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Abstract
Electromagnetic microtearing modes (MTMs) have been observed in many different spherical
tokamak (ST) regimes. Understanding how these and other electromagnetic modes nonlinearly
saturate is likely critical in understanding the confinement of a high β ST. Equilibrium E×B
sheared flows have sometimes been found to significantly suppress low β ion scale transport in
both gyrokinetic simulations and in experiment. This work aims to understand the conditions
under which E×B sheared flow impacts on the saturation of MTM simulations, as there have
been examples where it does (Guttenfelder et al 2012 Phys. Plasmas 19 056119) and does not
(Doerk et al 2012 Phys. Plasmas 19 055907) have a considerable effect. Two experimental
regimes are examined from MAST and NSTX, on surfaces that have unstable MTMs. The
MTM driven transport on a local flux surface in MAST is shown to be more resilient to
suppression via E×B shear, compared to the case from NSTX where the MTM transport is
found to be significantly suppressed. This difference in the response to flow shear is explained
through the impact of magnetic shear, ŝ, on the MTM linear growth rate dependence on
ballooning angle, θ0. At low ŝ, the growth rate depends weakly on θ0, but at higher ŝ, the MTM
growth rate peaks at θ0 = 0, with regions of stability at higher θ0. Equilibrium E×B sheared
flows act to advect the θ0 of a mode in time, providing a mechanism to reduce the linear drive
and suppress the transport from modes where the growth rate is strongly peaked in θ0 (Roach
et al 2009 Plasma Phys. Control. Fusion 51 124020). Bicoherence analysis demonstrates that
with the inclusion of E×B shear there is a more effective coupling between the linearly driven
drift-waves responsible for transport and zonal modes, which enhances damping. The
dependence of γMTM on θ0 is in qualitative agreement with a recent theory (Hardman et al
Plasma Phys. Control. Fusion 65 045011) at low β when q∼ 1, but the agreement worsens at
higher q where the theory breaks down. At higher ŝ, MTMs drive more
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stochastic transport due a stronger overlap of magnetic islands centred on neighbouring rational
surfaces, but equilibrium E×B shear acts to mitigate this. This is especially critical towards the
plasma edge where ŝ can be larger and where the total stored energy in the plasma is more
sensitive to the local gradients. This work highlights the important role of the safety factor
profile in determining the impact of equilibrium E×B shear on the saturation level of MTM
turbulence.

Keywords: gyrokinetics, spherical tokamak, microtearing modes, turbulence

(Some figures may appear in colour only in the online journal)

1. Introduction

Microtearing modes (MTMs) have been observed in gyrokin-
etic simulations of various conceptual spherical tokamak (ST)
designs [1–4] and in existing experiments in both the core [5–
8] and the pedestal [9, 10]. These electromagnetic modes pre-
dominantly drive electron heat transport and can be destabil-
ised by electron collisions [11], which has been proposed as
a candidate explanation for the BτE ∝ ν−0.82

ee scaling seen in
STs [7, 12], with support from nonlinear gyrokinetic simu-
lations of MTM turbulence [13]. It is computationally chal-
lenging to achieve well converged saturated nonlinear simu-
lations of MTM turbulence, but several such simulations sug-
gest MTMs may play a significant transport role in STs [14,
15], and close to the edge in conventional aspect ratio devices
when in H-mode [10, 16]. To develop much needed reduced
transport models for MTM turbulence with predictive power,
it is important to understand the saturation mechanisms. There
have been limited studies using simulations, and here we seek
to explain the impact of flow shear on MTM turbulence.

For instabilities such as the ion temperature gradient (ITG)
mode and kinetic ballooning mode (KBM), E×B shear can
reduce the turbulent transport [17, 18]. This work aims to
understand when E×B shear is relevant in suppressing MTM
transport. E×B shear decorrelates turbulent eddies by tilting
and shearing them radially, effectively adding a time depend-
ence to their radial wavenumber kx. One method to estimate
the impact of flow shear on a mode is based on the depend-
ence of its linear growth rate on the mode’s radial wavenumber
at the outboard mid-plane, kx0, which is often parameterised
using the ballooning angle θ0 = kx0/(kyŝ) 5. Here ky = nq/r
is the bi-normal wavenumber and ŝ is the magnetic shear. At
finite E×B shear, modes at different θ0 become coupled, and
the effective time average growth rate of a mode becomes
an average of γMTM(θ0); see discussion of the Floquet cycle
and effective linear growth rates with flow shear in section
3.1 of [19]. The stabilising impact of E×B shear therefore
is stronger when the peak in γMTM(θ0) is narrower and more
localised. The focus of this paper is to improve our understand-
ing of the factors determining γMTM(θ0) and the correspond-
ing susceptibility of MTM turbulence to suppression through
E×B shear.

5 For a circular, high aspect ratio, low β un-shifted flux surface, θ0 corres-
ponds to the poloidal angle at which the mode has zero radial wavenumber.

MTMs can of course saturate via other mechanisms such
as zonal fields [15, 20], local electron temperature gradient
flattening [10, 21] and coupling to dissipative modes [16],
though that will not be a particular focus here.

This paper also examines the applicability of recent work
done by Hardman et al [22], where a theory is derived for elec-
tromagnetic electron-driven instabilities resembling MTMs,
that have current layers localised tomode-rational surfaces and
bi-normal wavelengths comparable to the ion gyroradius. The
gyrokinetic equation is derived for two different regions, one
inner region localised around the rational surface. Secondly an
outer region far away from the rational surface at the centre of
the flux tube in the local gyrokinetics simulation. In balloon-
ing space the inner region corresponds to θ≫ 1, and the outer
region corresponds to θ ≲ 1. In this theory a mass ratio expan-
sion is taken with the following ordering for β

β ∼
(
me

mi

) 1
2

∼ kyρe ≪ 1 (1)

and an asymptotic matching condition is applied to solutions
from the two regions to obtain the dispersion relation. This
theory exposes an important local equilibrium parameter, βeff,
that increases the MTM instability drive when it is large. βeff
is defined as:

βeff = βe
2πG(θ0)

ŝkyρe
(2)

where

G(θ0) =
1
qR0

ŝ
π

ˆ ∞

−∞

B2

Bref

k2y
k2⊥

dθ
B.∇θ

(3)

with all the θ0 dependence of βeff being contained in k⊥.G(θ0)
is highly sensitive to how k⊥ varies along the field line and it is
generally maximised when θ0 = 0. The integrand’s θ0 depend-
ence is dominated by the factor k2y/k

2
⊥, and it is maximised at

k⊥ = ky, i.e. at kx = 0. In a large aspect ratio circular geometry,
k2y/k

2
⊥ = (1+ ŝ2(θ− θ0)

2)−1, which is largest either when θ =
θ0 or when ŝ is low. In such geometries G(θ0) = 1+O(r/R).

Amore physical picture forG(θ0) can be built by examining
the linearised form of Ampère’s Law for the perturbed current
and perpendicular magnetic field:

k2⊥A|| =
4π
c
J||. (4)
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MTMs generate re-connection whereby equilibrium field lines
undergo a finite radial displacement over their trajectory from
θ =−∞→∞. The radial displacement of a field line is given
by:

∆Ψ =

ˆ ∞

−∞

kyA||dθ

b.∇θ
=

4π
c

ˆ ∞

−∞

J||
B
B2ky
k2⊥

dθ
B ·∇θ

. (5)

Quasi-neutrality requires a divergence-free perturbed current,
∇.(J∥b) = 0 resulting in:

B ·∇θ ∂
∂θ

(
J||
B

)
= 0. (6)

Here the perpendicular current J⊥ has been ordered out by
the low β assumption which will ignore the ion contribution to
the current. Combining equations (5) and (6) whilst dropping
constants gives:

∆Ψ ∝
ˆ ∞

−∞

B2

k2⊥

dθ
B ·∇θ

(7)

where the integrand is proportional to G(θ0). This exposes
how G(θ0), and thus βeff, represent a local equilibrium geo-
metry parameter to which the radial field line displacement is
proportional for a given perturbed parallel current J∥/B. βeff
determines how efficiently a magnetic field perturbation can
tap energy from the current perturbation generated by the elec-
tron temperature gradient drive, which is key in setting the
MTM growth rate.

In this paper we will explore the crucial dependence of the
growth rate on θ0, which has received relatively little attention
in the literature. Section 2 outlines the local equilibria and grid
parameters used for gyrokinetic calculations of MTMs that
will be presented for MAST and NSTX plasmas. Section 3
examines MTMs previously found in MAST [7], using both
linear and nonlinear simulations. The impact of θ0 on these
modes is determined and we assess whether βeff is useful as
an indicator of the linear instability drive. In section 4, a sim-
ilar approach is applied to an NSTX plasma [13, 14], where
the MTM turbulence is found to be much more susceptible to
stabilisation via E×B shear, as opposed to the MAST surface
examined. This difference is explained by the impact of higher
ŝ of the NSTX plasma on the linear stability. Bicoherence ana-
lysis is used to demonstrate stronger coupling between differ-
ent θ0 in nonlinear simulations when including E×B shear
providing a potential method of saturation. This all points to
the importance of tailoring the safety factor profile, which
is important in determining when MTMs are susceptible to
sheared flow stabilisation.

2. Equilibria and numerical set up

Many different codes have been used to analyse MAST and
NSTX plasmas, both linearly and nonlinearly. For the cases
studied here, we use CGYRO [23].

The Miller representation [24, 25] was used to describe
the local equilibrium parameters of each chosen surface from

Table 1. Local Miller parameters and reference values for the
equilibrium flux surfaces simulated in this work from MAST
#22 769 and NSTX #120 968, where the parameters are defined as
in [24]. Here βe is the electron plasma β normalised to B0 = f/Rmaj
and βe,unit utilises Bunit as the normalising field.

r/a Rmaj/a ∂rRmaj a/Ln a/LT,e q ŝ

MAST 0.51 1.57 −0.13 0.22 2.11 1.08 0.34
NSTX 0.60 1.53 −0.29 −0.83 2.73 1.71 1.70

γE×B(cs/a) νee(cs/a) κ sκ δ sδ β ′

MAST 0.19 0.82 1.41 0.01 0.16 0.12 −0.53
NSTX 0.18 1.45 1.71 0.11 0.13 0.17 −0.36

ne(m−3) Te(keV) a(m) B0(T) Bunit(T) βe βe,unit

MAST 3.55× 1019 0.44 0.57 0.33 0.54 0.11 0.023
NSTX 6.01× 1019 0.45 0.62 0.32 0.66 0.06 0.025

MAST and NSTX, with parameters outlined in table 1.
Gradients are defined such that a/LX =−(a/X)∂X/∂r where
a is the minor radius of the last closed flux surface. The level of
E×B shear is parameterised by γE×B =−(r/q)∂ω0/∂r, with
ω0 being the local toroidal angular rotation frequency of the
plasma. All heat fluxes in this paper are normalised to QgB =

neTecs(ρs/a)2 where ρs = cs(eBunit/mDc), with cs =
√
Te/mD

and Bunit = (q/r)∂ψ/∂r.
This work examines ST scenarios where MTMs have been

previously found. Firstly, the MAST discharge #22769 at the
flux surface with r/a= 0.51 at t= 0.2 s, as discussed in [7].
This surface along with an outer flux surface close to the peak
in experimental collisionality is examined in detail in [15].
Furthermore, the flux surface with r/a= 0.6 in the NSTX dis-
charge #120968 at t= 0.56 s is examined here, which has been
discussed previously in [14].

The aim of this study is to examine MTM in different
regimes. Although the MTM is generally dominant in the
local equilibria analysed here, different modes can become the
dominant instability during parameter scans. The following
choices were made to avoid mode transitions and maximise
the likelihood of the MTM remaining the dominant instabil-
ity. All simulations in this work were performed without δB||
fluctuations and a/LT,i = 0.0. This reduces the linear drive for
other instabilities, such as KBMs and ITGs, without affecting
theMTM drive [26]. This can artificially preserveMTM as the
the dominant instability, making it easier to track the mode in
isolation linearly. Note that the focus here is not to quantitat-
ively predict the transport from the mode, but rather to determ-
ine the sensitivity of growth rates for particular modes to θ0.

Linear calculations were conducted using 64 θ grid points,
8 energy grid points and 24 pitch angle points with 64 connec-
ted 2π segments. For simplicity only Lorentz collisions were
included in the simulations as this was found to be sufficient
for unstable MTMs. Zeff = 1.0 was used and only 2 species
were simulated, electrons and deuterium. An additional filter
has been used to classify a mode as an MTM by imposing
a threshold level of re-connection from the perturbed radial

3
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magnetic field by requiring the field line tearing parameter,
Ctear > 0.1 where:

Ctear =
|
´
A||dl|´
|A|||dl

. (8)

All nonlinear calculations performed here use the same ini-
tial conditions with zero zonal amplitude and a small amp-
litude for non-zonal modes6.

Pyrokinetics, a python library which aims to standardise
gyrokinetic analysis [27], was used to generate the input files
and perform the analysis in this work.

3. MAST #22769 - Low ŝ MTMs

MAST 22 769 - Low s MTMs Using the MAST local equilib-
rium parameters in table 1, from [7], the micro-stability of this
equilibrium was explored as a function of kyρs and θ0, focus-
ing on the ion scale in the bi-normal direction with simulations
performed up to kyρs = 1.1.

3.1. Linear stability properties of the MTM

Figure 1(a) shows in blue the growth rate, γ, and mode fre-
quency, ω, of the dominant linear instabilities at θ0 = 0. For
kyρs ⩽ 0.6, the dominant mode is an MTM and the eigenfunc-
tion of the most unstable MTM at kyρs = 0.5 is illustrated in
figure 1(b). This exhibits the conventional properties of an
MTM in that ϕ has odd parity whilst A|| has even parity. ϕ is
significantly extended in ballooning space whilst A|| is very
narrow. This MTM is ion scale in the bi-normal direction,
but these eigenfunctions illustrate its multi-scale nature in the
radial direction: low kx is needed to resolve both ϕ and A|| in
the outer layer, but very high kx is also required to resolve ϕ in
the inner layer.

An electrostatic mode becomes dominant at kyρs > 0.6,
where the MTM becomes sub-dominant7, and this is con-
firmed through an electrostatic simulation without A||, shown
in orange, where the mode frequency and growth rate are
largely unchanged on removal of A||. Furthermore, this mode
is clearly unstable when 0.4⩽ kyρs ⩽ 0.6, but is sub-dominant
to the MTM. This mode has a frequency in the electron dia-
magnetic direction. It has an even parity ϕ eigenfunction and
the linear fluxes indicate that it drives predominantly electron
heat transport, with little ion and particle transport. It has a
similar transport signature toMTM, though is definitely not an
MTM given its predominantly electrostatic nature and the fact
that Ctear ≈ 0. Its electrostatic potential eigenfunction looks

6 The CGYRO inputs used for the initial conditions in nonlinear runs were
AMP0 = 0.0 and AMP = 0.001.
7 This differs from results reported in [15] for the same local equilibrium,
where no overlap of modes was seen. This is due to a difference in the collision
operators used. [15] used a Sugama operator with more physics, whilst for
simplicity a Lorentz operator was chosen here.

very similar to those found in [1, 22, 28, 29] for a radially loc-
alised ETG mode, and in this work is denoted as electrostatic
passing electron mode (PEM).

Figure 2 illustrates a 2D scan in kyρs and θ0 that was per-
formed to see how γMTM varies with θ0, though this pic-
ture is somewhat complicated in the region kyρs > 0.5 by the
PEM. The blue-yellow contours indicate theMTMgrowth rate
where it is dominant, whilst the shaded red region at higher
kyρs is where the PEM is dominant. At kyρs ⩽ 0.5, the MTM
remains the dominant mode across θ0 and is slightly stabil-
ised with increasing θ0. The dependence on θ0 is weaker as ky
is reduced. This suggests that E×B shear will have a limited
impact on these modes nonlinearly. The PEM growth rate also
weakly depends on θ0 for this surface.

The A|| eigenfunctions at kyρs = 0.5 are shown for θ0 = 0,
0.5π and π in figure 3(a), which is the highest kyρs where the
MTM is the dominant instability throughout θ0. The peak of
the eigenfunction moves away from θ= 0 as θ0 increases up to
π. The periodic behaviour seen in the tails of the eigenfunction
also shift with θ0, such that when the axes are shifted by θ0,
the peaks and troughs of the eigenfunctions line up perfectly,
demonstrated in figure 3(b). This indicates that the location of
the peaks in the tail of the distribution function is impacted by
the location of the peak around θ ∼ 0 and the troughs occur
where (θ− θ0) mod 2π = 0.

3.2. Validity of βeff for MTMs in MAST

It is interesting to assess whether the γMTM dependence on θ0,
which decreases slightly with rising θ0 for kyρs > 0.4, can be
understood from a theoretical point of view. βeff, defined in
section 1, is calculated for this MAST case and is compared
with γMTM in figure 4(a). Both monotonically decrease with
θ0, in a similar trend, supporting the suggestion from the the-
ory that the MTM driving mechanism is less effective at lower
βeff.

Equation (2) shows that βeff is sensitive to θ0, βe, ky and ŝ,
so the behaviour of the MTM can be examined whilst modify-
ing these parameters. Figure 4(b) shows γMTM against βeff for
two independent scans, firstly in θ0 (as shown in figure 4(a)
and secondly in βe (at fixed θ0 = 0) to scale βeff over the same
range from the θ0 scan. These scans were performed using the
MAST local equilibrium parameters with two values of ŝ: the
local equilibrium value of ŝ= 0.34 shown in blue; and a higher
value of ŝ= 1.70, corresponding to the value of the NSTX
equilibrium discussed in section 4, indicated by the orange
markers. γMTM is found to be a unique function of βeff for each
local equilibrium. Note, the higher ŝ case is more unstable at
a lower βeff, indicating that although βeff is an important para-
meter for MTM stability, it is not the only one.

If the critical threshold for unstable MTMs in βe at θ0 = 0
can be determined for a given local equilibrium, this will give
the critical βeff for the instability. Then from geometry alone, it
should be possible to assess where βeff drops below this critical
value as θ0 increases, and thus determine whether the mode
goes stable.

4
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Figure 1. (a) Eigenvalues for the MAST local equilibrium at θ0 = 0, with the dominant instability of an electromagnetic simulation shown
in blue and an electrostatic simulation shown in orange. The dots illustrate a MTM and the crosses a passing electron mode (PEM). (b) ϕ
and A|| eigenfunctions of the MTM at kyρs = 0.5.

Figure 2. A 2D contour plot showing the growth rate γ of MTMs
(where they dominate) for the MAST local equilibrium, plotted
against θ0 and kyρs. The blue-yellow contours denote the MTM
growth rate, whilst the shaded red region shows where the PEM is
dominant. The modes were differentiated using the field line tearing
parameter Ctear.

In this MAST equilibrium, the weak dependence of γMTM

(and βeff) on θ0 suggests that MTMs should only be very
weakly impacted by equilibrium E×B shear.

3.3. Impact of E×B shear on nonlinear MAST simulations

Nonlinear simulations were performed to assess the impact of
E×B shear on MTM turbulence in this MAST equilibrium.
These simulations required 384 kx grid points with kx,minρs =
0.019 and 24 ky grid points with ky,minρs = 0.035. The spec-
tral wavenumber advection method was used to implement
flow shear [30]. A resolution scan is outlined in appendix
confirming convergence. Without any imposed E×B shear,
ion scale ky simulations of the MAST equilibrium saturate

at a small level of flux, which is well below the experi-
mental level8. The simulation shown in figure 5 has a pre-
dicted electron flux of Qe = (2.6± 0.3)× 10−1QgB, calcu-
lated by taking the mean value in the latter third of the
simulation with the uncertainty given by the standard devi-
ation. This dominates compared to the particle and ion heat
flux which are Γe = (3.0± 0.3)× 10−3ΓgB and Qi = (5.9±
0.4)× 10−3QgB respectively. Furthermore, the transport is
dominated by the electromagnetic contribution, with a time
averaged Q

A||
e /Qtotal = 0.87, indicating that it is indeed the

MTM that is causing this transport, rather than the PEMThis is
further confirmed by running this case electrostatically, which
results in transport three orders of magnitude smaller. These
simulations saturate with large zonal ϕ and A|| which may
be relevant to the saturation mechanism. Contour plots of ϕ
and A|| for the case without E×B shear demonstrate this in
figure 6. Recent work by Giacomin et al [15], which also
examined this equilibrium, suggests that the stochastic trans-
port, which is typically the dominant channel for MTMs, is
weak in this region due to low magnetic shear resulting in
a large separation between rational surfaces compared to the
island width. A simulation was then performed adding in the
experimental level of E×B shear with γexpE×B = 0.19cs/a. The
heat flux here is Qe = (2.4± 0.5)× 10−1QgB, which is sim-
ilar to the case without E×B shear. The impact of equilib-
rium E×B shear on MTM turbulence is minimal, consistent
with expectations from the weak dependence of γMTM on θ0,
as discussed in section 3.1.

The level of stochasticization can be visualised in this case
using a Poincaré map of the magnetic field line, where the per-
turbed magnetic field line is followed for many toroidal turns

8 This equilibrium also contained electron scale ETG modes which contrib-
uted significantly more heat flux much closer to the experimental level, sug-
gesting that theMTMswere not as experimentally relevant in the chosen radial
position [15].

5
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Figure 3. The eigenfunction of the MTM in MAST at kyρs = 0.5 at various different θ0. (a) plots against the θ, whilst (b) shifts the
eigenfunctions by θ0. Doing so lines up the eigenfunction when |θ|> π.

Figure 4. (a) The growth rate (black) and βeff (red) normalised to their respective maxima for the MAST MTM at kyρs = 0.5 against θ0. (b)
A βeff scan via changing βe (dashed lines) and θ0 (dots). This was done at the equilibrium ŝ= 0.34 (blue) and at the NSTX value of
ŝ= 1.70 (orange).

around the flux surface. Figure 7 shows the Poincaré plot for
these nonlinear MAST simulations, where the colour denotes
the starting radial position of the field line. The development
of magnetic islands is clearly shown. When including E×B
shear, magnetic islands form but with slightly less overlap
reducing the level of stochasticization.

4. NSTX #120968 - High ŝ MTMs

Here we assess whether βeff is also a reliable indicator of linear
MTM stability for the local equilibrium from NSTX with the
local parameters in table 1, taken from [8], where MTMs were
also found. As with theMAST case, we assess the dependence
of γMTM on θ0, and the impact of E×B shear on the saturation
level of the turbulence in nonlinear simulations.

4.1. Linear stability properties of the MTM

Figure 8(a) shows the growth rate and mode frequency for
the MTMs found in NSTX. The results here match well with
that shown in [13], with no electrostatic mode being seen here.
Compared toMAST, theMTMs here have amuch larger norm-
alised growth rate so it is not surprising that they are unstable
up to a higher kyρs = 1.5. It might also be expected that any
nonlinear simulation without sheared flow would saturate at a
higher flux than for MAST. The eigenfunctions at kyρs = 0.5
are shown in figure 8(b); the electrostatic potential is consider-
ably less extended in ballooning space compared to figure 1(b),
due to both the higher collisionality and higher ŝ.

A 2D linear stability scan has been performed in ky and
θ0, similar to that performed in section 3, spanning kyρs from
0.1→ 1.1 and θ0 from 0→ 2π. Figure 9 presents a contour
plot of the MTM growth rate, where the white line shows

6
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Figure 5. Nonlinear electron heat flux prediction for the MAST case when γE×B = 0.0 (blue) and γE×B = 0.19cs/a (orange). Note that the
electromagnetic electron heat flux dominates the total flux driving >87% of the total heat transport in both of these simulations. The vertical
dashed line denotes the time from which the average and uncertainty in the flux is calculated. The particle and the ion heat fluxes are two
orders of magnitude smaller compared to the electron heat flux.

Figure 6. Contour plots of (a) ϕ and (b) A|| at θ= 0 at the final time slice for the MAST simulation without E×B shear showing large
zonal amplitudes in both fields.

Figure 7. Poincaré plots for the MAST nonlinear simulation (a) without E×B shear and (b) with E×B shear. The colour denotes the
starting radial position of the field line. Magnetic islands are formed in both cases but there is weak island overlap.
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Figure 8. (a) Eigenvalues of the NSTX equilibrium at θ0 = 0. (b) Eigenfunction of MTM at kyρs = 0.5 in the NSTX equilibrium.

Figure 9. 2D contour plot of the growth rate against θ0 and kyρs for
the NSTX local equilibrium. The solid white line denotes the
marginal stability contour.

the marginal stability contour. The only unstable mode found
here was theMTM. For kyρs ⩽ 0.3, the mode remains unstable
for all values of θ0, but the growth rates are non-monotonic
with θ0. At kyρs = 0.4 a window of stability appears centred
around θ0 = 0.4π, getting wider in θ0 at higher ky, restricting
the unstable space to a narrow region around θ0 = 0.0.

4.2. Impact of magnetic shear on the MTMs stability

The MAST and NSTX local equilibria show a very differ-
ent dependence of γMTM on θ0, even though the values of
many local parameters are quite similar.We have identified the
local equilibrium parameters responsible for this striking dif-
ference by individually changing each equilibrium parameter
fromNSTX to that fromMAST. This highlighted themagnetic
shear, ŝ, as the most significant parameter. Figure 10(a) shows
how the growth rate varies with θ0 for kyρs = 0.5 using the

NSTX equilibrium at two different values of ŝ. The orange line
uses the NSTX equilibrium value of ŝ= 1.70 and the MAST
value of ŝ= 0.34 is in blue. With the NSTX equilibrium ŝ, the
mode is stable for θ0 > 0.1π, which coincides with βeff drop-
ping below 10. At the lower MAST value of ŝ the mode is
unstable and βeff > 50 across the whole range in θ0.

To further confirm the impact of ŝ, simulations were run for
the MAST local equilibrium case in section 3 with the equilib-
rium MAST ŝ in blue and the higher NSTX ŝ in orange, with
the results shown in figure 10(b). At higher ŝ, γMTM becomes
much more sensitive to θ0 and becomes stable at higher θ0.
(Note the electrostatic PEM at kyρs = 0.5 found in the MAST
local equilibrium is stabilised with higher ŝ.) This suggests
that MTMs found in regions with high magnetic shear may
have their transport suppressed byE×B shear. Figure 11 show
2D contour plots of γMTM against θ0 and ŝ for the MTM at
kyρs = 0.3 in NSTX and for the MTM at kyρs = 0.5 in MAST,
where it is clear that the dependence of γMTM on θ0 is increas-
ingly insensitive and monotonic at low values of ŝ, and that the
unstable region with peak growth rate at θ0 = 0 narrows as ŝ
is increased. All the unstable modes found in these scans were
MTMs.

As mentioned earlier, increasing ŝ will make βeff drop off
faster with θ0, which according to themodel will help to stabil-
ise the mode. Figure 10 shows that βeff has a stronger depend-
ence on θ0 at higher ŝ, dropping below 10 by θ0 = 0.3π for
both equilibria. Note the higher ŝ cases have a lower βeff but are
more unstable at θ0 = π. This is not inconsistent with the the-
ory as βe,crit will also change with ŝ. If this can be determined
independently by a reduced model then it will be possible to
determine at what θ0 the mode goes stable, which was shown
in figure 4(b). The change in βeff can be attributed to how k⊥
increases along the field line in the two different equilibria as
the larger NSTX ŝ will result in k⊥ becoming proportionally
larger for a given ballooning angle.

Magnetic shear only appears within the definitions of kx,
k⊥, the curvature drift and the grad-B drift terms within
gyrokinetic equation. To isolate which of one the impacts of

8
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Figure 10. Comparing how βeff (top) and γ (bottom) change with θ0 for kyρs = 0.5. (a) and (b) use the NSTX and MAST equilibria
respectively. In both figures, simulations using the MAST ŝ= 0.34 are shown in blue and the NSTX ŝ= 1.70 are in orange. The black
dashed line illustrates βeff = 10.

Figure 11. 2D contour plot of the growth rate against θ0 and ŝ for (a) the NSTX equilibrium at kyρs = 0.3 and (b) the MAST equilibrium at
kyρs = 0.5. The dashed red line denotes the equilibrium ŝ for that surface.

changing ŝ is responsible for the changes in the stability, sev-
eral NSTX simulations were performed where ŝ was artifi-
cially lowered to the MAST value independently in each place
in the gyrokinetic equation where it appears. This revealed
that the impact of ŝ on k⊥ is entirely the responsible for γMTM

becoming insensitive to θ0 at low ŝ. In a more detailed refine-
ment of this investigation focusing on the impact of magnetic
shear on k⊥, the change in the dependence of γMTM on θ0,
illustrated in figure 12, can be attributed directly to where
k⊥ enters Ampère’s law9, Modifying k⊥ρs in the NSTX local
equilibrium to use the lower ŝ value from MAST, the growth
rate actually increases with θ0 (which is also found in high q
MAST simulations that will be shown later in figure 14(b)).
This confirms that it is specifically how high magnetic shear

9 δB⊥ ∝ 1/k⊥ from equation (4), so the perturbed field is increasingly loc-
alised in the parallel direction at higher ŝ because k⊥ increases more rapidly
with θ.

impacts Ampère’s law that allows θ0 stabilisation and thus for
E×B shear suppression to be effective. This provides further
evidence that βeff is a relevant parameter.

4.3. Validity of βeff for MTMs in NSTX

The parameter βeff is inversely proportional to ky which also
helps explain why the MTM has a narrowing window of sta-
bility in θ0 (centred around θ0 = 0.0) at higher ky. For the ori-
ginal NSTX case, βeff is shown for 3 different kyρs in figure 13,
and at higher kyρs, βeff is lowered. However, kyρs = 0.7 has the
lowest βeff at θ0 = 0.0, but is themost unstable out of the 3 kyρs
examined here. This indicates, unsurprisingly, that the linear
growth rate is influenced by other parameters in addition to
βeff, as are included in the parameter dependence derived in
[22].

However, this theory is not able to explain the behaviour at
the lowest kyρs where the growth rate is non-monotonic with

9
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Figure 12. Growth rate of the MTM at kyρs = 0.6 for NSTX
equilibrium using the consistent k⊥ρs in Ampère’s law (blue) and
the modified Ampère’s law using k⊥ρs with an artificially lower ŝ
(orange).

Figure 13. βeff as a function of θ0 at different kyρs for the NSTX
equilibrium. The black dashed line illustrates βeff = 10.

θ0. For instance, in figure 13 at kyρs = 0.3, βeff is slightly non-
monotonic with θ0, but not enough to explain the large growth
rate found at θ0 = π. This was different in the MAST equi-
librium, where both γMTM and βeff had a consistent mono-
tonic dependence on θ0. In order to try to understand this,
a scan in q was performed for the NSTX local equilibrium.
Figure 14(a) shows a contour plot of γMTM(kyρs = 0.3, ŝ=
1.70) as a function of q and θ0. In this scan MTMs are only
unstable at θ0 = π when q> 1.2. Whilst at lower q, γMTM

decays monotonically with θ0, and there is no instability at
θ0 = π10. Furthermore, figure 14(b) shows a similar 2D scan
for the MAST equilibrium where there is a relatively flat
dependence of γMTM(kyρs = 0.5, ŝ= 0.34) on θ0 at low q,
which becomes slightly peaked at θ0 = π at higher q.

10 All modes in figure 14(a) satisfy the MTM criterion Ctear > 0.1.

The peaking of γMTM at θ0 = π, found in the above gyrokin-
etics simulations at higher q, is not captured in Hardman’s
model [22]. This is likely due to its low β ordering assump-
tions, and in particular its neglect of the perturbed perpen-
dicular current J⊥, breaking down at higher q. In the model,
J⊥ is excluded in the charge continuity equation, as shown
in equation (6). However, the ratio of (∇· J⊥)/(∇· J||)∝
β(qR/a)2, so increasing these terms makes J⊥ term larger
which violates this ordering. This indicates that changes to β
or (R/a)2 should have a similar impact to changes in q2.

To test this, two additional sets of scans were performed
changing β and R/a shown in figures 15 and 16 respect-
ively. For both parameters, scans were performed in two ways.
Firstly whilst maintaining a fixed β(qR/a)2, would maintain
the relative size of J⊥. Here we see in both figures 15(a) and
(b) that γMTM remains non-monotonic throughout, contradict-
ing the model as expected. Secondly, scans were performed
whilst allowing β(qR/a)2 to change, shown in figures 15(b)
and (c), which modifies the size of J⊥ in a similar manner to
the previous q scan. Here the model’s prediction is recovered
as β(qR/a)2 is reduced, similar to the lowering of q, which
provides further evidence that the NSTX equilibrium is push-
ing beyond the orderings of the model.

4.4. Impact of E×B shear on nonlinear NSTX simulations

Figure 9 shows that a large region of the (kyρs,θ0) phase-space
is stable in the reference equilibrium of NSTX, suggesting that
E×B shear may help suppress the MTM transport. Nonlinear
simulations used 256 kx grid points with a kx,minρs = 0.068
and 12 ky grid points with ky,minρs = 0.07 to perform a scan
in γE×B, with the experimental value γexpE×B = 0.18cs/a. A res-
olution scan is outlined in appendix confirming convergence.
Figure 17 shows the level of electron heat flux for 3 differ-
ent nonlinear simulations. When γE×B = 0.0, the simulation
was found to saturate around Qe = (32± 3)QgB

11; This is sig-
nificantly higher than the MAST case and can be attributed
to the higher MTM growth rates, together with a higher q
and ŝ, reducing the separation between adjacent rational sur-
faces and enhancing electron heat transport from stochastic
magnetic fields [15, 31]. At γE×B = 0.5γexpE×B = 0.09cs/a, the
simulation was found to saturate at Qe = (4± 1)QgB, which
is within the error of the experimental turbulent heat flux,
shown in the shaded grey area. With the full γE×B = γexpE×B =
0.18cs/a, fluxes drop even further to Qe = (2.3± 0.4)QgB,
slightly below the experimental value, though this likely lies
within the uncertainty of γexpE×B

12. The nonlinear simulations of

11 Note that the same simulation was previously found to not saturate in [26].
Here numerical instabilities that were responsible have been avoided through
a recent improvement to the CGYRO parallel dissipation scheme—git commit
903307e.
12 We note that these CGYRO simulations are arguably more consistent with
NSTX data than previously published MTM simulations using GYRO, where
including E×B shear resulted in Qe ≪ Qexp

e [14] and the experimental heat
flux could only be matched if E×B was neglected.
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Figure 14. 2D contour plot of the growth rate against θ0 and q for (a) the NSTX equilibrium at kyρs = 0.3 which has ŝ= 1.70 and (b) the
MAST equilibrium at kyρs = 0.5 which has ŝ= 0.34. The dashed red line denotes the equilibrium q for that simulation.

Figure 15. 2D contour plot of the growth rate for the NSTX equilibrium against θ0 when (a) changing β whilst fixing β(qR/a)2 by
adjusting R/a and (b) changing β at fixed (qR/a)2.

figure 17(a) demonstrate that when γMTM has a strong depend-
ence on θ0, E×B shear can be effective in suppressing MTM
transport; in this NSTX case the electron heat flux reduces by
more than an order of magnitude. Figure 17(b) examines the
amplitude ofΣkx|A||(θ = 0,kyρs = 0.07)| for these three simu-
lations and it is clear that the amplitude of this mode oscillates
when E×B shear is included with the frequency of the oscil-
lation being proportional to the level of E×B shear further
indicating that coupling to stable modes is occurring.

The level of stochasticization is shown for the nonlinear
NSTX simulations via Poincaré plots in figure 18. It is clear
that when compared to theMAST simulations in figure 7 there
is significantly more stochasticization which is due greater
island overlap at higher ŝ [15]. Moreover these plots demon-

strate including E×B shear reduces the level of stochasticiz-
ation with significantly lower radial variation.

Note that the suppression of MTM turbulence was not
observed in the nonlinear simulations of figure 5, for the
MAST surface at lower ŝwhere γMTM is insensitive to θ0. Even
without flow shear, however, the absolute fluxes are extremely
modest on this MAST surface due to the increased distance
between rational surfaces at lower ŝ [15]. Figure 19(a) shows a
nonlinear simulation for the NSTX surface, but using the lower
value of ŝ= 0.34 taken from the MAST surface: it is clear that
the impact of E×B shear is also minimal here. Similarly, a
nonlinear MAST simulation was performed with the higher
value of ŝ= 1.70, shown in figure 19(b) where the E×B shear
reduces the heat flux significantly. Thus we can conclude that
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Figure 16. 2D contour plot of the growth rate for the NSTX equilibrium against θ0 when (a) changing q whilst fixing β(qR/a)2 by
adjusting R/a and (b) changing R/a at fixed βq2. The dashed red line denotes the equilibrium value for that simulation.

Figure 17. Nonlinear NSTX simulations with varying levels of E×B shear showing (a) the electron heat flux and (b)
Σkx|A||(θ = 0,kyρs = 0.07)|. Here γexp

E×B = 0.18cs/a. Note that the electron heat flux dominated the total flux driving > 96% of the total
heat transport in these simulations. The grey band in (a) denotes the experimentally measured anomalous heat flux. The average and
uncertainty in the flux is calculated from the final 50% of time from each simulation.

E×B shear suppression of MTM turbulence is more effective
when γMTM is more strongly ballooning, which is favoured at
higher ŝ.

4.5. Demonstration of mode coupling via bicoherence
analysis

Bicoherence is an analysis method that determines the level
of triadic mode coupling by examining whether three modes
remain phase locked throughout statistically equivalent peri-
ods of a simulation. Given that there are two different
wavenumbers, it is necessary to determine the 2D bicoherence.

The 2D bicoherence square for a complex field X is given by

b2 (X) =
|B(kx1,ky1,kx2,ky2) |2

⟨|X(kx1,ky1)X(kx2,ky2) |⟩2⟨|X(kx3,ky3) |⟩2
(9)

where B, the bispectrum is given by

B(kx1,ky1,kx2,ky2) = ⟨X(kx1,ky1)X(kx2,ky2)X(kx3,ky3)⟩
(10)

with kx3 = kx1 + kx2, ky3 = ky1 + ky2, X denotes the complex
conjugate of X, and ⟨⟩ denotes an average over many real-
isations. If the modes at (kx1,ky1), (kx2,ky2) and (kx3,ky3) are

12
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Figure 18. Poincaré plots for the NSTX nonlinear simulation (a) without E×B shear and (b) with E×B shear. The case with E×B shear
has significantly less stochasticization which corresponds to lower heat fluxes.

Figure 19. Nonlinear electron heat flux for simulations of (a) NSTX with a lower ŝ= 0.34 and varying levels of E×B shear which has
little effect. (b) MAST with a higher ŝ= 1.70 and varying levels of E×B shear which has a significant effect. Note that the electron heat
flux dominated the totallux driving > 92% of the total heat transport in these simulations.

not coupled then their complex triple product will have ran-
dom phases so will average to zero over many realisations, but
if there is strong coupling then this average will have a non-
zero value. The normalised bicoherence, b2, runs between 0
(no phase coupling) and 1 (entirely phase coupled). It should
be noted that bicoherence cannot determine the direction of
energy transfer but only if modes are coupled [32].

Given that A|| is the dominant field with MTMs, the bico-
herence square of A||(θ = 0) is examined for the NSTX case
with and without E×B shear where the average is taken over
many time slices. The bicoherence square is calculated for two
different time periods within the simulation, firstly in the linear
phase and secondly in the saturated state for the final 200a/cs
of the simulations.

For non-stationary periods, such as the linear phase, tak-
ing the bicoherence of A|| would not be valid given that its
amplitude is exponentially increasing. To remove this effect
it is necessary to examine phases directly Â|| = A||/|A|||. We
expect that cases withE×Bwill have significantly moremode
coupling between different θ0 which corresponds to coupling
between different kxρs modes in nonlinear simulations.

Figure 20 shows the normalised bicoherence, b2, for
Â∥(θ = 0) between a fixed zonal mode, (kx1ρs = 0.14,ky1ρs =
0.0) and a range of non-zonal finite kyρs modes during the
linear phase of the simulation, where the horizontal and ver-
tical axes correspond to kx2ρs and ky2ρs respectively. The ter-
tiary mode, (kx3ρs,ky3ρs), here corresponds to mode coupling
at the same non-zero kyρs but shifted along in kxρs. For the case

13
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Figure 20. Normalised bicoherence square, b2, evaluated using A∥(θ = 0) in the linear phase of the NSTX nonlinear simulation (a) when
γE×B = 0, and (b) when γE×B = 0.18cs/a. The bicoherence is between a purely zonal mode (kx1ρs = 0.14,ky2ρs = 0.0) and non-zonal
drift-waves (kx2ρs,ky2ρs > 0.0), where the horizontal and vertical axes correspond to kx2ρs and ky2ρs respectively.

Figure 21. Normalised bicoherence square, b2, evaluated using A∥(θ = 0) in the nonlinear phase of the NSTX nonlinear simulation (a)
when γE×B = 0, and (b) when γE×B = 0.18cs/a. The bicoherence is between a purely zonal mode (kx1ρs = 0.14,ky2ρs = 0.0) and
non-zonal drift-waves (kx2ρs,ky2ρs > 0.0), where the horizontal and vertical axes correspond to kx2ρs and ky2ρs respectively.

withoutE×B shear there no significant coupling between kxρs
modes13 but when it is included there is significant levels of
coupling to the stable modes. This weakens the linear drive
and causes the heat flux to increase more slowly during this
linear phase when the simulation includes E×B shear.

In the nonlinear saturated state the bicoherence square of
the un-normalised A||(θ = 0.0) is shown in figure 21 with
the same wavenumbers. Strikingly, only the simulation with
E×B shear exhibits a strong bicoherence between the zonal
mode and the drift wave modes at the peak of the heat flux

13 The most significant coupling in the linear phase without E×B shear
occurs along the kx2ρs =−0.14 axis, which when coupled to kx1ρs = 0.14
corresponds to kx3ρs = 0.0 which is the largest component.

spectrum, (kx2ρs = 0.14− 0.35,ky2ρs = 0.0), indicating that
E×B shear couples these linearly driven modes to more
damped regions of the spectrum. A peak is seen in the case
without E×B shear at kx2ρs = 0.75 which corresponds to the
first connected mode connected to kxρs = 0.0 given the box
size.

5. Conclusion

This work has helped understand the local plasma equilibrium
conditions under which MTM transport should be more sus-
ceptible to suppression by perpendicular E×B sheared flows,
and shown that this can be identified linearly from the θ0
dependence of the linear growth rate.
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A recent linear theory of MTMs, Hardman et al [22], valid
for βe ∼

√
me/mi, shows that the MTM growth rate depends

on the parameter βeff(θ0), and in this paper we have used local
gyrokinetic calculations to compare γMTM(θ0) with βeff(θ0)
for a number of local equilibria from ST plasmas.

In a local MAST equilibrium with q= 1.08 and ŝ= 0.34,
γMTM is weakly dependant on θ0 and βeff(θ0) follows a sim-
ilar trend. Parameter scans demonstrate that γMTM is a unique
function of βeff, as predicted by Hardman et al, indicating
that the theory captures the key properties of these linear
modes. Nonlinear simulations of this equilibrium confirmed
that E×B shear had little impact on the predicted transport,
in line with the weak dependence of γMTM on θ0. However
when ŝ is artificially increased there is a large increase to the
predicted heat flux at γE×B = 0.When E×B shear is included,
there is then a significant reduction in the heat flux as expected
given the stability in θ0.

In an NSTX local equilibrium with higher safety factor,
q= 1.71, and higher magnetic shear, ŝ= 1.70, theMTMs have
larger growth rates and are unstable up to a higher ky. For
kyρs > 0.5, γMTM is unstable over a narrow window around
θ0 = 0, and the growth rate drops steeply as θ0 increases, with
βeff(θ0) having a very similar character. A more detailed study
demonstrates that this is due to k⊥ increasing more rapidly
along the field line at higher ŝ (or finite θ0); this limits the par-
allel extent of A|| (from Ampère’s law) and the radial displace-
ment of the perturbed magnetic field that provides the linear
drive.

At lower ky, however, MTMs become unstable with an
additional peak in γMTM(θ0) at θ0 = π and this feature is not
captured by the theory. In this theory the contributions from
J⊥ are excluded using the low β ordering. However, this term
is related to the size of β(qR/a)2 and therefore a low β can
be offset by a higher qR/a. Scans were shown illustrating that
as β(qR/a)2 and thus the relative size of J⊥ is reduced, the
second peak on the inboard side disappears, indicating a break-
ing of the orderings that can occur at higher q or R/a, even at
low β, like in the NSTX equilibrium.

In nonlinear simulations, Qe matches the experimental flux
when equilibrium E×B shear is included14, andQe is an order
of magnitude lower than the result of the γE×B = 0 simula-
tion. This mitigation by E×B shear of the nonlinear MTM
heat flux, is as expected given the strong dependence of γMTM

on θ0 for the dominant modes at kyρs > 0.5. In a nonlin-
ear simulation for the same surface at an artificially lower
ŝ, where γMTM is much more weakly dependent on θ0, it is
found that the (modest) saturated fluxes are largely insensit-
ive to E×B shear. This is line with expectations from similar
models of turbulence suppression of ITG via a ‘Waltz rule’
[33]. Bicoherence analysis demonstrates that, in both linear
and nonlinear phases, E×B shear increases the strength of
coupling between transport carrying finite ky drift modes and
zonal modes, providing a route from linearly driven to linearly
damped modes that can assist turbulence saturation.

14 This improves on previous simulations that only matched experiment if
E×B shear was neglected [13].

The parameter βeff from recent theory by Hardman et al
is useful for describing MTMs in regimes where q∼ 1, but
as q increases it is not able model the non-monotonic beha-
viour of γMTM(θ0) due to the regime being outside the low
β orderings of the model which was used to exclude J⊥ as
(∇· J⊥)/(∇· J||)∝ β(qR/a)2. This also has implications for
conventional aspect ratio devices as similar behaviour was
also found at higher R/a. Reactor relevant STs will likely aim
to operate with qmin > 2.0 [26, 34], so this inboard destabil-
isation may be seen. While increasing ŝ opens the door to
flow shear suppression of the turbulent fluxes, it simultan-
eously increases the overlap of magnetic islands by reducing
the spacing between rational surfaces, and enhances electron
heat transport from stochastic fields. Towards the edge of the
reactor, q and ŝ should be higher than in the core, so E×B
shear could be more important in this region. Although reactor
relevant regimes will be highly self-organised, current profile
tailoring can allow for finer control of q and ŝ making it a rel-
evant tool in optimising the confinement properties of a future
reactor.
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Appendix. Convergence of nonlinear simulations in
resolution

The convergence of the MTM simulations in kyρs for
the MAST and NSTX simulations are demonstrated here.
Figure A1(a) shows a time trace of the electron heat flux
from the original MAST simulation without E×B shear on
a grid with 24 kyρs modes and 384 kxρs modes shown in blue.
Figure A1(a) demonstrates that this is sufficient to capture
the peak in the kyρs spectrum. Increasing the number of kyρs
modes to 32 at the same box size, shown in orange, shows a
significant increase in heat flux which initially suggests that
the simulation may not be resolved. However, when the num-
ber of kxρs modes is also increased to 512 at fixed box size,
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Figure A1. Resolution scan of the MAST equilibrium without E×B with a varied number of kyρs and kxρs grid points showing (a) time
trace of the electron heat flux and (b) kyρs spectrum of the electron heat flux.

Figure A2. Resolution scan of the NSTX equilibrium with E×B with a varied number of kyρs and kxρs grid points showing (a) time trace
of the electron heat flux and (b) kyρs spectrum of the electron heat flux.

shown in green, then the heat flux amplitude and kyρs spectrum
matches the simulation at the lower resolution in both kyρs and
kxρs. This is likely due to higher kyρs modes having finer radial
structure meaning a larger number of kxρs modes is needed to
capture they behaviour and saturation correctly.

Similarly for the NSTX simulation with E×B shear,
figure A2(a) shows the electron heat flux for the case with
12 kyρs modes and 256 kxρs modes in blue. A simulation
with double of number kyρs at the same box size shown in
orange, which saturates at a much higher level of heat flux,
but figure A2(b) clearly shows the kyρs flux spectrum is peak-
ing at the highest kyρs. When the number of kxρs grid points
is also increased in tandem from 256 to 384, shown in green,
the flux spectrum and overall level of transport matches the
simulation with fewer kyρs and kxρs modes.

Although the higher kyρs modes are not contributing signi-
ficantly to the overall flux in the resolved simulations, when
included it is critical to include more kxρs modes to cap-
ture them accurately, given the fine structure of MTMs in
kxρs.
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