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ABSTRACT
A new stochastic methodology is proposed for the generation of bidirectional horizontal components of artificial, fully
nonstationary, site- and spectrum-compatible seismic accelerograms through a nonseparable process. The model operates in
the time-frequency domain and combines spectral representation techniques with signal processing tools. The basis of the
methodology involves the generation of spectrum-compatible stationary artificial accelerogram signals whose nonstationarity
is then modeled with a time-frequency modulating function that is based on a seed ground motion record. At the core of
the proposed methodology lies the use of the Continuous Wavelet Transform (CWT). Specifically, the CWT method is used to
perform time-frequency analysis and to define the nonstationary component. The proposed methodology provides any required
number of seismic accelerograms whose temporal and spectral modulation is consistent with the characteristics of the site of
interest. Furthermore, the model is extended to the case of pairs of bidirectional horizontal components. This is accomplished
by probabilistically generating two orthogonal spectra whose geometric mean spectrum is compatible with a target spectrum.
This procedure also takes into account the correlation structure of spectral acceleration pairs in orthogonal directions at different
periods based on empirical models. The bidirectional components are then generated with the proposed site and spectrum-based
methodology. An online tool that implements the proposed methodology is freely provided.

1 Introduction

The continuous advancements of computational capabilities offer
new opportunities for the performance assessment of structural
systems under earthquake loading. That is, the time history anal-
ysis (THA)method is becoming more andmore popular in every-
day engineering practice. Moreover, new approaches to structural
analysis tend to incorporate probabilistic models that account
for uncertainties and variations in ground motions as well as
in structural properties [1]. Pertinent models include Monte
Carlo simulation (MCS) methods [2] and stochastic dynamics
techniques [3–6], as well as intensity measure (IM) approaches

like incremental dynamic analysis, cloud analysis,multiple-stripe
analysis methods [7], and surrogate modeling approaches [8].

The input earthquake actions for seismic performance
assessment can be either past-recorded ground motions or
artificial acceleration time-histories. The MCS-based techniques
mostly rely on artificially generated seismic records representing
the ground motion, whereas several approaches where the
random vibration is of significance rely upon the fundamental
concept of the power spectrum as a core model for both
excitation and response process representation [3–6]. When
THA and IM approaches are adopted, engineers typically resort
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to the selection and scaling of past-recorded ground motions
obtained from online databases. However, this practice remains
a highly controversial issue in the relevant literature, as several
studies have demonstrated that record scaling may be a source
of bias [9, 10]. Moreover, past-recorded accelerograms inherently
correspond to different seismic hazard, site, and soil conditions.
Finally, even though the online databases are constantly enriched
with new records, there is still a lack of ground motions from
earthquakes with large magnitudes at small epicentral distances.

Within this framework, the use of artificial accelerograms is
an alternative that effectively overcomes many of the problems
associatedwith the use of natural seismic records. Artificial earth-
quake ground motions can be designed to feature site-consistent
characteristics, as well as compatibility with the seismic hazard
scenario of interest. Given the inherently random nature of
seismic actions, artificial earthquake ground motions are typ-
ically modeled as stochastic processes and fields. The various
approaches that have been proposed in the literature range from
source-based models that follow a seismological approach like
the point source modeling [11, 12] and the finite fault modeling
[12], to site-basedmodels that simulate acceleration time-histories
based on seed ground motion records [13–15]. A third option
is the spectrum-based models that focus on generating artificial
accelerograms that are compatible with a target design spectrum
[14, 16–22]. It is noted that themost suitable approaches for every-
day engineering applications should comply with site and/or
spectrum-dictated requirements, thus, site-based and spectrum-
basedmodels are ofmain interest.More recently, site-basedmodels
have been expanded to include the modeling of several ground
motion parameters based on the regression analysis of recorded
ground motions from online databases [23–26]. Furthermore,
other recent methodologies adopt machine learning techniques
for the generation of artificial waveforms [27].

The aforementioned works focus on the generation of single-
component ground motions. Nevertheless, seismic motions
are three-dimensional phenomena; therefore, in the context of
THA, multi-component acceleration time-histories are required.
However, only a limited number of past studies focus on the
simulation of multi-component motions, and they typically
follow a similar approach, which is based on feature extraction
from online databases like the PEER NGA-West 2 database [28].
For example, references [24, 29, 30] extend existing site-based
models [13, 23] based on the regression analysis of recorded
ground motions from online databases. Studies focusing on the
simulation of spatially correlated acceleration time-histories [31]
have also been proposed.

The spectral representation method (SRM) [32] employs
the theory of stochastic processes and, combined with the
evolutionary spectra theory [33], is one of the earliest and most
widely adopted approaches for the generation of artificial seismic
groundmotions. Furthermore, based on the relationship between
the values of the power spectral density (PSD) function of the
stochastic process and the response spectral values for a given
spectral damping ratio [34], time-histories that are compatible
with a target code-compliant pseudo-acceleration response
spectrum can be generated. The seismic signals generated
following the SRM can be stationary [32], quasi-stationary [17],
and fully nonstationary. Stationary signals exhibit no amplitude

or frequency variation in time, whereas quasistationary signals
achieve only amplitude variation over time with a constant
frequency content. Fully nonstationary signals resemble the
nature of real seismic ground motions by featuring an evolving
amplitude and frequency content in time. The generation of
fully nonstationary acceleration time-histories using the SRM is
typically based on the evolutionary power spectral density (EPSD)
function modeling [18]. Specifically, the EPSD function can be
either constructed directly through amathematicalmodel [25], or
by introducing a time-frequency modulating function that mod-
ifies the PSD function of a stationary stochastic process [16, 35].
Alternatively, the EPSD function can be modeled by exploiting
thenonstationary properties of real recorded groundmotions [14].

Recent methodologies for generating fully nonstationary seismic
ground motions resort to signal processing operations in order to
effectively model the signal’s evolving amplitude and frequency
content. These techniques find increased interest due to their
ability to analyze and synthesize the signals simultaneously
in both the time and frequency domain, thus allowing the
direct modeling of their nonstationary characteristics. Such
approaches involve the use of the Fourier Transform (FT) [22],
the S-Transform [26], the Hilbert–Huang Transform [20], and
Wavelet Transform (WT) methodologies. The WT is a powerful
tool for obtaining a joint time-frequency representation of
nonstationary signals. More specifically, it employs localized
wave-like functions known as wavelets instead of continual
harmonics as a base to decompose a signal. Among various
WT methodologies for generating artificial ground motions
are the wavelet packet transform [23, 30], the Discrete Wavelet
Transform [15], the Harmonic Wavelet Transform [21, 36], and
the Continuous Wavelet Transform (CWT) [37]. The choice of an
appropriate joint time-frequency signal analysis approach heavily
depends on the problem at hand, since different approaches may
not yield the same estimate of the energy distribution on the
time-frequency plane for the same signal (e.g. [38, 39]).

The CWT is a versatile joint time-frequency signal analysis
tool which measures the similarity between a signal and a
mother wavelet, providing a time-scale representation of the
examined signal. Since there is a direct relationship between
scales and frequencies, the CWT can also be expressed with
a time-frequency representation. Moreover, the mother wavelet
provides a flexible time-frequency window that is automatically
narrowed for detecting the rapidly changing details of high-
frequency phenomena and widened for capturing the slowly
changing details of signals. This localization property makes the
CWTa powerful tool for analyzing signals with transient features,
like seismic ground motions. The CWTmethod is able to provide
a robust representation of the energy evolution in time and with
a high resolution in the time-frequency plane.

The paper presents a novel site and spectrum-based stochas-
tic methodology for the generation of bidirectional horizontal
fully nonstationary ground motion components using the CWT.
Regarding the groundmotion simulation procedure, the proposed
approach combines well-established tools such as the SRM in
conjunctionwith the CWTmethod, in order to extract and exploit
temporal and frequency characteristics from seismic ground
motions recorded at the site of interest. Specifically, the proposed
methodology operates in the time-frequency domain in order
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to produce fully nonstationary signals through a nonseparable
process. Notably, the time-frequency analysis is applied for the
whole accelerogram generation procedure rather than the PSD
function modeling specifically as in [26].

The proposed methodology follows the rationale of evolutionary
spectrum techniques that use an EPSD function where the
amplitude and spectral nonstationarity is modeled by modifying
a stationary signal with a time-frequency modulating function
(e.g. [16, 18]). In the proposed approach, the time-frequency
modulating function is extracted from a seed record using the
time-frequency representation obtained with the aid of the CWT
method. It is noted that the seed record is not added to the
stationary component like in [14]; it is used only for modeling the
time-frequency modulating function. Spectrum compatibility is
ensured with the aid of the SRM when generating the stationary
signal. Therefore, the proposed methodology can provide any
number of required site and spectrum-compatible seismic fully
nonstationary accelerograms. It is important to note that the
proposed methodology is independent of the choice of the
acceleration spectrum that is used as target. Various response
spectra can be chosen, depending on the problem at hand, for
example the conditional mean spectrum (CMS) [40], or scenario-
specific spectra obtained from ground motion models (GMMs).
Furthermore, a number of pertinent current stochastic dynamics
studies are based on excitations characterized by evolutionary
power spectra generated compatible with modern aseismic code
provisions [3, 5, 6].

The proposedmethodology can be seen as an alternative to record
selection. Themethod is free of the record scaling practice, which
is always a controversial issue, while it can be quite useful when
there is a lack of recorded signals. This is almost always the case
when (unscaled) ground motions with large intensity are sought.
Furthermore, the proposed model can be applied with the
same rationale as other, well-known, ground motion selection
procedures that use target spectra, for example, the method
proposed by Jayaram et al. [41], or the recently proposed approach
by Yanni et al. [16]. THA requires suites of acceleration records
that represent the seismic actions as input. When the selection
of multiple seed records is desired, it is possible to choose a small
number of recorded accelerograms obtained either from the same
site, that is, the site of interest, but from different earthquake
events, or from a site with similar characteristics such as fault
type, soil type,𝑀𝑤–𝑅, and so forth. These records can be randomly
selected, as discussed in the site and spectrum-based variant in
[16]. In this approach, suites of fully nonstationary artificial
accelerograms that are compatible with a target spectral mean
and a target variability for the whole period range are generated
following a probabilistic procedure. More specifically, multiple
target response spectra are produced from a random vector that
follows the normal distribution and is statistically defined by
the target spectral mean and variability by also considering the
spectral correlation at pairs of periods. For each of these spectra,
a corresponding spectrum-compatible artificial accelerogram can
be generated, following the proposed wavelet-based procedure
and using randomly sampled appropriate seed records.

The model is also extended to generate pairs of bidirectional
horizontal components. Since the methodology is spectrum-
compatible, this is achieved by defining two appropriate

orthogonal target spectra whose geometric mean matches a
target median spectrum obtained from a GMM. These spectra
are generated using a probabilistic procedure that takes into
account the correlation structure of spectral acceleration pairs
in orthogonal directions at different periods, based on empirical
models of practice [42]. Thus, a single-component groundmotion
may be used as a seed record, as the spectral correlation between
the two components is already included in the model. Alterna-
tively, two-component seed records may also be used. Once the
orthogonal target spectra are obtained, the two artificial ground
motion components are generated independently following the
proposed methodology. An online tool that implements the
proposed methodology is also freely provided at [43].

The proposed model has several advantages. The application
of the CWT offers the advantage of a fine time-frequency
resolution; thus, the modulus of the estimated coefficients is a
robust representation of the signal’s energy evolution in time.
As a result, the extracted time-frequency modulating function
offers a detailed and realistic representation of the nonstationary
characteristics of the seed records. Furthermore, the fully
nonstationary signals are directly modeled in the time-frequency
domain, rather than being treated separately for the amplitude
and frequency modulation, as found in several relevant studies
in the literature [13, 26]. Additionally, the generated signals
are unique rather than modified versions of the seed record.
Moreover, the proposed methodology is straightforward,
requiring only one seed record and a target spectrum as inputs,
thus making it applicable to the engineering practice.

The approach proposed for the generation of bidirectional hor-
izontal components offers the advantage that it is based on
the probabilistic generation of appropriate orthogonal spectra
that are then used for the simulation of bidirectional ground
motions by employing a spectrum-basedmethodology. Therefore,
it is an efficient procedure that can be combined with any
provided seismic hazard scenario that is represented by a target
acceleration spectrum, for example, a CMS, a GMM, or a design
code spectrum. Moreover, it is not limited to the proposed
accelerogram generation methodology; any site and spectrum-
based methodology can be used instead. As mentioned, relative
works in the literature [29, 30] focus on the statistical parameteri-
zation of online databases, thus they could be more cumbersome
and highly dependent on databases’ content. The proposed
procedure also offers the advantage that a single-component
ground motion may be used as a seed record. Alternatively,
based on the availability, two-component seed records may also
be used. Finally, it is noted that the proposed methodology is
computationally efficient, since the generation of either single
or bidirectional components is a straightforward task that is
performed within a few seconds.

2 Spectral Representation Method for Stationary
Seismic Signals

Stationary and spectrum-compatible accelerograms can be gener-
ated as stochastic processes using the SRM. Following Shinozuka
and Deodatis [32], the ground motion signal due to a seismic
event can be modeled as a zero-mean stationary Gaussian
stochastic process 𝑎𝑠(𝑡) of finite duration 𝑇𝑠 and it is produced as
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the superposition of harmonic components with random phase
angles

𝑎𝑠(𝑡) =
𝑁∑
𝑖=1

√
2𝐺𝑠(𝜔𝑖)Δ𝜔 cos (𝜔𝑖𝑡 + 𝜃𝑖) (1)

where 𝑁 is the number of harmonics to be superimposed, 𝜔𝑖 is
the angular frequency of the 𝑖𝑡ℎ harmonic, Δ𝜔 is the constant
integration step, and 𝜃𝑖 are the random phase angles, uniformly
distributed in the interval [0, 2𝜋]. Moreover, the amplitude of
each component is related to the one-sided PSD function 𝐺𝑠(𝜔𝑖)

of the stochastic seismic motion, thus providing the basis for gen-
erating target spectrum-compatible signals. This can be achieved
by determining 𝐺𝑠(𝜔𝑖) based on the random vibration analysis
approach proposed by Vanmarcke and Gasparini [17] and further
developed by Cacciola et al. [44]. The methodology relies on the
evaluation of a one-sided PSD function𝐺𝑠(𝜔𝑖)which is consistent
with a target pseudo-acceleration response spectrum 𝑆∗𝑎(𝜔𝑖, 𝜁) of
a quiescent elastic single-degree-of-freedom (SDOF) oscillator of
undamped angular frequency 𝜔𝑖 and damping ratio 𝜁, that is
subjected to the generated signal 𝑎𝑠(𝑡). If 𝑋𝑖(𝑡) is the obtained
stochastic response process, the pseudo-acceleration response
spectrum is

𝑆∗𝑎(𝜔𝑖, 𝜁) = 𝜂𝑋𝑖𝜔
2
𝑖

√
𝜆0,𝑋𝑖 (2)

where 𝜂𝑋𝑖 is the peak factor and 𝜆0,𝑋𝑖 is the variance of the
stochastic response process 𝑋𝑖(𝑡). The peak factor 𝜂𝑋𝑖 is the
critical factor by which the standard deviation

√
𝜆0,𝑋𝑖 of the

considered elastic oscillator response is multiplied to predict a
level of spectral acceleration 𝑆∗𝑎(𝜔𝑖, 𝜁), below which the peak
response will remain in the interval of 𝑇𝑠, with probability 𝑝.
The estimation of 𝜂𝑋𝑖 is related to the concept of the first-passage
problem. According to the hypothesis of a barrier outcrossing in
clumps [45], the peak factor is

𝜂𝑋𝑖 (𝑇𝑠, 𝑝) =

√
2 ln

{
2𝑁𝑋𝑖

[
1 − 𝑒

(
−𝛿1.2

𝑋𝑖

√
𝜋 ln (2𝑁𝑋𝑖

)
)]}

(3)

where 𝑁𝑋𝑖
is the mean zero crossing rate and 𝛿𝑋𝑖 is the spread

factor of the stochastic response process 𝑋𝑖(𝑡), defined as

𝑁𝑋𝑖
=

𝑇𝑠

2𝜋

√
𝜆2,𝑋𝑖
𝜆0,𝑋𝑖

(− ln 𝑝)−1 and 𝛿𝑋𝑖 =

√
1 −

𝜆21,𝑋𝑖
𝜆0,𝑋𝑖 𝜆2,𝑋𝑖

(4)

where 𝜆𝑛,𝑋𝑖 is the 𝑛
𝑡ℎ order (𝑛 = 0, 1, 2) spectral moment of the

stochastic response process 𝑋𝑖(𝑡), evaluated as

𝜆𝑛,𝑋𝑖 = ∫
∞

0

𝜔𝑛

(𝜔2
𝑖 − 𝜔2)2 + (2𝜁𝜔𝑖𝜔)2

𝐺𝑠(𝜔)𝑑𝜔 (5)

The evaluation of the target spectrum-compatible PSD function
𝐺𝑠(𝜔𝑖), depends on the peak factor, as well as on the variance of
the SDOF response. Nevertheless, as indicated by Equations (3)–
(5), these two parameters depend on the input 𝐺𝑠(𝜔𝑖) itself, thus
requiring a solution of the inverse stochastic dynamics problem.
Within this context, the variance 𝜆0,𝑋𝑖 of the response process

can be approximated as [34]

𝜆0,𝑋𝑖 =
𝐺𝑠(𝜔𝑖)

𝜔3
𝑖

(
𝜋

4𝜁
− 1

)
+ 1

𝜔4
𝑖
∫

𝜔𝑖

0

𝐺𝑠(𝜔)𝑑𝜔 (6)

Furthermore, Cacciola et al. [44] proposed that the mean zero
crossing rate and the spread factor can be approximated with
reference to a white-noise input [46] as

𝑁𝑋𝑖
=

𝑇𝑠

2𝜋
𝜔𝑖(− ln 𝑝)−1 and

𝛿𝑋𝑖 =

√√√√√1 − 1

1 − 𝜁2

(
1 − 2

𝜋
arctan

𝜁√
1 − 𝜁2

)2

(7)

Approximating the target PSD functionwith a constant piecewise
function, the integral of Equation (6) can be obtained as a discrete
summation. Replacing the obtained 𝜆0,𝑋𝑖 in Equation (2) leads to
the following expression for the spectral acceleration 𝑆∗𝑎(𝜔𝑖, 𝜁):

𝑆∗𝑎
2
(𝜔𝑖, 𝜁) = 𝜂2𝑋𝑖𝐺𝑠(𝜔𝑖)𝜔𝑖

(
𝜋 − 4𝜁

4𝜁

)

+ 𝜂2𝑋𝑖Δ𝜔

(
𝑖−1∑
𝑘=1

𝐺𝑠(𝜔𝑘) + 𝐺𝑠(𝜔𝑖)

)
(8)

Finally, the target spectrum-compatible one-sided PSD function
𝐺𝑠(𝜔𝑖) of the stationary process can be obtained solving
Equation (8) with respect to 𝐺𝑠(𝜔𝑖) as follows:

𝐺𝑠(𝜔𝑖) =
⎧⎪⎨⎪⎩

4𝜁

𝜔𝑖𝜋 − 4𝜁𝜔𝑖−1

(
𝑆∗𝑎

2
(𝜔𝑖, 𝜁)

𝜂2𝑋𝑖

− Δ𝜔

𝑖−1∑
𝑘=1

𝐺𝑠(𝜔𝑘)

)
, 𝜔𝑖 > 𝜔0

0, 𝜔𝑖 ≤ 𝜔0

(9)
The range of 𝜔𝑖 is defined within the interval [𝜔0, 𝜔𝑢], where
𝜔0 is the lowest frequency bound of the existence domain of
Equation (3), and 𝜔𝑢 is an upper cut-off frequency beyond
which the PSD function 𝐺𝑠(𝜔𝑖) is assumed to be zero for either
mathematical or physical reasons. In Equation (7), the value of
𝜔0 is 0.36 rad/s [44] and cannot be lesser since it would make the
quantity inside the root in Equation (3) negative. Furthermore,
for 𝑖 = 1, 𝐺𝑠(𝜔1) = 0 [32]. The accelerograms generated with
Equations (1)–(9) are stationary and all have the same duration𝑇𝑠.

3 Time-Frequency Representation of Signals

3.1 Signal Time-Frequency Analysis

Signal time-frequency analysis is a powerful tool for analyzing
and interpreting signals whose spectral content varies with time.
Traditional Fourier analysis provides insight into the frequency
components of a signal, however, it lacks the ability to represent
how these components evolve over time since this transform
provides only the average spectral decomposition of the signal.
Time-frequency analysis addresses this limitation by providing
a representation of a signal simultaneously in both the time and
the frequency domains. Various methods for performing time-
frequency analysis exist, like the Short-Time Fourier Transform
(STFT), the Wigner–Ville distribution, the Chirplet Transform,
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the Wavelet Transform, the Hilbert–Huang Transform, and the
S-Transform among others. Time-frequency analysis is crucial
in various fields, enabling a deeper understanding of signal
dynamics and supporting advanced signal processing tasks, as
discussed in the Introduction.

The WT provides a multi-resolution analysis by decomposing
the signal into a set of basis functions called wavelets, which
can be scaled and shifted. In the following section, we briefly
discuss the CWT that is adopted for the purpose of this study.
The choice of a time-frequency analysis method depends on
the characteristics of the signal and the specific application. For
instance, the STFT is suitable for signals with relatively stationary
frequency content over short periods, while the CWT is more
appropriate for signals with transient features, such as the case
of seismic ground motions.

3.2 The Continuous Wavelet Transform

The basic idea of the CWT is to use a set of basis functions known
as wavelet family, formed by the dilation and translation of a
prototype function known as mother wavelet 𝜓(𝑡). Although the
CWT is available in various software, its results may vary consid-
erably depending on various details that control the proper appli-
cation of themethod. Hence, a brief introduction to themethod is
provided, explaining also some of the assumptions that are made.

Let 𝜓(𝑡) ∈ 𝐿1(ℝ) ∩ 𝐿2(ℝ) be a window function of finite energy1
that fulfills the admissibility conditions. This function is called
the mother (or analyzing) wavelet, and the corresponding family
of wavelets is the group [𝜓𝑏,𝑎; 𝑏 ∈ ℝ, 𝑎 ∈ ℝ∗

+] of shifted and scaled
copies of 𝜓(𝑡), defined as

𝜓𝑏,𝑎(𝑡) =
1√
𝑎
𝜓

(
𝑡 − 𝑏

𝑎

)
(10)

where 𝑡 ∈ ℝ, 𝑎 is a scaling parameter that defines the dilation
of the mother wavelet 𝜓(𝑡), and 𝑏 is the translation parameter
related to time. The member of the family where 𝑏 = 0 and 𝑎 = 1

is the mother wavelet.

For a function 𝜓(𝑡) to be accepted as a mother wavelet, the
admissibility condition must be fulfilled

𝐶𝜓 = ∫
+∞

−∞

|||𝜓(𝜔)|||2
𝜔

𝑑𝜔 < ∞ (11)

where 𝜓(𝜔) = ∫ +∞
−∞ 𝜓(𝑡)𝑒−𝑖𝜔𝑡𝑑𝑡 is the FT of 𝜓(𝑡), which implies

that ∫ +∞
−∞ 𝜓(𝑡)𝑑𝑡 = 0 so that the graph in time is a small wave.

Let 𝑢(𝑡) be a signal that is of finite energy and a piece-wise
continuous function of time. Using a mother wavelet 𝜓(𝑡), the
CWT of the signal is given as

𝑇𝜓[𝑢](𝑏, 𝑎) = ∫
+∞

−∞
𝑢(𝑡)

1√
𝑎
𝜓

(
𝑡 − 𝑏

𝑎

)
𝑑𝑡 (12)

The symbol 𝜓 denotes the complex conjugate of 𝜓. Equation (12)
shows that CWT transforms a one-dimensional (time domain)
signal 𝑢(𝑡) to a two-dimensional representation: the time-scale
plane. TheCWT, as defined byEquation (12), can be interpreted as
the convolution of 𝑢(𝑡)with 1√

𝑎
𝜓
(
− 𝑏−𝑡

𝑎

)
, or as the inner product

of 𝑢(𝑡) with the shifted and scaled copies of the mother wavelet
1√
𝑎
𝜓
(
𝑡−𝑏

𝑎

)
. Alternatively, using Parseval’s identity, the CWT can

be equivalently estimated through the Fast Fourier Transform
algorithm by using the following equation:

𝑇𝜓[𝑢](𝑏, 𝑎) =
√
𝑎

2𝜋 ∫
+∞

−∞
𝑢(𝜔)𝜓(𝑎𝜔)𝑒𝑖𝜔𝑏𝑑𝜔 (13)

where 𝑢(𝜔) = ∫ +∞
−∞ 𝑢(𝑡)𝑒−𝑖𝜔𝑡𝑑𝑡 is the FT of 𝑢(𝑡) and 𝜓(𝜔) is the

mother wavelet defined in the frequency domain.

When the admissibility condition of Equation (11) is satisfied,
the original signal 𝑢(𝑡) may be reconstructed using the finite
constant 𝐶𝜓

𝑢(𝑡) = 1

𝐶𝜓 ∫
+∞

−∞ ∫
+∞

0

𝑇𝜓[𝑢](𝑏, 𝑎)
1√
𝑎
𝜓

(
𝑡 − 𝑏

𝑎

)
𝑑𝑎

𝑎2
𝑑𝑏 (14)

The term 1
/√

𝑎 in Equations (10), (12), (14) is a normalizing fac-
tor. The CWT definitions in the literature vary slightly depending
on the chosen wavelet normalization. For the purposes of this
study, the 𝐿2(ℝ) normalization [47, 48] was employed, as will be
explained in Section 5.1.

There is a direct relationship between the scales 𝑎 and the angular
frequencies 𝜔. More specifically, values of 0 < 𝑎 < 1 result in a
more compressed wavelet, allowing the detection of the high-
frequency content of the signal. On the other hand, large values
of 𝑎 > 1 result in a more stretched wavelet, which detects the
low-frequency content of the signal.

Therefore, the quantity 1
/
𝑎 can be assimilated to a frequency

parameter 𝜔 by setting 𝜔 = 𝜔∗
𝜓
∕𝑎. There are several representa-

tions of 𝜔∗
𝜓
in the literature. One of the most common definitions

is that 𝜔∗
𝜓
is the center frequency and it is equal to the frequency

that maximizes the FT of the wavelet modulus 𝜔0
𝜓
, that is

𝜔0
𝜓
= argmax(|𝜓(𝜔)|). Two other definitions classically found in

literature, are the energy frequency �̃�𝜓 and the time-varying
instantaneous frequency of the wavelet at its time center �̆�𝜓(0).
More details can be found in [49]. For this study, 𝜔∗

𝜓
is defined as

the wavelet center frequency.

4 Generation of single-component ground
motions

The proposed methodology employs the CWT to generate site-
and spectrum-compatible fully nonstationary artificial accelero-
grams. The method relies on the generation of a stationary and
spectrum-compatible ground motion using the SRM, which is
then processed in the time-frequency domain using the CWT
method in order to become fully nonstationary. The modulus
of the CWT is a robust representation of the signal’s energy
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FIGURE 1 Flowchart of the proposed wavelet-based procedure for generating single site and spectrum-compatible fully nonstationary artificial
ground motions.

evolution in time. Consequently, the amplitude and frequency
modulation is modeled using a time-frequency modulating func-
tion derived from the modulus of the CWT coefficients of a
site-compatible recorded ground motion.

The proposed methodology consists of a few simple steps. First,
the desired target spectrum and the peak ground acceleration
(PGA) are determined. Next, a recorded accelerogram is selected
from the site of interest and is analyzed in the time-frequency
domain following the CWT method. The time-frequency mod-
ulating function is then obtained from the 𝐿2(ℝ) normalized
modulus of the obtained CWT coefficients (Equation 12), leading
to a realistic representation of the time-varying spectral energy
distribution. A zero mean and spectrum-compatible stationary
Gaussian stochastic process is then generated using the SRM
[32, 44]. This component is also the one that defines the phase
distribution of the final accelerogram. Spectrum compatibility
is ensured through the PSD function of the stationary process.
The generated stationary signal is then converted to the time-
frequency domain using the CWT.

Next, the obtained time-frequency modulating function modi-
fies accordingly the stationary stochastic process in the time-
frequency domain, and updated CWT coefficients are estimated.
The produced signal is then transformed back into the time
domain using the inverse CWT and the new artificial accelero-
gram is obtained. A few corrective iterations in the frequency
domain may be required in order to achieve perfect spectrum
matching, especially at the low-frequency range, depending on
the shape of the target spectrum and the time-frequency modu-
lation of the seed record. The above steps are discussed in detail
in the sections that follow2 and summarized in the flowchart of
Figure 1. The online tool for the proposed methodology is freely
available at [43].

4.1 Time-Frequency Modulating Function

Initially, the target spectrum 𝑆∗𝑎(𝜔𝑖, 𝜁), frequency range [𝜔0, 𝜔𝑢],
as well as the mother wavelet are defined/selected. A past-
recorded ground motion 𝑎𝑟(𝑡) is selected, compatible with the
site of interest. The total duration 𝑡𝑓 and the PGA𝑟 are also
extracted from the seed record. The signal is then analyzed in
the time-frequency domain using the CWT, with a fine frequency
resolution, in order to obtain the CWT coefficients 𝑇𝜓[𝑎𝑟](𝜔, 𝑏)

according to Equation (12), and their modulus |||𝑇𝜓[𝑎𝑟](𝜔, 𝑏)
||| is

estimated. The time-frequency modulating function Φ(𝜔, 𝑡) is
defined as the normalized modulus of the CWT coefficients so
that the peak of the function is equal to one

Φ(𝜔, 𝑡) =
|||𝑇𝜓[𝑎𝑟](𝜔, 𝑏)

|||
max

(|||𝑇𝜓[𝑎𝑟](𝜔, 𝑏)
|||) (15)

4.2 Generation of Fully Nonstationary Ground
Motions

A stationary, spectrum-compatible artificial accelerogram 𝑎𝑠(𝑡)

is generated following Equations (1)–(9), based on the target
spectrum 𝑆∗𝑎(𝜔𝑖, 𝜁), the frequency range [𝜔0, 𝜔𝑢], and a total
duration in agreement with the corresponding duration of the
seed record (𝑇𝑠=𝑡𝑓). The generated signal 𝑎𝑠(𝑡) is then analyzed
in the time-frequency domain using the CWT (Equation 12),
with the same filter bank as the seed record. Thus, the wavelet
coefficients 𝑇𝜓[𝑎𝑠](𝜔, 𝑏) are estimated. In order to ensure spectral
energy distribution compatibility, the parameters 𝜆, 𝐴𝑠(𝜔𝑖), and
𝐴𝑟(𝜔𝑖) are calculated. Specifically, 𝜆 is the ratio of the peak ground
acceleration of the 𝑎𝑠(𝑡) signal (PGA𝑠) to the PGA𝑟

𝜆 =
PGA𝑠

PGA𝑟

(16)

and𝐴𝑠(𝜔𝑖), and𝐴𝑟(𝜔𝑖) is the area under the modulus of the CWT
coefficients of the 𝑎𝑠(𝑡) and 𝑎𝑟(𝑡) signals, respectively, calculated
along the time axis at every frequency 𝜔𝑖 :

𝐴𝑠(𝜔𝑖) = ∫
𝑡𝑓

0

|||𝑇𝜓[𝑎𝑠](𝜔𝑖, 𝑏)
||| dt and

𝐴𝑟(𝜔𝑖) = ∫
𝑡𝑓

0

|||𝑇𝜓[𝑎𝑟](𝜔𝑖, 𝑏)
||| dt (17)

The updated CWT coefficients that correspond to the artificially
generated accelerogram are then computed at every frequency 𝜔𝑖

as

𝑇𝜓[𝑎𝑔](𝜔𝑖, 𝑏) = 𝑇𝜓[𝑎𝑠](𝜔𝑖, 𝑏)Φ(𝜔𝑖, 𝑡)
𝐴𝑠(𝜔𝑖)

𝜆𝐴𝑟(𝜔𝑖)
(18)
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FIGURE 2 Modulus plot of the CWT coefficients |||𝑇𝜓[𝑎𝑠](𝑏, 𝑎)||| of a stationary signal with one dominant frequency equal to 12.4 rad/s and noise:
(a) using the 𝐿1(ℝ) normalization, (b) using the 𝐿2(ℝ) normalization.

Finally, the artificial site and spectrum-compatible accelerogram
𝑎𝑔(𝑡) is obtained by applying the inverse CWT on 𝑇𝜓[𝑎𝑔](𝜔, 𝑏),
using Equations (11) and (14).

4.3 Post Processing

If fine spectrum compatibility is desired, corrective iterations can
be carried out in the frequency domain. Thus, if 𝑘 = 1, … ,𝑁𝑖𝑡𝑒𝑟

where 𝑁𝑖𝑡𝑒𝑟 is the number of corrective iterations, the procedure
is the following:

|||𝐹(𝜔𝑖)
(𝑘+1)||| = |||𝐹(𝜔𝑖)

(𝑘)|||
[
𝑆∗𝑎(𝜔𝑖, 𝜁)

𝑆
(𝑘)
𝑎 (𝜔𝑖, 𝜁)

]
and

arg
[
𝐹(𝜔𝑖)

(𝑘+1)
]
= arg

[
𝐹(𝜔𝑖)

(𝑘)
]

(19)

where 𝐹(𝜔𝑖)
(𝑘) is the FT of the generated accelerogram at the 𝑘𝑡ℎ

iteration, 𝑆∗𝑎(𝜔𝑖, 𝜁) is the target spectrum, and 𝑆
(𝑘)
𝑎 (𝜔𝑖, 𝜁) is the

response spectrum of the generated record at the 𝑘𝑡ℎ iteration.
Then, by applying the inverse FT, the signal is transformed
back into the time domain, and a new time-history 𝑎

(𝑘+1)
𝑔 (𝑡)

is determined, along with its response spectrum 𝑆
(𝑘+1)
𝑎 (𝜔𝑖, 𝜁).

Finally, baseline correction is applied in order to ensure realistic
velocity and displacement time-histories. In this work, a simple
quadratic curve is adopted.

5 Further Discussion on the Application of the
CWTMethod

5.1 Normalization

When applying the CWT, the wavelet 𝜓𝑏,𝑎(𝑡) is normalized in
order to ensure that the CWT coefficients at every scale 𝑎 are
directly comparable to each other and to the transforms of
other time series. Different normalizations can be found in the
literature. Normalizing by the term 1

/√
𝑎 in Equations (10), (12),

and (14) ensures that all the scaled wavelets 𝜓𝑏,𝑎(𝑡) will maintain
the same energy. This is known as the 𝐿2(ℝ) normalization of the
CWT method and it is appropriate in cases where it is desired
that the modulus-squared wavelet transform reflects the energy
distribution of the analyzed signal. Due to this property, this
definition of CWT has been used in various works that focus
on estimating the evolutionary power spectrum using wavelets,

for example [50]. Alternatively, the normalizing factor can be
defined as 1

/
𝑎, known as the 𝐿1(ℝ) normalization. This term is

appropriate when it is desired that the magnitude of the modulus
of the wavelet transform reflects the amplitude of the analyzed
signal. This definition is preferred in other civil engineering
applications like structural damage detection [49].

The proposed methodology requires the use of the 𝐿2(ℝ) normal-
ization as it offers a robust presentation of the energy distribution
of the signal, which is required for the time-frequency modu-
lating function obtained with Equation (15). On the other hand,
the modulus of the CWT coefficients obtained with the 𝐿1(ℝ)

normalization preserves the amplitude of the frequency values of
the signal’s components [49]. Consequently, since nonstationarity
refers to the signal’s energy evolution in time and since the pro-
posed methodology is based on a nonseparable time-frequency
analysis with a time-frequency modulating function, the 𝐿2(ℝ)
normalization is the appropriate one to use. This can be show-
cased with a pertinent example: a stationary signal is generated
following Section 2, with one dominant frequency in time equal
to 12.4 rad/s. Noise is also added to the signal. The signal is
then analyzed in the time-frequency domain with the CWT using
the 𝐿1(ℝ) normalization and the 𝐿2(ℝ) normalization. Figure 2
shows the modulus of the CWT coefficients |||𝑇𝜓[𝑎𝑠](𝑏, 𝑎)

||| for
each case. As observed in Figure 2b, the dominant frequency of
12.4 rad/s is clearly identified in the energy concentration region
of |||𝑇𝜓[𝑎𝑠](𝑏, 𝑎)

||| using the 𝐿2(ℝ) normalization. In contrast, the
𝐿1(ℝ) normalization in Figure 2a shows not only the dominant
frequency but also a significant presence of noise.

5.2 Choice of Mother Wavelet

The choice of the mother wavelet is essential for the CWT
method. This choice is dictated by the characteristics of the
signal under study and the application. The factors considered
include the shape, the width, and so forth, of the mother
wavelet, and more importantly, the definition of its function
as real, analytic, or complex [51]. A complex mother wavelet
will return information about both amplitude and phase and is
better adapted for capturing oscillatory behavior. The analytic
mother wavelets are complex functions whose frequency domain
contains only positive frequencies, that is �̂�(𝜔) = 0 ∀ 𝜔 < 0. Thus,
analytic mother wavelets are more appropriate for the analysis of
seismic signals.
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Several functions have been proposed as mother wavelets in
the literature such as the widely used Morlet wavelet, the
Cauchy–Paul, the Shannon, and so forth. More recently, the
generalized Morse wavelets [52] have been introduced as a
“superfamily” defined in the frequency domain, from which
all known analytic wavelets can be derived by appropriately
adjusting two parameters 𝛽 and 𝛾 that control the shape

𝜓𝛽,𝛾(𝜔) = 𝑐𝛽,𝛾𝜔
𝛽𝑒−𝜔

𝛾
𝐻(𝜔) (20)

where 𝑐𝛽,𝛾 is a normalization constant and 𝐻(𝜔) is the unit
step function.

Since the signals that are analyzed in this study are seismic,
analytic mother wavelets that have a wave-like shape and a rela-
tively increased number of oscillation cycles aremore appropriate
in order to capture the signal’s features. Two possible analytic
mother wavelets are the Morlet wavelet and the Cauchy–Paul
wavelet. The analytic Morlet wavelet is defined in the frequency
domain as

𝜓(𝜔) = 𝛿
√
2𝜋𝑒−(𝜔−𝜔0)

2𝛿2∕2 (21)

where 𝜔0 is a frequency parameter controlling the number of
oscillation cycles of the wavelet and 𝛿 is a parameter that controls
the spread of the wavelet. The Morlet wavelet is only numerically
admissible and analytic when the product of the two parameters,
𝜔0𝛿, is large enough (𝜔0𝛿 ≥ 5 in practice). It is also noted
that 𝜔0 = 𝜔∗

𝜓
. The Cauchy wavelet of order 𝜈 is defined in the

frequency domain as

𝜓(𝜔) = 2

(
2𝜋𝑒

𝜈

)𝜈

𝜔𝜈𝑒−𝜔𝐻(𝜔) (22)

and 𝜈 = 𝜔∗
𝜓
. With respect to Equation (20) the analytic Morlet

wavelet can be derived for 𝛾 = 3 with an appropriate 𝛽 value and
the Cauchy–Paul wavelet for 𝛾 = 1 and 𝛽 = 𝜈.

6 Bidirectional GroundMotion Components

6.1 Generation of Bidirectional Artificial
GroundMotions

Seismic ground motions are often recorded by triaxial accelero-
graphs; thus, in practice, every record contains two horizontal
components and one vertical. The azimuths of the horizontal
components are typically placed arbitrarily, often parallel to the
north or to a known local fault. The methodology proposed in
Section 4 is here extended in order to generate bidirectional hor-
izontal components 𝑎𝑥(𝑡) and 𝑎𝑦(𝑡). Since the presented model
is spectrum-compatible, this can be achieved by generating pairs
of ground motions using two appropriate orthogonal response
spectra whose geometric mean matches the target spectrum.

GMMs typically provide the geometric mean of the horizontal
spectral accelerations rather than a particular component. If
the two horizontal directions are set as 𝑥 and 𝑦, then the
geometric mean spectral accelerations 𝑆∗𝑎(𝑇𝑖, 𝜁) at every period 𝑇𝑖

are derived from the two horizontal components 𝑆∗𝑎,𝑥(𝑇𝑖, 𝜁) and

𝑆∗𝑎,𝑦(𝑇𝑖, 𝜁) as

𝑆∗𝑎(𝑇𝑖, 𝜁) =
√
𝑆∗𝑎,𝑥(𝑇𝑖, 𝜁)𝑆

∗
𝑎,𝑦(𝑇𝑖, 𝜁) (23)

In ground motion selection techniques, Equation (23) is an
adequate criterion for the selection of appropriate records.
However, in a ground motion generation framework, the inverse
problem has to be solved: the two components 𝑆∗𝑎,𝑥(𝑇𝑖, 𝜁) and
𝑆∗𝑎,𝑦(𝑇𝑖, 𝜁) are unknown, and they must be derived from a target
𝑆∗𝑎(𝑇𝑖, 𝜁) spectrumobtained from aGMM. In order to achieve this,
an appropriate probabilistic procedure is proposed, taking into
account the correlation structure of spectral acceleration pairs
in orthogonal directions at different periods following empirical
models such as the one presented by Baker and Jayaram [42].
Specifically, pairs of 𝑆∗𝑎,𝑥(𝑇𝑖, 𝜁) and 𝑆∗𝑎,𝑦(𝑇𝑖, 𝜁) are generated for
several trials and the best pair is selected based on three condi-
tions/constraints that take into account the spectral acceleration
values, as well as the spectral correlation coefficient 𝜌𝑆𝑎,𝑥(𝑇),𝑆𝑎,𝑦 (𝑇).

Once the target spectra 𝑆∗𝑎,𝑥(𝑇𝑖, 𝜁) and 𝑆∗𝑎,𝑦(𝑇𝑖, 𝜁) are obtained, the
bidirectional artificial acceleration time-histories 𝑎𝑥(𝑡) and 𝑎𝑦(𝑡)
are generated, independently, following the content of Section 4.
As the bidirectional characteristics are modeled by the target
spectra, only one seed record may be used in order to generate
the two-component horizontal ground motions; however, two
horizontal components from the same recordmay also be selected
as seeds instead. Concerning the temporal correlation 𝜌𝑎𝑥(𝑡),𝑎𝑦(𝑡)
between the pair of generated groundmotions 𝑎𝑥(𝑡) and 𝑎𝑦(𝑡), the
only constraint is that it should be less than 0.30, according to the
NISTGCR 11-917-15 [53], which is based on the results observed in
several studies. Thus, a final check is performed that 𝜌𝑎𝑥(𝑡),𝑎𝑦(𝑡) <
0.30, where𝜌𝑎𝑥(𝑡),𝑎𝑦(𝑡) is the Pearson’s correlation coefficient (PCC)
of 𝑎𝑥(𝑡) and 𝑎𝑦(𝑡):

𝜌𝑎𝑥(𝑡),𝑎𝑦(𝑡) =
𝔼
[
(𝑎𝑥(𝑡) − 𝜇𝑎𝑥(𝑡))(𝑎𝑦(𝑡) − 𝜇𝑎𝑦(𝑡))

]
𝜎𝑎𝑥(𝑡)𝜎𝑎𝑦(𝑡)

(24)

where 𝜇𝑎𝑥(𝑡), 𝜇𝑎𝑦(𝑡) and 𝜎𝑎𝑥(𝑡), 𝜎𝑎𝑦(𝑡) are the mean and the standard
deviation of 𝑎𝑥(𝑡) and 𝑎𝑦(𝑡), respectively, and 𝔼[⋅] is the expecta-
tion operator. The above steps are summarized in the flowchart of
Figure 3. The online tool for the proposed methodology is freely
available at [43].

6.2 Generation of Bidirectional Target Spectra

The proposed derivation is based on the empirically verified
assumption that the geometric mean spectral accelerations at
every period provided by the GMMs follow the log-normal
distribution [54]. Consequently, the spectral accelerations at every
period of a component with an arbitrary orientation will also fol-
low the log-normal distribution. GMMs provide the logarithmic
means ln [𝑆∗𝑎(𝑇𝑖, 𝜁)] and standard deviations 𝜎∗𝑙𝑛(𝑆𝑎)(𝑇𝑖, 𝜁) for the
whole period range of interest, enabling the probabilistic model-
ing of 𝑆∗𝑎,𝑥(𝑇𝑖, 𝜁) and 𝑆∗𝑎,𝑦(𝑇𝑖, 𝜁). Furthermore, a correlation struc-
ture must be implemented for the spectral acceleration values of
the two orthogonal directions at different periods. These assump-
tions allow for the estimation of 𝑆∗𝑎,𝑥(𝑇𝑖, 𝜁) and 𝑆∗𝑎,𝑦(𝑇𝑖, 𝜁) as

ln
[
𝑆∗𝑎,𝑥(𝑇𝑖, 𝜁)

]
= ln [𝑆∗𝑎(𝑇𝑖, 𝜁)] + 𝑎𝑖,𝑥𝜎

∗
ln(𝑆𝑎)

(𝑇𝑖, 𝜁) and

ln
[
𝑆∗𝑎,𝑦(𝑇𝑖, 𝜁)

]
= ln [𝑆∗𝑎(𝑇𝑖, 𝜁)] + 𝑎𝑖,𝑦𝜎

∗
ln(𝑆𝑎)

(𝑇𝑖, 𝜁) (25)
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FIGURE 3 Flowchart of the proposed wavelet-based procedure for generating bidirectional artificial acceleration time-histories.

where 𝑎𝑖,𝑗 is a standard Gaussian random variable that integrates
the correlations for spectral acceleration values at different peri-
ods in the 𝑥 and 𝑦 direction, 1 ≤ 𝑖 ≤ 𝑁,𝑁 is the number of period
values considered, and 𝑗 denotes the direction of the component,
that is 𝑗 = 𝑥, 𝑦. If 𝑎𝑖,𝑥, 𝑎𝑖,𝑦 are set as 𝒂𝒏 = [𝑎𝑖,𝑥, 𝑎𝑖,𝑦], then 𝒂𝒏 is
generated as a 𝑁 × 2 matrix that follows a standard multivariate
normal distribution and each element 𝑎𝑖,𝑗 refers to the 𝑖𝑡ℎ period
of the 𝑗𝑡ℎ direction. The correlation between spectral acceleration
values in orthogonal directions at different pairs of periods
(𝑇1, 𝑇2) is expressed through the 𝑁 ×𝑁 correlation matrix 𝝆𝒍𝒏.
This matrix can be obtained from available empirical correlation
models, like the model of Baker and Jayaram [42], where

𝜌𝜀𝑥(𝑇1),𝜀𝑦 (𝑇2) = 𝜌𝜀(𝑇1),𝜀(𝑇2)(0.79 − 0.023 ln
√
𝑇1𝑇2) (26)

where 𝜌𝜀(𝑇1),𝜀(𝑇2) are the correlations between spectral
accelerations at pairs of periods 𝑆∗𝑎,𝑗(𝑇1, 𝜁), 𝑆

∗
𝑎,𝑗(𝑇2, 𝜁) for

the same direction 𝑗, here obtained by [42]. Thus, if
𝑇max < 0.109, 𝜌𝜀(𝑇1),𝜀(𝑇2) = 𝐶2, else if𝑇min > 0.109, 𝜌𝜀(𝑇1),𝜀(𝑇2) = 𝐶1,
else if 𝑇max < 0.2, 𝜌𝜀(𝑇1),𝜀(𝑇2) = min (𝐶2, 𝐶4), else 𝜌𝜀(𝑇1),𝜀(𝑇2) = 𝐶4,
where 𝑇min = min (𝑇1, 𝑇2) and 𝑇max = max (𝑇1, 𝑇2). The
correlated random realizations of 𝑎𝑖,𝑗 that follow the standard
normal distribution for the 𝑗𝑡ℎ direction are generated as

𝒂𝒋 = 𝟎 + 𝑳𝒛 (27)

where the vector 𝒂𝒋 corresponds to the 𝑗𝑡ℎ column of the 𝒂𝒏

matrix, and 𝒛 is a vector of uncorrelated random variables that
follow the standard normal distribution. Thematrix 𝑳 is obtained
from the Cholesky decomposition of the correlation matrix as
𝝆𝒍𝒏 = 𝑳𝑳𝑇 .

In order to select a pair of spectral components 𝑆∗𝑎,𝑥(𝑇𝑖, 𝜁) and
𝑆∗𝑎,𝑦(𝑇𝑖, 𝜁) whose geometric mean 𝑆∗𝑎,𝐺𝑀(𝑇𝑖, 𝜁)matches the target
𝑆∗𝑎(𝑇𝑖, 𝜁) best, an MCS procedure is adopted. Specifically, pairs
of 𝑆∗𝑎,𝑥(𝑇𝑖, 𝜁) and 𝑆∗𝑎,𝑦(𝑇𝑖, 𝜁) are generated for a number of trials
𝑛𝑡𝑟𝑖𝑎𝑙𝑠 following Equations (25)–(27). For each trial, the geometric

spectral mean 𝑆∗𝑎,𝐺𝑀(𝑇𝑖, 𝜁) is estimated and the best pair is
selected using a scoring procedure based on the following three
conditions

i. The mean squared error (MSE)3 between the 𝑆∗𝑎,𝐺𝑀(𝑇𝑖, 𝜁)

and 𝑆∗𝑎(𝑇𝑖, 𝜁) pairs is the smallest of 𝑛𝑡𝑟𝑖𝑎𝑙𝑠. Additionally, a
threshold can be also applied for the accepted MSE of the
pairs.

ii. The spectral values of a component cannot significantly
deviate from 𝑆∗𝑎(𝑇𝑖, 𝜁).

iii. Since the two components correspond to the same event, a
strong positive correlation is expected between the values
of 𝑆∗𝑎,𝑥(𝑇𝑖, 𝜁) and 𝑆∗𝑎,𝑦(𝑇𝑖, 𝜁). Thus a condition of the spec-
tral correlation coefficient 𝜌𝑆𝑎,𝑥(𝑇),𝑆𝑎,𝑦 (𝑇) > 0.95 is set, where
𝜌𝑆𝑎,𝑥(𝑇),𝑆𝑎,𝑦 (𝑇) is the PCC of 𝑆𝑎,𝑥(𝑇) and 𝑆𝑎,𝑦(𝑇).

The first two conditions are reflected in the score estimation as

𝑠𝑐𝑜𝑟𝑒 = 𝑤1

∑𝑁

𝑖=1
|||𝑆∗𝑎,𝐺𝑀(𝑇𝑖, 𝜁) − 𝑆∗𝑎(𝑇𝑖, 𝜁)

|||2
𝑁

+ 𝑤2

max ||𝑆∗𝑎,𝑥(𝑇𝑖, 𝜁) − 𝑆∗𝑎(𝑇𝑖, 𝜁)||
𝑆∗𝑎(𝑇𝑖, 𝜁)

+ 𝑤3

max ||𝑆∗𝑎,𝑦(𝑇𝑖, 𝜁) − 𝑆∗𝑎(𝑇𝑖, 𝜁)||
𝑆∗𝑎(𝑇𝑖, 𝜁)

(28)

where 𝑤1,𝑤2, 𝑤3 are user-defined weights. It is recommended
that the 𝑤2,𝑤3 should be small compared to 𝑤1.

7 Numerical Applications

The efficiency of the proposedmethodology is demonstratedwith
the help of two numerical applications. The first example focuses
on the procedure of the generation of single-component fully
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FIGURE 4 The analytic Morlet wavelet of Equation (29) in (a) frequency domain representation, (b) time domain representation.

nonstationary artificial ground motions where the EC8 [55] spec-
trum is set as the target. The second example demonstrates the
procedure for the generation of bidirectional fully nonstationary
artificial accelerograms, where the median spectrum is obtained
from a GMM. The error metric of spectrum matching is the MSE
in both cases.

For the implementation of the CWT, the MATLAB Wavelet
Toolbox [56] is used. For this work, the “cwt” command is
used, with several modifications in order to achieve the 𝐿2(ℝ)
normalization. The analytic Morlet wavelet is selected as the
mother wavelet for the CWT analysis. In the MATLAB Wavelet
Toolbox, this wavelet is called through the “amor” command,
which is a modified version of Equation (21) where all wavelets
are also normalized to have maximum value 𝜓(𝜔∗

𝜓
) = 2. The

wavelet parameters are fixed for 𝜔0 = 6 and 𝛿 =
√
2. The wavelet

is defined in the frequency domain as

�̂�(𝜔) = 2𝑒−(𝜔−6)
2
∕2𝐻(𝜔) (29)

The analyticMorlet wavelet of Equation (29) is shown in Figure 4.

7.1 First Example: Generation of
Single-Component GroundMotions

7.1.1 Generation of Site-Compatible Artificial
AccelerogramsMatching a Design Code Spectrum

The site of interest is a region in central Greece, with soil
conditions that correspond to type B soil according to EC8 [55]
(𝑉𝑆30 ≈ 600m/s). Moreover, the target spectrum is the elastic EC8
spectrum, for damping ratio 𝜁 = 5%, and 𝑎𝑔𝑅 = 0.24 g, thus the
target PGA is equal to 0.288 g. The frequency range is chosen
[𝜔0, 𝜔𝑢] = [1, 125] rad/s, with frequency step Δ𝜔 = 0.12.

The first step is to select a recorded accelerogram 𝑎𝑟(𝑡) from the
site of interest that will be the seed record. The Kozani–Grevena
1995 time-history (Kozani station, Greece, 1995, L-component)
is chosen from the PEER NGA-West 2 database [28]. The total
duration of the accelerogram is 𝑡𝑓 = 29.39 s, the PGA𝑟 is 0.20 g,
and the 𝑉𝑆30 is 670 m/s. The seed record 𝑎𝑟(𝑡) is analyzed
in the time-frequency domain, and the modulus of the CWT
coefficients |||𝑇𝜓[𝑎𝑟](𝜔, 𝑏)

||| is obtained and shown in Figure 5b,c.
Following Equation (15), the time-frequencymodulating function
is determined from |||𝑇𝜓[𝑎𝑟](𝜔, 𝑏)

||| and it is shown in Figure 6.

As observed, the time and frequency locations of the dominant
features of the recorded accelerogram are preserved within the
time-frequency modulating function.

For the next step, a stationary and spectrum-compatible accelero-
gram 𝑎𝑠(𝑡) is generated following the procedure presented in
Section 2, for the target frequency range and total duration 𝑇𝑠 =
𝑡𝑓 = 29.39 s. The simulated signal is then analyzed in the time-
frequency domain, with the same filter bank used for the CWT
analysis of the recorded accelerogram. An example of a generated
stationary accelerogram with its FT amplitude plot |𝐹(𝜔)| and
the modulus of the CWT coefficients |||𝑇𝜓[𝑎𝑠](𝜔, 𝑏)

||| is shown in
Figure 7. This component ensures the compatibility of the final
accelerogram with the target spectrum. As observed, the domi-
nant frequency is evident throughout the energy concentration
region of the modulus plot. This is a direct result of the 𝐿2(ℝ)
normalization applied.

The parameters that ensure spectrum compatibility are subse-
quently estimated. Specifically, the coefficient 𝜆 is calculated,
according to Equation (16). Moreover, the areas𝐴𝑠(𝜔𝑖) and𝐴𝑟(𝜔𝑖)

are computed at every frequency 𝜔𝑖 , following Equation (17).
Finally, Equation (18) is applied and the updated CWT coeffi-
cients 𝑇𝜓[𝑎𝑔](𝜔, 𝑏) for the generated groundmotion are obtained.
The newly generated accelerogram 𝑎𝑔(𝑡) is produced by applying
the inverse CWT on 𝑇𝜓[𝑎𝑔](𝜔, 𝑏), following Equation (14). Due
to the shape of the EC8 target spectrum and the frequency
modulation of the seed record, one corrective iteration is needed
for enhanced spectrum matching (Equation 19).

An example of a generated accelerogram is shown in Figure 8,
along with its FT amplitude plot |𝐹(𝜔)| and the modulus of the
CWT coefficients |||𝑇𝜓[𝑎𝑔](𝜔, 𝑏)

|||. As observed in Figure 8, the
produced accelerogram is fully nonstationary, as both temporal
and frequency modulation is evident. Also, in comparison
with Figure 5, it is observed that the energy distribution of the
generated ground motions resembles that of the seed record.
Specifically, the high-frequency components have a significant
influence at the initial stages of the acceleration time-history,
and they gradually diminish as time progresses, leading to a
motion that is dominated by low-frequency components as it
decays. This is in accordance with real seismic records, where
typically the initial seconds of the motion are dominated by high-
frequency P-waves, succeeded by moderate-frequency S-waves
that dominate the strong-motion phase, and as the shaking
progresses, low-frequency surface waves tend to dominate the
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FIGURE 5 The selected seed record: Kozani–Grevena 1995 earthquake, Greece, Kozani station, L-component: (a) |𝐹(𝜔)| plot, (b) |||𝑇𝜓[𝑎𝑟](𝜔, 𝑏)|||
two-dimensional plot, (c) |||𝑇𝜓[𝑎𝑟](𝜔, 𝑏)||| three-dimensional plot, (d) seed acceleration time-history.

FIGURE 6 The time-frequencymodulating function, as extracted from the seed record of Figure 5: (a) three-dimensional plot, (b) two-dimensional
plot in the time-frequency domain.

motion. A careful choice of the seed record is advisable. The seed
record chosen should be representative of the site’s seismicity
and thus the use of “outliers” should be avoided. Furthermore,
by comparing the FT amplitude plots in Figures 5, 7, and 8 it
is observed that the frequency content of the records and the
dominant frequency is modeled by the stationary signal. This
characteristic is expected, as the stationary signal is the one that
models the spectrum compatibility. Moreover, it is noted that the
PGA of the generated ground motion is equal to 0.287 g which is
very close to the target 0.288 g.

The comparison of the target EC8 elastic response spectrum
𝑆∗𝑎(𝑇𝑖, 𝜁), with the seed record’s response spectrum 𝑆𝑟𝑎(𝑇𝑖, 𝜁), and
the response spectrum 𝑆𝑎(𝑇𝑖, 𝜁) of the generated accelerogram is
shown in Figure 9a. Furthermore, Figure 9b shows the response
spectrum of the produced accelerogram after one corrective
iteration in comparison to the target EC8 elastic spectrum. As it is
observed, there is a good matching of the 𝑆𝑎(𝑇𝑖, 𝜁) of the original
accelerogram to the target 𝑆∗𝑎(𝑇𝑖, 𝜁), however not exact, due to the
shape of the EC8 target spectrum and the frequency modulation

of the seed record. Therefore, a few corrective iterations can be
applied for enhancedmatching purposes. Finally, the consistency
of the results is shown in Figure 10 where the Husid plots of 20
ground motions generated using the same procedure with the
same inputs are shown, along with the respective mean𝑚ℎ𝑝 and
± one standard deviation 𝜎ℎ𝑝. It is observed that there are no
significant outliers in the sample4.

7.1.2 Influence of the Choice of Mother Wavelet

The efficiency of the proposed methodology has been examined
considering other choices for the mother wavelet. For example,
the Cauchy–Paul wavelet is employed. In the MATLAB Wavelet
Toolbox, the particular wavelet is called through appropriate
tuning of the “morse” command, which defines the Morse
wavelet family of Equation (20). Thus, the Cauchy-Paul wavelet
is called by setting 𝛾 = 1 and 𝛽 = 𝜈 = 𝜔∗

𝜓
, resulting in a modified

version of Equation (22), where all wavelets are normalized
to have maximum value 𝜓(𝜔∗

𝜓
) = 2. For 𝛾 = 1 and 𝛽 = 12, the
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FIGURE 7 A generated 𝑎𝑠(𝑡) stationary accelerogramwith the SRM. (a) |𝐹(𝜔)| plot, (b) |||𝑇𝜓[𝑎𝑠](𝜔, 𝑏)||| plot, (c) acceleration time-history. The target
PGA is denoted with the red dashed line.

FIGURE 8 An example of a generated single component fully nonstationary ground motion 𝑎𝑔(𝑡)with the proposed methodology. (a) |𝐹(𝜔)| plot,
(b) |||𝑇𝜓[𝑎𝑔](𝜔, 𝑏)||| plot, (c) acceleration time-history. The target PGA is denoted with the red dashed line.

wavelet is shown in Figure 11. Using this mother wavelet, the
accelerogram generation procedure is repeated.

The generated groundmotion is shown in Figure 12. It is observed
that, compared to Figure 8, the number of cycles in the time
domain is lesser, with a smaller number of peaks aswell, resulting
in a smaller strong motion duration. Moreover, one dominant

frequency is present within the signal, resulting in stationarity
in the frequency domain. Furthermore, there is a lack of low
frequencies dominating the latter part of the groundmotion, thus
the produced ground motion is not representative of real ground
motions. These problems are attributed to the small number of
oscillation cycles of the mother wavelet in the time domain, as
seen Figure 11a. On the other hand, the spectrum matching is
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FIGURE 9 (a) Comparison of the matching between the target EC8 elastic response spectrum 𝑆∗𝑎(𝑇𝑖, 𝜁) with the seed record’s response spectrum
𝑆𝑟𝑎(𝑇𝑖, 𝜁) and the original generated accelerogram’s response spectrum 𝑆𝑎(𝑇𝑖, 𝜁), (b) Comparison of thematching between the target EC8 elastic response
spectrum 𝑆∗𝑎(𝑇𝑖, 𝜁) with the final accelerogram’s response spectrum 𝑆𝑎(𝑇𝑖, 𝜁) after one corrective iteration.

FIGURE 10 Husid plot of 20 ground motions generated follow-
ing the proposed methodology, with the same inputs, along with the
respective mean𝑚ℎ𝑝 and ± one standard deviation 𝜎ℎ𝑝 .

very good, as seen in Figure 12c, where the target EC8 spectrum
is compared to the generated ground motion response spectrum,
without any corrective iterations. This is attributed to the fact
that the center frequency of the selectedmotherwavelet𝜔∗

𝜓
= 𝜈 =

12 rad/s is very close to the dominant frequency of the stationary
signal, equal to 12.54 rad/s, which is the counterpart responsible
for the spectrum compatibility.

If the center frequency of the mother wavelet is increased, for
example by setting 𝜈 = 30 rad/s, the resulting mother wavelet
has relatively a larger number of oscillation cycles, as shown
in Figure 13. Using this mother wavelet, the accelerogram

generation procedure is repeated. The generated ground motion
is shown in Figure 14. It is observed that the signal is fully
nonstationary and the amplitude and frequency modulation is
representative of real ground motions. Thus, a mother wavelet
with an increased number of oscillation cycles models more
effectively the nonstationarity of the generated signals. On the
other hand, the spectrum matching is not that good as seen
in Figure 14c, where the target EC8 spectrum is compared to
the generated ground motion response spectrum, without any
corrective iterations. This is attributed to the fact that the center
frequency of the selectedmother wavelet𝜔∗

𝜓
= 𝜈 = 30 rad/s is not

close to the dominant frequency of the stationary signal, equal to
12.54 rad/s, which is the counterpart responsible for the spectrum
compatibility. However, this issue can be easily corrected by
applying one corrective iteration following Equation (19).

7.1.3 ComparisonWith Other Spectrum-Compatible
Methodologies

The proposedmethodology is comparedwith another seed record
based and spectrum-compatible model. Artificial accelerograms
can be generated using a past-recorded accelerogram as a seed
record by following the method proposed by Cacciola [14], where
the fully nonstationary and spectrum-compatible accelerograms
are generated by superimposing the natural record with a cor-
rective term which is a stationary zero-mean Gaussian stochastic
process, multiplied with a time-modulating function 𝜑(𝑡). Thus,
this model is comparable with the proposed methodology and
they can have the same parameters set as target values and inputs.

FIGURE 11 The Cauchy–Paul wavelet defined from Equation (20) for 𝛾 = 1 and 𝛽 = 12 in: (a) frequency domain representation, (b) time domain
representation.
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FIGURE 12 A generated ground motion using the Cauchy-Paul wavelet of order 𝜈 = 12: (a) |𝐹(𝜔)| plot, (b) |||𝑇𝜓[𝑎](𝜔, 𝑏)||| plot, (c) matching
comparison between the target EC8 elastic response spectrum 𝑆∗𝑎(𝑇𝑖, 𝜁) and the generated accelerogram’s response spectrum 𝑆𝑎(𝑇𝑖, 𝜁), (d) acceleration
time-history. The target PGA is denoted with the red dashed line.

FIGURE 13 The Cauchy–Paul wavelet defined from Equation (20) for 𝛾 = 1 and 𝛽 = 30 in: (a) frequency domain representation, (b) time domain
representation.

It is noted that in the proposed approach, the time-frequency
modulating function is introduced based on the time-frequency
representation of a seed record using the CWT. The seed record
is not added to the stationary component like in [14], but it is
used only for themodeling of the time-frequency nonstationarity.
However, in both methodologies, the stationary part ensures
compatibility with the target spectrum.

TheCacciola [14]methodology is applied for the same parameters
and two corrective iterations following Equation (19), since they
are needed for enhanced spectrum matching. The results are
shown in Figure 15. For comparison purposes, the CWT of the
generated ground motion is also plotted.

In comparison with Figures 8 and 14 it is observed that, for
both models, the prominent energy concentration regions are
within a similar time-frequency window. Furthermore, it is

observed that the FT amplitudes for both methodologies are
mainly influenced by the stationary part, which is expected since
it models the spectrum compatibility for both models. However,
it is observed that there is a significant difference between the
strong motion durations of the two models, as the Cacciola
[14] model results in relatively larger values. This remark is
essential since the strong motion duration is a very important
characteristic of ground motions when non-linear response is
expected and accumulation of damage is observed. Moreover, it
is observed that the stationary component has the most influence
on the generated record’s time-frequency modulation, resulting
in prominent high frequencies through almost all the signal’s
total duration. On the other hand, in the proposed model, the
nonstationarity is mainly influenced by the seed record, resulting
in prominent high-frequency components only at the initial
stages of the acceleration time-history,which is in agreementwith
the nature of real ground motions.
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FIGURE 14 A generated ground motion using the Cauchy–Paul wavelet of order 𝜈 = 30: (a) |𝐹(𝜔)| plot, (b) |||𝑇𝜓[𝑎](𝜔, 𝑏)||| plot, (c) matching
comparison between the target EC8 elastic response spectrum 𝑆∗𝑎(𝑇𝑖, 𝜁) and the generated accelerogram’s response spectrum 𝑆𝑎(𝑇𝑖, 𝜁), (d) acceleration
time-history. The target PGA is denoted with the red dashed line.

FIGURE 15 A generated groundmotion using the Cacciola [14] methodology: (a) |𝐹(𝜔)| plot, (b) |||𝑇𝜓[𝑎](𝜔, 𝑏)||| two-dimensional plot, (c) matching
comparison between the target EC8 elastic response spectrum 𝑆∗𝑎(𝑇𝑖, 𝜁) and the generated accelerogram’s response spectrum 𝑆𝑎(𝑇𝑖, 𝜁), (d) acceleration
time-history. The target PGA is denoted with the red dashed line.

1411 of 1416

 10969845, 2025, 5, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/eqe.4315 by U

niversity O
f L

eeds T
he B

rotherton L
ibrary, W

iley O
nline L

ibrary on [24/03/2025]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



FIGURE 16 (a) Target elastic response spectrum 𝑆∗𝑎(𝑇𝑖, 𝜁) and constant strength spectra for 𝑞𝑦 = 1, 𝑞𝑦 = 2, and 𝑞𝑦 = 6 of the generated ground
motionwith the proposedmethodology shown in Figure 8, (b) Target elastic response spectrum 𝑆∗𝑎(𝑇𝑖, 𝜁) and constant strength spectra for 𝑞𝑦 = 1, 𝑞𝑦 = 2,
𝑞𝑦 = 6 of the generated ground motion with the Cacciola [14] model shown in Figure 15.

FIGURE 17 The two generated orthogonal target spectra 𝑆∗𝑎,𝑥(𝑇𝑖, 𝜁)
and 𝑆∗𝑎,𝑦(𝑇𝑖 , 𝜁), along with their geometric mean spectrum 𝑆∗

𝑎,𝐺𝑀
(𝑇𝑖, 𝜁) as

well as the target 𝑆∗𝑎(𝑇𝑖, 𝜁).

Finally, Figure 16 shows the non-linear response spectra of the
generated ground motions for the case of constant strength.
Figure 16a shows the constant strength spectra for 𝑞𝑦 = 1, 𝑞𝑦 = 2,
and 𝑞𝑦 = 6 of the generated ground motion of Figure 8, and
Figure 16b shows the same spectra obtained for the generated
ground motion with the Cacciola [14] model shown in Figure 15.
In both cases, the elastic target spectrum is also shown. It is
observed that for 𝑞𝑦 = 1 the resulting spectra are very close to the
target, as expected.

7.2 Second Example: Generation of Bidirectional
GroundMotion Components

The target geometric mean spectrum is obtained using the BSSA
14 [58] GMM. The considered seismic hazard scenario corre-
sponds to moment magnitude 𝑀𝑤 = 6.5, Joyner–Boore distance
𝑅𝐽𝐵 = 10 km, and 𝜀 = 1. The fault type is normal, and the rest
of the parameters are kept as defined in the previous example.
The two orthogonal target spectra 𝑆∗𝑎,𝑥(𝑇𝑖, 𝜁) and 𝑆∗𝑎,𝑦(𝑇𝑖, 𝜁) are
produced following Equations (25)–(28). The model constraints
are that the MSE of the geometric mean of the accepted ground
motion pair with the target spectrum should be less than 5%, and
the weights of Equation (28) are set equal to 𝑤1 = 1, 𝑤2 = 0.07,
and 𝑤3 = 0.07. The produced spectra are shown in Figure 17,

along with their geometric mean spectrum 𝑆∗𝑎,𝐺𝑀(𝑇𝑖, 𝜁) as well as
the target 𝑆∗𝑎(𝑇𝑖, 𝜁).5 The MSE between 𝑆∗𝑎(𝑇𝑖, 𝜁) and 𝑆∗𝑎,𝐺𝑀(𝑇𝑖, 𝜁)

is 𝑒 = 2%, and 𝜌𝑆𝑎,𝑥(𝑇),𝑆𝑎,𝑦 (𝑇) = 0.96 > 0.95.

Once the 𝑆∗𝑎,𝑥(𝑇𝑖, 𝜁) and 𝑆∗𝑎,𝑦(𝑇𝑖, 𝜁) values are obtained, the two
horizontal components are generated following the procedure
presented in Section 4, for every component, individually. The
produced bidirectional artificial acceleration time-histories 𝑎𝑥(𝑡)
and 𝑎𝑦(𝑡) are shown in Figures 18 and 19. A final check is
performed in order to ensure that the temporal correlation
coefficient 𝜌𝑎𝑥(𝑡),𝑎𝑦(𝑡) is less than 0.30. This criterion is usuallymet;
if it is not fulfilled, the procedure is repeated and a new pair
of bidirectional ground motions is obtained. Finally, Figure 20
shows the comparison of the geometric mean response spectrum
𝑆𝑎,𝐺𝑀(𝑇𝑖, 𝜁) of the produced ground motions with the target
spectrum 𝑆∗𝑎(𝑇𝑖, 𝜁). The MSE between 𝑆∗𝑎(𝑇𝑖, 𝜁) and 𝑆𝑎,𝐺𝑀(𝑇𝑖, 𝜁)

is 𝑒 = 3%.

As it is observed, the generated bidirectional ground motions ful-
fill the criteria of the geometric mean spectramatching, as well as
the temporal correlation criterion. It is also noted that the strong
motion durations of themotions are 𝑡𝑥,5−95 = 8 s and 𝑡𝑦,5−95 = 10 s,
thus they are representative of the same event. Moreover, even
though one seed record was used, the two components exhibit
different characteristics, as shown in Figures 18 and 19. Therefore,
the proposed methodology is quite efficient for the generation of
bidirectional ground motion components.

8 Conclusions

A novel and computationally efficient site- and spectrum-based
stochastic methodology for the generation of bidirectional fully
nonstationary artificial accelerograms is proposed. The model
combines well-established tools such as the SRM with the CWT
method and works proportionally to the evolutionary spectrum
methods that modify a stationary signal in order to achieve full
nonstationarity. Specifically, the amplitude and frequency non-
stationarity is modeled after a time-frequency modulating func-
tion extracted from a past-recorded accelerogram from the site
of interest; thus the simulated ground motions exhibit realistic
nonstationary characteristics. Spectrum compatibility is ensured
by a stationary and target spectrum-compatible stochastic
process generated with the SRM. Therefore, the methodology
accounts for an indirect modeling of the power spectrum.
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FIGURE 18 The generated 𝑎𝑥(𝑡) component. (a) |𝐹(𝜔)| plot, (b) |||𝑇𝜓[𝑎𝑥](𝜔, 𝑏)||| plot, (c) acceleration time-history. The target PGA is denoted with
the red dashed line.

FIGURE 19 The generated 𝑎𝑦(𝑡) component. (a) |𝐹(𝜔)| plot, (b) |||𝑇𝜓[𝑎𝑦](𝜔, 𝑏)||| plot, (c) acceleration time-history. The target PGA is denoted with
the red dashed line.

The CWT method adopted using the 𝐿2(ℝ) normalization offers
a robust representation of the seismic signal’s energy evolution
in time and a high time-scale (thus time-frequency) resolu-
tion. Therefore, fully nonstationary signals are directly modeled
through a nonseparable process in the time-frequency domain,
rather than being treated separately for the amplitude and for the
frequency modulation at each respective domain, as for example

in [26]. It is noted that the 𝐿1(ℝ) normalization is not suitable for
the proposed methodology.

Regarding the choice of the seed records, they are expected to
be obtained from past seismic activity from the site of interest,
or from a site that has similar characteristics. It is noted that,
during the analyses of the proposedmethodology, it was observed
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FIGURE 20 Comparison of the geometricmean response spectrum
𝑆𝑎,𝐺𝑀(𝑇𝑖, 𝜁) of the produced ground motions with the target spectrum
𝑆∗𝑎(𝑇𝑖, 𝜁).

that if the selected record contains a pulse, that feature would
be propagated to the generated ground motions. The proposed
methodology provides with any required number of seismic
accelerograms whose temporal and spectral modulation is con-
sistent with a site of interest. Moreover, the generated signals
represent entirely new ground motions, rather than modified
versions of the seed record. It is also noted that the proposed
methodology is straightforward, requiring only a seed record
and a target spectrum as inputs, thus it can be applied in the
engineering practice.

The choice of the mother wavelet affects the results of the
proposed methodology. Specifically, the mother wavelets should
be analytic. Furthermore, in order to achieve nonstationarity
as well as good spectrum matching, it is recommended to use
mother wavelets with an increased number of oscillation cycles
and with a center frequency 𝜔∗

𝜓
close to the dominant frequency

of the stationary signal.

During postprocessing part, the Fourier transform was chosen
over using the wavelet coefficients, since: (i) the corrective
iterations are not always necessary, for example, as in the case of
a smooth target spectrum, (ii) depending on the mother wavelet
choice, the reconstruction of the signal using the inverse CWT
might not be perfect. This would add extra error within an
iterative procedure where the signal is repeatedly transformed
from the time domain to the time-frequency domain and back.
(iii) When an increased number of corrective iterations is desired
(e.g., for very tight spectral matching), repeatedly converting the
signal from the time domain to the time-frequency domain is
computationally demanding.

The proposed model can also generate pairs of bidirectional hori-
zontal components, by probabilistically producing two appropri-
ate orthogonal target spectra whose geometric mean matches a
target median spectrum obtained from a GMM. These spectra
take into account the correlation structure of spectral acceleration
pairs in orthogonal directions at different periods from empirical
models, therefore, only a single-component ground motion is
required as a seed record. The approach is a straightforward
procedure that can be tailored to any seismic hazard scenario

represented by a target acceleration spectrum, for example, a
CMS, a GMM, or a design code spectrum.Moreover, the proposed
methodology is not limited to the presented ground motion
generation methodology, but it can be applied to other site and
spectrum-based models.

Some possible alternatives and extensions of the proposed
methodology are mentioned. An appropriate time-frequency
modulating function, modeled by a mathematical equation can
be used instead of a seed record. However, this would result in
several modifications to the proposed procedure, and it would
require assumptions for various ground motion parameters like
the strong motion duration and the energy content of the signal
to be generated. These requirements could be fulfilled either
using empirical GMMs as in [16] or by parameterizing an
online database of recorded motions. The proposed methodol-
ogy can also be used to generate suites of fully nonstationary
artificial accelerograms matching a target mean spectrum and
variability, by employing the procedure presented in [16]. In this
methodology, multiple target response spectra are produced from
a random vector that follows the normal distribution and is
statistically defined by the target spectral mean and variability.
For each of these spectra, a corresponding spectrum-compatible
artificial accelerogram can be generated, following the pro-
posed wavelet-based procedure and using randomly sampled
appropriate seed records.

Finally, it is noted that the proposed methodology is computa-
tionally efficient, as both the generation of single components
and bidirectional components is a matter of seconds. Moreover,
its implementation is identified as a straightforward task in
MATLAB [56] environment. Therefore, the proposed model
aims to offer a practical tool for engineering applications in a
consistent and code-compliant manner, as well as for stochastic
dynamics problems.
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Endnotes
1∫ +∞

−∞ |𝜓(𝑡)|2 𝑑𝑡 < ∞.

2 It is noted that the asterisk as superscript denotes the parameters that
serve as target values.

3𝑒 =
∑𝑁
𝑖=1
|||𝑋𝑖−𝑋′

𝑖

|||2
𝑁

, where𝑋′
𝑖
is the target output value and𝑋𝑖 is the actual

output value.
4A Husid plot is the plot of the normalized accumulation of Arias
intensity with time [57].

5The median of data that follows a lognormal distribution is approxi-
mately equal to the mean of the logarithms. Thus, the comparisons on
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the following are performed between the median spectral values instead
of logarithmic.
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