The first selection was conducted based on the search for abstracts, followed by a more detailed full-text 

reading and extraction. The criteria for the first selection were as follows: 

Inclusion Criteria: 

1. Search for papers published only in English. 

2. Include research articles published as open access full texts. 

3. Include research articles focused on outdoor air quality and vegetation within urban areas. 

4. Include research where air quality is the dependent variable and vegetation-related metrics or 

indices are part of the independent/explanatory variables. 

5. Include studies that screen vegetation and air quality as interaction objects. For studies with 

additional objects, only review sections that address the influence of vegetation on air quality 

(e.g., interactions between vegetation, air pollution, and urban heat islands). 

6. Focus on research examining the morphological characteristics of vegetation. 

7. Include studies on air quality in real urban environments based on data-driven quantitative 

analyses or modeling. 

 

Exclusion Criteria: 

1. Exclude studies on indoor air quality and indoor vegetation. 

2. Exclude studies on vegetation in large non-urban environments (e.g., ecological forests, peri-

urban farmlands). 

3. Exclude studies related to plant adaptation or tolerance to air pollution; non-airborne pollutants 

(e.g., those in the rain); and vegetation effects such as ecological, economic, or social influences 

(e.g., effects on the thermal environment, economic benefits of greening, resident satisfaction 

with urban green spaces). 

4. Exclude studies on the biological structures of plants (e.g., leaf traits such as wax or 

chlorophyll). 

5. Exclude qualitative studies (e.g., guidelines, policy interpretations), numerical simulations (e.g., 

wind tunnels, CFD), laboratory based measurements (e.g., leaf deposition measurements), and 
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studies of vegetation removal capacity based on biochemical processes (e.g., stomatal uptake). 

6. Exclude articles primarily focused on population exposure, human health, and diseases. 

7. Exclude all 23 previous review papers discussed in Section 2. 

Our inclusion and exclusion criteria were intentionally designed to concentrate on specific research topics. 

To emphasize researches with real urban environments, we excluded numerical simulation studies. 

Furthermore, we did not categorise individual vegetation types—such as trees, hedges, green roofs, or green 

walls—because our primary objective was to summarise the vegetation indices employed in these studies. 

We assume that these indices are generally applicable to various types of vegetation. 

Based on the above search and selection criteria, 301 papers were identified in the first round of the abstract 

search, of which 79 papers were retained after a more detailed extraction from the open access full texts. 

Figure 1 shows the PRISMA process flowchart. 

 

Figure 1: Systematic literature review searching and retrieving flowchart (PRISMA) 

3.2. Materials: Air quality, vegetation, urban morphology indicators/indices, and prediction models 

Our initial summerisation of the core materials used in the 79 original research articles suggests five 

headings: (1) air quality indicators, (2) vegetation-related indices, (3) non-vegetation-related urban 

morphology indicators, (4) interrelations between vegetation and non-vegetation indices, and (5) predictive 

urban air quality models, as introduced below. 

(1) Air quality indicators 

We identify nine groups of air quality indicators used in the reported urban air quality studies: particulate 

matter (PM), total suspended particulates (TSP), ultrafine particles (UFPs), nitrogen oxides (NOx), ozone 

(O3), carbon oxides (COx), sulphur dioxide (SO2), black carbon (BC), and aerosol optical depth (AOD). 
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Particulate matter (PM) is a non-gaseous substance in the air composed of chemical compounds and 

materials. This review focuses on PM10, PM2.5, and PM1, referring to particles smaller than 10, 2.5, and 1 

micrometer in diameter, respectively. 

Total suspended particulates (TSP) are airborne particulate matter (PM) with diameters of up to 

approximately 100 micrometers. These particulates originate from a variety of sources, encompassing both 

combustion and non-combustion activities. PM10, PM2.5, PM1 are all components of TSP. 

Ultrafine particles (UFPs) are particles characterized by an aerodynamic diameter of 0.1µm (100 nm) or 

smaller. Due to their small size, UFPs can efficiently traverse the respiratory tract, reach and breach the 

alveolar-capillary barrier in the alveoli. Consequently, they can disseminate throughout the body via the 

circulatory system, posing a potential threat to human health (Kwon et al., 2020). 

Nitrogen oxides (NOx) are gases produced from natural sources, motor vehicles and other fuel-burning 

processes. They are primarily composed of nitric oxide (NO) and nitrogen dioxide (NO2). 

Ozone (O3) is present throughout the atmosphere. Stratospheric ozone, found in the upper atmosphere, 

forms a protective layer that shields life from the sun’s harmful ultraviolet rays. However, ozone at ground 

level can be a harmful air pollutant and is the main ingredient in “smog.” Ground-level ozone (O3) does not 

originate directly from anthropogenic sources; rather, it is a secondary pollutant formed through a complex 

series of chemical reactions in the presence of sunlight. 

Carbon oxides (COx). Carbon monoxide (CO) is a colourless, odourless gas released when something is 

burned. The primary contributors of CO to the atmosphere are automobiles, trucks, and other vehicles or 

machinery powered by the combustion of fossil fuels. Carbon dioxide (CO2), another gas released from 

burning fossil fuels, is also colourless and non-flammable. While CO2 is not typically considered an air 

pollutant, it is a significant heat-trapping (greenhouse) gas. 

Sulphur dioxide (SO2) is a corrosive, acidic gas. Approximately 99% of atmospheric SO2 comes from 

anthropogenic sources, primarily the combustion of fossil fuels such as coal, oil, and natural gas. SO2 is a 

major air pollutant that is harmful to human lungs and can lead to serious respiratory diseases. 

Black carbon (BC) is a component of PM2.5, formed by the incomplete combustion of fossil fuels. BC can 

cause poor health and premature deaths, and it also warms the atmosphere by effectively absorbing sunlight. 

Aerosol optical depth (AOD) is a dimensionless measurement that indicates how much sunlight is blocked 

due to the presence of fine solid particles or liquid droplets suspended in the air. As a measurement of the 

attenuation effects caused by atmospheric aerosols, AOD is increasingly used to evaluate the extent of 

ambient air pollution over large areas (Li et al., 2021a). AOD measurements can be obtained through 

satellite observations (Gupta et al., 2022), ground-based instruments (NOAA/ESRL, n.d.), or simulation 

and modelling (Boulisset et al., 2023). 

(2) Vegetation-related indices 

Various vegetation-related indices have been defined at macro, meso, and micro scales. Based on remote 

sensing or aerial imaging data, macro indices (e.g., vegetation land use, landscape metrics) address large 

green spaces or landscape structures in cities. Meso indices (e.g., vegetation structures, green view index) 

focus on plant communities within city neighbourhoods or districts, where street-view images can be 

systematically captured and analysed. Micro indices, such as the leaf area index, deal with individual plant 
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or vegetation characteristics. 

(3) Non-vegetation-related urban morphology indices 

Non-vegetation-related factors and indices identified in this review include meteorological data (e.g., 

temperature, wind speed), urban form and structure (e.g., road length), land cover and surface (e.g., water 

bodies, industrial land cover), and socioeconomic factors (e.g., population density). 

(4) Interrelations of air quality indicators, vegetation and non-vegetation indices 

We developed a novel data visualization scheme to highlight the interrelations of the air quality indicators, 

vegetation, and urban morphology indices (see Figure 4). The frequency of studies on different air 

pollutants and their associated variables was also calculated (see Section 4.4). 

(5) Predictive modelling of urban air quality 

Air quality prediction is an emerging and rapidly evolving research area, aiming to improve air quality 

prediction models. Combining multiple data sources, machine learning and artificial intelligence techniques 

are increasingly applied to enhance forecasting capabilities involving a large number of auxiliary variables.  

In this review, 19 articles on air quality prediction were identified and summarised, including the modelling 

methods, the types of auxiliary variables used, and feature importance analysis. 

4. Results 

4.1. Air quality indicators and data sources 

Based on the 79 papers reviewed, we identified three main sources of air quality data used in the studies: 

ground-level observations, satellite measurements, and online open datasets. 

4.1.1. Ground-level observations 

Ground-level observations are the most direct way to obtain data on air quality and various types of air 

pollution at the population level. The two most commonly used methods are ground-based station 

observations and on-site mobile measurements. The former typically involves an air quality monitoring 

network composed of fixed monitoring stations established or managed by government departments or 

specialised agencies. Generally, it features high temporal resolution but low spatial resolution, meaning the 

data often has temporal continuity but is geographically limited by the location and number of stations. In 

contrast, the latter method is more flexible, allowing researchers to use mobile tools to collect data with 

greater freedom in choosing sample locations. However, both are costly, requiring significant time, energy, 

equipment, and financial resources. 

Among the 79 papers, 58 utilised ground-level observation data. Of these, 35 relied on ground-based station 

datasets, 22 employed on-site mobile measurement datasets, and one paper combined both methods. Table 

S.2 summarises the sources of ground-level observation data. 

4.1.2. Satellite measurements 

Satellite measurement datasets are widely used as air quality data sources, employing remote sensing 

technologies to retrieve information via satellite imagery. This method is popular for obtaining global air 

quality grids due to its accessibility and availability, overcoming the location limitations of ground-based 
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measurements and the time- and energy-intensive nature of mobile measurements. Commonly used satellite 

sensing instruments include Moderate Resolution Imaging Spectroradiometer (MODIS), Ozone Monitoring 

Instrument (OMI), Thermal Infrared Sensor (TIRS), and Visible Infrared Imaging Radiometer Suite 

(VIIRS). However, these datasets cannot directly distinguish concentrations of different components; 

instead, they retrieve target pollutant data based on the satellite’s observation of aerosol optical depth 

(AOD). Additionally, tropospheric NO2 can be measured through satellite images. Due to the limitations of 

satellite orbits, the resolution of these datasets is typically constrained. Table S.3 summarises the satellite 

measurement datasets and their spatial resolutions. 

4.1.3. Online open datasets 

The retrieval process is essential for satellite measurement data to obtain target air pollution concentrations 

and achieve higher resolution. This typically involves using other data sources, such as ground-based 

observations, for calibration. By combining large amounts of data from multiple sources and undergoing 

rigorous screening, cleansing, computation, and validation processes, this method produces high-resolution 

predictions for specific areas. As a result, substantial data and computing resources are required. 

Consequently, some of these retrieved and validated target air pollution datasets are published online. These 

datasets are generally considered highly accurate and are widely used due to their high resolution and 

accessibility. Table S.4 summarises the online public datasets used in the reviewed research articles. 

For the air pollution data collected, pre-processing is essential due to issues like missing data and resolution 

inconsistencies. Table S.5 summarises the data pre-processing methods used in the literature. Data 

interpolation methods, such as Inverse Distance Weighted (IDW) and Kriging, are commonly used to predict 

data distribution over larger areas based on a limited set of known data. Some research also uses linear 

regression to predict and fill in missing data. Additionally, resampling is often employed to achieve uniform 

dataset resolution. Ensuring data integrity is crucial for the smooth progression of subsequent studies. 

4.2. Vegetation-related metrics and indices 

Among these 79 papers, vegetation-related metrics and indices can be summarised into three categories: (1) 

Individual characteristics, (2) Satellite or street view sensing measurements, and (3) Landscape pattern 

metrics/indices. The vegetation type cluster primarily describes characteristics of macroscopic plant 

communities, including vertical and horizontal vegetation structures. Individual characteristics focus mainly 

on mesoscopic plant morphology traits, such as canopy and porosity. With advances in remote sensing 

technology and increased accessibility to open-source data, satellite and street view images have become 

convenient tools for quantifying vegetation characteristics in three dimensions. Landscape metrics include 

indices describing vegetation patch types and arrangements, widely used in landscape research. 

Additionally, morphological spatial pattern analysis (MSPA) is used to describe geometry and connectivity 

through geometric concepts, though it is not widely utilised in this research area. Table 1 presents selected 

vegetation-related metrics/indices in terms of definition, calculation, and unit of measurement.  

 

 

 

Table 1. Summary of Vegetation-related metrics and indices 
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[1] Individual Characteristics 

Term Definition Calculator Unit [Value range] 

Count Vegetation/Trees Count: The total 

count of trees in certain areas. 

 Scalar 

[0, ∞] 

LAI Leaf Area Index: A dimensionless 

quantity characterizing plant canopies. 

 Scalar 

[0, 10] 

CC/CD Canopy Cover or Density: a ratio 

between the area covered by tree 

crowns and a total area within an area. 

 
Scalar 

[0, ∞] 

DBH Diameter at Breast Height: The tree 

diameter measured at 4.5 feet above 

the ground. 

 

Direct measurement 

 

Meter (m) 

PS Proportion of Species: Proportion of 

specific species in a green space. 

 Scalar 

[0, 1] 

SR Species Richness: The number of 

species in given samples. 

 Scalar 

[0, ∞] 

Porosity Tree Crowns/Belts Porosity: Ratio of 

area light penetrating trees in a planar 

or sectional area (ha). 

 

Digital image processing 
Scalar 

[0, 1] 

 

[2] Satellite sensing and street view scanning measurement 

Term Definition Calculator Unit [Value range] 

NDVI Normalized Difference Vegetation 

Index: An index quantifies the 

vegetation by measuring the ratio of 

near-infrared (NIR) and visible red 

light (Red). 

 
Scalar 

[-1, 1] 

SAVI Soil Adjusted Vegetation Index: An 

index to correct NDVI for the 

influence of soil brightness in areas 

where vegetative cover (L [0,1]) is 

low. 

 
Scalar 

[-1, 1] 

EVI Enhanced Vegetation Index: An index 

to correct NDVI for atmospheric 

resistance (C), canopy background (L), 

and values from Blue band in areas 

with dense vegetation. 

 

Scalar 

[-1, 1] 

GTCT Greenness Tasseled Cap 

Transformation: An index to convert 

satellite data into three spectral 

indicators with the Greenness indicator 

for vegetation growth cycles in 

 

 

GIS-based digital image processing 
% 

[0, 100] 

𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 =
(𝑁𝑁𝑁𝑁𝑁𝑁 − 𝑁𝑁𝑅𝑅𝑅𝑅)

(𝑁𝑁𝑁𝑁𝑁𝑁 + 𝑁𝑁𝑅𝑅𝑅𝑅)
 

𝑆𝑆𝑆𝑆𝑁𝑁𝑁𝑁 =
(𝑁𝑁𝑁𝑁𝑁𝑁 − 𝑁𝑁𝑅𝑅𝑅𝑅)

(𝑁𝑁𝑁𝑁𝑁𝑁 + 𝑁𝑁𝑅𝑅𝑅𝑅 + 𝐿𝐿)
∗ (1 + 𝐿𝐿) 

𝐿𝐿𝑆𝑆𝑁𝑁 =
𝐿𝐿𝑅𝑅𝐿𝐿𝐿𝐿 𝑆𝑆𝐴𝐴𝑅𝑅𝐿𝐿𝐺𝐺𝐴𝐴𝐺𝐺𝐺𝐺𝐺𝐺𝑅𝑅 𝑆𝑆𝐴𝐴𝑅𝑅𝐿𝐿 

𝑃𝑃𝑁𝑁𝑆𝑆 =
𝑁𝑁𝑅𝑅𝑉𝑉𝑅𝑅𝑉𝑉𝐿𝐿𝑉𝑉𝑉𝑉𝐺𝐺𝐺𝐺 𝑆𝑆𝐴𝐴𝑅𝑅𝐿𝐿𝐺𝐺𝐴𝐴𝐺𝐺𝐺𝐺𝐺𝐺𝑅𝑅 𝑆𝑆𝐴𝐴𝑅𝑅𝐿𝐿  

𝐶𝐶𝐿𝐿𝐺𝐺𝐺𝐺𝐶𝐶𝐶𝐶 𝐶𝐶𝐺𝐺𝐶𝐶𝑅𝑅𝐴𝐴 =
𝑇𝑇𝐴𝐴𝑅𝑅𝑅𝑅 𝐶𝐶𝐴𝐴𝐺𝐺𝐶𝐶𝐺𝐺𝐶𝐶 𝐶𝐶𝐺𝐺𝐶𝐶𝑅𝑅𝐴𝐴𝑅𝑅𝑅𝑅 𝑆𝑆𝐴𝐴𝑅𝑅𝐿𝐿𝐺𝐺𝐴𝐴𝐺𝐺𝐺𝐺𝐺𝐺𝑅𝑅 𝑆𝑆𝐴𝐴𝑅𝑅𝐿𝐿  

𝑃𝑃𝑆𝑆 =
𝑇𝑇ℎ𝑅𝑅 𝐺𝐺𝐺𝐺𝑛𝑛𝑛𝑛𝑅𝑅𝐴𝐴 𝐺𝐺𝐿𝐿 𝐶𝐶𝐶𝐶𝑅𝑅𝑠𝑠𝑉𝑉𝑅𝑅𝐶𝐶𝑇𝑇ℎ𝑅𝑅 𝑉𝑉𝐺𝐺𝑉𝑉𝐿𝐿𝑡𝑡 𝐺𝐺𝐺𝐺𝑛𝑛𝑛𝑛𝑅𝑅𝐴𝐴 𝐺𝐺𝐿𝐿 𝐶𝐶𝑅𝑅𝑉𝑉𝑅𝑅𝑉𝑉𝐿𝐿𝑉𝑉𝑉𝑉𝐺𝐺𝐺𝐺 

 

𝑆𝑆𝑁𝑁 =
𝑇𝑇ℎ𝑅𝑅 𝑉𝑉𝐺𝐺𝑉𝑉𝐿𝐿𝑡𝑡 𝐺𝐺𝐺𝐺𝑛𝑛𝑛𝑛𝑅𝑅𝐴𝐴 𝐺𝐺𝐿𝐿 𝐶𝐶𝐶𝐶𝑅𝑅𝑠𝑠𝑉𝑉𝑅𝑅𝐶𝐶𝑆𝑆𝐴𝐴𝑅𝑅𝐿𝐿  

𝐸𝐸𝑁𝑁𝑁𝑁 = 𝐺𝐺 ∗ (𝑁𝑁𝑁𝑁𝑁𝑁 − 𝑁𝑁𝑅𝑅𝑅𝑅)

(𝑁𝑁𝑁𝑁𝑁𝑁 + 𝐶𝐶1 ∗ 𝑁𝑁𝑅𝑅𝑅𝑅 − 𝐶𝐶2 ∗ 𝐵𝐵𝑡𝑡𝐺𝐺𝑅𝑅 + 𝐿𝐿)
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particular. 

GVI Green View Index: An objective 

measurement of urban green at the 

street level from a human-eye 

viewpoint. 

 

% 

[0, 100] 

VGVI Viewshed Greenness Visibility Index: 

In a GIS framework, VGVIj is the 

index value for the observer cell j; Gj 

is the visible green cell, Vi is the 

visible non-green cell, and di is 

distance decay weight corresponding 

to visible cell i.  

 

 

 

 

Where 0 = no green cells are visible, 

and 1 = all of the visible cells are green 

Scalar 

[0, 1] 

 

[3] Landscape pattern metrics and indices 

Term Definition Calculator Unit [Value range] 

PLAND Percentage of Landscape: Percentage of 

the total area of jth patch of patch type i 

(aij) over the total area of the landscape 

(A). 

 

% 

[0, 100] 

PD Patch Density: Density of a certain patch 

in the landscape. 

 Patches/km² 

[0, ∞] 

MPS Mean Patch Size is the area of all 

patches of patch type i (aij) divided by 

the number of the patch of type i (ni), 

divided by 10,000 (to convert to 

hectare). 

 

 

Hectares 

LSI Landscape Shape Index: The ratio 

between the actual landscape edge 

length (E) and the hypothetical 

minimum edge length min E. 

 

Scalar 

[1, ∞] 

AI Aggregation Index: The degree of 

aggregation or clumping. 

 %    

[0, 100] 

ED Edge Density: An landscape 

configuration description index which 

equals all edges in the landscape in 

relation to the landscape area. 

 

m/ha 

[0,∞] 

AWMSI Area-Weighted Mean  

Shape Index: Averaging the shape index 

value of all landscape patches, with the 

perimeter of patch (Pij), the area of patch 

(aij), the total area of the landscape (A), 

weighted by the patch areas. 

Scalar 

[1, ∞] 

𝑃𝑃𝐿𝐿𝑆𝑆𝑁𝑁𝑁𝑁 =
∑ 𝐿𝐿𝑖𝑖𝑖𝑖𝑛𝑛𝑖𝑖=1𝑆𝑆 ∗ 100 

𝑀𝑀𝑃𝑃𝑆𝑆 =
∑ 𝐿𝐿𝑖𝑖𝑖𝑖𝑛𝑛𝑖𝑖=1𝐺𝐺𝑖𝑖 ∗ (

1

10000
) 

𝑆𝑆𝐴𝐴𝑀𝑀𝑆𝑆𝑁𝑁
= ���2 ln(0.25𝑃𝑃𝑖𝑖𝑖𝑖)

ln(�𝐿𝐿𝑖𝑖𝑖𝑖)
)(
𝐿𝐿𝑖𝑖𝑖𝑖𝑆𝑆 )�𝑛𝑛

𝑖𝑖=1
𝑚𝑚
𝑖𝑖=1  

𝐺𝐺𝑁𝑁𝑁𝑁 =
𝐺𝐺𝐴𝐴𝑅𝑅𝑅𝑅𝐺𝐺𝑃𝑃𝑉𝑉𝑖𝑖𝑅𝑅𝑡𝑡𝐶𝐶𝐺𝐺𝐺𝐺𝐺𝐺𝑉𝑉𝑇𝑇𝐺𝐺𝑉𝑉𝐿𝐿𝑡𝑡𝑃𝑃𝑉𝑉𝑖𝑖𝑅𝑅𝑡𝑡𝐶𝐶𝐺𝐺𝐺𝐺𝐺𝐺𝑉𝑉  

𝑁𝑁𝐺𝐺𝑁𝑁𝑁𝑁𝑖𝑖 =
∑ 𝐺𝐺𝑖𝑖 ∗ 𝑅𝑅𝑖𝑖𝑛𝑛1

(∑ 𝐺𝐺𝑖𝑖 ∗ 𝑅𝑅𝑖𝑖𝑛𝑛1 ) + (∑ 𝑁𝑁𝑖𝑖 ∗ 𝑅𝑅𝑖𝑖𝑛𝑛1 )
 

𝐿𝐿𝑆𝑆𝑁𝑁 =
0.25𝑃𝑃𝑖𝑖𝑖𝑖�𝐿𝐿𝑖𝑖𝑖𝑖  𝐿𝐿𝑆𝑆𝑁𝑁 =

𝐸𝐸
min𝐸𝐸 

𝑃𝑃𝑁𝑁 =
𝑁𝑁𝑃𝑃𝑆𝑆  

𝑆𝑆𝑁𝑁 = � 𝑉𝑉𝑖𝑖𝑖𝑖
max(𝑉𝑉𝑖𝑖𝑖𝑖)� ∗ 100 

𝐸𝐸𝑁𝑁 =
𝐸𝐸𝑆𝑆 
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Figure 2 shows the number of articles that used various types of vegetation-related indices. Apart from the 

three main categories and MSPA, there is another set of metrics used in the studies, including vegetation 

structure (VS), and Land Use/Land Cover (LULC). NDVI is the most frequently used index, appearing in 

36 papers, followed by various types of vegetation land types used in 27 papers. Landscape pattern indices 

constitute a broad category that includes several indices. Although different landscape pattern indices are 

sometimes combined in a single study, the total number of articles using them is relatively low. Overall, the 

application rate of indices in the macro-horizontal dimension is much higher than the usage rate of multi-

dimensional indicators in the vertical dimension. For each of the vegetation-related indices/metrics used in 

the studies, a list of the literature reviewed is presented in Table S.6. 

 

Figure 2: Vegetation-related indices and numbers of associated research articles reviewed 

4.3. Summary and classification of non-vegetation related indices 

The non-vegetation related indicators or indices used in the literature can be classified into four clusters: (1) 

meteorological data, (2) urban form and structure, (3) non-vegetation land cover and surface, and (4) 

economic and social data. Figure 3 shows the number of articles reviewed in terms of the non-vegetation-

related indices used. 

The meteorological data cluster contains 16 variables, with wind speed, temperature, and humidity being 

the top three used. The urban form and structure cluster includes 26 indicators or indices, consisting of the 

natural topographical characteristics of urban areas, such as elevation and slope, as well as the structural 
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characteristics of the urban environment, such as road length and road density. Among these, elevation and 

DEM were the most used variables. The non-vegetation land cover and surface cluster comprises variables 

that describe different land use types in 1- or 2-dimensional spaces. The economic and social data cluster 

covers population related, economic, traffic, social, and industrial activities. 

 

Figure 3: Non-vegetation related indices and numbers of associated articles reviewed 

4.4. Interrelations of vegetation, air quality indicators, and non-vegetation indices 

The air quality indicators and associated variables of interest across the 79 papers were analysed. Among 
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these variables, only data from more than two articles on the same air pollutant were retained. Figure 4 

shows the interrelations between air quality indicators, vegetation-related indices, and non-vegetation 

related indices, with the air quality indicators forming the central spine. The mapping shows that PM2.5 is 

the pollutant of highest concern linked to most variables, followed by PM10 and NO2. Among the vegetation 

related variables, those from satellite or street view imagery measurements and vegetation land type clusters 

were linked to more air quality indicators, while the landscape metrics cluster had a lower utilization rate. 

In contrast, the non-vegetation related variables/indices, as grouped in four sectors, were more evenly 

connected to air pollutants, with a slightly higher connection in the meteorological data. 

 

Figure 4: Mapping the connections between Vegetation-Related Indices, Air Quality Indicators (Air 

Pollutants), and Non-Vegetation Related Indices used in the 79 original research articles reviewed. 

4.5. Predictive modelling of urban air quality 

Recently, identifying and evaluating variables for air quality prediction has become a focus of research. Of 

the 79 reviewed papers, 19 addressed urban air quality predictions. These studies outline a three-step 

process: (1) auxiliary variable selection, (2) predictive model development and validation, and (3) feature 

importance analysis. Step one involves data pre-processing, such as handling missing values and 

standardising dataset resolutions (see Table S.5). Step two, the core stage, encompasses algorithm selection, 

parameter/hyperparameter tuning, model training/testing, and validation (details in Table S.7). While the 

first two steps are essential, feature importance analysis is not always included. We identified at four types 
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of prediction models and summarised their feature importance analyses. 

4.5.1. Prediction methods and models 

Predictive urban air quality models can be categorised into four types: (1) spatial estimation models, (2) 

traditional land use regression (LUR) models, (3) machine learning (ML) and deep learning (DL) models, 

and (4) ML/DL LUR hybrid models. 

(1) Spatial estimation models 

These are divided into two sub-types: interpolation methods and spatial regression models.  

• Interpolation methods, such as Inverse Distance Weighting (IDW) and kriging (Ramos et al., 2016), 

estimate air quality in unmonitored areas using mathematical and geostatistical approaches. They 

rely on spatial relationships based on distances to known points, which often overlook other 

influential variables, leading to large margins of error. As a result, these methods are now primarily 

used for preprocessing, such as filling data gaps.  

• Spatial regression models, particularly the Geographically Weighted Regression (GWR) model (Li 

et al., 2017), account for variable autocorrelation and heterogeneity, making them less dependent 

on ground-based stations. 

 

(2) Traditional land use regression (LUR) models 

LUR models derive air quality (dependent variable) from station monitoring data and extract auxiliary 

variables (independent variables) are from buffer zones around the stations.  

• Their accuracy is limited by station location and density, with most located in urban areas. Auxiliary 

variables extracted from multiple buffer zones can lead to data redundancy, collinearity and other 

issues, making variable selection critical. Common methods include correlation analysis and the 

Variance Inflation Factor (VIF).  

• Although typically reliant on Multiple Linear Regression or stepwise (forward/backward) methods, 

LUR models struggle with non-linear relationships and handling large datasets effectively. Figure 

5 illustrates traditional LUR workflows (Han et al., 2022a; Kong and Tian, 2020; Guo et al., 2020; 

Van Ryswyk et al., 2019; Liu et al., 2019; Masri et al., 2019; Wu et al., 2017; Wu et al., 2015a; 

Meng et al., 2015; Rao et al., 2014). 
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Figure 5: Land use regression (LUR) based air quality models using multiple linear regression (left), 

stepwise (forward/backward) linear regression (right) 

 

 

 

Figure 6: ML/DL prediction modelling (left) and ML/DL LUR mixed modelling (right) 

(3) Machine/Deep learning prediction models 

As machine learning (ML) and deep learning (DL) algorithms advance, ML/DL models are becoming as 

popular tools for predicting and analysing large, multidimensional datasets. These models excel at 

identifying non-linear relationships between air quality and auxiliary variables, surpassing traditional 
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models by incorporating diverse data types (e.g., 3D variable indices) and sources (e.g., satellite AOD 

datasets) without reliance on ground monitoring stations. In the era of big data, this adaptability is 

invaluable. However, effective data cleaning and preprocessing are essential to address challenges like 

missing values and varying dataset resolutions. A key limitation of ML/DL models is their “black boxes” 

nature, which hinders interpretability. Techniques like feature important analysis are necessary to enhance 

understanding. Figure 6 (left) summarises the ML/DL predictive modelling process (Tella and Balogun, 

2021; Shogrkhodaei et al., 2021; Liu et al., 2020; Li et al., 2020b; Zhang and Hu, 2017). 

(4) ML/DL LUR hybrid models 

To address the limitations of individual methods, a combined approach integrating LUR with ML/DL 

techniques has been developed. Based on ground monitoring data, LUR extracts buffer data, while ML/DL 

algorithms process large multidimensional datasets and analyse non-linear relationships. Figure 6 (right) 

presents a flowchart of the mixed ML/DL LUR predictive air quality model (Qi et al., 2022; Babu Saheer 

et al., 2022; Han et al., 2022a). 

4.5.2. Feature variable importance ranking 

Across 19 reviewed articles on predictive air quality models, 55 feature variables were utilised. Five studies 

included feature variable importance analysis during model development. Table 2 summarises the results, 

with two studies focused on PM2.5 prediction (Shogrkhodaei et al., 2021; Li et al., 2020b) and three on NO2, 

O3, and PM10, respectively (Qi et al., 2022; Han et al., 2022a; Tella and Balogun, 2021). Despite variations 

in feature selection and ranking, three common variables—humidity, maximum temperature, and 

elevation—were consistently used in modelling. 

Table 2. Feature variable importance ranking in predictive air quality modelling 

[1] NO2 prediction: LUR using street view imagery (SVI) and satellite sensing data (Qi et al., 2022) 

Feature variable Ranking Feature Variable Ranking 

Built Environment (SVI) 3 [9] Transport Vehicles (SVI) 1 [9] 

People count (SVI) 8 [9] Vegetation (SVI) 5 [9] 

Natural scenery (SVI) 6 [9] Water (SVI) 7 [9] 

Ozone Monitoring Instrument (SVI) 4 [9] Year 9 [9] 

Transport Network (SVI) 2 [9]  

[2] O3 prediction: Ozone and UHI using a ML modified LUR method (Han et al., 2022a) 

  Feature variable Ranking Feature Variable Ranking 

Average Temperature 5 [20] Industrial and Mining Land 13 [20] 

Average Wind Speed 4 [20] Major Road 12 [20] 

Distance to Cultivated Land 9 [20] Maximum Temperature 2 [20] 

Distance to Major Road 18 [20] Maximum Wind Speed 3 [20] 

Distance to Printing Factory 10 [20] PM10 16 [20] 

Distance to Ridge Line 11 [20] PM2.5 19 [20] 

Elevation 6 [20] Point of Interest (POI) - Factory 15 [20] 

Green Space 8 [20] POI - Gas Station 20 [20] 

Gross Domestic Product (GDP) 7 [20] Population 14 [20] 

Humidity 1 [20] Water Body (5000m buffer) 17 [20] 
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[3] PM10 prediction: KNN, XGBoost, RF, and NB model (Tella and Balogun, 2021) 

K-Nearest Neighbor (KNN) model, Selangor State, Malaysia 

Feature variable Ranking Feature Variable Ranking 

Average Wind Speed 2 [8] Normalized Difference Vegetation Index (NDVI) 6 [8] 

Build-up Index 7 [8] Road Density 4 [8] 

Elevation 1 [8] Soil Adjusted Vegetation Index (SAVI) 5 [8] 

Land Surface Temperature 3 [8] Slope 8 [8] 

XGBoost model, Selangor State, Malaysia 

Feature variable Ranking Feature Variable Ranking 

Average Wind Speed 2 [8] Normalized Difference Vegetation Index (NDVI) 6 [8] 

Build-up Index 8 [8] Road Density 4 [8] 

Elevation 1 [8] Soil Adjusted Vegetation Index (SAVI) 7 [8] 

Land Surface Temperature 3 [8] Slope 5 [8] 

Random Forest (RF) model, Selangor State, Malaysia 

Feature variable Ranking Feature Variable Ranking 

Average Wind Speed 2 [8] Normalized Difference Vegetation Index (NDVI) 7 [8] 

Build-up Index 8 [8] Road Density 5 [8] 

Elevation 1 [8] Soil Adjusted Vegetation Index (SAVI) 6 [8] 

Land Surface Temperature 3 [8] Slope 4 [8] 

Naive Bayes (NB) model, Selangor State, Malaysia 

Feature variable Ranking Feature Variable Ranking 

Average Wind Speed 2 [8] Normalized Difference Vegetation Index (NDVI) 7 [8] 

Build-up Index 6 [8] Road Density 4 [8] 

Elevation 1 [8] Soil Adjusted Vegetation Index (SAVI) 5 [8] 

Land Surface Temperature 3 [8] Slope 8 [8] 

 [4] PM2.5 prediction: Seasonal models using three ML algorithms (Shogrkhodaei et al., 2021) 

Spring model, Tehran metropolis 

Feature variable Ranking Feature Variable Ranking 

Average Temperature 5 [10] Maximum Wind Speed 6 [10] 

Distance to Industrial 2 [10] Normalized Difference Vegetation Index (NDVI) 1 [10] 

Humidity 8 [10] Population Density 4 [10] 

Maximum Temperature 10 [10] Rainfall 7 [10] 

Minimum Temperature 9 [10] Road Density 3 [10] 

Summer model, Tehran metropolis 

Feature variable Ranking Feature Variable Ranking 

Average Temperature 1 [10] Maximum Wind Speed 10 [10] 

Distance to Industrial 7 [10] Normalized Difference Vegetation Index (NDVI) 6 [10] 

Humidity 9 [10] Population Density 8 [10] 

Maximum Temperature 2 [10] Rainfall 5 [10] 

Minimum Temperature 4 [10] Road Density 3 [10] 
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Autumn model, Tehran metropolis 

Feature variable Ranking Feature Variable Ranking 

Average Temperature 6 [10] Maximum Wind Speed 7 [10] 

Distance to Industrial 4 [10] Normalized Difference Vegetation Index (NDVI) 1 [10] 

Humidity 5 [10] Population Density 3 [10] 

Maximum Temperature 9 [10] Rainfall 8 [10] 

Minimum Temperature 10 [10] Road Density 2 [10] 

Winter model, Tehran metropolis 

Feature variable Ranking Feature Variable Ranking 

Average Temperature 8 [10] Maximum Wind Speed 7 [10] 

Distance to Industrial 1 [10] Normalized Difference Vegetation Index (NDVI) 2 [10] 

Humidity 5 [10] Population Density 3 [10] 

Maximum Temperature 9 [10] Rainfall 10 [10] 

Minimum Temperature 6 [10] Road Density 4 [10] 

[5] PM2.5 prediction: Ensemble-based deep learning over California (Li et al., 2020b) 

Feature variable Ranking Feature Variable Ranking 

10-meter Northward Wind 20 [20] Maximum Temperature 4 [20] 

CO 1 [20] Pressure 9 [20] 

Daily Mean Downward Shortwave Radiation 15 [20] Product of Latitude and Longitude 3 [20] 

Dry Deposition of Ox 19 [20] Sea Salt Concentrations in PM2.5 10 [20] 

Elevation 18 [20] Square of Latitude 7 [20] 

Humidity 16 [20] Square of Longitude 11 [20] 

Impervious Layer 12 [20] Temporal Basis Function 1 2 [20] 

Latitude 5 [20] Temporal Basis Function 2 14 [20] 

Longitude 6 [20] Temporal Basis Function 3 17 [20] 

MAIAC AOD 8 [20] Year 13 [20] 

5. Discussion 

5.1. Transition of the indices’ measurements and prediction models 

The initial search for this systemic review, conducted in early 2023, targeted studies from the past decade, 

a period marked by: (1) the proliferation of data sources through advancements in remote sensing and digital 

imaging, and (2) improved computational performance driven by machine learning and deep learning 

innovations. 

5.1.1. The transition of air quality measurements and vegetation-related indices 

Ground-based station monitoring (Tables S.2–S.4) remains widely used for direct and accurate air pollutant 

measurements. Since 2017, satellite sensing and online datasets have gained prominence, offering broader 

geographic coverage and higher resolution. Despite these advancements, ground-based monitoring remains 

essential for retrieving target air pollutant concentrations and validating satellite-derived data. Its role has 

evolved from a primary data source to a verification tool, improving research efficiency by addressing the 

spatial and cost limitations of ground monitoring networks and expanding air quality datasets. 

Vegetation-related indices quantify horizontal and vertical characteristics. Horizontal indices, such as 

satellite-derived NDVI and land use metrics (e.g., PLAND), are preferred for their simplicity and ease of 

use, whereas vertical indices like Leaf Area Index (LAI) and porosity require specialised instruments and 
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manual labour, resulting in smaller datasets. Landscape pattern metrics are less common due to their 

complexity. 

Since 2020, street view images have provided an accessible, low-cost method for capturing vertical 

vegetation characteristics in urban areas. Advances in machine learning and deep learning have enhanced 

image analysis, significantly improving the efficiency and applicability of street-view images in urban 

greening research. 

5.1.2. The evolution of air quality prediction models 

Air quality prediction models have advanced from relatively simple spatial estimation techniques to land 

use regression (LUR) models using linear regression, and, after 2020, to machine learning and deep learning 

models. By 2022, hybrid models combining machine learning, deep learning, and LUR emerged, driven by 

high-performance computational algorithms capable of processing high-dimensional data and capturing 

complex non-linear relationships. Earlier methods like inverse distance weighting (IDW) and Kriging are 

now primarily used as preprocessing tool to fill missing data and harmonise dataset resolutions. 

5.1.3. Some observations of the latest research trends (2023-24) 

Since concluding our initial search for this systematic review, we have noted ongoing trends reported in 

recent research (post-2023). Traditional studies continue to focus on the impact of vegetation on air 

pollutants through localised sampling in specific areas such as schools, elderly care centres, and parks (Pan 

et al., 2024; Wang et al., 2024b; Wu et al., 2024; Ta and Promchan, 2024). Meanwhile, the growing 

availability of large datasets, including remote sensing data, has enabled broader-scale analyses of 

spatiotemporal air quality and vegetation distribution (Liu et al., 2024; Saha et al., 2024; Naboureh et al., 

2024; Sheng et al., 2023; Kan et al., 2023; Mansourmoghaddam et al., 2023).  

Recent advancements in remote sensing and street-view imaging have enhanced the quantification of urban 

vegetation. Machine learning (ML) and deep learning (DL) algorithms are increasingly applied to image-

based tasks such as vegetation detection, canopy identification, and species classification. High-resolution 

datasets (e.g., WorldView-2/3 series, GeoEye-1, Planet Labs’ SkySat, and Pleiades) enable detailed 

vegetation mapping (Guo et al., 2023; Sicard et al., 2023). Furthermore, integrating 3D vegetation analysis 

from street-view imagery marks a shift from traditional 2D studies. AI-driven computer vision now extracts 

3D structural attributes, including vertical dimensions, offering deeper insights into urban greenery (Gupta 

et al., 2024; Xu et al., 2023). ML and DL algorithms are also pivotal in air quality prediction, improving 

analysis of high-dimensional datasets and assessing interactions among multiple variables (Wang et al., 

2024a; Gündoğdu and Elbir, 2024). However, isolating the effects of individual factors remains a challenge, 

limiting the robustness of these analyses. 

5.2. Limitations of this systematic review 

We used the PRISMA framework to systematically review literature on the relationships between vegetation 

morphology, non-vegetation factors, and air quality in real urban environments. The inclusion and exclusion 

criteria defined the search and review scope, though some limitations remain. 

5.2.1. Short of a meta-analysis 

In reviewing prior research, we initially considered conducting a meta-analysis to evaluate the impact of 

vegetation on air quality improvement. However, significant variations in research scales, indices, 
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methodologies, and metrics rendered a consistent meta-analysis infeasible. For instance, studies using the 

NDVI index employed different air quality indicators (e.g., AOD in Yang et al., 2022, and PM2.5 in Llaguno-

Munitxa et al., 2021) or distinct data processing methods (e.g., correlation analysis in Yang et al., 2022, and 

random forest modelling in Shogrkhodaei et al., 2021). As a result, we adopted a qualitative approach, 

organising findings into two methodological themes: correlation/regression studies and predictive models. 

This enabled us to map the range of air quality indicators, vegetation indices, urban form indices, and 

meteorological data, as well as the predictive models developed over the past decade. 

While a meta-analysis in this field is feasible, it was not suitable at the time of this review. Future systematic 

reviews could enable meta-analyses by focusing on specific research questions addressed by multiple 

studies, ensuring consistency in metrics such as vegetation indices (e.g., NDVI) or types of green 

infrastructure (e.g., urban trees or green roofs/walls) within defined climatic regions and/or seasons. Such 

meta-analyses could adopt methodologies similar to those in evidence-based medicine, which is well 

developed and widely applied.  

5.2.2. Limited green infrastructure types 

Urban green infrastructure (GI) encompasses diverse forms beyond traditional plantings, including green 

walls and roofs, which play key roles in urban ecology. This review focuses on indices for quantifying 

vegetation characteristics, assuming their broad applicability across vegetation types. For example, NDVI 

captures horizontal greenery like green roofs, while GVI characterises vertical greenery such as street trees 

and green walls. Although, different GI types uniquely impact air quality—a topic warranting further 

review— recent studies (Vashishta et al., 2024; Barriuso and Urbano, 2021) highlight their potential to 

complement traditional urban vegetation. 

5.2.3. Real urban environments and numerical simulations 

This review focuses on studies conducted in real-world settings, excluding numerical simulations. Our aim 

is to summarise effective quantitative methods for complex environmental contexts in urban areas. While 

CFD-based numerical simulations can be isolate and quantify vegetation’s effects on air quality by 

simplifying urban scenarios, they often depend on researcher-assumed parameters, potentially introducing 

biases. These assumptions may overlook the complexity of real-world processes involving numerous 

interacting variables. By concentrating on non-simulation research, we better capture insights from 

analysing large-scale high-resolution field measurements. However, validated simulations can contribute to 

enhanced ML/DL models where comprehensive and reliable field measurements are limited. In particular, 

these combined capabilities are essential for evaluating planning and design proposals which do not exist in 

reality. Comparing and combining empirical field studies with simulation-based findings offers a promising 

direction for future research.  

5.2.4. Selection of searchable databases, languages, and accessibility 

We conducted a literature search on Scopus, a widely recognised database, yielding 3,456 initial results. 

Scopus was chosen over alternatives like Web of Science due to its broader journal coverage across 

disciplines relevant to vegetation, urban form, and air quality, such as environmental sciences, urban studies, 

and engineering. Its robust citation metrics also facilitated the identification of influential studies and authors, 

enhancing the systematic review process. While articles not indexed in Scopus were excluded, its 

comprehensive coverage and alignment with PRISIMA guidelines supported transparent screening and 
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selection. Limiting the review to English-language and open-access papers may have further excluded some 

relevant studies. 

5.3. Future Research priorities 

Air quality significantly impacts human health and the environment, prompting global policy actions. 

Assessing and predicting air quality remains challenging due to the transient nature of urban air pollution 

(e.g., emission, dispersion, deposition, resuspension, interaction with urban lights). This review highlights 

the complexity of quantifying vegetation’s effects on air quality in dynamic urban environments, where 

numerous variables interact. Advances in large-scale urban datasets from satellite and street-view imaging 

now enable the transition from 2D (planar) to 3D (volumetric) vegetation quantification. Integrating 3D 

vegetation indices with machine learning and deep learning shows new revenues for predictive air quality 

modelling. These technologies also enable automated plant species recognition, supporting evidence-based 

urban greening interventions to improve air quality.  

However, a key challenge lies in the “black-box” nature of AI-based predictions, which obscures the 

interactions among variables affecting urban air quality. Enhancing the explainability of these models is 

crucial to inform urban planning and design decisions effectively. 

5.4. Significant of this review 

This review summarises advancements in vegetation-related indices, urban form, and their impact on urban 

air quality over the past decade, emphasizing their relevance to urban and landscape design. It also reviews 

air quality prediction models and algorithms, highlighting data-driven approaches and future research 

directions. These insights provide urban planners, designers, and policymakers with a foundation for 

informed science-based decisions for creating sustainable, air-purifying environments. 

6. Conclusion 

Informed by previous review articles, we set out a new systematic review to provide an up-to-date summary 

of 79 studies identified that focus on effects of vegetation and urban morphological characteristics on air 

quality. We identify four key questions to be addressed in the new systematic review concerning the range 

of air quality indicators and data sources used in the studies, the indices defined for quantifying vegetation 

morphology and urban form, and predictive models for assessing air quality of real urban environments. 

There are nine groups of air quality indicators used ranging from particulate matter (PM) to aerosol optical 

depth (AOD) which is also increasingly used to derive air pollutant concentrations of various kinds covering 

large urban areas. Among them, PM2.5 is the AQ indicator attracting the largest number of studies due to its 

significant impact on public health. In terms of data sources, we observe increasing utilisation of combined 

ground-based air quality monitoring measurements and satellite measurements to obtain the spatial-

temporal resolutions required in the studies 

In vegetation indices, two-dimensional indices are more commonly used to quantify vegetation 

morphological attributes. This is due to the fact that remote sensing technology has enabled quantification 

of top-view features over large areas, such as NDVI. In contrast, three-dimensional indices that capture 

vertical vegetation characteristics are less developed due to the technical challenge of semantic segmentation 

of vegetation in large volumes of urban scenes or street views. 

Traditional on-site measurements can only provide small-scale vertical characteristics such as canopy 
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features. With the advancement of large urban image datasets, including street view scans, advanced 

machine-learning techniques are being developed and applied in quantifying vertical dimension of urban 

vegetation in real cities. However, due to limited open-source urban image datasets and reliable image 

processing techniques, this remains a research topic to be further addressed in future research. More 

importantly, how vegetation indices defined and measured in both horizontal and vertical dimensions may 

be combined to form new three-dimensional vegetation indices remain to be further developed. 

This systematic review identifies and summarises several air pollution prediction models. It shows that the 

traditional Land Use Regression (LUR) model is relatively well-established. LUR was frequently used pre-

2020, but since then, the advancement of machine learning (ML) and deep learning (DL) algorithms has led 

to the rapid development of ML/DL models, which exhibited better prediction performance due to the 

computational power and intelligence unavailable before. 

Finally, our attempt at summarising how vegetation and urban form variables may interact with different air 

pollutants can be explained to some extent by a feature importance analysis. We find that conducting a 

thorough meta-analysis of the effects of vegetation an urban form on air quality is not without substantial 

difficulties. There is a need for establishing a comprehensive air pollution research data repository, linking 

related studies to enable classifying and summarising data by pollutant types, research locations, spatial-

temporal scales, and modelling methods. This could lead to identification of the key variables impacting 

specific air pollutants as the basis for bringing forward evidence-based guidelines applicable to cleaner air 

landscaping planning and urban design. 

In conclusion, this systematic review offers a comprehensive summary of advancements in vegetation-

related indices and other influencing factors, such as urban form, over the past decade, focusing on their 

impact on urban air quality. These elements are deeply intertwined with urban design, making our findings 

highly relevant for urban planners and designers aiming to create environments that promote nature-based 

solutions to air purification. Furthermore, we summarise the air quality prediction models and algorithms 

developed over the past ten years, prompting the emerging research trends of developing large-scale data-

driven approaches. Advance in quantifying effects of vegetation on air quality in real urban environments 

can improve the proficiency of evidence-based planning and design decision-making. 
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Supplementary Tables 

Table S1.a. The previous eight reviews on mitigation and removal capacity of vegetation (Keywords: 

mitigation, phytoremediation, vegetation traits, air pollutants capture) 

Article Review Questions Summary of Review Findings 

(Hellebaut et 

al., 2022) 

Current understanding and 

knowledge gaps in air 

quality and plants traits on 

green walls, evidence of 

knowledge application in 

design practice 

Hairiness, roughness and leaf size are the traits that 

affect particulate matter (PM) capture. Review six 

green wall designs in Belgium & showing 

knowledge of plants traits and air pollutants removal 

in green wall design remained partial. 

(Han et al., 

2022b) 

Phytoremediation of indoor 

air pollutants; removal 

efficiency of plants on 

different air pollutants 

under different 

environmental settings 

Absorption and purification of different pollutants 

(formaldehyde, aromatic compounds and inorganic 

pollutants) are affected by different trait variables 

(leaf characteristics, planting patterns, species). The 

effectiveness of pollutant removal differs under 

different environmental settings (lab-scale studies, 

real-world site-specific indoor/outdoor conditions). 

(Wróblewska 

and Jeong, 

2021) 

Effectiveness of plants on 

removing particulate matter 

(PM) 

1) Deposition on leaf surfaces; 2) Factors affecting 

PM capture efficiency: leaf area index, 

morphological characteristics of leaf surfaces, 

environment (e.g., wind), and 3D geometry of city 

design; 3) different types of green infrastructure - 

green roofs, living walls, water reservoirs, urban 

farming; 4) PM removal capacity could be improved 

by species selection and increasing biodiversity. 

(Diener and 

Mudu, 2021) 

Effects and mechanisms of 

green spaces on reducing 

PM exposure to protect 

public health 

1) Three mechanisms to reduce PM exposure: 

deposition, dispersion and modification; 2) Public 

health interventions to reduce PM exposure should 

consider sensitivity of green spaces in mitigating PM 

exposure: location of green spaces at a regional 

scale, porosity of green spaces at a local scale. 

(Corada et 

al., 2021) 

Effective leaf traits for 

enhancing PM capture 

1) Coniferous needle leaves, 2) Small, rough and 

textured broad-leaves, 3) Extended oval shapes, 4) 

Waxy coatings and high-density trichomes; 5) 

Ancillary factors and the context of plantings should 

also be considered to improve PM removal, e.g., 

plant species, wind conditions, and locations. 

(Sicard et al., Quantification of O3 For O3 removal, urban trees are more efficient and 
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2018) removal capacity of trees, 

shrubs, and green roofs 

cost effective than green roofs; broad-leaf tree 

species perform better than conifers, while evergreen 

are better than deciduous broadleaf. 

(Gourdji, 

2018) 

Effects of green roofs on 

mitigating air pollution; 

plant species for PM, O3 , 

NO2 reduction; effects of 

green roofs on air quality in 

the Montreal region, 

Canada 

Air pollutants removal processes: 1) Deposition of 

PM, 2) Deposition of O3 on plant or soil surfaces via 

stomatal conductance and non-stomatal uptake, 3) 

NO2 removed by stomatal absorption; 4) Small Zone 

5 hardiness tolerant plants on intensive green roofs 

was recommended for Montreal. 

(Huang et 

al., 2018) 

PAHs removal; PAHs 

accumulating capability of 

pine needles, Holm oak 

leaves, and moss 

1) PAHs (Polycyclic aromatic hydrocarbons) uptake 

via absorption and adsorption; 2) Moss perform 

better in PAHs capture than oak leaves and pine 

needles; 3) Environment factors (temperature, 

seasonality, photolysis) could affect the transfer 

process of PHAs from atmosphere to vegetation. 

 

Table S1.b. The previous reviews of deposition and dispersion effects and processes of vegetation 

(Keywords: deposition, dispersion, aerodynamic, CFD, green walls, green infrastructure) 

Article Review Questions Summary of Review Findings 

(Li et al., 

2022) 

Removal of NO2 by dry 

deposition of plants 

Plant structure, chemical composition of leaves, 

nitrogen content of leaves, meteorological conditions, 

and other related factors affect the deposition 

mechanism and the efficiency of NO2 removal. 

(Ysebaert et 

al., 2021) 

 

Effectiveness of green 

walls in removing PM 

Species, pollution level and residence time affecting 

PM deposition on green walls. More field, wind 

tunnel and model validation studies are needed to 

eliminate discrepancies about the key parameters 

affecting PM capture by green walls. 

(Badach et 

al., 2020) 

Effects of urban greenery 

on mitigating air pollution 

in Polish cities 

Urban greenery can have combined deposition and 

aerodynamic effects on air quality. Critical 

evaluation of local urban planning practice in 

Gda´nsk, Warsaw, and Pozna´n found limited 

applicability of the known effects due to lack of 

accurate models and tools. 

(Tiwari et al., 

2019) 

Green infrastructure (GI) 

impact on air pollution and 

health risk assessment 

Ten studies that have quantified the linkage between 

GI, air pollution reduction and health benefits were 

identified and summarized. Simplified deposition 

schemes may lead to uncertainties in removal 

estimation. Future dispersion models need to account 

for wind speed based GI porosity as well as GI at 

different spatial scales (microscale and macroscale). 
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(Buccolieri 

et al., 2019) 

The effects of urban trees 

on air quality and thermal 

conditions learned from 

Computational Fluid 

Dynamics (CFD) studies 

Parameterizations of urban vegetation (trees) are 

appropriate to account for aerodynamic and 

deposition effects; resuspension and thermal effects 

of different types of trees need more works in CFD; 

“the right tree in the right street” is a better approach. 

(Janhäll, 

2015) 

Vegetation as ecosystem 

services for air quality 

improvements – effects of 

vegetation choice on air 

pollution from different 

sources and particle sizes 

Urban vegetation effects on air quality summarised 

as 1) deposition process (particle properties and 

vegetation properties) at different scales (parks, 

regional); 2) dispersion effect of vegetation barriers. 

The studies reviewed include on-site measurements, 

wind tunnel studies and CFD modelling. 

 

Table S1.c. Previous reviews of the influence of vegetation in urban streets/roads (Keywords: barriers, 

obstacles, street canyons, open roads, street greening) 

Article Review Questions Summary of Review Findings 

(Buccolieri 

et al., 2022) 

Influence of obstacles 

(porous & non-porous) on 

urban canyon ventilation 

including air pollutant 

dispersion 

The isothermal flow dispersion effects of porous 

(trees, hedgerows) and non-porous obstacles (parked 

cars, low boundary walls or baffles, noise/roadside 

barriers, wind catchers, solar chimneys), and the 

efficacy, costs, as well as pros and cons. 

(Chaudhuri 

and Kumar, 

2022) 

Strategic urban greening for 

long-term air pollution 

prevention and control 

measures 

PRISMA-based review of global literature (post-

2005) and a meta-analysis to be considered by air 

quality regulatory authorities with particular 

references to Indian cities to enhance tree species 

selection, removal strategies in street canyon and 

open road environment. 

(Tomson et 

al., 2021) 

Optimal form and 

arrangement of Green 

Infrastructure (GI) for air 

quality in street canyons 

Deposition and dispersion are the main impact 

pathways for vegetation on air pollution. The 

effectiveness of different GI forms (trees, hedges, 

green roofs, green walls and green screens) in the 

street canyon environment and the methods for 

assessing effectiveness. 

(Barwise 

and Kumar, 

2020) 

Vegetation barriers in open-

road environment, optimal 

configuration as barriers 

between traffic emissions 

and adjacent spaces 

Effective barriers design principles in different 

spatial scales (city scale, local scale) and plant 

selection recommendations (e.g., ecophysiological 

and morphological characteristics, species 

emissions) for open-road environment and street 

canyons in the UK. 

(Mori et al., 

2018) 

The effect of air pollutants 

on human health, and the 

vegetation characteristics 

help to optimise air 

Species selection and planting schemes (density of 

vegetation, disposition of plants, global dimensions 

of GI) should be considered according to different 

plating site characteristics (open areas vs. street 
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pollutants interception canyons). 

(Abhijith et 

al., 2017) 

Aerodynamic effects and 

reduction potentials of 

vegetation in street canyon 

and open road; vegetation 

types and characteristics help 

air pollution reduction 

1) In street canyons, hedges improve air quality 

while trees led to deterioration; 2) In open road, low 

porosity and tall vegetation helps to downwind 

pollutant reductions; 3) Green walls and roofs on 

building envelopes can be effective ways to improve 

air quality. 

(Gallagher 

et al., 2015) 

Passive methods for 

improving air quality and 

reducing personal exposure – 

porous and solid barriers 

The strengths and limitations and modelling 

approaches of porous barriers (trees and vegetation) 

and solid barriers (noise barriers, low boundary 

walls, parked cars). 

 

Table S1.d. The previous reviews of plants as urban ecosystem services where air quality is a part 

(Keywords: urban ecosystems, nature-based, pollutants removal, urban greening, microclimate) 

Article Review Questions Summary of Review Findings 

(Biswal et 

al., 2022) 

Nature-based systems for 

reducing pollutants in 

storm water, rainwater 

and urban air 

1) Physico-chemical removal through filtration, 

adsorption, precipitation, and complexation; 2) 

Biological removal via air phytoremediation plants; 3) 

Roadside removal via vegetation characteristics of 

height, thickness, coverage, porosity. 

(Ernst et al., 

2022) 

The relationships between 

urban greening, canopy 

layer urban heat island 

(UHI) and urban pollution 

island (UPI), air quality, 

and urban microclimate 

1) The links between microclimate and air quality 

studies were weak; 2) tools for assessing greening’s 

impacts on both microclimate and air quality with 

good accuracy at the city scale were not well 

developed; 3) interactions between plant functioning, 

microclimate and atmospheric composition may hold 

the key to modelling the links between urban 

greening, UHI, UPI. 

 

Table S.2. Summary of air quality indicators/indices and measurements from ground stations 

Article Source/Agency Air Pollutants No. of Stations 

(O'Regan et al., 2022) Purple Air Network for Cork City, 

Ireland 

PM2.5, PM10, PM1 12 

(Tella and Balogun, 

2021, Halim et al., 2020, 

Shahrin et al., 2019) 

the Malaysian Department of 

Environment (DOE) 

PM10, CO, O3, 

NO, NO2, NOx, 

SO2 

8 

(Wang et al., 2022b, 

Zhao et al., 2022, Li et 

al., 2021b, Wang et al., 

2021, Han et al., 2020, 

Luan et al., 2020, Liu et 

China Environmental Monitoring 

Station (http://www.cnemc.cn/) 

PM2.5, PM10, SO2, 

NO2, O3, CO, 

AQI, 

1589 
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al., 2019, Tian et al., 

2019, Wang et al., 

2018b, Zhang and Hu, 

2017, Chen et al., 2016, 

Wu et al., 2015b, Wu et 

al., 2015a) 

(Khan et al., 2022) Environmental Protection 

Apartment, Punjab, Lahore 

NOx, CO, SO2, 

PM10 

20 

(Zeng et al., 2022) Shenzhen Municipal Ecological 

Environment Bureau, China 

(http://meeb.sz.gov.cn/)  

PM2.5 74 

(Babu Saheer et al., 

2022) 

UK Air, Department for 

Environment Food & Rural 

Affairs (uk-air.defra.gov.uk/) 

PM2.5, PM10, NO2 1500+ 

(Han et al., 2022a) Xi’an Air Quality Monitoring 

Stations, China 

O3 139 

(Shogrkhodaei et al., 

2021) 

Tehran Air pollution control 

stations, Iran 

PM2.5 23 

(Li et al., 2020c) Shenyang Environment 

Monitoring Center, China 

PM2.5, PM10, 

NO2, SO2 

11 

(Tian et al., 2020) Georgia Department of Natural 

Resources, Environmental 

Protection Division (EPD) 

PM2.5 9 

(Li et al., 2020a) Weifang PM2.5 Monitoring 

Stations, China 

PM2.5 38 

(Kong and Tian, 2020) Beijing Municipal Environmental 

Monitoring Center, China 

(BMEMC 2018) 

PM2.5 35 

(Guo et al., 2020) Xi’an Air Quality Daily Reporting 

System, China 

(http://www.xianemc.gov.cn/) 

PM2.5 13 

(Guo et al., 2019) Tianjin air pollution monitoring 

stations, China 

NO2 23 

(Li et al., 2017) US Environmental Protection 

Agency (EPA)’s Air Quality 

System (AQS) 

(www.epa.gov/aqs) 

PM2.5 55 

(Wu et al., 2017) Taipei metropolis air pollutant 

monitoring database, Taiwan Air 

Quality Monitoring Network 

(airtw.moenv.gov.tw/eng/) 

PM2.5 17 

(Ramos et al., 2016) National Air Pollution 

Surveillance (NAPS) network of 

PM2.5 10 
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Environment Canada 

(Meng et al., 2015) Shanghai Environmental 

Monitoring Centre (SEMC), 

China 

NO2 38 

 

Table S.3. Summary of satellite sensing air quality datasets 

Article Dataset Resolution 

(Rahman and 

Haque, 2022) 

Landsat data to retrieve AOD (earthexplorer.usgs.gov) 30m 

(Islam et al., 2012) Sentinel-5P Level-3 NO2 Daily Product (V1) 0.01 arc-degree 

(Qi et al., 2022) OMI/Aura NO2 Tropospheric, Stratospheric & Total 

Columns MINDS Daily L3 Global Gridded (DOI: 

10.5067/MEASURES/MINDS/DATA304) 

0.25° × 0.25° 

(Sun et al., 2022, 

Xie and Sun, 2021, 

Li et al., 2020b) 

MODIS MAIAC remote sensing AOD data (MCD19A2) 

(lpdaac.usgs.gov/products/mcd19a2v006) 

1km 

(Zhang and Hu, 

2017) 

MODIS Collection 6 Level 2 aerosol products 

(ladsweb.modaps.eosdis.nasa.gov/archive/allData/6) 

3km 

(Li et al., 2017) MODIS AOD Level 2 product (Collection 5.1)  10km 

(Li and Myint, 

2021) 

Landsat 5 satellite images to retrieve AOD 60m 

(Syafei et al., 2019) GOME-2 MetOP-A satellite datasets for NO2 80*40km² or 

80*10km² 

(He et al., 2019) Aqua and Terra MODIS Collection 6 Level 2 aerosol 

products 

3km 

(Wang ChengHao 

et al., 2017) 

MODIS Terra Atmosphere Aerosol Level 2 Product 3km 

(Ye et al., 2016) HJ-1B satellite images for AOD retrieving 30m 

 

Table S.4. Summary of publicly available online datasets 

Article Dataset Resolution 

(Hassan et al., 

2022) 

Socioeconomic Data and Applications Center (SEDAC) 

and Sentinel-5p data of the European Space Agency for 

the last 18 years (2002–2020) 

1km 

(Lin and Jiang, 

2022) 

Ground-level air pollutants for China 

(ChinaHighAirPollutants, CHAP) PM2.5 

1km 

(Wei et al., 2021) Socioeconomic Data and Applications Center 

(sedac.ciesin.columbia.edu/search/data?contains=PM2.5) 

1km 

(Li et al., 2021b) Gridded global surface PM2.5 concentration dataset 0.01° 

(van Oorschot et 

al., 2021) 

Annual mean PM10 concentrations Map, Hague 

(www.atlasleefomgeving.nl/kaarten) 

25m 
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(Wang et al., 2019) Open-Data Inventory for Anthropogenic Carbon dioxide 

(ODIAC) fossil fuel emission dataset from the Center for 

Global Environmental Research 

(db.cger.nies.go.jp/dataset/ODIAC/), National Institute for 

Environment Studies 

1km 

(Wang et al., 

2020a, Lu et al., 

2019) 

The global annual average surface PM2.5 concentrations 

grids provided by Atmospheric Composition Analysis 

Group (ACAG) at Dalhousie University 

0.01° 

(Bechle et al., 

2017) 

Publicly available global estimates of gridded annual 

surface NO2 concentrations. 

0.1° × 0.1° 

 

Table S.5. Summary of air quality data pre-processing methods 

Article Method Description 

(Hassan et al., 2022, Sun 

et al., 2022, Halim et al., 

2020, Arista et al., 2020, 

Li et al., 2020a, Shahrin 

et al., 2019, Cui et al., 

2019, Chen et al., 2016, 

Ramos et al., 2016) 

Inverse Distance 

Weighted (IDW) 

IDW is one of the commonly used methods of 

spatial interpolation in air pollution prediction 

areas. It makes predictions on the concentration 

of unknown points based on a function of inverse 

distance from a known point, assuming that the 

closer they are to the known point, the greater the 

influence. 

(Sun et al., 2022, 

Llaguno-Munitxa et al., 

2021, Shogrkhodaei et 

al., 2021, Xie and Sun, 

2021) 

Kriging 

Interpolation 

A set of geostatistical interpolation techniques 

wherein the value at an unobserved location is 

estimated through a linear combination of values 

from neighbouring locations. The weights 

assigned to these values are determined by a 

semivariogram which considers the spatial 

correlation. It has an effective performance in the 

data points having spatial autocorrelation. 

Ordinary Kriging and Universal kriging are 

wildly used in air pollution prediction areas. 

(Li et al., 2020b, Zhang 

and Hu, 2017) 

Linear Regression A commonly employed technique for replacing 

missing values in a dataset. Typically, it involves 

predicting the missing data in the target dataset 

by establishing a linear relationship with a 

reference dataset. 

(Qi et al., 2022, Yang et 

al., 2022, Hassan et al., 

2022, Wei et al., 2021, 

Xie and Sun, 2021, 

Wang et al., 2019, Lu et 

al., 2019, Wang et al., 

2018b, Wang ChengHao 

Resampling Common data processing methods for uniform 

resolution of a different data set. It changes the 

dataset’s spatial resolution by aggregating or 

interpolating values. Common types include 

Nearest Neighbor and Bilinear Interpolation. 
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et al., 2017, Ye et al., 

2016) 

 

Table S.6. Summary of vegetation-related indices papers 

Vegetation-related indices Articles 

Vegetation Structure (Niu et al., 2022, Jiang et al., 2021, Qiu et al., 2019, Qiu et al., 2018, 

Chen et al., 2015) 

Land Use/Land Cover (LULC) (Sun et al., 2022, Zeng et al., 2022, Han et al., 2022a, Llaguno-Munitxa 

et al., 2021, Li and Myint, 2021, Xie and Sun, 2021, Liu et al., 2020, Li 

et al., 2020b, Halim et al., 2020, Li et al., 2020c, Li et al., 2020a, Tian et 

al., 2020, Luan et al., 2020, Kong and Tian, 2020, Guo et al., 2020, Qiu 

et al., 2019, Van Ryswyk et al., 2019, Shahrin et al., 2019, Liu et al., 

2019, Guo et al., 2019, Fan et al., 2019, Chen et al., 2016, Ye et al., 

2016, Wu et al., 2015b, Wu et al., 2015a, Meng et al., 2015, Rao et al., 

2014) 

Count (Babu Saheer et al., 2022, Llaguno-Munitxa et al., 2021, Yli-Pelkonen et 

al., 2017) 

Leaf Area Index (LAI) (Niu et al., 2022, van Oorschot et al., 2021, Wang et al., 2020b) 

Canopy Cover/Density 

(CC/CD) 

(Niu et al., 2022, Jiang et al., 2021, Wang et al., 2020b, Qiu et al., 2018, 

Chen et al., 2015, Islam et al., 2012) 

Diameter at Breast Height (DBH) (Niu et al., 2022, Yli-Pelkonen et al., 2017) 

Vegetation Height (VH) (Jiang et al., 2021, Wang et al., 2020b, Hart et al., 2020) 

Species Related (Proportion of 

Species and Species Richness) 

(Niu et al., 2022, Wang et al., 2020b, Grzędzicka, 2019, Desyana et al., 
2017, Yli-Pelkonen et al., 2017) 

Porosity (Grzędzicka, 2019, Chen et al., 2015, Islam et al., 2012) 
Percentage of Vegetation Area / 

Vegetation Coverage (PAV/VC) 

(Grzędzicka, 2019, Masri et al., 2019, Lu et al., 2019, Syafei et al., 2019, 
Bechle et al., 2017) 

NDVI (Normalized Difference 

Vegetation Index) 

(Sun et al., 2022, Zeng et al., 2022, O'Regan et al., 2022, Yang et al., 

2022, Hassan et al., 2022, Lin and Jiang, 2022, Zhao et al., 2022, Deb et 

al., 2022, Llaguno-Munitxa et al., 2021, Li and Myint, 2021, Tella and 

Balogun, 2021, Li et al., 2021b, Wang et al., 2021, Wei et al., 2021, 

Shogrkhodaei et al., 2021, Li et al., 2020b, Kong and Tian, 2020, Hart et 

al., 2020, Van Ryswyk et al., 2019, Han et al., 2020, Wang et al., 2020a, 

Arista et al., 2020, Wang et al., 2019, Masri et al., 2019, Cui et al., 2019, 

Tian et al., 2019, He et al., 2019, Wang et al., 2018a, Wang et al., 2018b, 

Wang ChengHao et al., 2017, Zhang and Hu, 2017, Li et al., 2017, Wu et 

al., 2017, Farrell et al., 2015, Wu et al., 2015a, Dadvand et al., 2015) 

SAVI (Soil Adjusted Vegetation 

Index) 

(Tella and Balogun, 2021) 

EVI (Enhanced Vegetation Index) (Islam et al., 2022) 

GTCT (Greenness Tasseled Cap 

Transformation) 

(Ramos et al., 2016) 
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GVI/GVA (Green View Index / 

Green View Amount) 

(Zeng et al., 2022, O'Regan et al., 2022, Wang et al., 2022b, Qi et al., 

2022, Liu et al., 2020) 

VGVI () (Labib et al., 2021) 

Percentage of Landscape Types 

(PLAND) 

(Wang et al., 2022a, Fan et al., 2019, Ye et al., 2016, Wu et al., 2015b) 

Patch Density (PD) (Wang et al., 2022a, Tian and Yao, 2022, Li et al., 2021b, Tian et al., 

2020, Fan et al., 2019, Ye et al., 2016, Wu et al., 2015b) 

Landscape Shape Index (LSI) (Wang et al., 2022a, Tian and Yao, 2022, Li et al., 2021b, Tian et al., 

2020, Ye et al., 2016) 

Class Area (CA) (Tian and Yao, 2022, Tian et al., 2020) 

Largest Patch Index (LPI) (Tian and Yao, 2022, Li et al., 2021b, Tian et al., 2020, Ye et al., 2016) 

Aggregation Index (AI) (Tian and Yao, 2022, Li et al., 2021b, Tian et al., 2020, Fan et al., 2019) 

Area-Weighted Mean  

Shape Index (AWMSI) 

(Li et al., 2021b) 

Patch Cohesion Index 

(COHESION) 

(Li et al., 2021b) 

Edge Density (ED) (Tian et al., 2020, Ye et al., 2016, Wu et al., 2015b) 

Contagion (CONTAG) (Ye et al., 2016, Wu et al., 2015b) 

Shannon's Evenness Index (SHEI) (Wu et al., 2015b) 

Mean Patch Size (MPS) (Fan et al., 2019) 

MSPA (Li et al., 2021b) 

 

Table S.7. Types of air quality prediction models, algorithms, output resolutions, and validation 

Model Article Algorithm Resolution Model Validation and Prediction 

Accuracy 

 

 

Spatial 

Estimation 

Models 

(Liu et al., 

2019) 

OK; IDW 500m LOOCV 

(Li et al., 

2017) 

GWR 10km 10-fold CV; 

RMSE/MAE/RRMSE/RMAE- 

(Ramos et al., 

2016) 

KED; IDW; 

KED-IDW 

100m LOOCV 

(Meng et al., 

2015) 

IDW; OK 1km LOOCV; R²/RMSE 

 

 

 

 

 

 

Traditional 

Land Use 

Regression 

(LUR) 

Models 

(Han et al., 

2022a) 

/ 500m grid Splitting 80% training and 20% test; 

R²/MSE/RMSE/MAE 

(Kong and 

Tian, 2020) 

SMR 10km grid LOOCV 

(Guo et al., 

2020) 

SMR 100m grid CV; R²/RMSE/MPE 

(Van Ryswyk 

et al., 2019) 

BFSR 10m grid LOOCV 

(Liu et al., 

2019) 

/ 500m grid LOOCV 

(Masri et al., 

2019) 

BFSR 1km grid LOOCV 

(Wu et al., 

2017) 

SLR 250m grid 10-fold CV; External Verification (out-

of-sample observations from 2013) 

(Wu et al., 

2015a) 

SLR 30m grid LOOCV; RMSE/NMSE 
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(Meng et al., 

2015) 

SFR 1km grid LOOCV; R²/RMSE 

(Rao et al., 

2014) 

/ 200m CV 

 

 

 

 

Machine/ 

Deep 

Learning 

Prediction 

Models 

(Tella and 

Balogun, 

2021) 

XGBoost; 

RF; KNN; 

NB 

60m grid Confusion matrix; Statistical Measures; 

ROC-AUC 

(Shogrkhodaei 

et al., 2021) 

RF; 

AdaBoost; 

SGD 

30m grid Splitting 70% training and 30% test; 

RMSE/MAE; ROC-AUC 

(Liu et al., 

2020) 

RF; SVM; 

MLR 

15 m distance 

along the route 

10-fold CV (Splitting 70% training and 

30% test); R²/RMSE/MAE/IA 

(Li et al., 

2020b) 

Full 

Residual 

Deep 

Network 

1km grid 63.3% samples for training and 

validation (80% training/20% 

validation), 36.7% for independent test; 4 

monitoring sites for independent tests; 

R²/RMSE 

(Zhang and 

Hu, 2017) 

LEM 3km grid 10-fold CV; R2/MPE/RMSE 

 

 

ML/DL 

LUR Models 

(Qi et al., 

2022) 

RF 100m grid 

(within 500m 

of each 

monitor) 

10-fold CV (splitting training and testing 

set randomly, temporally, or spatially); 

R²/MAE/RMSE 

(Babu Saheer 

et al., 2022) 

LR; SVR; 

LSTM 

Within 1km of 

monitor 

MAE/MSE/RMSE/R²/MAPE 

(Han et al., 

2022a) 

RF, MLR 500m grid Splitting 80% training and 20% test; 

R²/MSE/RMSE/MAE 

OK: Ordinary Kriging, IDW: Inverse Distance Weighted, KED: Kriging with external drift, KED-IDW: 

A Hybridization of KED and IDW, SMR: Stepwise Multiple Regression, BFSR: Backwards and 

Forwards Stepwise Regression, SLR: Stepwise Linear Regression, SFR: Supervised Forward Regression, 

LR: Linear Regression, MLR: Multiple Linear Regression, LEM: Linear Mixed-effects Model, 

XGBoost: eXtreme Gradient Boosting algorithms, RF: Random Forest, KNN: K-Nearest Neighbour, NB: 

Naive Bayes, SGD: The Stochastic Gradient Descent algorithm, SVR: Support Vector Regression, SVM: 

Support Vector Machine, LSTM: Long Short Term Memory, CV: Cross-Validation, LOOCV: Leave-

one-out cross-validation. 

Statistical Measures includes Recall (REC), Precision (PREC), Specificity, Kappa Index (KI), F-measure, 

Accuracy, Fitting Index (IA). ROC-AUC: The area under the ROC curve, Error Metrics includes mean 

average error (MAE), mean squared error (MSE), root mean squared error (RMSE), mean absolute 

percentage error (MAPE), R²score, mean percentage error (MPE), relative root mean squared error 

(RRMSE), relative mean absolute error (RMAE), normalized mean squared error (NMSE). 
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