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ABSTRACT

The recent growth in popularity of wearable medical devices has improved the quality of life of people with medical conditions. 

Testing such devices may require users to configure these systems using physical trials, putting themselves in potentially danger-

ous scenarios. Misconfiguration of such devices has caused disease misdiagnoses and incorrect drug prescriptions. Digital twins 

have been proposed as an opportunity to reduce such risks of testing system configurations in simulated environments, decou-

pling the user from the system under test. In this paper, we perform an evaluative case study to assess the use of a digital twin for 

configuration testing of an artificial pancreas system (APS) control algorithm. These systems regulate the blood glucose levels in 

people with type 1 diabetes mellitus, and so misconfigurations can cause severe hypoglycaemia or hyperglycaemia, which can 

be life- threatening. We tested the OpenAPS control algorithm against 156 people's clinical data. We found that our digital twin 

provided an accurate simulation environment to perform configuration testing and accurately predict blood glucose–insulin be-

haviour. We evaluated different APS configurations, identifying a potentially unsafe configuration without the risks associated 

with a physical trial. We identified the challenges associated with modelling clinical data, which could lead to misinterpretations 

in configuration testing and the reduction of test reliability when modelling stochastic body dynamics.

1   |   Introduction

In recent years, the use of wearable medical devices has rapidly 

grown in popularity [1]. These devices allow for health monitor-

ing, chronic disease management, diagnosis, treatment and re-

habilitation [2]. Personalized configurations of medical devices 

allow a user to unobtrusively manage medical conditions with 

treatments that are specific to them [3].

Misconfiguration of medical devices can lead to users being put 

in potentially dangerous scenarios. Recent works have found 

that this can cause misdiagnoses of diseases [4] and drugs being 

overprescribed [5]. One such example involved the configuration 

of an insulin pump being misinterpreted. This misinterpretation 

led to 100 times the expected insulin dosage being administered 

to a user [5].

Misconfiguration of software systems is an issue affecting sys-

tems across several domains [6–9]. Configuration testing is a 

software testing approach that aims to remedy this challenge by 

evaluating specific system configurations during software test-

ing [10]. This presents a way of identifying incorrectly behaving 

configurations before releasing them into production.

Configuration testing, however, is challenging with medical 

devices due to there being a human- in- the- loop. Potentially 
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dangerous configurations would put a user at risk and physical 

testing, especially with a human- in- the- loop, may require exten-

sive set- up times [11, 12]. As with the example of the miscon-

figured insulin pump [5], this could expose users to potentially 

life- threatening system configurations.

Digital twins [13] present a potential solution to the challenge of 

configuration testing. Digital twins simulate a physical entity, 

traditionally a cyber- physical system, to enhance the system's 

behaviour through monitoring, evaluation and prediction [14]. 

These abilities allow for the assessment and prediction of be-

haviours in a simulated environment. As a result, digital twins 

reduce the need for physical testing [15].

Digital twins have been proposed to optimize medical devices 

[12] by providing personalized simulation. Simulated environ-

ments present an opportunity to perform configuration testing 

without the human- in- the- loop. This has been suggested as 

a means to reduce the risk of potentially dangerous scenarios 

when configuring such devices [16]. Digital twins have been 

proposed to test medical devices using the following steps: 

obtaining clinical data, generating a digital twin and fitting it 

to represent this data, validating the digital twin's model and, 

finally, using the digital twin to evaluate human responses to 

clinical interventions [12].

Digital twins appear to present a useful basis for testing hard- 

to- test systems such as cyber- physical systems. However, they 

also give rise to several practical questions. Depending on the 

domain, it can be inherently difficult to ensure that a digital twin 

is an accurate representation of the system [12, 17]. This then 

gives rise to the question of how one can determine whether a 

digital twin can support the testing of software systems they are 

interacting with. At the time of writing, there are no published 

research or experience reports that can provide this practical 

insight.

In this paper, we perform an evaluative case study to assess a 

digital twin's ability to aid in the configuration testing of med-

ical devices. To accomplish this, we adapt an existing, explain-

able model of the blood glucose–insulin dynamics from a healthy 

pancreas which we can be personalized to observational data. 

This enabled us to implement a digital twin which can be per-

sonalized to represent a person with type 1 diabetes mellitus 

(T1DM) using an artificial pancreas system (APS). We produce a 

fitting strategy for our digital twin and train it against the largest 

open- source T1DM dataset, which has 156 users. By fitting the 

model, we perform an evaluative case study in which we assess 

the model's ability to represent personalized T1DM dynamics, 

identify the extent to which digital twin predictions are accurate 

and perform configuration testing of a widely used APS without 

requiring clinical trials. Through our study, we make the follow-

ing contributions:

• We perform an evaluative case study by implementing a 

proposed methodology, investigating the extent to which a 

digital twin can be used to simulate a human- in- the- loop 

during configuration testing, uncovering the challenges 

of fitting a complex model to represent the behaviour of 

blood glucose–insulin dynamics using clinical data and 

highlighting the requirements for more controlled data 

sources for future implementations.

• To facilitate this, we implement a digital twin by adapting 

an existing blood glucose–insulin model to be used in the 

configuration testing of a widely used, open- source APS. 

We modify the model to represent a body with T1DM and 

develop a feedback loop between the model and the APS.

• We assess the capability of our digital twin to perform con-

figuration testing of an APS. As a result, we identify po-

tentially dangerous behaviours from misconfigured blood 

glucose targets without requiring clinical trials. Unsafe be-

haviours could be observed and explained in a simulated 

environment while being personalized to the user and yet 

decoupled from the human- in- the- loop.

• We demonstrate the potential threats to the technique asso-

ciated with using observational clinical data. Inconsistent 

manual carbohydrate recording and sensor error recording 

nonphysiologically possible values required extensive data 

cleaning and resulted in very little of the data being suitable 

for fitting the model. We identify the need for techniques 

which can deal with such uncontrolled data sources or 

more curated data sources.

• We provide a comprehensive replication package of our case 

study including the derived digital twin, fitting strategy and 

the evaluation scripts used to drive the evaluative case study.

From these contributions, we uncover the advantages of em-

ploying digital twins for configuring medical devices, while also 

mapping out the essential steps needed to alleviate challenges 

within this domain. We are able to demonstrate how different 

configurations can be trialled in a simulated environment, iso-

lated from the user to examine potentially dangerous system be-

haviour. We also found that only 2.37% of the data in the largest 

APS dataset is usable for our implementation, highlighting the 

challenge of working with clinical data and the requirement for 

models which can accommodate it.

The remainder of this paper is set out as follows: Section  2 

presents the necessary background required for this study. 

Section  3 describes the adaptation of an existing blood glu-

cose–insulin model for the implementation of our digital twin, 

and Section 4 outlines the rationale and methodology for our 

case study. Sections  5 and 6 answer the research questions 

(RQs) and discuss their potential impact on medical device 

testing. Section  7 presents the related works, and Section  8 

concludes the paper.

2   |   Background

In this section, we present the motivating context for our study: 

the difficulties related to testing configurations of APSs and 

the potential consequences of misconfiguration. We describe 

the importance of configuration testing and present digital 

twins in healthcare as a potential solution to the difficulties 

of performing this testing approach on APSs. We also explore 

a proposed digital twin–based optimization approach that we 

use to test medical devices as the basis for our case study.
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2.1   |   APSs

APSs provide a modern approach to managing T1DM. They 

achieve this through the use of a continuous glucose monitor 

(CGM) sensor, an insulin pump and a control algorithm [18]. 

Figure 1 illustrates how these systems are used to create a feed-

back loop between the body and insulin pump. As a result, this 

system imitates a healthy pancreas.

Having a human- in- the- loop, however, makes testing config-

urations of APSs very challenging. Typically, APS systems are 

configured by trained professionals, informed by knowledge 

obtained by clinical trials [19]. However, if set up incorrectly or 

if the control algorithm is faulty, an APS can cause blood glu-

cose levels to leave the safe glycaemic range [20] by injecting too 

much or too little insulin. This could induce hypoglycaemia or 

hyperglycaemia which can cause life- altering conditions, such 

as stroke and heart disease, and if severe, can be life- threatening 

[21, 22].

2.1.1   |   OpenAPS

Recently, there has been an increase in the use of ‘do- it- yourself’ 

(DIY) APS implementations [23, 24]. One such implementa-

tion, OpenAPS [25], provides an open- source control algorithm 

called oref0.1 The control algorithm can be downloaded, com-

piled and executed to create a feedback loop between CGMs and 

insulin pumps [26]. oref0 has multiple different versions with 

different features [27] which improve functionality through up-

dates to the APS control algorithm and provide additional tools 

for research and ease of use.

oref0 presents a highly configurable environment, where users 

require personalized configurations. The oref0 documentation 

presents 13 commonly changed parameters, from 47 parameters 

in total. The documentation also presents how a single person 

requires multiple different configuration profiles for different 

times of day and activities [28]. For example, exercise requires 

a specific configuration profile that has six additional exercise- 

specific parameters.

The blood glucose target of oref0 is an example of such a config-

uration, which defines the value that the APS attempts to keep 

the user's blood glucose at. The target may vary with different 

activities, such as sleep and exercise, as well as different peo-

ple. Testing different configurations of the blood glucose target 

may produce undesirable and potentially dangerous behaviours 

if misconfigured. Performing this testing with a human- in- the- 

loop would enact these behaviours on the user.

The documentation for the iOS implementation of OpenAPS, 

Loop [29], contains the following quote: ‘You can count on your 

fingers the number of doctors in the US who are capable of prop-

erly adjusting settings for Loop. You can probably count on your 

fingers and toes the number worldwide who can successfully help 

you with Loop settings’. This is an indicator of how much prior 

knowledge is required to correctly configure these systems. If an 

APS is misconfigured, it can have severe consequences [21, 22].

OpenAPS has a thriving community across GitHub issues [30], 

Gitter [31], Facebook groups [32] and a Google group [33]. At the 

time of viewing, one of the main forums for APS configuration 

with over 30,000 users [32] contained multiple daily posts where 

users were asking for advice with configuration, struggling with 

code compilation and having difficulties integrating with other 

applications and hardware. From this, we identified that the con-

figurability of oref0 is a challenge. As found in Section 2.1, mis-

configuration could lead to potentially life- threatening scenarios.

These configuration difficulties are not only faced by DIY im-

plementations of APSs but are more widely faced by medical 

devices [2]. Closed- source APS devices have recently posed a 

challenge for system configuration. A recent example presented 

a clinically approved device parsing configuration inputs in-

correctly [5]. In some cases, this caused potentially dangerous 

amounts of insulin to be administered.

2.2   |   Configuration Testing

Incorrect system configuration is one of the leading causes of sys-

tem failures [10]. Due to the sheer complexity of troubleshooting 

FIGURE 1    |    The interaction between an APS and its user. Blood glucose data are measured by the CGM and sent to the APS control algorithm. 

The algorithm then, along with historical insulin data, suggests insulin prescription. The insulin pump prescribes the insulin based on the algo-

rithm's output.
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configuration errors [34], ensuring the reliability of system 

configurations can be a challenge. Misconfiguration has led 

to large- scale software failures across services [6, 7] and led to 

greater vulnerability to cyber- attack [8, 9].

Configuration testing is an active area of software testing [35]. It is 

not a test generation technique but a procedure for ensuring that 

new configuration values lead to correct system behaviour [36]. 

When a system configuration is changed, unit and integration tests 

should be executed in an isolated development environment with 

the new configuration before the new configuration is applied to 

the production system. Configurations that enable erroneous sys-

tem behaviour can be identified before they are deployed, reducing 

the potential risks associated with system misconfiguration.

Configuration testing does not attempt to ‘cover’ the configu-

ration space, as is already done by combinatorial testing tech-

niques [37]. Instead, it tests system executions with selected 

configurations expected for system deployment [35].

In the context of an APS, we identified in Section 2.1.1 that the 

blood glucose target is a configuration that can result in danger-

ous scenarios if misconfigured. An APS can be executed with 

expected configurations of the blood glucose target in order to 

test the resulting behaviour.

However, applying configuration testing to a medical device, 

such as an APS, can be challenging. The human- in- the- loop is 

necessary for the device to function correctly. Unfortunately, 

this makes testing configurations which may lead to incor-

rect behaviour potentially dangerous to the user. We require 

a way of decoupling the human- in- the- loop from the system 

to safely test configurations of these systems and assess their 

behaviour.

In Section 5.3, we apply configuration testing to an APS as part 

of our evaluative case study. From this, we aim to investigate 

whether configuration testing can be used to identify safe and 

unsafe behaviours of an APS from existing configurations.

2.3   |   Digital Twins

A digital twin is a simulation model that runs in parallel to a 

physical entity. Digital twins change with their physical coun-

terpart [38]. As a result, they present a virtual replica of the 

system on which the behaviour from interventions can be pre-

dicted. Insights can be gained from the simulation to enhance 

the behaviour of the physical twin in the real world [13, 14]. 

Examples of this enhancement include real- time visualization 

[39] and physical degradation prediction [40].

Ensuring confidence in digital twin model predictions is par-

amount to their trustworthiness. Using an explainable model 

allows for a more informed confidence in predictions regarding 

the physical system as domain experts are able to fully under-

stand the causes of potentially faulty model behaviour. Digital 

twins have achieved this through physics- driven and explain-

able AI approaches [13, 41]. Prior work, however, has found 

that these predictive capabilities are not widely used, especially 

when validating system behaviour [15].

2.3.1   |   Healthcare Applications

The emergence of digital twins in healthcare presents an oppor-

tunity for APSs. Typically, APSs exist in an environment with 

a human- in- the- loop. This can make testing the configurations 

of the control algorithms a challenge due to different treatment 

reactions from individuals [12]. The ability to perform configu-

ration testing in the personalized and simulated environment 

of a digital twin could reduce the risks of hypoglycaemia and 

hyperglycaemia from incorrect configuration.

Digital twins have been proposed to provide personalized medi-

cine by enabling added safety through simulation and improved 

explainability of treatments [17, 42]. Computational modelling 

[43, 44] and digital twins [12, 45] are an emerging technology 

in healthcare as a part of Healthcare 4.0 [46, 47]. Digital twins 

present an ability to adapt and trace clinical interventions [48] 

as well as decoupling the human- in- the- loop through simula-

tion [16]. Such decoupling presents an opportunity for medical 

device configuration testing. The system itself can be evaluated 

across different configurations without putting the user in po-

tentially dangerous scenarios.

2.3.2   |   Testing in Healthcare

Corral- Acero et al. [12] propose an approach for the optimization 

of clinical devices through the use of a personalized explainable 

model that capitalizes on the predictive power of digital twins. 

This allows the model to predict human responses to clinical in-

tervention without putting the user in potentially dangerous sce-

narios. We summarize the approach outlined by Corral- Acero 

et al. as follows:

1. Obtain clinical data, medical images or other context spe-

cific information.

2. Generate a mechanistic or statistical model to replicate the 

mechanics of the body dynamics being modelled.

3. Calibrate and optimize this model based on the user's data.

4. Validate the model's accuracy.

5. Present human responses to clinical interventions based 

on model predictions

These steps present a theoretical framework for optimizing 

clinical devices based off digital twin predictions. We use this 

approach in the context of configuration testing for wearable 

medical devices. In our implementation, we aim to use predic-

tions from the digital twin to perform configuration testing in 

an environment isolated from the user. This aims to provide in-

sight into the behaviour of medical device configurations with-

out the potential risk of physical trials.

2.4   |   Modelling Blood Glucose–Insulin Dynamics

For our evaluative case study in a future section, we require 

an explainable model that models the blood glucose–insulin 

dynamics of a person. For this, we present work by Contreras 

et al. [49] in which they define a model for representing the 
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blood glucose–insulin dynamics within a healthy body that 

is not affected by T1DM. This model uses differential equa-

tions to provide an explainable, physics- driven representation 

of blood glucose–insulin dynamics. The model is supported 

by an extensive sensitivity analysis [49] and has been used to 

inform methodologies in recent works [50]. This model is pre-

sented in Equation (1). 

The differential equations of the model represent the process 

of carbohydrates being consumed and the subsequent insu-

lin–glucose dynamics. The differential equations are used 

to calculate the amount of carbohydrates in the stomach (S), 

ilium (L) and jejunum (J), as well as the blood glucose level (G) 

and insulin on board (I). This allows for representation of car-

bohydrates as they move from the stomach and are absorbed 

across the Ilium and Jejunum in the small intestine. These 

equations show how carbohydrate absorption, insulin produc-

tion and hepatic glucose production (Gprod) regulate blood glu-

cose levels. The rate of these dynamics are represented by the 

remaining constants including kinetic constants (kjs, kxi, etc.), 

steady states (Gb, Ib), a time delay (�) and insulin production 

scales (�, �).

This model provides explainability by representing physiological 

behaviour with transparent mathematical equations. Figure 2a 

demonstrates a scenario in which this model is used to represent 

the glucose–insulin dynamics for a person with normal insulin 

sensitivity consuming carbohydrates. Intuitively, a person with 

a lower insulin sensitivity should have a higher blood glucose 

level over time. We can simulate this by changing the insulin 

sensitivity constant in the model, the result of which is repre-

sented in Figure 2b.

However, this model does not represent the blood glucose–insu-

lin dynamics of a person with T1DM and is not a digital twin. 

In the following section, we take this model and adapt it to rep-

resent the dynamics of T1DM. We then interface it with oref0 to 

generate a digital twin that can be used to predict user responses 

to oref0 interventions.

2.5   |   Summary

In this section, we highlighted the difficulties associated with 

configuring an APS. Human interaction makes physical testing 

of configurations time consuming and potentially unethical for 

dangerous behaviours. Digital twins have been proposed to en-

able such testing, removing the human from the loop and run-

ning the APS in a simulated environment. However, such an 

approach has yet to be implemented, raising the question as to 

whether a digital twin would alleviate the challenges associated 

with testing APS configurations.

For the remainder of this paper, we perform an evaluative case 

study in order to assess the applicability of the methodology 

proposed by Corral- Acero et al. [12], described in Section 2.3.2. 

We use these steps to develop a digital twin of a person using 

an APS, use a large open- source T1DM dataset to calibrate the 

digital twin and then perform configuration testing using real 

configurations used by users.

3   |   A Digital Twin for Testing an APS

In Section 2, we discussed the challenge of testing and config-

uring an APS. Digital twins have shown promise in using pre-

dictions to decouple testing from the human- in- the- loop in other 

domains. For blood glucose–insulin dynamics, only models are 

currently available. To enable configuration testing in a safe en-

vironment, we require a digital twin that is capable of predicting 

user responses to clinical interventions. The key task is to pro-

vide an environment where new configurations can be trialled, 

without interacting directly with the user.

We use the five steps in the framework set out by Corral- Acero 

et al. [12], presented in Section 2.3.2, to guide this implemen-

tation. We first adapt the model outlined in Section 2.4 to rep-

resent people with T1DM (Step 2). We then devise a strategy to 

fit the large number of model constants. This allows the model 

to simulate real- world blood glucose–insulin dynamics (Steps 3 

and 4). Using this model, we complete the digital twin by in-

terfacing it with the oref0 APS algorithm. As a result, we can 

observe how a person would be affected by different configu-

rations of an APS without requiring clinical trials (Step 5). Step 

1 of the framework, gathering data, is explored in Section 4.2.

Figure  3 illustrates our approach. The model of a person with 

T1DM represents the blood glucose dynamics of a user by fitting 

its parameters based on their blood glucose, carbohydrate and in-

sulin history. The user then provides an initial blood glucose, car-

bohydrate and insulin value, henceforth referred to as a scenario, 

for which they would like to observe APS interaction over time 

with the model. The model periodically sends its current state to 

the APS and simulates any suggested insulin interventions. A user 

can explore different APS configurations, observing the impact of 

potentially dangerous scenarios within a simulated environment.

3.1   |   Adapting the Contreras Model to Represent 
People With T1DM

To accurately represent the blood glucose–insulin of a person 

with T1DM, we first adapted the model proposed by Contreras 

et al. [49], presented in Section 2.4, to represent the physiology of 

T1DM. This can be seen as Step 2 of the Corral- Acero et al. [12] 

approach, generating a mechanistic model. We use this section 

(1)

dS

dt
= −kjsS,

dJ

dt
=kjsS−kgjJ−kjlJ ,

dL

dt
=kjl𝜑(t)−kglL(t), 𝜑(t)=

�
0, if t<𝜏

J(t−𝜏), if t≥ 𝜏
,

dG

dt
= − (kxg+kxgiI)G+Gprod+𝜂(kgjJ+kglL),

dI

dt
=kxiIb

⎛⎜⎜⎜⎝

𝛽𝛾 +1

𝛽𝛾
�
Gb

G̃

𝛾
+1

� −
I

Ib

⎞⎟⎟⎟⎠
,

Gprod=
k𝜆

k𝜆
Gprod0

+ (G−Gb)
.
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to describe the required changes to the model so it can then be 

fit to real- world data in the following section.

For our evaluative case study, we focus on the implementation 

of a mechanistic model to predict and enable personalized med-

icine. Such models allow for prediction of unseen outcomes due 

to their encapsulation of human physiology [51]. Corral- Acero 

et  al. [12] also propose the use of statistical models in digital 

twins. However, they are proposed to be used for when the un-

derlying behaviours are not well understood. Future work could 

be performed to evaluate the introduction of a statistical model 

to complement the mechanistic model, but we find this out of 

scope for this case study.

The adapted model makes the simplifying assumption that a 

person with T1DM does not produce any insulin. We illustrate 

FIGURE 3    |    The process of a digital twin of a person with T1DM using an APS simulating user provides scenarios for different APS configura-

tions. A model is generated based on the user's historical data representing their blood glucose–insulin dynamics. This model communicates with an 

APS control algorithm, using the user supplied APS configurations, to simulate blood glucose dynamics for user generated scenarios.

FIGURE 2    |    Model outputs presenting blood glucose dynamics over time for an initial blood glucose, insulin and carbohydrate value (a scenario). 

(a) Blood glucose dynamics as defined by Corral- Acero et al. [12] for a healthy pancreas. (b) presents the same scenario with suppressed insulin sen-

sitivity. (c) presents the same scenario with 1% insulin secretion. (d) presents the same scenario with suppressed insulin sensitivity when interacting 

with oref0.
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this change in Equation (2). We set the insulin production term 
(

�� + 1

�� (
Gb
G̃

�

+ 1)

)

 of this equation to zero. This allows the insulin 

steady state (Ib) to cancel out, resulting in the simplification of 

insulin dynamics to the rate of insulin degradation (kxi).

In practice, some people with T1DM do produce a small amount 

of insulin and are known as ‘microsecretors’. Januszewski et al. 

[52] measured the concentration of insulin- producing beta cells 

in people with T1DM compared with a control group. They 

found that, on average, 55.3% of people with T1DM secrete in-

sulin, but at a level less than 1% of the control. Figure 2c pres-

ents how there is no noticeable difference between 1% insulin 

secretion and no insulin absorption, as in Figure 2b. As such, 

secretion would not noticeably impact the adapted model's blood 

glucose–insulin dynamics. 

As with the original model by Contreras et al. [49], we define 

a person's internal mechanics by the differential equations pre-

sented in Equation  (3).2 As a person's internal mechanics are 

specific to them, we define the constants for these equations 

constants in Equation (4) as the set Kx(T), where x is a specific 

person. This set is bounded by the time period T because the 

internal mechanics change over time based on factors, such as 

the time of day and exercise. The meaning of each constant can 

be found in Table  A1 in Appendix A. This presents a mecha-

nistic approach (Step 2 of Corral- Acero et al. [12]) to calculate a 

person's blood glucose–insulin dynamics based on a set of per-

sonalized constants. 

3.2   |   Fitting the Model to a Person With T1DM

Because blood glucose–insulin dynamics vary from person to 

person, the model will need to be tailored to an individual. To 

achieve this, a large number of constants (Kx(T)) must be set 

to their correct values using historical blood glucose–insulin 

data. Contreras et al. [49] provide error equations but does not 

explicitly show how they can be used for parameter fitting. This 

equates to Steps 3 and 4 of the approach outlined by Corral- 

Acero et al. [12].

First, we take a trace from our data source which will be used 

as the training data for fitting. This trace represents the desired 

behaviour our model should represent after training. From this 

trace, we can extract the interventions applied to the human 

body. These include how much and when the user has eaten, if 

insulin was manually injected, and the insulin injected by oref0. 

Such interventions can then be applied at the relevant time steps 

to the model during training. For example, if the user injected in-

sulin after consuming a meal, the model would be trained using 

both of these extracted interventions because the blood glucose–

insulin dynamics would represent the resulting behaviour.

We then use metaheuristic search, executing the model with dif-

ferent constant values, to find the values of Kx(T) which best 

represent our desired behaviour. From this, we have fit our 

model, allowing for the blood glucose–insulin dynamics of the 

data source trace to be represented. The fitting process is avail-

able in our replication package (Section 4.4).

We use a genetic algorithm to minimize the error between the 

training dataset and the model output for the parameters Kx(T). 

Genetic algorithms are metaheuristic optimization algorithms that 

use chromosomes to represent different solutions [53]. For this 

paper, we used the genetic algorithm PyGAD [54] as it provided an 

open- source implementation of a highly configurable optimization 

algorithm. The configuration of our genetic algorithm is presented 

in Table  1. In our case, each chromosome is a configuration of 

Kx(T), and the relative fitness of each chromosome is defined by 

the error of the resulting model compared to the training data. Low 

error chromosomes are assigned a high fitness and stochastically 

combined and mutated to search the solution space to optimize 

the configuration of Kx(T). Other metaheuristic algorithms were 

trialled for this evaluative case study, and the results to those pre-

liminary tests are available in Appendix B.

To determine the accuracy of each chromosome, we calculate 

the root mean squared error (RMSE), presented in Equation (5). 

This provides an error value based on the difference between the 

model outputs (zm(t)) and the observational training data (zo(t)) 

across a given time period (T). RMSE provides an error that is 

always positive and does not increase with the number of model 

timesteps. 

(3)

dS

dt
= −kjsS,

dJ

dt
=kjsS−kgjJ−kjlJ ,

dL

dt
=kjl𝜑(t)−kglL(t), 𝜑(t)=

�
0, if t<𝜏

J(t−𝜏), if t≥ 𝜏
,

dG

dt
= − (kxg+kxgiI)G+Gprod+𝜂(kgjJ+kglL),

dI

dt
= −kxiI ,

Gprod=
k𝜆(Gb−G)

k𝜇+ (Gb−G)
+Gprod0.

(4)
Kx(T)= {kjs, kgj, kjl, kgl, kxg , kxgi, kxi,

�, �, k�, k� , Gprod0}.

TABLE 1    |    The configuration of PyGAD used when fitting our 

model. This was derived from preliminary experimentation.

Generations 1500

Solutions per generation 30

Parent selection Elitism

Number of mating parents 4

Mutation percentage 20%
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Differential equation models can introduce oscillations that are 

not possible in physiological systems [49]. To reduce unnatural 

oscillatory behaviour, we measure the oscillation error of the 

model using the Equation (6). This value is scaled by an oscilla-

tion constant (kosc) to reduce its impact on the overall error, al-

lowing for physiologically correct oscillations when they existed 

in the data. 

Our final error function for model optimization is the sum of 

RMSE and the scaled oscillation error: 

Using em(T) as the error function of a genetic algorithm, we 

generate configurations for Kx(T) that best represent the obser-

vational training data. The training dataset used in the fitting 

of our model was the OpenAPS Data Commons, presented in 

Section 4.2.1. We extracted blood glucose, insulin and carbohy-

drate values from these data to create a time series from which 

to train our model.

This technique produces models that represent a person's histor-

ical blood glucose, carbohydrate and insulin levels, as illustrated 

in Figure 3.

3.3   |   Digital Twin of a Person Using an APS

Now, we have generated a fitted model, we interface this 

with an APS control algorithm. As a result, we create a dig-

ital twin of a person with T1DM using an APS. We illustrate 

this as the interaction between the model and control algo-

rithm in Figure 3. This interaction allows a user to simulate 

interactions between their model and the APS to observe how 

APS interventions would affect their blood glucose levels 

over time. This equates to Step 5 of the approach outlined by 

Corral- Acero et al. [12].

We incorporate the oref0 control algorithm [25], as described 

in Section  2.1, as part of our digital twin to predict blood 

glucose dynamics when interacting with an APS. oref0 is a 

JavaScript program made up of utility scripts for creating an 

APS pipeline invoked by shell scripts. Figure 4 presents a se-

quence diagram representing the pipeline used by our digi-

tal twin to invoke oref0 and the data required at each step. 

The constant exchange of information between the model and 

control algorithm creates a feedback loop which models the 

APS' effect on the person's blood glucose dynamics over time. 

This mimics the data flows from CGMs and insulin pumps to 

an APS control algorithm. The code for this exchange of data 

can be found within our replication package (Section  4.4). 

Following Figure 4, our digital twin interfaces with oref0 as 

follows:

1. The scenario runner fetches the current state of the blood 

glucose insulin model and then invokes an oref0 pipeline 

wrapper which manages the interaction with oref0 scripts. 

This passes in the model's current and past states into the 

wrapper, as reflected in Figure 3, and any oref0 configura-

tions from the user.

2. The wrapper invokes the oref0- calculate- iob script passing 

in the data seen in Figure 4. This invokes oref0 to infer the 

insulin on board based on the state of the model for future 

calculations.

3. The wrapper then invokes the oref0- meal script to gener-

ate a file containing all the carbohydrate on board data re-

quired for future calculations. Figure 4 presents the data 

required for this step.

4. The wrapper calls a final script, oref0- determine- basal, 

passing in all the gathered and calculated data required. 

This script generates a suggestion for the insulin require-

ments of the user. The wrapper interprets this output and 

returns a value of insulin which should be ‘injected’ into 

the model.

5. The scenario runner adds the suggested insulin to the 

model and then updates the model for the next five time-

steps (5 min) to simulate an insulin pump injecting insu-

lin over time. This process is repeated every five timesteps 

until the simulation concludes.

The transparency of the blood glucose model makes simula-

tions explainable by allowing the internal state to be math-

ematically calculated for any timestep. Effects of an APS 

control algorithm intervention can be trialled in a controllable 

environment and traced back through the model without the 

need for physical trials which may be expensive or hazardous 

to the user.

An APS should aim to mimic a healthy pancreas as closely as 

possible. To test this, we refer back to Figure 2a of a person with 

a healthy pancreas. Figure 2d presents the same scenario replac-

ing the human with our digital twin. We observe a negligible dif-

ference between the healthy and APS supported blood glucose 

curves, presenting oref0's ability to stabilize blood glucose levels.

4   |   Case Study Design

In this section, we present our case study to explore the suitabil-

ity of using a digital twin for configuration testing of an APS. We 

also attempt to highlight any limitations and difficulties which 

may threaten future implementations. We follow the case study 

protocol outlined in Runeson et al. [55] and the ACM empirical 

case study standards [56]. First, we reiterate the motivations for 

the case study to justify our case selection. Then, we present the 

RQs which will drive our evaluation. From this, we are able to 

identify any data required. Finally, we outline any further mea-

sures required to answer the RQs.

As presented in Section 2.1, APSs present a challenging soft-

ware environment within which to find correct software 

configurations, due to the human- in- the- loop. Incorrect config-

uration of the control algorithm can be potentially dangerous 

(5)RMSE =

√

√

√

√
1

T

T
∑

t=0

(zo(t)−zm(t))
2.

(6)eosc =

√

√

√

√
1

T

T
∑

t=1

(zm(t)−zm(t−1))
2.

(7)em(T) = RMSE + kosc eosc .
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for the user. Digital twins are a promising approach to reduc-

ing risk when configuring human- interfacing devices but this 

technique has yet to be implemented.

We chose to evaluate our case study on the configuration test-

ing of oref0. Section 2.1.1 presents how highly configurable the 

control algorithm is and the challenges and potential conse-

quences associated with misconfiguration. oref0 also presents 

open- source data availability in terms of its source code and 

the OpenAPS Data Commons, outlined in Section  4.2.1. The 

remainder of this study presents a Healthcare 4.0 inspired case 

study to identify the benefits and challenges associated with 

configuration testing for an APS control algorithm using a dig-

ital twin.

4.1   |   RQs

In this section, we present the RQs for our case study. Our aim 

is to evaluate the use of a digital twin in configuration testing of 

an APS control algorithm and its ability to successfully simulate 

the environment in which it is used.

 RQ1. To what extent can our digital twin provide a 

simulated environment for the configuration testing of an 

APS?

To ensure correct evaluation of APS control algorithm 

configurations, the environment in which it is being 

simulated must also be accurate. Here, we investigate 

whether the derived digital twin model is able to accu-

rately represent the blood glucose dynamics of a person 

with T1DM. This will allow us to understand the effec-

tiveness of adapting the model described by Contreras 

et  al. [49] for representing T1DM and any difficulties 

encountered with regards to configuration testing. We 

can also evaluate the applicability of adapting the model 

set out by Contreras et al. [49] as opposed to other tech-

niques. We use this RQ to evaluate Steps 3 and 4 of the 

approach outlined by Corral- Acero et al. [12], model cal-

ibration and model validation.

FIGURE 4    |    A sequence diagram presenting how our model interacts with oref0 and the data required at each step. First, the insulin on board is 

calculated, then carbohydrates on board is calculated and finally the suggested insulin basal rate is calculated. These data are then fed back into the 

model to simulate an insulin pump supplying insulin.
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 RQ2. To what extent can our digital twin make predictions 

to enable configuration testing for an APS?

To ensure our observations of the predicted configurations 

of an APS control algorithm, the predictions about its exe-

cution environment must also be accurate. From this RQ, 

we investigate to what extent the adapted model's fixed pa-

rameters can accurately extrapolate unseen blood glucose 

behaviour of a person with T1DM and identify any chal-

lenges that occur when extrapolating blood glucose–insu-

lin dynamics. We use this RQ to further evaluate Step 4 of 

the approach outlined by Corral- Acero et  al. [12], model 

validation.

 RQ3. Can digital twins be used to test the blood glucose 

target configuration of an APS system, without relying on 

humans- in- the- loop?

After developing the simulated environment, we evaluate the 

behaviours and reliability of an APS control algorithm. We aim 

to observe the effectiveness of the APS control algorithm across 

multiple scenarios and configurations. We evaluate values of 

oref0's blood glucose target as, in Section 2.1.1, we present it as 

a setting which could produce potentially dangerous behaviour 

if misconfigured. We aim to investigate how the use of an 

explainable model as part of a digital twin allows for the tracing 

of medical interventions from different system configurations. 

This RQ evaluates Step 5 of the approach outlined by Corral- 

Acero et al. [12], testing system configurations against predic-

tions from the calibrated model.

4.2   |   Data Cleaning

In this section, we describe the data cleaning process used to 

find the candidate traces for this study. We first outline the data 

source for our case study, the OpenAPS Data Commons. We 

then present the steps required to process this data for use in 

our case study. Our data cleaning process equates to Step 1 of 

the approach outlined by Corral- Acero et al. [12], presented in 

Section 2.3.2.

4.2.1   |   OpenAPS Data

To enable the digital twin to make personalized predictions 

to the user during configuration testing, we use a historical 

clinical dataset. The OpenAPS Data Commons3 is the largest 

openly available APS dataset. It contains approximately 10 

million data points across 156 volunteers [24]. This dataset 

contains volunteered data from people using implementations 

of oref0 in the form of CGM, insulin pump and control algo-

rithm outputs. Section 4.2 outlines how we use these data to 

provide blood glucose, insulin and carbohydrate histories in 

our case study.

However, we must first ensure the data retrieved from the 

OpenAPS Data Commons is compatible with our digital twin. 

Due to the intrinsic nature of medical data, the dataset may 

be missing values, have inconsistent formatting or suffer from 

sensor error [57, 58]. This is especially important for data that 

is volunteered and not obtained through clinical trials as there 

may be less control in the data collection. The OpenAPS Data 

Commons, as with other medical datasets, suffer from these is-

sues, requiring us to first preprocess the dataset.

4.2.2   |   Data Inclusion and Exclusion

To make the OpenAPS Data Commons dataset compatible with 

the model fitting procedure, outlined in Section  3.2, the data 

must first be processed. The data must be transformed into 

blood glucose, insulin and carbohydrate time series with any 

traces with nonphysiological behaviours or measurement errors 

excluded. We define our process for data cleaning as follows:

1. Exclude all traces that do not include blood glucose, insulin 

and carbohydrate data (which are required by the model). 

This allowed us to exclude datasets which did not include all 

required historical data for training the digital twin.

2. Exclude all traces that are not in a consistent format or 

contain null values. This ensured our digital twin could cor-

rectly learn the blood glucose–insulin dynamics of a person 

with T1DM as a complete trace was required.

3. Split up each trace into time periods of 2 h with no car-

bohydrates on board before a single carbohydrates con-

sumption. The original data were in long continuous time 

series. The training procedure outlined in the original model 

by Contreras et  al. [49] required 2 h of training data after 

a single carbohydrate consumption. Two hours of no car-

bohydrate consumption was required before each trace as 

this could cause blood glucose levels to increase at a delayed 

time.

4. Exclude all traces that contain any large nonphysiolog-

ical increases or decreases in blood glucose. This was 

used to remove traces that contain behaviours that should 

not be physiologically possible. This includes blood glucose 

changes over 50 mg/dL (2.8 mmol/L) in a 5- min timestep or 

no absorption in carbohydrates over the trace. Such traces 

exhibit nonphysiological behaviour and are therefore inva-

lid. Such traces may exist in the data due to sensor error, 

human error in data collection or just invalid formatting as 

traces in the OpenAPS Data Commons were volunteered by 

users.

Using these criteria, we processed appropriate traces from the 

OpenAPS Data Commons. We started with 156 original traces 

and ended with 930 time period traces after applying our proce-

dure. These made up the candidate traces used throughout the 

case study. Our final traces were stored as 4- h trace files with 

data points every 5 min.

The original dataset contained 9,423,805 min (18 years) of data 

points. After applying our data cleaning process, we found that 

223,200 min (2.37%) of the data was suitable. This was due to 

model training requiring carbohydrate consumption, nonphysi-

ological behaviour in the data or simply human error in captur-

ing the data. The incredibly low acceptance of data highlights 

the difficulty of obtaining high- fidelity data, especially in a 

real- time environment. In Section  6, we discuss how this is a 

potential threat to configuration testing of medical devices and 

suggest how we could potentially improve the data inclusion 

rates for future evaluations.
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4.3   |   Measures

The effectiveness of an APS is typically evaluated by its us-

er's time in range (TIR). Battelino et al. [20] define TIR as the 

‘percentage of readings and time per day within target glucose 

range’. This metric shows how effective an APS is at reducing 

hyperglycaemia (ensuring blood glucose stays below 180 mg/

dL or 10.0 mmol/L) and not inducing hypoglycaemia (ensuring 

blood glucose stays above 70 mg/dL or 3.9 mmol/L).

Blood glucose monitoring devices also use Clarke error grids 

[59] to evaluate their accuracy and to determine the clinical sig-

nificance of device outputs [60]. The results of the error grid are 

split into five zones: clinically accurate (A), clinically acceptable 

(B), overcorrection (C), failure to detect (D) and erroneous (E) 

[61]. From this, a trained professional can assess the reliability 

of the blood glucose monitoring device.

4.4   |   Reproducibility

To ensure the reproducibility of this case study, we have created 

a reproducibility package4 including the digital twin model of a 

person with T1DM, a script for applying our data cleaning pro-

cedure to the OpenAPS Data Commons and scripts for each RQ. 

We cannot redistribute OpenAPS data used within this study 

due to our data management agreement with OpenAPS Data 

Commons. Our work was completed using version ‘n = 183’ of 

the OpenAPS Data Commons.

5   |   Case Study Evaluation

In this section, we present the evaluation of our case study. We 

present the methodology used for each RQ and then present 

their findings. We further discuss these findings and their rela-

tion to the case study in Section 6.

5.1   |   RQ1—Model Validity

This RQ evaluates the ability for a mechanistic model as part 

of a digital twin to represent mechanics of body dynamics. We 

equate this to an application and evaluation of Steps 3 and 4 of 

the testing procedure outlined in Section 2.3.2.

5.1.1   |   Methodology

For this RQ, we took the 930 clinical traces, generated from 

Section 4.2, to personalize the adapted model. These traces rep-

resent real blood glucose–insulin dynamics across 156 different 

people. Because the fitting process outlined in Section 3.2 is non-

deterministic, we fitted each trace 10 times. We used the RMSE 

metric (Equation 5) to quantify the difference between the ob-

served data for each of the 930 traces and their corresponding 

fitted model outputs. We use this metric to quantify the accu-

racy of a digital twin and, therefore, its ability to represent blood 

glucose–insulin behaviours.

We also defined model accuracy based on Clarke error grids [59], 

mentioned in Section  4.3. We use the 930 candidate traces as 

reference values to identify the zones generated by the adapted 

model. From this, we were able to quantify the number of traces 

in the OpenAPS Data Commons which a digital twin's simula-

tion would lead to clinically accurate treatment.

We then identified traces with high and low RMSE values. 

Incorrect behaviours in the model were identified and the trans-

parency of the internal variables used to find the causes of such 

behaviour.

To further evaluate the applicability of our adapted model, we 

also perform this methodology using other modelling tech-

niques. More specifically, we compare our approach to a data- 

driven explainable approach (a symbolic regressor) and a purely 

data- driven nonexplainable approach (a neural network). We 

replicated the methodology using the symbolic regressor and 

neural network to produce a distribution of RMSEs for each 

approach. The default settings were used for each modelling 

technique, except increasing the neural network's convergence 

iterations, which is explained in the findings.

A symbolic regressor is a model that represents the training data 

as a set of equations [62], similar to our model. However, unlike 

our approach, these equations are derived purely from the data, 

removing the need for an understanding of the underlying phys-

iology. Symbolic regressors are also explainable because their 

resulting equations can be traced back, allowing a user to un-

derstand the causes of information flow within the model.

A neural network is another data- driven approach that mim-

ics the flow of information through neurons and synapses [63]. 

Similarly to the symbolic regressor, this approach learns its 

structure from the data so minimal knowledge of the underly-

ing physiology is required. However, neural networks are not 

explainable. It is very difficult for a domain expert to understand 

the information flow through a neural network, making finding 

the causes of blood glucose behaviours difficult.

5.1.2   |   Findings

Figure 5a presents the distribution of RMSEs across each of the 

930 traces; 82.5% of the traces produce a median RMSE less than 

20. We define an RMSE less than 20 as accurate in Section 4.3 as 

predicted values inside the safe blood glucose range would not 

result in severe hypoglycaemia or severe hyperglycaemia. From 

these results, we show that the adapted model is able to accurately 

represent the blood glucose dynamics of a person with T1DM.

We observe that the standard deviation of RMSE values for a sin-

gle trace generally increases as the average RMSE increases. Six 

hundred forty (68.8%) of the traces had a low standard deviation 

of less than 10 (half of our accuracy value), which largely applied 

to those values with lower median RMSE.

Figure 5b presents a Clarke error grid for all 930 traces; 92.02% 

of the model outputs are within Zone A of the error grid and 

are therefore clinically accurate. From this, we observed how 

the adapted model was able to clinically accurately represent 

92.02% of the traces in the OpenAPS Data Commons. These 

points would lead to clinically correct treatment decisions [60].
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Although these results present the accuracy of our approach, we 

also assessed the applicability of our adapted model compared 

to other modelling approaches. Figure 6 presents the different 

RMSE distributions across the 930 traces for each different 

blood glucose–insulin modelling method. Our adapted model 

has the lowest RMSE, with the symbolic regressor being less ac-

curate and the neural network being the most inaccurate.

The data- driven techniques appear to struggle due to the nature of 

clinical data. These approaches lack the domain knowledge that 

makes up the ‘template’ for how blood glucose–insulin dynamics 

should behave. The symbolic regressor learned a simplification 

of the dynamics from the dataset, not taking into account factors 

such as the time delay of absorption across the ilium and jejunum, 

as described in Section 2.4. The neural network struggled to un-

tangle the complex dataset, failing to converge for several traces 

even with five times the default number of convergence iterations.

Similar to our mechanistic approach, a symbolic regressor 

could be used to trace back through model traces. This explain-

ability would allow a user to understand how different insulin 

interventions may have affected blood glucose levels. However, 

because there is no structure to the derived equations, a user 

may struggle to work out why a symbolic regressor has learnt 

specific behaviour. For example, in Section  5.1, we identified 

that the insulin sensitivity of a model was incorrect from the 
kxgi constant. Because the symbolic regressor does not have 

such a structure with specific constants for specific behaviours, 

understanding why specific behaviours are exhibited becomes 

more difficult.

The neural network is not an explainable model. Unlike the other 

two models, there is no practical way to examine why a neural net-

work's inputs result in its outputs. As a result, a user would not be 

able to reason about the learned behaviour or trace back insulin 

interventions through the model to understand their cause.

The lack of explainability also made it difficult to determine 

the exact reason for the neural network's bad performance. 

Typically, factors such as overfitting can be accounted for 

through splitting the data into test and training datasets [64]. 

However, our clinical dataset presented a couple of challenges 

regarding this. Each trace represented blood glucose–insulin 

dynamics independent from the other traces. As a result, we 

could not use some traces for training and others for testing. 

Also, due to blood glucose–insulin dynamics changing over 

time, our traces were made up of 120 data points (every 5 min 

across 2 h). The short traces made each data point necessary 

for training, meaning removing some for testing would have 

resulted in less accurate training.

To better understand the causes of accurate and inaccurate 

model dynamics, we can use the explainability of the adapted 

model. For this, we examine the RMSE values of model outputs 

(grey dotted lines) with respect to their observational data trace 

(red solid lines), shown in Figure 7.

Figure 7 presents three examples of how the adapted model can 

accurately represent blood glucose dynamics and how that ac-

curacy can vary. (a) presents a trace for which the model was 

able to represent the blood glucose dynamics across all model 

attempts. This represents a trace which resulted in a low RMSE. 

For (b), the majority of the 10 attempts to fit the model accurately 

FIGURE 5    |    (a) RMSE values across the 10 runs of each trace. The median (green), first quartile (blue) and third quartile (orange) values are plot-

ted. The red dashed line represents the maximum RMSE value for an accurate model. (b) A Clarke error grid showing model outputs across all 930 

candidate traces. Trace blood glucose values are used as the reference, and model outputs are used as the prediction.

FIGURE 6    |    Box plot presenting the distribution of RMSEs across all 

930 traces for our adapted model, a symbolic regressor and a neutral 

network. Outliers have been removed.
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captured the blood glucose dynamics of the person with T1DM. 

One attempt, however, resulted in a large RMSE. We were able 

to trace this back through the model to find that the value for kxgi 

was significantly larger than the other attempts. This caused the 

blood glucose level to decrease at a much greater rate than the 

observational data. (c), however, resulted in a large RMSE for all 

model fitting attempts. The model appears to over generalize the 

blood glucose dynamics, resulting in model outputs which do 

not follow the trace.

Summary: These results show how the stochastic elements of 

the fitting algorithm can allow for successful navigation of the 

solution space. However, nondeterminism combined with the 

complexity of the solution space can sometimes produce sub-

optimal solutions. Fitting the model a single time may not be 

optimal so the model should instead be fitted multiple times 

and the most accurate values of Kx(T) used to simulate a us-

er's blood glucose dynamics. In our case, we fitted the model 

10 times as it presented accurate solutions for traces where 

not all model outputs had a low RMSE while not being too 

computationally expensive. This ensured that an accurate en-

vironment was simulated by the digital twin when performing 

configuration testing. Further work could be performed to un-

derstand the optimal fitting strategies and iterations required 

for this kind of problem.

Our results also found both of the data- driven approaches less 

suitable for modelling blood glucose–insulin dynamics than 

our adapted, domain knowledge- driven model. The underlying 

domain knowledge of blood glucose–insulin physiology of our 

approach simplified the task of learning personalized dynamics. 

The purely data- driven approaches did not have this underly-

ing knowledge to provide a structure, resulting in less accurate 

models.

5.2   |   RQ2—Prediction Accuracy

This RQ presents the ability for a digital twin to predict un-

known body dynamics in order to aid in configuration testing. 

We use this RQ to further evaluate the application of Step 4 in 

the testing procedure outlined in Section 2.3.2.

5.2.1   |   Methodology

For this RQ, we only used traces in the lowest 50% of RMSE 

values from RQ1, providing they had an RMSE ≤ 20 and are 

therefore shown to be accurate. Using this model that was 

only trained on the first 2 h of each candidate trace, we exe-

cuted the model with additional timesteps in order to use the 

FIGURE 7    |    Data traces showing fitted blood glucose dynamics. Observational data are shown in red, each of the 10 model attempts at learning 

are shown in grey. (a) presents a trace that all model attempts were able to represent, (b) presents a trace that some model attempts were able to rep-

resent and (c) presents a trace that the model struggled to represent.
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remaining 2 h of data points of each trace to evaluate model 

prediction.

For each of the traces, we increased the additional timesteps 

from 0 to 120 min in steps of 20 min, measuring the RMSE at 

each. These additional timesteps are a continuation of the 

trained observational data. From this, we observed the accuracy 

of the model during extrapolation, providing insight into the re-

liability of the static set Kx(T).

We used the RMSE values to find traces in which error did 

and did not increase with extrapolation. Using the transpar-

ency of the adapted model, we traced through these interesting 

extrapolation behaviours in order to find the causes of accurate 

and inaccurate extrapolation.

5.2.2   |   Findings

For this RQ, we explored how blood glucose dynamics for a 

person with T1DM change over time. We used this question to 

understand to what extent our digital twin can predict blood glu-

cose behaviour as the internal dynamics of the person change 

over time.

To answer this question, we used the RMSE metric to measure 

model accuracy when adding additional observed timesteps out-

side of the time bound captured by the training data. Figure 8 

presents the distribution of RMSE across model outputs when 

extrapolating. From no extrapolation to 120 min of extrapo-

lation, the average RMSE increased from a value of 8.3–24.9. 

From this, we observed an increase in RMSE as the number 

of additional timesteps is increased. Section  4.3 presents how 

a prediction with an RMSE of 20 is considered accurate as it 

would ensure any incorrect predictions outside the safe blood 

glucose range are not severe. From this, Figure 8 presents how 

the adapted model can accurately predict 80 min of blood glu-

cose dynamics outside the training data.

To further explore blood glucose prediction, we identified mod-

els which originally had low RMSE values but increased in 

RMSE after extrapolation. Figure 9a,b shows a single trace with 

120 timesteps in Figure 9a and 240 timesteps in Figure 9b. We 

use this example to observe the difference between no extrapo-

lation and 120 min of extrapolation. Figure 9a presents a set of 

accurate model outputs where the blood glucose dynamics were 

FIGURE 8    |    Box plot presenting the distribution of errors as the level 

of extrapolation is increased across the 465 most accurate traces.

FIGURE 9    |    Traces showing reliability of extrapolation. (a) and (b) present a trace showing an increase in RMSE due to extrapolation. (c) and (d) 

present a trace showing no increase in RMSE due to extrapolation.
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correctly captured by the model. This led to a low RMSE in RQ1. 

Figure 9b shows behaviour being extrapolated which no longer 

followed the observed data. The trend of the behaviour was cap-

tured, but the nuances were not.

By splitting up this trace and only training on the second half, 

we were able to observe a completely different set of Kx(T) to the 

original trace. This represented a change in blood glucose be-

haviour. The transparency of the adapted model allows for these 

sets of constants to be compared.

Some traces, however, did not increase their RMSE through ex-

trapolation. Figure 9c,d presents a set of traces in which the ex-

trapolated behaviour matched that of the trace data. Similar to 

Figure 9a,b, the original trace for RQ1 had a low RMSE. Because 

the blood glucose dynamics did not fluctuate during the extrap-

olation, this resulted in a low RMSE for Figure 9d.

Training the model on both the first and second halves of this 

trace produced very similar Kx(T) values. Because this set did 

not change much, the adapted model was able to accurately 

predict the untrained blood glucose behaviour. From this, we 

observed that the adapted model's prediction is more accurate 

given stable blood glucose dynamics.

Summary: From these results, we suggest that the adapted 

model can be used to predict blood glucose dynamics up to 

80 min outside of the time bounded by the training data. For 

continuously accurate representation, the values of Kx(T) should 

be relearnt outside this boundary to ensure accurate predic-

tions. This would ensure predictions made by the digital twin 

would produce accurate and reliable behaviour for configura-

tion testing.

5.3   |   RQ3—Configuration Testing

This RQ aims to evaluate whether our digital twin can fa-

cilitate configuration testing of the blood glucose target set-

ting of oref0 without clinical trials. We use this to evaluate 

the application of Step 5 of the testing procedure outlined in 

Section 2.3.2.

5.3.1   |   Methodology

We interfaced the model of a person with T1DM with oref0 

to observe APS behaviour. To apply configuration testing, we 

need to select a small number of expected configurations, as 

described in Section 2.2. With this in mind, we identified three 

different blood glucose targets for oref0 which were widely 

used within the OpenAPS Data Commons: 100 (5.6 mmol/L), 

120 (6.7 mmol/L) and 140 mg/dL (7.8 mmol/L). Section  2.1.1 

identifies how the misconfiguration of blood glucose targets 

can result in dangerous scenarios. For this RQ, we test these 

expected configurations with all other oref0 configurations 

unchanged.

For each of the 930 candidate traces, we fitted the model to rep-

resent the blood glucose dynamics for that given scenario, as 

seen in RQ1. Given these dynamics and the initial carbohydrate, 

blood glucose and insulin values found in the trace, we simu-

lated the effects of using the different oref0 configurations for 

that scenario. Each configuration of oref0 was executed 10 

times, allowing for any nondeterministic elements. Because the 

body does not react immediately to the interventions of oref0, 

the full 4- h traces, as used in RQ2, were required to capture the 

resulting behaviour.

For this analysis, we used the TIR metric, outlined in 

Section 4.3, to present the efficacy of each oref0 configurations 

for a given scenario. Battelino et al. [20] defined TIR as a per-

centage of time spent in a blood glucose range of 70–180 mg/

dL (3.9–10.0 mmol/L). From this, we performed configuration 

testing on oref0 and evaluated each configuration based on its 

resulting TIR.

For this RQ, we used oref0 0.7.1 which is not the same as that 

found in the OpenAPS Data Commons. To compare the changes 

to the control algorithm over time, we calculate the TIR of the 

original OpenAPS Data Commons traces to observe improve-

ments in the control algorithm.

Now that the control algorithm is interfaced with the adapted 

model, we found it important to evaluate the temporal expense 

of this process. The motivation was that this analysis could pro-

vide insights regarding the applicability of our approach for con-

figuration testing when applied to real- world applications. We 

performed a temporal analysis to enable this evaluation.

We measured the time expense required for the different stages 

of the configuration testing process. This was split up into fitting 

the model parameters, executing the model without oref0 and 

executing the model with oref0. For each of the 930 traces, the 

time required for each of these stages was calculated, resulting 

in a distribution of temporal expenses.

5.3.2   |   Findings

Table  2 presents the TIR across different oref0 configurations 

averaged across each candidate trace. No intervention pres-

ents the TIR when no insulin is provided to the user, OpenAPS 

(2014–2021) provides the TIR for each trace using data from the 

original dataset and oref0 (v0.7.1) provides the TIR observed at 

different target blood glucose configurations.

TABLE 2    |    Mean time in range (TIR) for different interventions 

across each 930 traces to observe oref0 effectiveness.

Intervention

BG target 

(mg/dL) Mean TIR (%)

No intervention N/A 63.08

OpenAPS 

(2014–2021)

Various 73.57

oref0 (v0.7.1) 100 87.69

oref0 (v0.7.1) 120 89.06

oref0 (v0.7.1) 140 88.10
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‘No intervention’ provided the lowest TIR across each imple-

mentation. This was not surprising as people with T1DM strug-

gle to naturally regulate their blood glucose levels [52]. The high 

mean TIR was observed to be due to most of the traces starting 

within range, increasing the TIR for uncontrolled blood glucose.

‘OpenAPS (2014–2021)’ presented how controlling blood glu-

cose levels increases TIR. This represents the increase in qual-

ity of life found by Litchman et al. [23] when using OpenAPS. 

Comparing this to no interventions is an unfair comparison, so 

we use this metric to compare older versions of oref0, present in 

the OpenAPS Data Commons, with the latest version at time of 

writing.

‘oref0 (v0.7.1)’ provided a significant increase in mean TIR com-

pared to older versions of oref0. From this, we were able to show 

an increase in user safety when using more modern APS control 

algorithms. The difference in average TIR between the different 

oref0 blood glucose configurations, however, was not noticeable. 

To explore this further, Figure  10 presents two scenarios that 

show the behaviour of oref0 interventions across configurations. 

For both of these scenarios, a large amount of carbohydrate 

(≥ 60 g) was consumed causing uncontrolled blood glucose levels 

to rise out of the safe blood glucose range, defined in Section 4.3. 

We used the explainability of the adapted model to explore how 

oref0 adapts to these scenarios.

Figure 10a presents a scenario in which oref0 successfully con-

trolled the user's blood glucose within a safe range. From this, 

we observed how the different configurations resulted in differ-

ent resulting blood glucose behaviours. Depending on the sce-

nario, such as exercise, different targets and glucose behaviours 

are required. In this scenario, we see how the target of 140 mg/

dL sometimes produced undesirable behaviour, allowing the 

blood glucose to rise above a safe level. Our digital twin allowed 

for these configurations and their variability to be trialled in a 

safe environment.

Figure 10b presents a scenario in which the TIR was low for all 

configurations. We can see from the graph that there is min-

imal difference in system behaviour between the configura-

tions. By investigating the model execution at each timestep, 

we found that the APS algorithm was acting correctly but the 

model's fitted blood glucose dynamics were inaccurate. A lack 

of useful insulin data in the observational trace led to the model 

consistently learning a very low insulin sensitivity value (kxgi). 

This resulted in the oref0 interventions having very little effect 

on blood glucose levels and the insights gained from configura-

tion testing being misleading.

To further evaluate the applicability of configuration testing, we 

performed a temporal analysis of each stage of the testing proce-

dure. Figure 11 presents the different time expense distributions 

for each stage of the configuration testing process across the 930 

traces. We do note that the times found in this evaluation are 

those required for 4 h of oref0 execution.

These results illustrate how the training of the model is the most 

computationally expensive task of the procedure. Due to the 

large number of constants required when fitting the model, as de-

scribed in Section 3.2, this is not surprising. However, the results 

of RQ1 have shown the efficacy of this procedure in ensuring ac-

curate models. Also, compared to the 4 h of oref0 execution, the 

time required is still minimal. However, because this is the most 

computationally expensive part of the configuration testing pro-

cess, we discuss potential solutions to this in Section 8.1.

Figure 11 shows a large disparity between executing the model 

with and without oref0. The model execution alone took on aver-

age 0.002 s, whereas also executing oref0 took on average 38.7 s. 

FIGURE 10    |    Trace showing the effectiveness of oref0 against uncontrolled blood glucose. No intervention (black solid), oref0 targeting 100 (blue 

dashed), 120 (green dash dotted) and 140 (red dotted). The mean lines are plotted for 10 runs with the ranges shown.

FIGURE 11    |    Distribution of times taken for fitting the model, exe-

cuting the model and executing oref0.
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This difference demonstrates the computational efficiency of 

using a differential equations model compared to the rest of the 

testing procedure. The difference also demonstrated the compu-

tational expense of running an APS. We observed how the ex-

pense of running the APS is comparable to fitting the model itself.

Summary: From this RQ, we were able to evaluate the TIR of 

different settings of an APS control algorithm through configura-

tion testing. Configurations could be trialled for different people 

to ensure an APS control algorithm is set up correctly, without the 

need for clinical trials. We also observed the limitations of using 

real- world data, which will be explored further in Section 6.

We observed that fitting the model was the most computation-

ally expensive part of the testing procedure. We also demon-

strated the efficiency of our model and the extent to which 

interacting with oref0 increased the temporal expense required 

for configuration testing.

6   |   Discussion

In this section, we discuss the finding of our case study to 

evaluate the applicability of using a digital twin to perform 

configuration testing an APS. We approach this discussion 

from the perspective of strengths, weaknesses, opportunities 

and threats.

6.1   |   Strengths

Medical devices present a challenge for configuration as 

humans- in- the- loop can result in dangerous scenarios when the 

system is misconfigured. During our case study, we were able 

to develop a digital twin to alleviate this difficulty and perform 

configuration testing of an APS control algorithm without put-

ting users at risk.

The process outlined by Corral- Acero et  al. [12], presented in 

Section 2.3.2, provided a framework for enabling the configu-

ration testing of medical devices without requiring clinical tri-

als. Our case study has shown that by following this process, 

we were able to develop a digital twin to represent individuals 

and interface it with an APS control algorithm to observe differ-

ent APS behaviours for different system configurations across 

a multitude of people. From this, we were able to perform con-

figuration testing for the oref0 control algorithm for scenarios 

which were potentially dangerous, without putting any users at 

risk. We propose that the process outlined by Corral- Acero et al. 

[12] presented a compelling framework for other medical device 

configuration testing challenges.

6.2   |   Weaknesses

We did, however, encounter some difficulties when applying 

configuration testing to an APS through the use of a digital twin. 

Such a complex physiological phenomena as blood glucose–in-

sulin dynamics required an equally intricate model. RQ1 found 

that the complex solution space of the adapted model sometimes 

presented a challenge when fitting it to data.

We further encountered this in RQ2 where the digital twin 

sometimes struggled to predict more dynamic blood glucose–in-

sulin behaviours. We suggest that this may be a sign of model 

overfitting as our explainable model could not adapt its dynam-

ics. More adaptive models, further explored in Section 8.1, pres-

ent a potential solution to this challenge.

Unreliable digital twin predictions could lead to the obser-

vation of incorrect software behaviour during configuration 

testing. These weaknesses come from using a static model as 

opposed to a less explainable but more dynamics modelling 

technique.

6.3   |   Opportunities

The above weakness provides an opportunity for evaluating 

different modelling techniques for body dynamics. Future 

work could investigate the use of models that can better rep-

resent dynamics behaviours, such as machine learning–based 

modelling [65], and how this could potentially improve the 

reliability of digital twin–based configuration testing in this 

context. Such an approach, however, would have reduced the 

explainability of the model and introduced the social chal-

lenge, presented by Corral- Acero et  al., of users finding it 

difficult to trust a ‘black- box’ for clinical decisions [12]. We 

expand on this in Section 8.1.

Curated datasets from future work would allow for more usable 

data. The OpenAPS Data Commons, however, demonstrates 

the unique challenge of the APS's clinical setting as such cu-

rated data does not typically exist. As a result, we found that 

only 2.37% of the data being suitable as a significant challenge 

concerning future evaluations. In which case, we suggest that 

more open- source datasets are made available from future clin-

ical trials designed specifically for learning blood glucose–insu-

lin dynamics. This would allow for potentially more coverage 

of T1DM behaviours. However curated datasets may reduce the 

authenticity of applying such techniques to a real user's data 

due to the intrinsic nature of clinical datasets, as described in 

Section 4.2.1.

6.4   |   Threats

We found that the greatest threat posed to configuration testing 

using a digital twin was the use of clinical data. In Section 4.2.1, 

we present the OpenAPS Data Commons as our data source. 

At the time of writing, this was the largest and most well- 

documented dataset for people with T1DM [24]. Regardless of 

this, a large quantity of rejected traces led to only a 2.37% accep-

tance rate, as presented in Section 4.2. This was due to the data 

containing inconsistent or nonphysiological behaviour, human 

error in data collection or not containing a recorded carbohydrate 

consumption that was required for training the model. These are 

real characteristics of clinical data and reduce the reliability of 

applying configuration testing using past observational data.

A potential solution for increasing the number of accepted traces 

would be to interpolate missing values in the data. As a result, 

more of the data would be compatible with training the digital 
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twin. Therefore, more behaviours could be trained, allowing for 

configuration testing of more contexts. However, this could in-

troduce a potential threat. Interpolated values could result in 

behaviour which is not representative of the person's real glucose–

insulin dynamics. Subsequent configuration testing may be im-

pacted by using training data and, as a result, may be less reliable.

Even after rejecting 97.63% of the individual data points, some 

accepted traces did not contain enough granularity in the data, 

leading to misinterpretation of blood glucose–insulin dynam-

ics. This meant other human factors in the data may have still 

introduced erroneous data into the model. This would produce 

potentially incorrect predictions from the model, which could 

lead to inaccurate assumptions about APS behaviours during 

configuration testing.

For digital twins to accurately predict medical interventions 

when performing configuration testing, more accurate and con-

sistent data sources or techniques to account for uncontrolled 

data sources are required. Being able to account for the clinical 

data would allow for more models to be generated and an in-

crease in their accuracy. By alleviating the challenges associated 

with clinical data, the applicability for the configuration testing 

of medical devices would greatly improve.

7   |   Related Work

In this section, we explore works which are related to our paper. 

We describe how we build on existing work that provides the 

context for our work. We describe how digital twins have been 

used in healthcare, how digital twins have been used in testing 

and applications of configuration testing.

7.1   |   Digital Twins in Healthcare

Digital twins have been proposed to be implemented across the 

medical domain to better inform life- saving decisions without 

costly clinical trials. Kiagias et  al. [66] present a simulation- 

based approach that predicts treatment responses for people 

with tuberculosis. They show how in silico experiments speed 

up the ability for medical interventions to be delivered, without 

compromising safety and effectiveness. Our work capitalizes on 

such notions by simulating the medical interventions of system 

in a safe environment to ensure the system is behaving correctly 

for a given configuration.

The Cardiac Physiome Project [67, 68] argues the importance of 

simulation- based medicine for a better understanding of cardiac 

tissues, while outlining challenges surrounding the representa-

tion of tissue behaviour due to model resolution and approxima-

tion. This presents an ongoing challenge for digital twins in the 

medical domain. Corral- Acero et al. [12] propose a solution to 

this through a digital twin for precision cardiology. This would 

allow simulations to be patient specific, influence clinical deci-

sions and be updated with both population and individual data 

over time.

Corral- Acero et al. do, however, highlight an important social 

challenge with the adoption of such technology, as clinicians 

may find it difficult to trust a ‘black- box’ for clinical decisions 

[12]. We use this notion to further motivate the use of an ex-

plainable model when developing our digital twin in Section 3.

7.2   |   Digital Twins in Testing

Digital twins have presented a way of indirectly testing physi-

cally interacting software [15]. As a result, domain specific mod-

els have been used to enhance software testing. Peng et al. [69] 

use a mathematical model to represent the intended behaviour 

of a lithium- ion battery. As a result, the real system can be com-

pared to the digital twin to identify any divergences resulting 

from battery degradation. The use of a mathematical model al-

lows for the encapsulation of the physical properties of the bat-

tery. The digital twin can, therefore, represent unseen scenarios 

without relying on training data.

This notion motivates Corral- Acero et al.'s [12] use of a mech-

anistic model to represent the body's physiology [51]. In this 

paper, we use a mechanistic model consisting of differential 

equations derived from the knowledge of biological processes 

[49]. As a result, our digital twin is underpinned by the knowl-

edge of blood glucose–insulin dynamics, allowing for the infer-

ence of behaviour outside of trained data.

Our case study used digital twin predictions to test software 

configurations. Prior works have performed prediction- based 

software testing using a digital twin [70, 71]. However, the pre-

dictive capabilities of digital twins are underutilized in software 

testing [15]. In this study, we found the strength of using a digi-

tal twin's predictions in a medical setting to simulate and eval-

uate potentially dangerous scenarios and configurations. An 

expansion of this to other safety- critical domains may present 

opportunities for more proactive software testing without the 

associated risks.

7.3   |   Configuration Testing Applications

Section  2.2 described the process and importance of configu-

ration testing. Prior work has focused on the impact of config-

uration testing on large industrial systems [10, 35]. Our work 

instead applies configuration testing to medical devices. From 

our evaluative case study, we were able to highlight the impor-

tance of configuration testing in their domain and uncover the 

limitations associated with using clinical data.

As well as testing for individual configurations, prior work has 

aimed to present techniques that cover the configuration space 

[72]. This is particularly important for highly configurable sys-

tems such as oref0 [28]. Because this is an evaluative case study 

on applying configuration testing, we find this out of scope of 

this paper. However, future work into covering the configura-

tion space of systems like oref0 should be performed.

8   |   Conclusion

With the recent spread of medical devices, is it important to en-

sure they are correctly configured so that users can correctly 
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manage health conditions without risk. Misconfiguration poses 

a particular challenge in this domain due to the human- in- the- 

loop. This creates the potential for dangerous behaviour being 

enacted on the user if the system behaves incorrectly.

We investigated the impact of digital twins on configuration 

testing of medical devices through an evaluative case study on 

an open- source APS. We evaluated a proposed technique [12] 

for configuration testing using a digital twin. We identified us-

able data from the largest open- source dataset of T1DM blood 

glucose–insulin dynamics to fit our model. We adapted an exist-

ing model into a digital twin to represent blood glucose–insulin 

dynamics of a person with T1DM and validated the personaliza-

tion and predictive capabilities by fitting it to our dataset. From 

this, we performed configuration testing on the APS control al-

gorithm oref0. We tested system behaviours under different con-

figurations resulting in the successful identification of a blood 

glucose target that was not suitable for a user. This configura-

tion testing was performed without requiring clinical trials or 

putting any users at risk.

From this case study, we found the proposed framework to be 

applicable in the domain of an APS, allowing for accurate digital 

twin–based blood glucose–insulin predictions to enable config-

uration testing of an open- source APS. We were able to evaluate 

simulations and predictions of the digital twin to validate the 

environment they provided for configuration testing. We also 

observed different APS configurations in this simulated envi-

ronment, resulting in the identification of behaviours that could 

be unsafe to a user. This was performed without requiring phys-

ical trials.

We also identified difficulties associated with configuration 

testing using a digital twin. Model misrepresentation of a us-

er's blood glucose–insulin dynamics led to distorted system be-

haviour being presented. We alleviated this challenge by fitting 

the digital twin multiple times and confining its predictions to 

a 2- h time window due to changing glucose–insulin dynamics 

over time. Using real clinical data, also, presented a substantial 

threat to the approach. Human factors and data inconsistency 

led to a large proportion of the data being impractical, resulting 

in only a 2.37% of the initial data being usable.

8.1   |   Future Work

Digital twins present a promising approach to the configuration 

testing of medical devices but further work is needed before 

their implementation. We investigated the configuration testing 

of an APS using a digital twin to provide an evaluation of this 

technique's applicability in this domain. In future studies, we 

propose applying digital twin–based configuration testing to 

more case studies of medical devices. Such studies have been 

proposed [17, 73] but not in a practical setting.

Furthermore, work should be conducted to help alleviate the 

challenges identified regarding the use of clinical data and the 

complexity of the human body's dynamics. Investigation into 

different modelling techniques which can account for uncon-

trolled data and uncertainty in biological behaviour could help 

alleviate these difficulties. For example, techniques, such as that 

presented by Edington et  al. [74], present a potential solution 

by generating a digital twin comprised of multiple models. A 

combination of data- driven and physics- driven models allows 

for a better representation of systems whose internal dynamics 

change over time.

Further evaluation of our model would present more evidence 

in its real- world applicability. We performed a temporal anal-

ysis to identify which aspects of the testing procedure were 

the most expensive. A further sensitivity analysis may provide 

information required to streamline the most temporally ex-

pensive segment of testing, fitting the model constants. Future 

stability analysis and resource- based evaluation would also 

present evidence as to whether such a testing procedure could 

be applied in real time.
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Appendix A

Model Modification

The model implementation by Contreras et  al. [48] produced nega-
tive hepatic blood glucose (Gprod) at blood glucose levels less than the 
steady- state blood glucose level (Gb). We modified the original model 
by introducing a Monod equation [75] for Gprod with respect to − G. 
This is inline with prior work that has used Monod equations to rep-
resent hepatic glucose production [76] as this approach a simple yet 
effective representation of this behaviour [77]. Equation  (A1) intro-
duces the hepatic glucose growth rate (k

�
), the hepatic glucose limit 

(k�) and the hepatic glucose production (Gprod0) at the glucose steady 
state (Gb). 

Appendix B

Fitting Algorithm Choice

When deciding the technique for fitting the digital twin, we evaluated 
four different metaheuristic algorithms. Each algorithm was fitted 
using the same 10 randomly selected datasets and executed 10 times 
to account for randomness. Figure A1 presents the fitness values for 
each metaheuristic algorithm. It can be seen that the generic algo-
rithm resulted in the highest average fitness across traces. We use 
this to justify our choice of fitting algorithm. The code used to gen-
erate this figure can be found in fitness_checker.py in our replication 
package.

(A1)Gprod =

k�(Gb − G)

k� + (Gb − G)
+ Gprod0.

TABLE A1    |    The meaning of each constant from Kx(T) representing 

the blood glucose–insulin dynamics of a person.

Constant Meaning

kjs Rate of carbohydrate movement from stomach to 
jejunum

kgj Rate of carbohydrate absorption from jejunum to 
blood

kjl Rate of carbohydrate movement from jejunum to 
ilium

kgl Rate of carbohydrate absorption from ilium to blood

kxg Rate of blood glucose basal uptake

kxgi Rate of blood glucose insulin sensitivity uptake

kxi Rate of insulin degradation

� Time taken for ilium to receive glucose from jejunum

� Bioavailability of glucose absorbed in the intestine

k� Hepatic glucose production limit

k
�

Hepatic glucose production growth rate

Gprod0 Hepatic glucose production at the steady state

FIGURE A1    |    The fitness values when fitting the digital twin across 

four different fitting algorithms. Note: The scale of fitness is logarithmic.
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