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TAMING SINGULAR STOCHASTIC DIFFERENTIAL EQUATIONS: A NUMERICAL
METHOD

KHOA LÊ AND CHENGCHENG LING

Abstract. We consider a generic and explicit tamed Euler–Maruyama scheme for multidimen-
sional time-inhomogeneous stochastic differential equations with multiplicative Brownian noise.
The diffusive coefficient is uniformly elliptic, Hölder continuous and weakly differentiable in the
spatial variables while the drift satisfies the strict Ladyzhenskaya–Prodi–Serrin condition, as
considered by Krylov and Röckner (2005). In the discrete scheme, the drift is tamed by replacing
it by an approximation. A strong rate of convergence of the scheme is provided in terms of the
approximation error of the drift in a suitable and possibly very weak topology. A few examples
of approximating drifts are discussed in detail. The parameters of the approximating drifts can
vary and—under suitable conditions—be fine-tuned to achieve the standard 1/2-strong conver-
gence rate with a logarithmic factor. The result is then applied to provide numerical solutions
for stochastic transport equations with singular vector fields satisfying the aforementioned
condition.

Mathematics Subject Classification (2020): Primary 60H35, 60H10; Secondary 60H50,
60L90, 35B65.
Keywords: Singular SDEs; strong approximation; tamed Euler scheme; regularization by noise;
stochastic sewing; Zvonkin’s transformation; quantitative Khasminskii’s lemma.

1. Introduction

The aim of this article is to devise a numerical scheme and obtain its strong convergence
rate for stochastic differential equations (SDEs) with integrable drift coefficients and elliptic
regular diffusive coefficients. We consider the SDE

𝑑𝑋𝑡 = 𝑏 (𝑡, 𝑋𝑡 )𝑑𝑡 + 𝜎 (𝑡, 𝑋𝑡 )𝑑𝐵𝑡 , 𝑋0 = 𝑥0, 𝑡 ∈ [0, 1], (1.1)

where 𝑑 > 1, 𝑏 : [0, 1] ×ℝ𝑑 → ℝ𝑑 is a Borel measurable function satisfying∫ 1

0

[∫
ℝ𝑑

|𝑏 (𝑡, 𝑥) |𝑝𝑑𝑥
] 𝑞
𝑝

𝑑𝑡 < ∞ with 𝑞, 𝑝 ∈ [2,∞) and
𝑑

𝑝
+ 2

𝑞
< 1, (1.2)

and 𝜎 : [0, 1] × ℝ𝑑 → ℝ𝑑 × ℝ𝑑 is a bounded Borel measurable function, continuous in the
spatial variables and uniformly elliptic, (𝐵𝑡 )𝑡>0 is a 𝑑-dimensional standard Brownian motion
defined on some complete filtered probability space (Ω, F , (F𝑡 )𝑡>0,ℙ) and 𝑥0 is a F0-random
variable. With 6 1 in place of < 1, (1.2) is known in the fluid dynamics’ literature as the
Ladyzhenskaya–Prodi–Serrin condition.
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In the seminal paper [KR05], Krylov and Röckner, building upon [Zvo74, Ver79], show that
(1.1) has a unique strong solution assuming that 𝜎 is the identity matrix and 𝑏 satisfies (1.2)
This result is later extended by Zhang [Zha11] (complemented by [XXZZ20])1 for variable
diffusive coefficients which are weakly differentiable, uniformly elliptic, uniformly bounded
and uniformly continuous in 𝑥 locally uniformly in time.

While theoretical solutions of (1.1) are well understood since [KR05], numerical analysis of
(1.1) under condition (1.2) has been an open problem. At the moment of writing, we are aware
of two publications on the topic. Jourdain and Menozzi consider in [JM21] the case 𝜎 is the
identity matrix and show that the marginal density of a tamed Euler–Maruyama scheme with

truncated drifts converges at the rate 1
2
− 𝑑

2𝑝
− 1
𝑞
. Gyöngy and Krylov in [GK21] recently show

that the tamed Euler–Maruyama scheme with truncated drifts converges in probability to the
exact solution, albeit without any rate. On the other hand, strong convergence rate is desirable
because it is directly associated to the computational complexity for the multilevel Monte Carlo
method ([TTY21]), whose computational cost is much lower than that of classical (single level)
Monte Carlo method ([Gil08]). For this purpose, we consider the discrete scheme defined by

𝑑𝑋𝑛𝑡 = 𝑏𝑛 (𝑡, 𝑋𝑛𝑘𝑛 (𝑡))𝑑𝑡 + 𝜎 (𝑡, 𝑋
𝑛
𝑘𝑛 (𝑡))𝑑𝐵𝑡 , 𝑋𝑛0 = 𝑥𝑛0 , 𝑡 ∈ [0, 1], (1.3)

where 𝑥𝑛0 is a F0-random variable and 𝑏𝑛 is an approximation of the vector field 𝑏 and

𝑘𝑛 (𝑡) =
𝑗

𝑛
whenever

𝑗

𝑛
6 𝑡 <

𝑗 + 1

𝑛
for some integer 𝑗 > 0.

We note that (1.3) with the choice 𝑏𝑛 = 𝑏 is the usual Euler–Maruyama scheme, which, however,
is not well-defined for a merely integrable function 𝑏 even when 𝑏 is replaced by 𝑏1( |𝑏 |<∞) . This
is because the simulation for the usual Euler–Maruyama scheme may enter a neighborhood
of a singularity of 𝑏, making the scheme unstable and uncontrollable. We thus have to tame
the vector field 𝑏, replacing it by a suitable approximation 𝑏𝑛 . Henceforth, we call (1.3) a tamed
Euler–Maruyama scheme. The terminology is borrowed from [HJK12], who consider a specific
case of (1.3) to approximate SDEs with regular but super-linear drifts. The name “tamed Euler–
Maruyama” thus should be understood in a broad sense, and in particular, (1.3) also includes
the “truncated Euler–Maruyama” scheme considered in [Mao15].

Natural choices for 𝑏𝑛 are the truncated vector fields

𝑏𝑛𝑟 (𝑥) = 𝑏𝑟 (𝑥)1( |𝑏𝑟 (𝑥) |6𝐶𝑛𝜒 ‖𝑏𝑟 ‖𝐿𝑝 (ℝ𝑑 ) ), (1.4)

𝑏𝑛𝑟 (𝑥) = 𝑏𝑟 (𝑥)1( |𝑏𝑟 (𝑥) |6𝐶𝑛𝜒 ), (1.5)

for some constants 𝐶, 𝜒 > 0. Another practical choice is the regularized vector field

𝑏𝑛𝑟 (𝑥) = 𝑝1/𝑛𝜒 ∗ 𝑏𝑟 (𝑥), (1.6)

where 𝜒 > 0, 𝑝𝑡 (𝑥) is the Gaussian density of variance 𝑡 and ∗ is the spatial convolution.
Alternatively, multiresolution approximations by wavelet ([Mey92]) or the truncated discrete
𝜑-transform ([FJW91]) could be used whenever desirable.

1[Zha11, Theorem 5.1] is non-trivial whose proof is provided in [XXZZ20].
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The main results of the article, Theorems 2.2 and 2.3 below, asserts the strong convergence
of (1.3) to (1.1) with an explicit rate under some mild regularity conditions on 𝜎 and on the
approximating drifts 𝑏𝑛 . When the approximating drifts take one of the forms (1.4)-(1.6),
Corollary 2.4 expresses the convergence rates in terms of the parameters 𝑝, 𝑞, 𝑑 and 𝜒 . For
the approximating drifts (1.5), a corresponding range for 𝜒 is identified so that the strong
convergence rate is (1/𝑛)1/2 log𝑛 under condition (1.2). For the approximating drifts (1.4) and
(1.6), such sharp rate can be achieved under some restricted conditions on 𝑝, 𝑞.

We expect that Theorems 2.2 and 2.3 are useful in algorithm designs when the vector field 𝑏
is not explicitly available but rather arises from another analytic system which itself needs to
be numerically evaluated. Such situations appear in hydrodynamic-type equations due to their
fundamental connection with singular SDEs, see for instance, [CI08, Zha10, ZZ21] where the
SDE (1.1) is coupled with another analytic constraint on 𝑏. In such scenarios, 𝑏𝑛 does not have
an explicit form, but nevertheless, Theorems 2.2 and 2.3 could be implemented. While we leave
this problem for future investigations, herein we focus on a simpler application to stochastic
transport equations with vector fields satisfying (1.2) (see Eq. (8.1)). While theoretical solutions
for such equations have been considered in [FGP10, FF13, NO15, BFGM19], singularity of the
coefficients have prevented the study of numerical solutions by standard tools ([Cho80, Pop02]).
We propose in Theorem 8.1 an explicit numerical scheme with rate for such equations, based
upon the method of characteristics.

Literatures on convergence of Euler–Maruyama schemes for SDEs is vast and expanding, for
which we provide a brief and personalized overview. When the coefficients are continuous,
convergence rates of the Euler–Maruyama scheme are well-studied. For Lipschitz continuous
coefficients and non-trivial diffusive coefficients, the optimal strong rate of convergence is
1/2, as shown in [KP91, JP98]. Results on the strong rate of convergence for Hölder / Dini
continuous drifts are discussed in [GR11, BHY19, MPT17] and only settled recently by Dareiotis
and Gerencsér in [DG20], who obtain the 𝐿2(Ω)-rate 1/2 − 𝜀, for any 𝜀 ∈ (0, 1/2), when
𝑏 is Dini continuous and 𝜎 is the identity matrix. This result is extended in [BDG21] for
the case when 𝑏 is Hölder continuous and 𝜎 is uniformly elliptic and twice continuously
differentiable. For an in-depth overview and more complete lists of other contributions, see
[BBT04, KP92, KPS94, MT04] and the references therein. Results for discontinuous drifts are
more sparse but are attracting attention. The case of piecewise Lipschitz drifts are considered
in [LS17, LS18, MGY20]. [NS21] considers one-dimensional SDEs with additive noise and
bounded measurable drifts with a positive Sobolev–Slobodecki-regularity. [BHZ20] considers
bounded measurable drifts with a certain Gaussian–Besov-regularity. For merely bounded
measurable drifts without any regularity, the recent article [DGL21] obtains the 𝐿𝑝 (Ω)-rate
1/2 − 𝜀, for any 𝑝 > 2 and 𝜀 ∈ (0, 1/2), extending the results of [DG20, BDG21]. At last, we
mention the work [AGI20] who consider similar tamed Euler–Maruyama schemes for one
dimensional SDEs with distributional drifts. For comparison, our approach is different, our
results are in a multidimensional setting and allow completely generic approximating drifts
𝑏𝑛 . Furthermore, we emphasize that one dimensional SDEs are more specific, often well-posed
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even for distributional drifts, and usually require tailored techniques, [LG84, HLM17]. This list
is surely not exhaustive.

The article is organized as follows. In Section 2, we state our standing assumptions and the
main results. Section 3 contains auxiliary results which are collected and adapted from previous
works. Section 4 is pivotal and contains a case study of moment estimation for some relevant
functionals of Brownian motion. While some results in this section will not be used directly to
prove the main results, the section showcases our main estimates in a simpler setting. Sections 5
and 6 extend the moment estimates in Section 4 respectively to functionals of the solutions
of (1.3) and (1.1). The two sections contain most of the technical estimates of the paper which
build up a foundation for the proofs of the main results. In Section 7, we give the proofs of
Theorems 2.2 and 2.3, using the moment estimates from the prior sections. The application to
numerical solutions for stochastic transport equations is discussed in Section 8. Appendix A
contains maximal regularity estimates for parabolic equations with variable coefficients and
distributional forcing, which are needed but independent from the main text.

2. Main results

We first fix a few notation. Let 𝑝, 𝑞 ∈ [1,∞] be some fixed parameters. 𝐿𝑝 (ℝ𝑑) and 𝐿𝑝 (Ω)
denote the Lebesgue spaces respectively on ℝ𝑑 and Ω. The expectation with respect to ℙ is
denoted by 𝔼. For each 𝜈 ∈ ℝ, 𝐿𝜈,𝑝 (ℝ𝑑) := (1 − Δ)−𝜈/2

(
𝐿𝑝 (ℝ𝑑)

)
is the usual Bessel potential

space on ℝ𝑑 equipped with the norm ‖ 𝑓 ‖𝐿𝜈,𝑝 (ℝ𝑑 ) := ‖(𝕀 − Δ)𝜈/2𝑓 ‖𝐿𝑝 (ℝ𝑑 ) , where (𝕀 − Δ)𝜈/2𝑓 is
defined through Fourier’s transform. 𝕃

𝑞
𝜈,𝑝 ( [0, 1]) denotes the space of measurable function

𝑓 : [0, 1] → 𝐿𝜈,𝑝 (ℝ𝑑) such that ‖ 𝑓 ‖𝕃𝑞
𝜈,𝑝 ( [0,1]) is finite. Here, for each 𝑠, 𝑡 ∈ [0, 1] satisfying 𝑠 6 𝑡 ,

we denote

‖ 𝑓 ‖𝕃𝑞
𝜈,𝑝 ( [𝑠,𝑡]) :=

(∫ 𝑡

𝑠

‖ 𝑓 (𝑟, ·)‖𝑞
𝐿𝜈,𝑝 (ℝ𝑑 )𝑑𝑟

) 1
𝑞

with obvious modification when 𝑞 = ∞. When 𝜈 = 0, we simply write 𝕃
𝑞
𝑝 ( [0, 1]) instead of

𝕃
𝑞
0,𝑝 ( [0, 1]). In particular, 𝕃

𝑞
𝑝 ( [0, 1]) contains Borel measurable functions 𝑓 : [0, 1] ×ℝ𝑑 → ℝ

such that
∫ 1

0

[∫
ℝ𝑑 |𝑓 (𝑡, 𝑥) |𝑝𝑑𝑥

]𝑞/𝑝
𝑑𝑡 is finite. For each 𝜌 ∈ (0, 1), 𝐿𝜌 (ℝ𝑑) denotes the space of

all measurable functions 𝑓 on ℝ𝑑 such that ‖ 𝑓 ‖𝐿𝜌 (ℝ𝑑 ) := (
∫
ℝ𝑑 |𝑓 (𝑥) |𝜌𝑑𝑥)1/𝜌 is finite. Note that

in this case, ‖ · ‖𝐿𝜌 (ℝ𝑑 ) is not a norm.

For each X ∈ {𝕃𝑞𝜈,𝑝 ( [0, 1]), 𝐿𝑝 (ℝ𝑑), 𝐿𝑝 (Ω)}, an ℝ𝑚-valued function 𝑓 = (𝑓 1, . . . , 𝑓𝑚) belongs
toX, if all components 𝑓 1, . . . , 𝑓𝑚 belong toX, and we put ‖ 𝑓 ‖X = max𝑖=1,...,𝑚{‖ 𝑓 𝑖 ‖X}. Since we
only deal with either scalars or ℝ𝑑-valued functions and random variables, we conventionally
drop the dimension of the range in the notation of the spaces 𝕃

𝑞
𝜈,𝑝 ( [0, 1]), 𝐿𝑝 (ℝ𝑑), 𝐿𝑝 (Ω).

Put𝐷𝑛 = {𝑖/𝑛 : 𝑖 = 0, . . . , 𝑛}. For each 𝑆 6 𝑇 , we put Δ( [𝑆,𝑇 ]) = {(𝑠, 𝑡) ∈ [𝑆,𝑇 ]2 : 𝑠 6 𝑡} and
Δ2( [𝑆,𝑇 ]) = {(𝑠,𝑢, 𝑡) ∈ [𝑆,𝑇 ]3 : 𝑠 6 𝑢 6 𝑡}. We abbreviate Δ = Δ( [0, 1]) and Δ2 = Δ2( [0, 1]).
We say that a function 𝑤 : Δ( [𝑆,𝑇 ]) → [0,∞) is a control if 𝑤 (𝑠,𝑢) + 𝑤 (𝑢, 𝑡) 6 𝑤 (𝑠, 𝑡) for
every (𝑠,𝑢, 𝑡) ∈ Δ2( [𝑆,𝑇 ]). For a 𝑑 × 𝑑-matrix 𝑃 , 𝑃∗ denotes its transpose and ‖𝑃 ‖ denotes
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its Hilbert–Schmidt norm. The following conditions are enforced throughout unless noted
otherwise.

Condition 𝔄. The diffusion coefficient 𝜎 is a 𝑑 × 𝑑-matrix-valued measurable function on
[0, 1] ×ℝ𝑑 . There exists a constant 𝐾1 ∈ [1,∞) such that for every 𝑠 ∈ [0, 1] and 𝑥 ∈ ℝ𝑑

𝐾−1
1 𝐼 6 (𝜎𝜎∗) (𝑠, 𝑥) 6 𝐾1𝐼 . (2.1)

Furthermore, the following conditions hold.

1. There are constants 𝛼 ∈ (0, 1] and 𝐾2 ∈ (0,∞) such that for every 𝑠 ∈ [0, 1] and
𝑥,𝑦 ∈ ℝ𝑑

| (𝜎𝜎∗) (𝑠, 𝑥) − (𝜎𝜎∗) (𝑠,𝑦) | 6 𝐾2 |𝑥 − 𝑦 |𝛼 .
2. 𝜎 (𝑠, ·) is weakly differentiable for a.e. 𝑠 ∈ [0, 1] and there are constants 𝑝0 ∈ [2,∞),
𝑞0 ∈ (2,∞] and 𝐾3 ∈ (0,∞) such that

𝑑

𝑝0
+ 2

𝑞0
< 1 and ‖∇𝜎 ‖𝕃𝑞0

𝑝0
( [0,1]) 6 𝐾3.

Condition𝔅. 𝑥0 belongs to 𝐿𝑝 (Ω, F0) and 𝑏 belongs to 𝕃
𝑞
𝑝 ( [0, 1]) for some 𝑝, 𝑞 ∈ [2,∞) satisfy-

ing 𝑑
𝑝
+ 2
𝑞
< 1. For each 𝑛, 𝑥𝑛0 belongs to 𝐿𝑝 (Ω, F0) and 𝑏𝑛 belongs to𝕃𝑞𝑝 ( [0, 1]) ∩𝕃

𝑞
∞( [0, 1]) with

𝑝, 𝑞 as above. Furthermore, there exist finite positive constants 𝐾4, 𝜃 and continuous controls
{𝜇𝑛}𝑛 such that sup𝑛>1(‖𝑏𝑛‖𝕃𝑞

𝑝 ( [0,1]) + 𝜇
𝑛 (0, 1)) 6 𝐾4 and

(1/𝑛)
1
2−

1
𝑞 ‖𝑏𝑛‖𝕃𝑞

∞ ( [𝑠,𝑡]) 6 𝜇
𝑛 (𝑠, 𝑡)𝜃 ∀ 𝑡 − 𝑠 6 1/𝑛. (2.2)

In the above, 𝐼 denotes the identity matrix. If one replaces Hölder continuity by uniform
continuity, Conditions 𝔄-𝔅 are comparable to those from [Zha11, XXZZ20], who show strong
uniqueness for (1.1). Hence, hereafter, we assume that the solution to (1.1) exists and is strongly
unique.2 Next, we define an important quantity which controls the strong convergence rate.

Definition 2.1. Let 𝜆 > 0 be a fixed number which is sufficiently large. Let 𝑈 = (𝑈 1, . . . ,𝑈 𝑑)
where for each ℎ = 1, . . . , 𝑑 ,𝑈 ℎ is the solution to the following equation

𝜕𝑡𝑈
ℎ +

𝑑∑︁
𝑖, 𝑗=1

1

2
(𝜎𝜎∗)𝑖 𝑗 𝜕2𝑖 𝑗𝑈 ℎ + 𝑏𝑛,ℎ · ∇𝑈 ℎ

= 𝜆𝑈 ℎ − 𝑏𝑛,ℎ, 𝑈 ℎ (1, ·) = 0. (2.3)

Let 𝑋 be the solution to (1.1). For each 𝑝 ∈ [1,∞), we put

𝜛𝑛 (𝑝) =
 sup
𝑡∈[0,1]

��� ∫ 𝑡

0
(1 + ∇𝑈 ) [𝑏 − 𝑏𝑛] (𝑟, 𝑋𝑟 )𝑑𝑟

���
𝐿𝑝 (Ω)

.

In the above and hereafter, we omit the dependence of𝑈 on 𝑛. Equation (2.3) arises from a
Zvonkin transformation, which we postpone to Section 7 for the details. It is known that when
𝜆 is sufficiently large, equation (2.3) has a unique solution, see Lemma 7.1 below.

2Actually the results from [Zha11, XXZZ20] are for deterministic 𝑥0 ∈ ℝ𝑑 , however, can be easily extended to
our case by conditioning and utilizing Markov property of Brownian motion. See also Remark 2.6 below.
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Theorem 2.2. Assume that Conditions 𝔄-𝔅 hold. Let (𝑋𝑛𝑡 )𝑡∈[0,1] be the solution to (1.3) and

(𝑋𝑡 )𝑡∈[0,1] be the solution to SDE (1.1). Then for any 𝑝 ∈ (1, 𝑝) ∩ (1, 2
𝑑
(𝑝 ∧ 𝑝0)) and any 𝛾 ∈ (0, 1),

there exists a finite constant 𝑁 (𝐾1, 𝐾2, 𝐾3, 𝐾4, 𝛼, 𝑝0, 𝑞0, 𝑝, 𝑞, 𝑑, 𝑝,𝛾) such that

‖ sup
𝑡∈[0,1]

|𝑋𝑛𝑡 − 𝑋𝑡 | ‖𝐿𝛾𝑝 (Ω) 6 𝑁
[
‖𝑥𝑛0 − 𝑥0‖𝐿𝑝 (Ω) + (1/𝑛) 𝛼

2 + (1/𝑛) 1
2 log(𝑛) +𝜛𝑛 (𝑝)

]
. (2.4)

Actually, by adding an exponential weight, moments up to order 𝑝-th can be estimated, see
Proposition 7.3 below. The condition 𝑝 <

2
𝑑
(𝑝 ∧ 𝑝0) ensures finiteness of the moments of the

exponential weight and therefore deduces (2.4) by an application of Hölder inequality.
Under uniform ellipticity and Hölder regularity of 𝜎 , pathwise uniqueness for (1.1), 𝑝 > 𝑑/𝛼 ,

lim𝑛 𝑏
𝑛 = 𝑏 in 𝕃

𝑞
𝑝 ( [0, 1]) and the following condition

sup
𝑛>1

(1/𝑛)
1
2−

1
𝑞 ‖𝑏𝑛‖𝕃𝑞

∞ ( [0,1]) < ∞, (2.5)

[GK21, Theorem 2.11] recently shows that the tamed Euler–Maruyama scheme (1.3) converges
in probability to the solution of (1.1). It is evident that (2.5) implies (2.2) (with the choice

𝜇𝑛 (𝑠, 𝑡)
1
𝑞 = (1/𝑛)

1
2−

1
𝑞 ‖𝑏𝑛‖𝕃𝑞

∞ ( [𝑠,𝑡])). However, because of the interchangeability between 𝑡−𝑠 and
1/𝑛 in (2.2), truncated vector fields with higher truncation levels, which yield better convergence
rates, satisfy (2.2) but not (2.5), see Corollary 2.4 below. Under Conditions 𝔄-𝔅, the above result
provides an upper bound for the moments of sup𝑡∈[0,1] |𝑋𝑛𝑡 − 𝑋𝑡 | which depends on 𝑛 and 𝜛𝑛 .

When lim𝑛 𝑏
𝑛 = 𝑏 in 𝕃

𝑞
𝑝 ( [0, 1]) as in the setting of [GK21], one can show that lim𝑛 𝜛𝑛 = 0 (cf.

Corollary 2.4). However, the topology of 𝕃
𝑞
𝑝 does not provide any explicit rate. There are, of

course, many other topologies for lim𝑛 𝑏
𝑛 = 𝑏 so that one can actually obtain an explicit rate.

The choice of a suitable topology depends on the approximating vector fields 𝑏𝑛 . Our next main
result relates 𝜛𝑛 with the convergence of 𝑏𝑛 to 𝑏 with respective to the topologies of 𝕃

𝑞1
𝑝1 (for

some 𝑝1, 𝑞1 ∈ [1,∞]) and 𝕃
𝑞
−𝜈,𝑝 (for some 𝜈 ∈ [0, 1)).

Theorem 2.3. Assume that Conditions 𝔄-𝔅 hold.
(i) Let 𝑝1, 𝑞1 ∈ [1,∞] be such that 𝑑

𝑝1
+ 2
𝑞1

< 2. Then for every𝑚 > 1, there exists a constant 𝑁

depending on 𝐾1, 𝐾2, 𝐾3, 𝐾4, 𝛼 , 𝑝0, 𝑞0, 𝑝1, 𝑞1, 𝑝 , 𝑞, 𝑑 ,𝑚 such that

𝜛𝑛 (𝑚) 6 𝑁 ‖𝑏 − 𝑏𝑛‖𝕃𝑞1
𝑝1
( [0,1]) . (2.6)

(ii) Assuming furthermore that 𝑞0 = ∞ and 1
𝑝
+ 1
𝑝0

< 1. Let 𝜈 ∈ [0, 1) be such that

𝜈 <

3

2
− 𝑑

2𝑝
− 2

𝑞
. (2.7)

Then for every 𝑝 ∈ [1, 𝑝), there exists a constant 𝑁 depending on 𝐾1, 𝐾2, 𝐾3, 𝐾4, 𝛼 , 𝑝0, 𝑝 , 𝑞, 𝑑 , 𝑝 , 𝜈
such that

𝜛𝑛 (𝑝) 6 𝑁 ‖𝑏 − 𝑏𝑛‖𝕃𝑞
−𝜈,𝑝 ( [0,1]) . (2.8)
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(iii) Assuming furthermore that 𝑞0 = ∞, 1
𝑝
+ 1
𝑝0

< 1 and

𝑑

𝑝
+ 4

𝑞
< 1. (2.9)

Suppose that there exists a continuous control𝑤0 on Δ and a constant Γ > 0 such that

‖𝑏 − 𝑏𝑛‖𝕃𝑞
−1,𝑝 ( [𝑠,𝑡]) 6 Γ𝑤0(𝑠, 𝑡)

1
𝑞 and ‖𝑏 − 𝑏𝑛‖𝕃𝑞

𝑝 ( [𝑠,𝑡]) 6 𝑤0(𝑠, 𝑡)
1
𝑞 (2.10)

for every (𝑠, 𝑡) ∈ Δ. Then for every 𝑝 ∈ [1, 𝑝), there exists a constant 𝑁 depending on 𝐾1, 𝐾2, 𝐾3,
𝐾4, 𝛼 , 𝑝0, 𝑝 , 𝑞, 𝑑 , 𝑝 such that

𝜛𝑛 (𝑝) 6 𝑁 Γ (1 + | log Γ |)𝑤0(0, 1)
1
𝑞 . (2.11)

Using Theorems 2.2 and 2.3, we can derive explicit strong convergence rates for the scheme
(1.3) when the approximating vector field 𝑏𝑛 take one of the forms (1.4)-(1.6).

Corollary 2.4. Assume that Conditions 𝔄-𝔅 holds and let 𝑝 and 𝛾 be as in Theorem 2.2.
(a) Let 𝐶 > 0 and 𝜒 ∈ (0, 1/2 − 1/𝑞] be constants and define 𝑏𝑛 by (1.4). Let 𝜌 ∈ (1, 𝑝] be a

number such that 𝜌 𝑑
𝑝
+ 2
𝑞
< 2. Then there exists a constant 𝑁 depending on 𝐾1, 𝐾2, 𝐾3, 𝐾4, 𝛼 , 𝑝0,

𝑞0, 𝑝 , 𝑞, 𝑑 , 𝑝 , 𝛾 , 𝜌 , 𝜒 , 𝐶 such that

‖ sup
𝑡∈[0,1]

|𝑋𝑛𝑡 − 𝑋𝑡 | ‖𝐿𝛾𝑝 (Ω) 6 𝑁
[
‖𝑥0 − 𝑥𝑛0 ‖𝐿𝑝 (Ω) + (1/𝑛)𝜒 (𝜌−1) + (1/𝑛) 𝛼

2 + (1/𝑛) 1
2 log(𝑛)

]
.

(2.12)

(b) Let 𝐶 > 0 and 𝜒 ∈ (0, 3/2 − 2/𝑞) be constants and define 𝑏𝑛 by (1.5). Then there exists a
constant 𝑁 depending on 𝐾1, 𝐾2, 𝐾3, 𝐾4, 𝛼 , 𝑝0, 𝑞0, 𝑝 , 𝑞, 𝑑 , 𝑝 , 𝛾 , 𝜌 , 𝜒 , 𝐶 such that (2.12) holds for

any 𝜌 ∈ (1, 𝑝 ∧ 𝑞] satisfying 𝜌
(
𝑑
𝑝
+ 2
𝑞

)
< 2.

(c) Let 𝜒 ∈
(
0, 𝑝
𝑑

(
1 − 2

𝑞

) ]
and define 𝑏𝑛 by (1.6). Let 𝜈 ∈ (0, 1) be any number satisfying (2.7).

Assume furthermore that 𝑞0 = ∞ and 1
𝑝
+ 1
𝑝0

< 1. Then there exists a constant 𝑁 depending on 𝐾1,

𝐾2, 𝐾3, 𝐾4, 𝛼 , 𝑝0, 𝑝 , 𝑞, 𝑑 , 𝑝 , 𝜈 , 𝛾 , 𝜒 such that

‖ sup
𝑡∈[0,1]

|𝑋𝑛𝑡 − 𝑋𝑡 | ‖𝐿𝛾𝑝 (Ω) 6 𝑁
[
‖𝑥0 − 𝑥𝑛0 ‖𝐿𝑝 (Ω) + (1/𝑛)𝜒 𝜈

2 + (1/𝑛) 𝛼
2 + (1/𝑛) 1

2 log(𝑛)
]
.

(2.13)

Proof. In view of Theorem 2.2, it suffices to estimate 𝜛𝑛 (𝑝). (a) It is obvious that ‖𝑏𝑛‖𝕃𝑞
𝑝 ( [0,1]) 6

‖𝑏‖𝕃𝑞
𝑝 ( [0,1]) . From the inequality ‖𝑏𝑛𝑟 ‖𝐿∞ (ℝ𝑑 ) 6 𝐶𝑛𝜒 ‖𝑏𝑟 ‖𝐿𝑝 (ℝ𝑑 ) , we see that ‖𝑏𝑛‖𝕃𝑞

∞ ( [𝑠,𝑡]) .

𝑛𝜒 ‖𝑏‖𝕃𝑞
𝑝 ( [𝑠,𝑡]) . It follows that for every 0 6 𝑡 − 𝑠 6 1/𝑛,

(1/𝑛)
1
2−

1
𝑞 ‖𝑏𝑛‖𝕃𝑞

∞ ( [𝑠,𝑡]) . (1/𝑛)
1
2−

1
𝑞−𝜒 ‖𝑏‖𝕃𝑞

𝑝 ( [𝑠,𝑡]) . ‖𝑏‖𝕃𝑞
𝑝 ( [𝑠,𝑡]),

verifying Condition 𝔅 with 𝜇𝑛 (𝑠, 𝑡) = ‖𝑏‖𝑞
𝕃
𝑞
𝑝 ( [𝑠,𝑡])

and 𝜃 = 1/𝑞. Furthermore,

|𝑏𝑟 (𝑥) − 𝑏𝑛𝑟 (𝑥) | 6 |𝑏𝑟 (𝑥) |1( |𝑏𝑟 (𝑥) |>𝐶𝑛𝜒 ‖𝑏𝑟 ‖𝐿𝑝 (ℝ𝑑 ) ) 6 𝐶
1−𝜌𝑛−𝜒 (𝜌−1) ‖𝑏𝑟 ‖1−𝜌𝐿𝑝 (ℝ𝑑 ) |𝑏𝑟 (𝑥) |

𝜌 .
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The function (𝑟, 𝑥) ↦→ ‖𝑏𝑟 ‖1−𝜌𝐿𝑝 (ℝ𝑑 ) |𝑏𝑟 (𝑥) |
𝜌 belongs to 𝕃

𝑞

𝑝/𝜌 ( [0, 1]) and hence,

‖𝑏 − 𝑏𝑛‖𝕃𝑞

𝑝/𝜌 ( [0,1])
. 𝑛−𝜒 (𝜌−1) ‖𝑏‖𝕃𝑞

𝑝 ( [0,1]) .

It follows from (2.6) that𝜛𝑛 . (1/𝑛)𝜒 (𝜌−1) ‖𝑏‖𝕃𝑞
𝑝 ( [0,1]) . The stated estimate is then a consequence

of (2.4).
(b) For the vector field 𝑏𝑛 defined by (1.5), we have ‖𝑏𝑛𝑟 ‖𝐿∞ (ℝ𝑑 ) . 𝑛𝜒 so that for every

0 6 𝑡 − 𝑠 6 1/𝑛,

(1/𝑛)
1
2
− 1
𝑞 ‖𝑏𝑛‖𝕃𝑞

∞ ( [𝑠,𝑡]) . (1/𝑛)
1
2
− 1
𝑞−𝜒 (𝑡 − 𝑠)1−

1
𝑞 . (𝑡 − 𝑠)𝜃

for any 𝜃 > 0 such that 𝜃 6 min(1−1/𝑞, 3/2−2/𝑞− 𝜒). This verifies Condition𝔅with 𝜇𝑛 (𝑠, 𝑡) =
𝑡 − 𝑠 . On the other hand, |𝑏 −𝑏𝑛 | . 𝑛−𝜒 (𝜌−1) |𝑏 |𝜌 so that ‖𝑏 −𝑏𝑛‖

𝕃
𝑞/𝜌
𝑝/𝜌 ( [0,1])

. 𝑛−𝜒 (𝜌−1) ‖𝑏‖𝕃𝑞
𝑝 ( [0,1]) .

It follows from (2.6) that 𝜛𝑛 . 𝑛
−𝜒 (𝜌−1) ‖𝑏‖𝕃𝑞

𝑝 ( [0,1]) .

(c) We have ‖𝑏𝑛𝑟 ‖𝐿∞ (ℝ𝑑 ) . 𝑛
𝜒 𝑑
2𝑝 ‖𝑏𝑟 ‖𝐿𝑝 (ℝ𝑑 ) and hence, for every 0 6 𝑡 − 𝑠 6 1/𝑛,

(1/𝑛)
1
2−

1
𝑞 ‖𝑏𝑛‖𝕃𝑞

∞ ( [𝑠,𝑡]) . (1/𝑛)
1
2−

1
𝑞−𝜒

𝑑
2𝑝 ‖𝑏‖𝕃𝑞

𝑝 ( [𝑠,𝑡]) . ‖𝑏‖𝕃𝑞
𝑝 ( [𝑠,𝑡]),

verifying condition (2.2) with 𝜇𝑛 (𝑠, 𝑡) = ‖𝑏‖𝑞
𝕃
𝑞
𝑝 ( [𝑠,𝑡])

and 𝜃 = 1/𝑞. We also have

‖𝑏 − 𝑏𝑛‖𝕃𝑞
−𝜈,𝑝
. (1/𝑛)𝜒𝜈/2‖𝑏‖𝕃𝑞

𝑝
.

Applying (2.8), we have 𝜛𝑛 (𝑝) . (1/𝑛)𝜒 𝜈
2 . �

Remark 2.5. Similar truncated vector fields to (1.5) with the values 𝜒 = 1/2 and 𝜒 = 𝑑/(2𝑝) +1/𝑞
were considered in [JM21], in which a weak rate of convergence of order 1

2
− 𝑑

2𝑝
− 1

𝑞
was

obtained. When 𝜒 > 1/2, we choose 𝜌 = 2 which ensures that (1/𝑛)𝜒 (𝜌−1) 6 (1/𝑛)1/2 and
hence, Corollary 2.4(b) yields the strong rate

‖𝑥0 − 𝑥𝑛0 ‖𝐿𝑝 (Ω) + (1/𝑛) 𝛼
2 + (1/𝑛) 1

2 log(𝑛) .
In other cases, one has to impose additional constraints on 𝑝, 𝑞 to achieve the above rate.

Similar (but different) regularized vector fields to (1.6) was considered in [AGI20] in a different
setting.

Remark 2.6. The proof of Theorem 2.2 actually works for any adapted solution to (1.1), see
Remark 6.7 and Section 7. Consequently, Theorem 2.2 yields an alternative proof ([Zha11,
XXZZ20]) of pathwise uniqueness for (1.1) under Conditions 𝔄-𝔅.

The restriction on the unit time interval in Theorems 2.2 and 2.3 is of course artificial and it
is straightforward to extend the above results on arbitrary finite time intervals. In such case, the
constants in our estimates also depend on the length the time interval. The logarithmic factor
in (2.4) arises from the stochastic Davie–Gronwall lemma with critical exponents (see [FHL21]
or Lemma 3.2 herein). The explicit estimation for square moments from [DG20] suggests
that the logarithmic factor in (2.4) could be improved. Because of the role of the stochastic
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Davie–Gronwall lemma in the study of rough/stochastic ordinary/partial differential equations
([FHL21, ABLM21, Dav07, Dav08]), it is an important problem to identify the sharpness of the
logarithmic factor. However, we do not pursue this direction herein.

Let us briefly explain our general method and strategy. Starting from (1.1) and (1.3), we
decompose the difference 𝑋𝑡 − 𝑋𝑛𝑡 into three types of differences:

• differences between functionals of 𝑏 (𝑡, 𝑋𝑡 ) and 𝑏𝑛 (𝑡, 𝑋𝑡 ),
• differences between functionals of 𝑋𝑡 and functionals of 𝑋𝑛𝑡 ,
• differences between functionals of 𝑋𝑛𝑡 and functionals of 𝑋𝑛

𝑘𝑛 (𝑡) .

At this stage, our strategy aligns with the classical works [KP91, JP98] for SDE’s with Lipschitz
coefficients. However, in order to utilize the regularizing effect of the noise in compensation for
the lack of regularity of the drift, our treatments for these functionals are different and follow
the recent approach of [DGL21]. The differences of the first type can be easily estimated from
above by 𝜛𝑛 . For the differences of the second type, we use a Zvonkin-type transformation to
show that they depend on sup𝑡∈[0,1] |𝑋𝑡 − 𝑋𝑛𝑡 | in a Lipschitz sense. The differences of the last
type contain, for instance, the functional

sup
𝑡∈[0,1]

����
∫ 𝑡

0
[𝑏𝑛 (𝑠, 𝑋𝑛𝑘𝑛 (𝑠)) − 𝑏

𝑛 (𝑠, 𝑋𝑛𝑠 )]𝑑𝑠
���� .

Because 𝑏 and 𝑏𝑛 are not continuous (uniformly in 𝑛), estimation for the above functional is a
challenging problem and one has to utilize the regularizing effect from the noise, an important
observation made by Dareiotis and Gerencsér in [DG20]. For these differences, we use stochastic
sewing techniques—originated from [Lê20] and further extended in [FHL21, Lê21]—to estimate
them by a constant multiple of (1/𝑛)𝛼/2 + (1/𝑛)1/2 log(𝑛). From here, we obtain an integral
inequality for the moment of sup𝑡∈[0,1] |𝑋𝑡 − 𝑋𝑛𝑡 |. An application of the stochastic Gronwall
inequality yields the desired estimate in Theorem 2.2. From this analysis, one observes that
the strong rate of convergence for (1.3) is deduced from the rates of the estimations for the
differences of the first and the last types. The estimates for 𝜛𝑛 in Theorem 2.3 are obtained by
mean of Krylov estimates, Khasminskii estimates and stochastic sewing techniques, utilizing
statistical properties of the solution to (1.1).
We make a few observations comparing with previous works. Setting technicalities aside,

our proof of Theorem 2.2 follows the approach of [DGL21]; and similar to [BDG21], we also
apply stochastic sewing techniques to obtain moment estimates for the differences of the
last type. However, the works [BDG21, DGL21] crucially rely on the fact that the drifts are
either continuous or bounded, which is not available under Conditions 𝔄-𝔅. In particular, the
stochastic lemmas in [BDG21, DGL21] cannot be applied under Conditions 𝔄-𝔅 because the
resulting Hölder exponents are strictly below 1/2; and even if control functions were employed,
one would end up with a regularity exponent of exactly 1/2 (cf. Propositions 4.2 and 5.12).3 In
other words, the situations considered herein are at the border line and are critical to a certain
extent. To successfully adapt the method above to the current setting, to overcome criticality

3We recall that an exponent of 1/2 + 𝜀 is required in these stochastic sewing lemmas.
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and to remove the 𝜀-loss in the obtained rate, we have benefited from the recent stochastic
Davie–Gronwall lemma with critical exponents from [FHL21], the analysis for singular paths
from [BFG21] and novel usage of control functions inspired by Lyon’s theory of rough paths
[Lyo98]. To the authors’ knowledge, these tools, which are developed within rough path theory,
have not been utilized previously in stochastic numerics. Lastly, in order to verify the hypotheses
for stochastic sewing and of independent interests, we have obtained some new and improved
analytic estimates ([Kim08, XXZZ20, JM21, GK21, LM10, BHZ20]) for the probability laws of
the solutions to the discrete scheme (1.3) and to equation (1.1) (see Sections 5 and 6).

Convention.Whenever convenience, we place temporal variables into subscript right after the
function, e.g. 𝑓𝑡 (𝑥) = 𝑓 (𝑡, 𝑥). The relation 𝐴 . 𝐵 means that 𝐴 6 𝐶𝐵 for some finite constant
𝐶 > 0. The implicit constants 𝐶 may change from one inequality to another and their values
may depend on other parameters which are clear from the context.

3. Preliminaries

In the current section, we collect and enhance some relevant results which appear separately
in previous works from various authors. These results form a useful toolbox which is used in
later sections to prove our main results.
For any one-parameter process 𝑡 ↦→ 𝑌𝑡 and any two-parameter process (𝑠, 𝑡) ↦→ 𝐴𝑠,𝑡 , we

denote 𝛿𝑌𝑠,𝑡 = 𝑌𝑡 − 𝑌𝑠 and 𝛿𝐴𝑠,𝑢,𝑡 = 𝐴𝑠,𝑡 − 𝐴𝑠,𝑢 − 𝐴𝑢,𝑡 for every 𝑠 6 𝑢 6 𝑡 . We say that 𝑌 (resp.
𝐴) is 𝐿𝑚-integrable if ‖𝑌𝑡 ‖𝐿𝑚 (Ω) (resp. ‖𝐴𝑠,𝑡 ‖𝐿𝑚 (Ω)) is finite for each 𝑡 (resp. (𝑠, 𝑡)); we say 𝐴 is
adapted if 𝐴𝑠,𝑡 is F𝑡 -measurable whenever 𝑠 6 𝑡 . Let 𝑣 ∈ [0, 1] and let ℙ|F𝑣 be the probability
measure conditioned on F𝑣 . We denote by 𝐿𝑝 (Ω |F𝑣 ) the space of random variables 𝑍 such that

‖𝑍 ‖𝐿𝑝 (Ω |F𝑣) := ess sup
𝜔

[𝔼( |𝑍 |𝑝 |F𝑣 )]1/𝑝 < ∞.

The advantages of considering the conditional moment norms over the usual moment norms
are summarized in the following result, which is implicit in [DGL21, FHL21].

Lemma 3.1. LetA = (A𝑡 )𝑡∈[0,1] be a continuous adapted stochastic process and let 𝑝, 𝑁 ∈ (0,∞)
be some fixed constants. Assume that A0 = 0 and

sup
06𝑠6𝑡61

‖𝛿A𝑠,𝑡 ‖𝐿𝑝 (Ω |F𝑠 ) 6 𝑁 .

Then the following statements hold.

(i) There exists a constant 𝑐 (𝑝) such that ‖A𝜏 ‖𝐿𝑝 (Ω) 6 𝑐 (𝑝)𝑁 for any stopping time 𝜏 6 1.
(ii) For every 𝑝 ∈ (0, 𝑝), there exists a constant 𝑐 (𝑝, 𝑝) such that

‖ sup
𝑡∈[0,1]

|A𝑡 | ‖𝐿𝑝 (Ω) 6 𝑐 (𝑝, 𝑝)𝑁 .

Proof. Let 𝜏 be a stopping time taking finite values {𝑡 𝑗 } ⊂ [0, 1]. By assumption, we have

𝔼( |𝛿A𝜏,1 |𝑝) = 𝔼

∑︁
𝑗

1(𝜏=𝑡 𝑗 )𝔼( |𝛿A𝑡 𝑗 ,1 |𝑝 |F𝑡 𝑗 ) 6 𝔼

∑︁
𝑗

1(𝜏=𝑡 𝑗 )𝑁
𝑝
6 𝑁 𝑝 .
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Using the elementary inequality (𝑎 + 𝑏)𝑝 . 𝑎𝑝 + 𝑏𝑝 , we have
‖A𝜏 ‖𝐿𝑝 (Ω) . ‖𝛿A𝜏,1‖𝐿𝑝 (Ω) + ‖A1‖𝐿𝑝 (Ω) . 𝑁 .

By approximations and continuity of A, the above inequality also holds for all stopping times
𝜏 6 1. This shows (i). Part (ii) is a consequence of part (i) and Lenglart inequality. �

The next result is a variant of the stochastic Davie–Gronwall lemma from [FHL21] and is
closely related to the stochastic sewing lemmas from [Lê20, Lê21].

Lemma 3.2 (Stochastic sewing). Let 𝜀 > 0; 𝑣, 𝑆,𝑇 ,𝐶1,𝐶2,𝐶3, Γ1, Γ2 > 0 be fixed numbers such
that 0 6 𝑣 < 𝑆 < 𝑇 . Let𝑤 be a deterministic control on Δ( [𝑆,𝑇 ]) which is continuous. Let 𝐽 be a
𝐿𝑚-integrable adapted process indexed by Δ( [𝑆,𝑇 ]) such that

‖ 𝐽𝑠,𝑡 ‖𝐿𝑚 (Ω |F𝑣) 6 𝐶2𝑤 (𝑠, 𝑡) 1
2
+𝜀 , ‖𝔼𝑠 𝐽𝑠,𝑡 ‖𝐿𝑚 (Ω |F𝑣) 6 𝐶1𝑤 (𝑠, 𝑡)1+𝜀, (3.1)

‖𝛿 𝐽𝑠,𝑢,𝑡 ‖𝐿𝑚 (Ω |F𝑣) 6 Γ2𝑤 (𝑠, 𝑡) 1
2 +𝐶3Γ2𝑤 (𝑠, 𝑡) 1

2
+𝜀 (3.2)

and

‖𝔼𝑠𝛿 𝐽𝑠,𝑢,𝑡 ‖𝐿𝑚 (Ω |F𝑣) 6 Γ1𝑤 (𝑠, 𝑡)1+𝜀 (3.3)

for every (𝑠,𝑢, 𝑡) in Δ2( [𝑆,𝑇 ]). Then there exists a constant𝑁 = 𝑁 (𝜀,𝑚), in particular independent
from Γ1, Γ2,𝐶1,𝐶2, 𝑆,𝑇 , 𝑣 and𝑤 , such that for every (𝑠, 𝑡) ∈ Δ( [𝑆,𝑇 ])

‖ 𝐽𝑠,𝑡 ‖𝐿𝑚 (Ω |F𝑣) 6 𝑁 Γ2

[
(1 + | log Γ2 |)𝑤 (𝑠, 𝑡) 1

2 +𝐶1𝑤 (𝑠, 𝑡)1+𝜀 + (𝐶2 +𝐶3)𝑤 (𝑠, 𝑡) 1
2+𝜀

]
+ 𝑁 Γ1𝑤 (𝑠, 𝑡)1+𝜀 . (3.4)

Proof. For each (𝑠, 𝑡) ∈ Δ( [𝑆,𝑇 ]), define

𝑢 = inf{𝑟 ∈ [𝑠, 𝑡] : 𝑤 (𝑠, 𝑟 ) > 1

2
𝑤 (𝑠, 𝑡)}

and call 𝑢 the𝑤-midpoint of [𝑠, 𝑡]. Since 𝑡 trivially belongs to the set defining 𝑢 above, such
a point always exists and uniquely defined. If 𝑢 is a𝑤-midpoint of [𝑠, 𝑡], then it follows from
continuity of𝑤 that

𝑤 (𝑠,𝑢) 6 1

2
𝑤 (𝑠, 𝑡) and 𝑤 (𝑢, 𝑡) 6 1

2
𝑤 (𝑠, 𝑡).

See [Lê21] for more detail. For convenience, we denote (𝑠 |𝑡) for the𝑤-midpoint of [𝑠, 𝑡].
Let (𝑠, 𝑡) be in Δ( [𝑆,𝑇 ]). Define 𝑑00 (𝑠, 𝑡) = 𝑠 and 𝑑01 (𝑠, 𝑡) = 𝑡 . For each integers ℎ > 0 and

𝑖 = 0, . . . , 2ℎ+1, we set 𝑑ℎ+1𝑖 (𝑠, 𝑡) = 𝑑ℎ
𝑖/2(𝑠, 𝑡) if 𝑖 is even and 𝑑ℎ+1𝑖 (𝑠, 𝑡) equal to the𝑤-midpoint of

[𝑑ℎ(𝑖−1)/2(𝑠, 𝑡), 𝑑
ℎ
(𝑖+1)/2(𝑠, 𝑡)] if 𝑖 is odd. Set 𝐷

ℎ
𝑤 (𝑠, 𝑡) := {𝑑ℎ𝑖 (𝑠, 𝑡)}2

ℎ

𝑖=0 for each ℎ > 0. It is readily

checked that for every integers ℎ > 0 and 𝑖 = 0, . . . , 2ℎ − 1, we have

𝐷ℎ𝑤 (𝑠, 𝑡) ⊂ 𝐷ℎ+1𝑤 (𝑠, 𝑡), (3.5)

[𝑑ℎ𝑖 (𝑠, 𝑡), 𝑑ℎ𝑖+1(𝑠, 𝑡)] = [𝑑ℎ+12𝑖 (𝑠, 𝑡), 𝑑ℎ+12𝑖+1(𝑠, 𝑡)] ∪ [𝑑ℎ+12𝑖+1(𝑠, 𝑡), 𝑑ℎ+12𝑖+2(𝑠, 𝑡)], (3.6)

𝑤 (𝑑ℎ𝑖 (𝑠, 𝑡), 𝑑ℎ𝑖+1(𝑠, 𝑡)) 6 2−ℎ𝑤 (𝑠, 𝑡). (3.7)
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Herein, we abbreviate ‖ · ‖ for ‖ · ‖𝐿𝑚 (Ω |F𝑣) . The implicit constants below only depend on 𝜀
and𝑚. By triangle inequality, we have

‖ 𝐽𝑠,𝑡 ‖ 6
 ∑︁
[𝑢,𝑣]∈𝐷ℎ

𝑤 (𝑠,𝑡)

𝐽𝑢,𝑣
 + 𝐽𝑠,𝑡 − ∑︁

[𝑢,𝑣]∈𝐷ℎ
𝑤 (𝑠,𝑡)

𝐽𝑢,𝑣
.

We estimate the first term using conditional BDG inequality ([Lê21, Section 2]), condition (3.1)
and (3.7),

‖
∑︁

[𝑢,𝑣]∈𝐷ℎ
𝑤 (𝑠,𝑡)

𝐽𝑢,𝑣 ‖ .
∑︁

[𝑢,𝑣]∈𝐷ℎ
𝑤 (𝑠,𝑡)

‖𝔼𝑢 𝐽𝑢,𝑣 ‖ +
©«

∑︁
[𝑢,𝑣]∈𝐷ℎ

𝑤 (𝑠,𝑡)

‖ 𝐽𝑢,𝑣 ‖2
ª®¬
1/2

. 𝐶12
−ℎ𝜀𝑤 (𝑠, 𝑡)1+𝜀 +𝐶22

−ℎ𝜀𝑤 (𝑠, 𝑡) 1
2
+𝜀 .

For the second term,we derive from (3.6) (cf. [Lê21, Lemma 3.6]) and conditional BDG inequality
that for ℎ > 1

‖ 𝐽𝑠,𝑡 −
∑︁

[𝑢,𝑣]∈𝐷ℎ
𝑤 (𝑠,𝑡)

𝐽𝑢,𝑣 ‖ = ‖
ℎ−1∑︁
𝑘=0

∑︁
[𝑢,𝑣]∈𝐷𝑘

𝑤 (𝑠,𝑡)

𝛿 𝐽𝑢,(𝑢 |𝑣),𝑣 ‖

.

ℎ−1∑︁
𝑘=0

∑︁
[𝑢,𝑣]∈𝐷𝑘

𝑤 (𝑠,𝑡)

‖𝔼𝑢𝛿 𝐽𝑢,(𝑢 |𝑣),𝑣 ‖ +
ℎ−1∑︁
𝑘=0

©«
∑︁

[𝑢,𝑣]∈𝐷𝑘
𝑤 (𝑠,𝑡)

‖𝛿 𝐽𝑢,(𝑢 |𝑣),𝑣 ‖2
ª®¬
1/2

.

Applying (3.3), (3.2) and (3.7), we have∑︁
[𝑢,𝑣]∈𝐷𝑘

𝑤 (𝑠,𝑡)

‖𝔼𝑢𝛿 𝐽𝑢,(𝑢 |𝑣),𝑣 ‖ . 2−𝑘𝜀Γ1𝑤 (𝑠, 𝑡)1+𝜀

and

©«
∑︁

[𝑢,𝑣]∈𝐷𝑘
𝑤 (𝑠,𝑡)

‖𝛿 𝐽𝑢,(𝑢 |𝑣),𝑣 ‖2
ª®¬

1
2

. Γ2𝑤 (𝑠, 𝑡) 1
2 + 2−𝑘𝜀𝐶3Γ2𝑤 (𝑠, 𝑡) 1

2
+𝜀 .

Summing in 𝑘 , we have𝐽𝑠,𝑡 − ∑︁
[𝑢,𝑣]∈𝐷ℎ

𝑤 (𝑠,𝑡)

𝐽𝑢,𝑣
 . Γ1𝑤 (𝑠, 𝑡)1+𝜀 + ℎΓ2𝑤 (𝑠, 𝑡) 1

2 +𝐶3Γ2𝑤 (𝑠, 𝑡) 1
2
+𝜀 .

Combining the previous estimates, we have shown that for every integer ℎ > 1 and each
(𝑠, 𝑡) ∈ Δ

‖ 𝐽𝑠,𝑡 ‖ . 2−ℎ𝜀
[
𝐶1𝑤 (𝑠, 𝑡)1+𝜀 +𝐶2𝑤 (𝑠, 𝑡) 1

2
+𝜀

]
+ Γ1𝑤 (𝑠, 𝑡)1+𝜀 + ℎΓ2𝑤 (𝑠, 𝑡) 1

2 +𝐶3Γ2𝑤 (𝑠, 𝑡) 1
2
+𝜀 .

(3.8)

If Γ2 > 1, we choose ℎ = 1 while if Γ2 < 1, we choose ℎ such that 2−ℎ𝜀 ≈ Γ2. In both cases, we
obtain (3.4) from (3.8). �
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Some controls which are relevant for our purpose are given below.

Example 3.3. (a) For any 𝜙 ∈ 𝐿𝑞 ( [0, 1]), 𝑞 ∈ [1,∞),𝑤 (𝑠, 𝑡) = ‖𝜙 ‖𝑞
𝐿𝑞 ( [𝑠,𝑡]) is a continuous control

on Δ( [0, 1]). (b) For any 𝜈 > 0, 𝑤 (𝑠, 𝑡) = 𝑠−𝜈 (𝑡 − 𝑠) is a continuous control on Δ( [𝑆,𝑇 ]) for
any 0 < 𝑆 6 𝑇 . (c) For any controls𝑤1,𝑤2 and any number 𝜃 ∈ [0, 1],𝑤 = 𝑤𝜃

1𝑤
1−𝜃
2 is another

control. For further examples and basic properties of controls, we refer to [FV10, Chapter 5].

The following result is an excerpt from [BFG21, Lemma 2.3].

Lemma 3.4. Let (E, ‖ · ‖) be a normed vector space, 𝑠−1, 𝜏𝑖, 𝜂𝑖 ∈ [0, 1], 𝑖 = 1, . . . , ℎ be fixed
numbers and let 𝑌 : (0, 1] → E be a function such that

‖𝑌𝑡 − 𝑌𝑠 ‖ 6
ℎ∑︁
𝑖=1

𝐶𝑖𝑠
−𝜂𝑖 (𝑡 − 𝑠)𝜏𝑖 ∀𝑠−1 6 𝑠 6 𝑡 6 1, 𝑠 ≠ 0 (3.9)

for some constant 𝐶1, . . . ,𝐶ℎ > 0. Assume that 𝜏𝑖 − 𝜂𝑖 > 0 for each 𝑖 . Then

‖𝑌𝑡 − 𝑌𝑠 ‖ 6
ℎ∑︁
𝑖=1

(1 − 2𝜂𝑖−𝜏𝑖 )−1𝐶𝑖 (𝑡 − 𝑠)𝜏𝑖−𝜂𝑖 ∀𝑠−1 6 𝑠 6 𝑡 6 1, 𝑠 ≠ 0.

Proof. Observe that (3.9) implies that 𝑌 is continuous on [𝑠−1, 1] \ {0}. We fix 𝑠−1 6 𝑠 < 𝑡 6 1,
𝑠 ≠ 0, and put 𝑠𝑛 = 𝑠 + (𝑡 − 𝑠)2−𝑛 for each integer 𝑛 > 0. By continuity and triangle inequality,
we have

‖𝑌𝑡 − 𝑌𝑠 ‖ 6
∞∑︁
𝑛=0

‖𝑌𝑠𝑛 − 𝑌𝑠𝑛+1 ‖ 6
∞∑︁
𝑛=0

ℎ∑︁
𝑖=1

𝐶𝑖𝑠
−𝜂𝑖
𝑛+1(𝑠𝑛 − 𝑠𝑛+1)

𝜏𝑖 .

Note that 𝑠𝑛+1 > (𝑡 − 𝑠)2−𝑛−1 and 𝑠𝑛 − 𝑠𝑛+1 = (𝑡 − 𝑠)2−𝑛−1. Hence, from the previous estimate,
we have

‖𝑌𝑡 − 𝑌𝑠 ‖ 6
ℎ∑︁
𝑖=1

∞∑︁
𝑛=0

𝐶𝑖 (𝑡 − 𝑠)𝜏𝑖−𝜂𝑖2−(𝑛+1) (𝜏𝑖−𝜂𝑖 ) .

Because
∑∞
𝑛=0 2

−(𝑛+1) (𝜏𝑖−𝜂𝑖 ) 6 (1 − 2𝜂𝑖−𝜏𝑖 )−1 for each 𝑖 , this yields the stated estimate. �

The following is the Khasminskii’s lemma4 enhanced with some quantitative estimates.

Lemma 3.5 (Quantitative Khasminskii’s lemma). Let 𝑆,𝑇 be such that 0 6 𝑆 6 𝑇 and let
{𝛽 (𝑡)}𝑡∈[𝑆,𝑇 ] be a nonnegative measurable (F𝑡 )-adapted process. Assume that for all 𝑆 6 𝑠 6 𝑡 6 𝑇 ,

∫ 𝑡

𝑠

𝛽 (𝑟 )𝑑𝑟

𝐿1 (Ω |F𝑠 )

6 𝜌 (𝑠, 𝑡), (3.10)

where (𝑠, 𝑡) ↦→ 𝜌 (𝑠, 𝑡) is a nonrandom function on Δ( [𝑆,𝑇 ]) satisfying the following conditions:
(i) 𝜌 (𝑡1, 𝑡2) 6 𝜌 (𝑡3, 𝑡4) if (𝑡1, 𝑡2) ⊂ (𝑡3, 𝑡4),

4This result goes back at least to the paper [Kha59] of Khasminskii, although in a less general form and with a
smallness condition, then rediscovered without the smallness condition by Portenko [Por75], who considered (iii)
with𝑤 (𝑠, 𝑡) = 𝑡 − 𝑠 . The general version here is based on [Por90]. For a bit of history, see [AS82, pg. 214].
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(ii) limℎ↓0 sup𝑆6𝑠<𝑡6𝑇,|𝑡−𝑠 |6ℎ 𝜌 (𝑠, 𝑡) = 𝜅, 𝜅 > 0.

Then for any real 𝜆 < 𝜅−1, (if 𝜅 = 0, then 𝜅−1 = ∞), and any integer𝑚 > 1

𝔼 exp
(
𝜆

∫ 𝑇

𝑆

𝛽 (𝑟 )𝑑𝑟
)
< ∞ and


∫ 𝑇

𝑆

𝛽 (𝑟 )𝑑𝑟

𝐿𝑚 (Ω)

6 (𝑚!) 1
𝑚 𝜌 (𝑆,𝑇 ).

Suppose additionally that there exist 𝛾 > 0 and a continuous control𝑤 on Δ( [𝑆,𝑇 ]) such that

(iii) 𝜌 (𝑠, 𝑡) 6 𝑤 (𝑠, 𝑡)𝛾 for each (𝑠, 𝑡) ∈ Δ( [𝑆,𝑇 ]).
Then for every 𝜆 > 0,

𝔼 exp
(
𝜆

∫ 𝑇

𝑆

𝛽 (𝑟 )𝑑𝑟
)
6 21+(2𝜆)

1/𝛾𝑤 (𝑆,𝑇 ) .

Proof. The former statement is an excerpt from [Por90, pg. 1 Lemma 1.1.], which gives the
following estimate

𝔼 exp

(
𝜆

∫ 𝑇

𝑆

𝛽 (𝑟 )𝑑𝑟
)
6

𝑛∏
𝑘=1

(1 − 𝜆𝜌 (𝑡𝑘−1, 𝑡𝑘))−1. (3.11)

In the above, 𝑆 = 𝑡0 < 𝑡1 < . . . < 𝑡𝑛 = 𝑇 are chosen so that

sup
𝑘=1,...,𝑛

𝜆𝜌 (𝑡𝑘−1, 𝑡𝑘) < 1.

To obtain the estimate in 𝐿𝑚 (Ω)-norm, we apply Tonelli theorem and the assumption to see
that

𝔼

(∫ 𝑇

𝑆

𝛽 (𝑟 )𝑑𝑟
)𝑚

=𝑚!𝔼

∫
𝑆<𝑟1<...<𝑟𝑚<𝑇

𝛽 (𝑟1) . . . 𝛽 (𝑟𝑚)𝑑𝑟1 . . . 𝑑𝑟𝑚

6 𝑚!𝜌 (0,𝑇 )𝔼
∫
𝑆<𝑟1<...<𝑟𝑚−1<𝑇

𝛽 (𝑟1) . . . 𝛽 (𝑟𝑚−1)𝑑𝑟1 . . . 𝑑𝑟𝑚−1.

Iterating the above inequality, we obtain the stated estimate for ‖
∫ 𝑇
𝑆
𝛽 (𝑟 )𝑑𝑟 ‖𝐿𝑚 (Ω) .

Under the additional condition (iii), we can choose 𝑡0 = 𝑆 and for each 𝑘 > 1,

𝑡𝑘 = sup{𝑡 ∈ [𝑡𝑘−1,𝑇 ] : 𝜆𝑤 (𝑡𝑘−1, 𝑡𝑘)𝛾 6 1/2}.
With this choice, we have 𝜆𝑤 (𝑡𝑘−1, 𝑡𝑘)𝛾 = 1/2 for 𝑘 = 1, . . . , 𝑛 − 1 and 𝜆𝑤 (𝑡𝑛−1, 𝑡𝑛)𝛾 6 1/2. By
definition of controls, we have

𝑛 − 1

(2𝜆)
1
𝛾

6

𝑛∑︁
𝑘=1

𝑤 (𝑡𝑘−1, 𝑡𝑘) 6 𝑤 (𝑆,𝑇 ),

which yields 𝑛 6 1 + (2𝜆)1/𝛾𝑤 (𝑆,𝑇 ). Hence, from (3.11), we have

𝔼 exp

(
𝜆

∫ 𝑇

𝑆

𝛽 (𝑟 )𝑑𝑟
)
6 2𝑛 6 21+(2𝜆)

1/𝛾𝑤 (𝑆,𝑇 ),

completing the proof. �
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Remark 3.6. In the setting of Lemma 3.5, if for each (𝑠, 𝑡) ∈ Δ( [𝑆,𝑇 ]), 𝜌 (𝑠, 𝑡) 6 𝑤1(𝑠, 𝑡)𝛾1 +
𝑤2(𝑠, 𝑡)𝛾2 for some continuous controls𝑤1,𝑤2 and some constants 0 < 𝛾1 6 𝛾2. Then we have

𝔼 exp

(
𝜆

∫ 𝑇

𝑆

𝛽 (𝑟 )𝑑𝑟
)
6 21+(4𝜆)

1/𝛾1 (𝑤1 (𝑆,𝑇 )+𝑤2 (𝑆,𝑇 )𝛾2/𝛾1) . (3.12)

Indeed, the function 𝑤 = 𝑤1 + 𝑤𝛾2/𝛾12 is a control (see [FV10, Excersice 1.10]) and we have
𝜌 (𝑠, 𝑡) 6 2𝑤 (𝑠, 𝑡)𝛾1 . Then Lemma 3.5(iii) implies (3.12).

Remark 3.7. In Lemma 3.5, we can assume without loss of generality that 𝛾 6 1—for otherwise,
condition (3.10) implies the trivial identification 𝛽 ≡ 0. Furthermore, Lemma 3.5(iii) implies
that for every 𝜅 > 0 and every 𝜌 ∈ (0, 1

1−𝛾 ), with
1

1−𝛾 = ∞ if 𝛾 = 1, we have

𝔼 exp

(
𝜅

(∫ 𝑇

𝑆

𝛽 (𝑟 )𝑑𝑟
)𝜌 )

< ∞.

This follows from the same argument used in Lemma 7.4 below.

The next result is a kind of stochastic Gronwall inequality, which is of independent interest.

Lemma 3.8 (Stochastic Gronwall inequality). Let 𝜉𝑡 ,𝑉𝑡 be nonnegative nondecreasing processes,
let 𝐴𝑡 be a continuous nondecreasing F𝑡 -adapted process with 𝐴0 = 0, and let 𝑀𝑡 be F𝑡 -local
martingale with𝑀0 = 0. Suppose that there exists a constant 𝜃 ∈ (0,∞) such that with probability
one,

𝜉𝑡 6

(∫ 𝑡

0
𝜉
1/𝜃
𝑠 𝑑𝐴𝑠

)𝜃
+𝑀𝑡 +𝑉𝑡 , ∀𝑡 > 0. (3.13)

Then for any bounded stopping time 𝜏 , we have

𝔼2−2
1/𝜃+1𝐴𝜏 𝜉𝜏 6 𝔼𝑉𝜏 when 𝜃 6 1 (3.14)

and

𝔼2−4𝐴
𝜃
𝜏 𝜉𝜏 6 𝔼𝑉𝜏 when 𝜃 > 1. (3.15)

Proof. We put 𝐺 = 𝑀 +𝑉 and consider two cases.
Case 1: when 𝜃 6 1. Define

𝜉𝑡 =

(∫ 𝑡

0

𝜉
1/𝜃
𝑠 𝑑𝐴𝑠

)𝜃
+𝐺𝑡 so that 0 6 𝜉𝑡 6 𝜉𝑡 .

We assume first that𝑀 is a uniformly integrable martingale. For any 𝑡 > 𝑠 > 0, we have

𝛿𝜉𝑠,𝑡 =

(∫ 𝑡

0

𝜉
1/𝜃
𝑟 𝑑𝐴𝑟

)𝜃
−

(∫ 𝑠

0

𝜉
1/𝜃
𝑟 𝑑𝐴𝑟

)𝜃
+ 𝛿𝐺𝑠,𝑡 .

We use the inequality 𝑎𝜃 − 𝑏𝜃 6 (𝑎 − 𝑏)𝜃 (valid for any 𝑎 > 𝑏 > 0) to obtain from the previous
identity that

𝛿𝜉𝑠,𝑡 6

(∫ 𝑡

𝑠

𝜉
1/𝜃
𝑟 𝑑𝐴𝑟

)𝜃
+ 𝛿𝐺𝑠,𝑡 . (3.16)
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Define 𝑡0 = 0 and for each integer 𝑗 > 1, the stopping time

𝑡 𝑗 = inf{𝑡 > 𝑡 𝑗−1 : 𝐴𝑡 −𝐴𝑡 𝑗−1 > 2−1/𝜃 }.

Let 𝑗 > 1 be fixed. For every 𝑡 ∈ [𝑡 𝑗−1, 𝑡 𝑗 ], we derive from (3.16) that

𝛿𝜉𝑡 𝑗−1,𝑡 6
1

2
𝜉𝑡 + 𝛿𝐺𝑡 𝑗−1,𝑡 6

1

2
𝜉𝑡 + 𝛿𝐺𝑡 𝑗−1,𝑡

which yields

𝜉𝑡 6 2𝜉𝑡 𝑗−1 + 2𝛿𝐺𝑡 𝑗−1,𝑡 .

By iteration and the fact that 𝜉0 = 𝑉0, we have

𝜉𝑡 6 2 𝑗𝑉0 +
𝑗∑︁
𝑖=1

2 𝑗−𝑖+1𝛿𝐺𝑡𝑖−1,𝑡𝑖∧𝑡 , ∀𝑡 ∈ [𝑡 𝑗−1, 𝑡 𝑗 ] . (3.17)

Next, let 𝜏 be a bounded stopping time and let 𝑁 be an (random) integer such that 𝑡𝑁 > 𝜏 .
We have

2−2
1/𝜃𝐴𝜏 𝜉𝜏 =

𝑁∑︁
𝑗=1

1[𝑡 𝑗−1,𝑡 𝑗 ) (𝜏)2−2
1/𝜃𝐴𝜏 𝜉𝜏 6

𝑁∑︁
𝑗=1

1[𝑡 𝑗−1,𝑡 𝑗 ) (𝜏)2−( 𝑗−1)𝜉𝜏 .

Using (3.17), we have

2−2
1/𝜃𝐴𝜏 𝜉𝜏 6 2

𝑁∑︁
𝑗=1

1[𝑡 𝑗−1,𝑡 𝑗 ) (𝜏)
(
𝑉0 +

𝑗∑︁
𝑖=1

21−𝑖𝛿𝐺𝑡𝑖−1,𝜏∧𝑡𝑖

)

= 2𝑉0 + 2

𝑁∑︁
𝑖=1

𝑁∑︁
𝑗=𝑖

1[𝑡 𝑗−1,𝑡 𝑗 ) (𝜏)21−𝑖𝛿𝐺𝑡𝑖−1,𝜏∧𝑡𝑖

= 2𝑉0 + 2

𝑁∑︁
𝑖=1

1[𝑡𝑖−1,𝑡𝑁 ) (𝜏)21−𝑖𝛿𝐺𝑡𝑖−1,𝜏∧𝑡𝑖 ,

which is rewritten as

2−2
1/𝜃𝐴𝜏 𝜉𝜏 6 2𝑉0 + 2

∞∑︁
𝑖=1

1[𝑡𝑖−1,∞) (𝜏)21−𝑖𝛿𝑉𝜏∧𝑡𝑖−1,𝜏∧𝑡𝑖 + 2

∞∑︁
𝑖=1

1[𝑡𝑖−1,∞) (𝜏)21−𝑖𝛿𝑀𝜏∧𝑡𝑖−1,𝜏∧𝑡𝑖 .

(3.18)

Bymartingale property, boundedness of𝜏 anduniform integrability,𝔼|𝛿𝑀𝜏∧𝑡𝑖−1,𝜏∧𝑡𝑖 | 6 𝔼|𝑀𝜏∧𝑡𝑖−1 |+
𝔼|𝑀𝜏∧𝑡𝑖 | 6 2 sup𝑡>0𝔼|𝑀𝑡 | < ∞. Hence, by Fubini theorem and martingale property,

𝔼

∞∑︁
𝑖=1

1[𝑡𝑖−1,∞) (𝜏)21−𝑖𝛿𝑀𝜏∧𝑡𝑖−1,𝜏∧𝑡𝑖 = 𝔼

∞∑︁
𝑖=1

1[𝑡𝑖−1,∞) (𝜏)21−𝑖𝔼(𝛿𝑀𝜏∧𝑡𝑖−1,𝜏∧𝑡𝑖 |F𝜏∧𝑡𝑖−1) = 0.
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Taking expectation in (3.18) gives

𝔼2−2
1/𝜃𝐴𝜏 𝜉𝜏 6 𝔼

(
2𝑉0 + 2

∞∑︁
𝑖=1

1[𝑡𝑖−1,∞) (𝜏)21−𝑖𝛿𝑉𝜏∧𝑡𝑖−1,𝜏∧𝑡𝑖

)

6 𝔼

(
2𝑉0 + 2

𝑁∑︁
𝑖=1

𝛿𝑉𝜏∧𝑡𝑖−1,𝜏∧𝑡𝑖

)
= 𝔼𝑉𝜏 .

In the general case when𝑀 is a local martingale, let {𝜏𝑛} be a sequence of increasing stopping
times such that lim𝑛 𝜏𝑛 = ∞ a.s. and for each 𝑛,𝑀𝜏𝑛∧· is a uniformly integrable martingale. For
a bounded stopping time 𝜏 , the previous case implies that

𝔼2−2
1/𝜃𝐴𝜏∧𝜏𝑛 𝜉𝜏∧𝜏𝑛 6 𝔼𝑉𝜏∧𝜏𝑛 .

Sending 𝑛 → ∞ yields (3.14).
Case 2: when 𝜃 > 1. Using Hölder inequality and integration by parts(∫ 𝑡

0

𝜉1/𝜃𝑑𝐴

)𝜃
6

(∫ 𝑡

0

𝜉𝑑𝐴

)
𝐴𝜃−1𝑡 =

∫ 𝑡

0

∫ 𝑠

0

𝜉𝑑𝐴(𝜃 − 1)𝐴𝜃−2𝑠 𝑑𝐴𝑠 +
∫ 𝑡

0

𝐴𝜃−1𝜉𝑑𝐴.

By monotonicity,
∫ 𝑠

0
𝜉𝑑𝐴 6 𝜉𝑠𝐴𝑠 so that∫ 𝑡

0

∫ 𝑠

0

𝜉𝑑𝐴(𝜃 − 1)𝐴𝜃−2𝑠 𝑑𝐴𝑠 6

∫ 𝑡

0

𝜉𝑠 (𝜃 − 1)𝐴𝜃−1𝑠 𝑑𝐴𝑠 .

Hence, we have(∫ 𝑡

0

𝜉1/𝜃𝑑𝐴

)𝜃
6

∫ 𝑡

0

𝜉𝑠𝜃𝐴
𝜃−1
𝑠 𝑑𝐴𝑠 =

∫ 𝑡

0

𝜉𝑠𝑑𝐴
𝜃
𝑠 .

Together with (3.13), we have

𝜉𝑡 6

∫ 𝑡

0

𝜉𝑑𝐴𝜃 +𝑀𝑡 +𝑉𝑡 , ∀𝑡 > 0.

Using the result from the previous case, we obtain (3.15). �

Remark 3.9. Stochastic Gronwall inequality is useful in applications to obtain moment estimates
for solutions to SDEs. Starting from [Sch13], there have been several extensions, for instance
[HHM21, HJ20, Mak20]. The hypothesis of Lemma 3.8 is similar to that of [Mak20]. However,
we emphasize that estimates (3.14) and (3.15) hold for any 𝜃 ∈ (0,∞) and do not depend on the
quadratic variation of the martingale part.

Lemma 3.10. Let 𝜀 > 0, 𝑠 ∈ 𝐷𝑛 and 𝑟 > 𝑠 . Then∫ 𝑟

𝑠

(𝑟 − 𝑘𝑛 (𝜃 ))−1−𝜀𝑑𝜃 6 𝑁𝜀 [min(𝑟 − 𝑠, 1/𝑛)]−𝜀 + 1(𝑟∉𝐷𝑛) (𝑟 − 𝑘𝑛 (𝑟 ))−𝜀, (3.19)∫ 𝑟

𝑠

(𝑟 − 𝑘𝑛 (𝜃 ))−1𝑑𝜃 6 log(𝑛(𝑘𝑛 (𝑟 ) − 𝑠)) + 2, (3.20)
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∫ 𝑟

𝑠

(𝑟 − 𝑘𝑛 (𝜃 ))−1+𝜀𝑑𝜃 6 𝑁𝜀 (𝑟 − 𝑠)𝜀 . (3.21)

Proof. If 𝑟 − 𝑠 6 1/𝑛, we have∫ 𝑟

𝑠

(𝑟 − 𝑘𝑛 (𝜃 ))−1−𝜀𝑑𝜃 =

∫ 𝑟

𝑠

(𝑟 − 𝑠)−1−𝜀𝑑𝜃 = (𝑟 − 𝑠)−𝜀 .

We now assume that 𝑟 − 𝑠 > 1/𝑛. If 𝑟 ∈ 𝐷𝑛 then∫ 𝑟

𝑠

(𝑟 − 𝑘𝑛 (𝜃 ))−1−𝜀𝑑𝜃 6 (1/𝑛)−𝜀
∞∑︁
𝑗=1

𝑗−1−𝜀 = 𝑁 (1/𝑛)−𝜀 .

If 𝑟 ∉ 𝐷𝑛 , then we have 𝑟 > 𝑘𝑛 (𝑟 ) and∫ 𝑟

𝑠

(𝑟 − 𝑘𝑛 (𝜃 ))−1−𝜀𝑑𝜃 =

∫ 𝑘𝑛 (𝑟 )

𝑠

(𝑟 − 𝑘𝑛 (𝜃 ))−1−𝜀𝑑𝜃 +
∫ 𝑟

𝑘𝑛 (𝑟 )
(𝑟 − 𝑘𝑛 (𝜃 ))−1−𝜀𝑑𝜃

6 𝑁 (1/𝑛)−𝜀 + (𝑟 − 𝑘𝑛 (𝑟 ))−𝜀 .
This shows (3.19).

When 𝜀 = 0, we argue analogously. The only notable difference is the following estimate∫ 𝑘𝑛 (𝑟 )

𝑠

(𝑟 − 𝑘𝑛 (𝜃 ))−1𝑑𝜃 6
𝑛(𝑘𝑛 (𝑟 )−𝑠)∑︁

𝑗=1

𝑗−1 6 log(𝑛(𝑘𝑛 (𝑟 ) − 𝑠)) + 1.

This shows (3.20).
Since 𝑟 − 𝑘𝑛 (𝜃 ) > 𝑟 − 𝜃 , estimate (3.21) is obvious. �

Lemma 3.11. Let 𝐾 > 0 be a constant and let Σ, Σ̄ be symmetric invertible matrices such that

𝐾−1𝐼 6 ΣΣ̄
−1
6 𝐾𝐼 . Then for all 𝑥 ∈ ℝ𝑑 , one has the bound

|𝑝Σ(𝑥) − 𝑝Σ̄(𝑥) | 6 𝑁 ‖𝐼 − ΣΣ̄
−1‖

(
𝑝Σ/2(𝑥) + 𝑝Σ̄/2(𝑥)

)
(3.22)

where 𝑁 is a constant depending only on 𝑑, 𝐾 .

Proof. See [DGL21, Proposition 2.7]. �

4. Regularizing properties of Brownian paths—a case study

We obtain various moment estimates for the following functionals of Brownian paths∫ 𝑡

𝑠

[𝑓 (𝑟, 𝐵𝑟 ) − 𝑓 (𝑟, 𝐵𝑘𝑛 (𝑟 ))]𝑑𝑟 and

∫ 𝑡

𝑠

𝑔(𝑟, 𝐵𝑟 )𝑑𝑟

where 𝑓 , 𝑔 are measurable functions in 𝕃
𝑞
𝑝 ( [0, 1]). In typical applications herein, we take 𝑓 = 𝑏𝑛

and 𝑔 = 𝑏 − 𝑏𝑛 . Hence, 𝑓 usually has an additional property of being in 𝕃
𝑞
∞( [0, 1]). To extract a

rate from 𝑏 − 𝑏𝑛 , one has to measure 𝑔 with respect to a norm which is weaker than that of 𝕃
𝑞
𝑝 .

For this purpose, we usually measure 𝑔 in 𝕃
𝑞
−𝜈,𝑝 ( [0, 1]) for some 𝜈 ∈ [0, 1] or in 𝕃

𝑞1
𝑝1 ( [0, 1]) for

some 𝑞1 6 𝑞 and some 𝑝1 6 𝑝 .
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In later sections, analogous functionals of the solutions to (1.1) and (1.3) will play a central
role in the proofs of Theorems 2.2 and 2.3. While not being applied directly in proving the
main results, the analysis in the current section are relatively simpler, mostly due to the fact
that statistical properties of Brownian motion are well-understood. In addition, some of the
arguments generalizes directly when 𝐵 is replaced by another stochastic process which has
similar analytic estimates. Therefore, we present these results at an early stage in the hope
of easing out the technicalities and outlining our method. Readers who are familiar with the
stochastic sewing techniques, of course, may go directly to the following sections.

Let 𝑝𝑡 (𝑥) := (2𝜋𝑡)−𝑑/2𝑒−|𝑥 |2/(2𝑡) and 𝑃𝑠,𝑡 𝑓 (𝑥) := 𝑝𝑡−𝑠 ∗ 𝑓 (𝑥).

Lemma 4.1. Let 𝑝 ∈ [1,∞], 𝛿 ∈ (0, 1), for 0 < 𝑠 < 𝑡 , there exists 𝑁 = 𝑁 (𝑑, 𝑝, 𝛿) > 0 such that

for any 𝑓 ∈ 𝐿𝑝 (ℝ𝑑) and 0 < 𝑠 < 𝑡 ,

‖ 𝑓 (𝐵𝑡 )‖𝐿𝑝 (Ω) 6 𝑁𝑡
− 𝑑

2𝑝 ‖ 𝑓 ‖𝐿𝑝 (ℝ𝑑 ) (4.1)

and

‖𝑃0,𝑡 𝑓 − 𝑃0,𝑠 𝑓 ‖𝐿𝑝 (ℝ𝑑 ) 6 𝑁 |𝑡 − 𝑠 |𝛿 |𝑠 |−𝛿 ‖ 𝑓 ‖𝐿𝑝 (ℝ𝑑 ) . (4.2)

Proof. Inequality (4.1) is taken from [DGL21, Lemma 2.5]. We only show (4.2). First

‖∇2𝑃𝑡 𝑓 ‖𝐿𝑝 (ℝ𝑑 ) 6‖∇2𝑝𝑡 ‖𝐿∞ (ℝ𝑑 ) ‖ 𝑓 ‖𝐿𝑝 (ℝ𝑑 ) . 𝑡
−1‖ 𝑓 ‖𝐿𝑝 (ℝ𝑑 ) .

Then for 𝛿 ∈ (0, 1), we have

‖𝑃0,𝑡 𝑓 − 𝑃0,𝑠 𝑓 ‖𝐿𝑝 (ℝ𝑑 ) 6

∫ 𝑡

𝑠

‖𝜕𝑡𝑃0,𝑟 𝑓 ‖𝐿𝑝 (ℝ𝑑 )𝑑𝑟 =

∫ 𝑡

𝑠

‖Δ𝑃0,𝑟 𝑓 ‖𝐿𝑝 (ℝ𝑑 )𝑑𝑟

.

∫ 𝑡

𝑠

𝑟−1+𝛿𝑟−𝛿𝑑𝑟 ‖ 𝑓 ‖𝐿𝑝 (ℝ𝑑 ) . 𝑠
−𝛿 (𝑡 − 𝑠)𝛿 ‖ 𝑓 ‖𝐿𝑝 (ℝ𝑑 ),

completing the proof. �

While not being used directly, the following result is pivotal.

Proposition 4.2. Let 𝑓 ∈ 𝕃
𝑞
𝑝 ( [0, 1]), with 𝑝, 𝑞 ∈ [2,∞) satisfying 𝑑

𝑝
+ 2
𝑞
< 1. Then for all

2/𝑛 6 𝑆 6 𝑇 6 1 and 𝑛 ∈ ℕ one has the bounds

‖
∫ 𝑇

𝑆

(𝑓 (𝑟, 𝐵𝑟 ) − 𝑓 (𝑟, 𝐵𝑘𝑛 (𝑟 )))𝑑𝑟 ‖𝐿𝑝 (Ω)

6 𝑁 (1/𝑛) 1
2 log(𝑛)‖ 𝑓 ‖𝕃𝑞

𝑝 ( [𝑆,𝑇 ])

[
𝑆
− 𝑑

2𝑝 |𝑇 − 𝑆 |
1
2−

1
𝑞 + 𝑆−

𝑑
𝑝 |𝑇 − 𝑆 |1−

2
𝑞

]
(4.3)

and

‖
∫ 𝑇

𝑆

(𝑓 (𝑟, 𝐵𝑟 ) − 𝑓 (𝑟, 𝐵𝑘𝑛 (𝑟 )))𝑑𝑟 ‖𝐿𝑝 (Ω) 6 𝑁 (1/𝑛) 1
2 log(𝑛)‖ 𝑓 ‖𝕃𝑞

𝑝 ( [𝑆,𝑇 ]) |𝑇 − 𝑆 |
1
2−

1
𝑞−

𝑑
2𝑝 .

(4.4)
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Proof. (4.4) is a direct consequence of (4.3) and Lemma 3.4. We show (4.3) below. Let 2/𝑛 6 𝑆 6
𝑇 6 1 be fixed. By linearity, we can assume that ‖ 𝑓 ‖𝕃𝑞

𝑝 ( [𝑆,𝑇 ]) = 1. For 𝑆 6 𝑠 6 𝑡 6 𝑇 , let

𝐴𝑠,𝑡 := 𝔼𝑠

∫ 𝑡

𝑠

(𝑓 (𝑟, 𝐵𝑟 ) − 𝑓 (𝑟, 𝐵𝑘𝑛 (𝑟 )))𝑑𝑟 .

We treat two cases 𝑡 6 𝑘𝑛 (𝑠) + 2
𝑛
and 𝑡 > 𝑘𝑛 (𝑠) + 2

𝑛
separately as following.

Case 1. For 𝑡 ∈ (𝑠, 𝑘𝑛 (𝑠) + 2
𝑛
], by triangle inequality and (4.1) we have

‖𝐴𝑠,𝑡 ‖𝐿𝑝 (Ω) 6
∫ 𝑡

𝑠

‖ 𝑓 (𝑟, 𝐵𝑟 )‖𝐿𝑝 (Ω) + ‖ 𝑓 (𝑟, 𝐵𝑘𝑛 (𝑟 ))‖𝐿𝑝 (Ω)𝑑𝑟

.

∫ 𝑡

𝑠

𝑘𝑛 (𝑟 )−
𝑑
2𝑝 ‖ 𝑓 (𝑟, ·)‖𝐿𝑝 (ℝ𝑑 )𝑑𝑟 .

Note that 𝑘𝑛 (𝑟 ) > 𝑘𝑛 (𝑠) > 𝑠/2, applying Hölder inequality and the fact that 𝑡 − 𝑠 6 2/𝑛, we
have ∫ 𝑡

𝑠

𝑘𝑛 (𝑟 )−
𝑑
2𝑝 ‖ 𝑓 (𝑟, ·)‖𝐿𝑝 (ℝ𝑑 )𝑑𝑟 . 𝑠

− 𝑑
2𝑝 ‖ 𝑓 ‖𝕃𝑞

𝑝 ( [𝑠,𝑡]) (𝑡 − 𝑠)
1− 1

𝑞

. (1/𝑛)1/2𝑠−
𝑑
2𝑝 ‖ 𝑓 ‖𝕃𝑞

𝑝 ( [𝑠,𝑡]) (𝑡 − 𝑠)
1
2
− 1
𝑞 .

This gives

‖𝐴𝑠,𝑡 ‖𝐿𝑝 (Ω) . (1/𝑛) 1
2𝑠

− 𝑑
2𝑝 ‖ 𝑓 ‖𝕃𝑞

𝑝 ( [𝑠,𝑡]) (𝑡 − 𝑠)
1
2
− 1
𝑞 . (4.5)

Case 2. When 𝑡 ∈ (𝑘𝑛 (𝑠) + 2
𝑛
, 1], by triangle inequality,

‖𝐴𝑠,𝑡 ‖𝐿𝑝 (Ω) 6
∫ 𝑘𝑛 (𝑠)+ 2

𝑛

𝑠

‖𝔼𝑠 (𝑓 (𝑟, 𝐵𝑟 ) − 𝑓 (𝑟, 𝐵𝑘𝑛 (𝑟 )))‖𝐿𝑝 (Ω)𝑑𝑟

+
∫ 𝑡

𝑘𝑛 (𝑠)+ 2
𝑛

‖𝔼𝑠 (𝑓 (𝑟, 𝐵𝑟 ) − 𝑓 (𝑟, 𝐵𝑘𝑛 (𝑟 )))‖𝐿𝑝 (Ω)𝑑𝑟 =: 𝐼1 + 𝐼2.

For 𝐼1, from (4.5) we know that

𝐼1 . (1/𝑛) 1
2𝑠

− 𝑑
2𝑝 ‖ 𝑓 ‖𝕃𝑞

𝑝 ( [𝑠,𝑡])

(
𝑘𝑛 (𝑠) − 𝑠 +

2

𝑛

) 1
2
− 1
𝑞

.

Because 𝑘𝑛 (𝑠) − 𝑠 + 2
𝑛
6 𝑡 − 𝑠 , we get

𝐼1 . (1/𝑛) 1
2𝑠

− 𝑑
2𝑝 ‖ 𝑓 ‖𝕃𝑞

𝑝 ( [𝑠,𝑡]) (𝑡 − 𝑠)
1
2
− 1
𝑞 .

By (4.1) and (4.2) we have for 𝐼2

𝐼2 .

∫ 𝑡

𝑘𝑛 (𝑠)+ 2
𝑛

‖𝑃𝑠,𝑟 𝑓 (𝑟, 𝐵𝑠) − 𝑃𝑠,𝑘𝑛 (𝑟 ) 𝑓 (𝑟, 𝐵𝑠)‖𝐿𝑝 (Ω)𝑑𝑟

.

∫ 𝑡

𝑘𝑛 (𝑠)+ 2
𝑛

𝑠
− 𝑑

2𝑝 ‖𝑃𝑠,𝑟 𝑓 (𝑟, ·) − 𝑃𝑠,𝑘𝑛 (𝑟 ) 𝑓 (𝑟, ·)‖𝐿𝑝 (ℝ𝑑 )𝑑𝑟
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.

∫ 𝑡

𝑘𝑛 (𝑠)+ 2
𝑛

𝑠
− 𝑑

2𝑝𝑛−
1
2 (𝑘𝑛 (𝑟 ) − 𝑠)−

1
2 ‖ 𝑓 (𝑟, ·)‖𝐿𝑝 (ℝ𝑑 )𝑑𝑟

. (1/𝑛) 1
2𝑠

− 𝑑
2𝑝 ‖ 𝑓 ‖𝕃𝑞

𝑝 ( [𝑠,𝑡]) (𝑡 − 𝑠)
1
2−

1
𝑞 .

Combining these two cases together we obtain that for 𝑆 6 𝑠 6 𝑡 6 𝑇 ,

‖𝐴𝑠,𝑡 ‖𝐿𝑝 (Ω) . (1/𝑛) 1
2𝑠

− 𝑑
2𝑝 ‖ 𝑓 ‖𝕃𝑞

𝑝 ( [𝑠,𝑡]) (𝑡 − 𝑠)
1
2−

1
𝑞 . (4.6)

Furthermore, for 𝑢 ∈ (𝑠, 𝑡), we have 𝔼𝑠𝛿𝐴𝑠,𝑢,𝑡 = 0. Let𝑤 be the continuous control defined by

𝑤 (𝑠, 𝑡) =
[
𝑠
− 𝑑

2𝑝 ‖ 𝑓 ‖𝕃𝑞
𝑝 ( [𝑠,𝑡]) (𝑡 − 𝑠)

1
2−

1
𝑞

]2
+ 𝑠−

𝑑
2𝑝 ‖ 𝑓 ‖𝕃𝑞

𝑝 ( [𝑠,𝑡]) (𝑡 − 𝑠)
1− 1

𝑞 .

(See Example 3.3 for a justification that𝑤 is a control.) Denote

A𝑡 :=

∫ 𝑡

0
(𝑓 (𝑟, 𝐵𝑟 ) − 𝑓 (𝑟, 𝐵𝑘𝑛 (𝑟 )))𝑑𝑟, 𝐽𝑠,𝑡 := 𝛿A𝑠,𝑡 −𝐴𝑠,𝑡 .

Using similar estimates leading to (4.5), we have

‖ 𝐽𝑠,𝑡 ‖𝐿𝑝 (Ω) . 𝑠
− 𝑑

2𝑝 ‖ 𝑓 ‖𝕃𝑞
𝑝 ( [𝑠,𝑡]) (𝑡 − 𝑠)

1− 1
𝑞 . 𝑤 (𝑠, 𝑡) .

Furthermore, 𝛿 𝐽𝑠,𝑢,𝑡 = −𝛿𝐴𝑠,𝑢,𝑡 and we derive from (4.6) that

‖𝛿 𝐽𝑠,𝑢,𝑡 ‖𝐿𝑝 (Ω) . (1/𝑛) 1
2𝑤 (𝑠, 𝑡) 1

2 .

It is obvious that 𝔼𝑠 𝐽𝑠,𝑡 = 0 and hence 𝔼𝑠𝛿 𝐽𝑠,𝑢,𝑡 = 0. Applying Lemma 3.2, we have

‖ 𝐽𝑠,𝑡 ‖𝐿𝑝 (Ω) . (1/𝑛) 1
2 log(𝑛)

[
𝑤 (𝑠, 𝑡) 1

2 +𝑤 (𝑠, 𝑡)
]

for every 𝑆 6 𝑠 6 𝑡 6 𝑇 . By triangle inequality and (4.6), this implies that

‖𝛿A𝑠,𝑡 ‖𝐿𝑝 (Ω) . (1/𝑛) 1
2 log(𝑛)

[
𝑤 (𝑠, 𝑡) 1

2 +𝑤 (𝑠, 𝑡)
]
.

Because ‖ 𝑓 ‖𝕃𝑞
𝑝 ( [𝑠,𝑡]) 6 ‖ 𝑓 ‖𝕃𝑞

𝑝 ( [𝑆,𝑇 ]) = 1 and 𝑡 − 𝑠 6 1, we have𝑤 (𝑠, 𝑡) 6 2𝑠
−𝑑

𝑝 (𝑡 − 𝑠)1−
2
𝑞 . Hence,

we deduce (4.3) from the above estimate. �

In the following result, the 𝐿𝑝 (Ω)-norm in (4.4) is improved to 𝐿𝑝 (Ω |F𝑣 )-norm.

Proposition 4.3. Let 𝑓 ∈ 𝕃
𝑞
𝑝 ( [0, 1]), with 𝑝, 𝑞 ∈ [2,∞) satisfying 𝑑

𝑝
+ 2
𝑞
< 1. Let 𝑣 ∈ [0, 1− 2/𝑛]

be a fixed number. Then for all 𝑣 + 2/𝑛 6 𝑆 6 𝑇 6 1 and all 𝑛, one has the bound

‖
∫ 𝑇

𝑆

[𝑓 (𝑟, 𝐵𝑟 ) − 𝑓 (𝑟, 𝐵𝑘𝑛 (𝑟 ))]𝑑𝑟 ‖𝐿𝑝 (Ω |F𝑣) 6 𝑁 (1/𝑛) 1
2 log(𝑛)‖ 𝑓 ‖𝕃𝑞

𝑝 ( [𝑆,𝑇 ]) |𝑇 − 𝑆 |
1
2−

1
𝑞−

𝑑
2𝑝 ,

(4.7)

where 𝑁 = 𝑁 (𝑝,𝑑) is a constant.
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Proof. We follow the argument used in Proposition 4.2, replacing the 𝐿𝑝 (Ω)-norm by the
𝐿𝑝 (Ω |F𝑣 )-norm. The estimate (4.1) used therein (whose purpose is to deduce the analytic

𝐿𝑝 (ℝ𝑑)-norm from the probabilistic 𝐿𝑝 (Ω)-norm) is replaced by the following estimate

‖𝑔(𝐵𝑡 )‖𝐿𝑝 (Ω |F𝑣) 6 𝑁 (𝑡 − 𝑣)−
𝑑
2𝑝 ‖𝑔‖𝐿𝑝 (ℝ𝑑 ) ∀𝑔 ∈ 𝐿𝑝 (ℝ𝑑), 𝑡 > 𝑣, (4.8)

with the same constant 𝑁 as in (4.1). This yields the following estimate, which corresponds to
(4.3),

‖
∫ 𝑇

𝑆

[𝑓 (𝑟, 𝐵𝑟 ) − 𝑓 (𝑟, 𝐵𝑘𝑛 (𝑟 ))]𝑑𝑟 ‖𝐿𝑝 (Ω |F𝑣)

6 𝑁 (1/𝑛) 1
2 log(𝑛)‖ 𝑓 ‖𝕃𝑞

𝑝 ( [𝑆,𝑇 ])

[
(𝑆 − 𝑣)−

𝑑
2𝑝 |𝑇 − 𝑆 |

1
2−

1
𝑞 + (𝑆 − 𝑣)−

𝑑
𝑝 |𝑇 − 𝑆 |1−

2
𝑞

]
. (4.9)

Applying Lemma 3.4, we obtain (4.7). �

An advantage of the conditional norms over the usual ones is realized the next result.

Proposition 4.4. Let 𝑓 be a Borel function in 𝕃
𝑞
𝑝 ( [0, 1]) ∩ 𝕃

𝑞
∞( [0, 𝑞]) for some 𝑝, 𝑞 ∈ [2,∞)

satisfying 𝑑
𝑝
+ 2
𝑞
< 1.

We put 𝛽𝑛 (𝑓 ) = sup𝑟∈𝐷𝑛
‖ 𝑓 ‖𝕃𝑞

∞ ( [𝑟,𝑟+1/𝑛]) . Then for any 𝑝 ∈ (0, 𝑝), there exists a constant

𝑁 = 𝑁 (𝑑, 𝑝, 𝑞, 𝑝) such that

‖ sup
𝑡∈[0,1]

|
∫ 𝑡

0
[𝑓 (𝑟, 𝐵𝑟 ) − 𝑓 (𝑟, 𝐵𝑘𝑛 (𝑟 ))]𝑑𝑟 | ‖𝐿𝑝 (Ω)

6 𝑁
[
(1/𝑛)1−

1
𝑞 𝛽𝑛 (𝑓 ) + (1/𝑛) 1

2 log(𝑛)‖ 𝑓 ‖𝕃𝑞
𝑝 ( [0,1])

]
.

Proof. Put A𝑡 =
∫ 𝑡

0
(𝑓 (𝑟, 𝐵𝑟 ) − 𝑓 (𝑟, 𝐵𝑘𝑛 (𝑟 )))𝑑𝑟 which has continuous sample paths by (4.11). In

view of Lemma 3.1, it suffices to show that there exists a constant 𝑁 = 𝑁 (𝑑, 𝑝, 𝑞) such that

‖𝛿A𝑠,𝑡 ‖𝐿𝑝 (Ω |F𝑠 ) 6 𝑁
[
(1/𝑛)1−

1
𝑞 𝛽𝑛 (𝑓 ) + (1/𝑛) 1

2 log(𝑛)‖ 𝑓 ‖𝕃𝑞
𝑝 ( [0,1])

]
(4.10)

for every (𝑠, 𝑡) ∈ Δ.
Indeed, by assumption and Hölder inequality, we have

|𝛿A𝑠,𝑡 | 6 2

∫ 𝑡

𝑠

‖ 𝑓𝑟 ‖𝐿∞ (ℝ𝑑 )𝑑𝑟 . ‖ 𝑓 ‖𝕃𝑞
∞ ( [𝑠,𝑡]) (𝑡 − 𝑠)

1− 1
𝑞 (4.11)

for every (𝑠, 𝑡) ∈ Δ. For every (𝑠, 𝑡) ∈ Δ satisfying 𝑡 − 𝑠 > 2/𝑛, we obtain from (4.11) and (4.7)
that

‖𝛿A𝑠,𝑡 ‖𝐿𝑝 (Ω |F𝑠 ) 6 ‖𝛿A𝑠,𝑠+2/𝑛‖𝐿𝑝 (Ω |F𝑠 ) + ‖𝛿A𝑠+2/𝑛,𝑡 ‖𝐿𝑝 (Ω |F𝑠 )

. (1/𝑛)1−
1
𝑞 ‖ 𝑓 ‖𝕃𝑞

∞ ( [𝑠,𝑠+2/𝑛]) + (1/𝑛) 1
2 log(𝑛)‖ 𝑓 ‖𝕃𝑞

𝑝 ( [0,1]) .
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Note that ‖ 𝑓 ‖𝕃𝑞
∞ ( [𝑠,𝑠+2/𝑛]) . 𝛽𝑛 (𝑓 ). For every (𝑠, 𝑡) ∈ Δ satisfying 𝑡 − 𝑠 6 2/𝑛, (4.11) trivially

implies that

‖𝛿A𝑠,𝑡 ‖𝐿𝑝 (Ω |F𝑠 ) . (1/𝑛)1−
1
𝑞 ‖ 𝑓 ‖𝕃𝑞

∞ ( [𝑠,𝑠+2/𝑛]) . (1/𝑛)1−
1
𝑞 𝛽𝑛 (𝑓 ).

Hence, in both cases, we have obtained (4.10). �

Next, we turn to the functional
∫ 𝑡

𝑠
𝑔(𝑟, 𝐵𝑟 )𝑑𝑟 .

Lemma 4.5. Let 𝑔 be a function in 𝕃
𝑞
𝑝 ( [0, 1]) for some 𝑝, 𝑞 ∈ [1,∞] satisfying 𝑑

𝑝
+ 2
𝑞
< 2. Then

for every𝑚 > 1, there exists a constant 𝑁 = 𝑁 (𝑚,𝑑, 𝑝, 𝑞) such that for every (𝑠, 𝑡) ∈ Δ,

‖
∫ 𝑡

𝑠

𝑔(𝑟, 𝐵𝑟 )𝑑𝑟 ‖𝐿𝑚 (Ω) 6 𝑁 ‖𝑔‖𝕃𝑞
𝑝 ( [𝑠,𝑡]) (𝑡 − 𝑠)

1− 𝑑
2𝑝−

1
𝑞 .

Proof. We can assume that 𝑔 is nonnegative. Using standard estimate for the heat kernel and
Hölder inequality, we have for every (𝑠, 𝑡) ∈ Δ that

𝔼𝑠

∫ 𝑡

𝑠

𝑔(𝑟, 𝐵𝑟 )𝑑𝑟 =
∫ 𝑡

𝑠

𝑃𝑠,𝑟𝑔(𝑟, 𝐵𝑠)𝑑𝑟 .
∫ 𝑡

𝑠

(𝑟 − 𝑠)−
𝑑
2𝑝 ‖𝑔𝑟 ‖𝐿𝑝 (ℝ𝑑 )𝑑𝑟

. ‖𝑔‖𝕃𝑞
𝑝 ( [𝑠,𝑡]) (𝑡 − 𝑠)

1− 𝑑
2𝑝−

1
𝑞 .

Applying Lemma 3.5, we obtain the stated estimate for every integer𝑚 > 1. This and the
Hölder interpolation inequality implies the estimate for any real𝑚 > 1. �

Proposition 4.6. Let 𝑝 ∈ [2,∞) and 𝑞 ∈ [2,∞]. Let Γ be a positive number,𝑤0 be a continuous
control on Δ and 𝑔 be a function in 𝕃

𝑞
𝑝 ( [0, 1]) such that for any (𝑠, 𝑡) ∈ Δ,

‖𝑔‖𝕃𝑞
−1,𝑝 ( [𝑠,𝑡]) 6 Γ𝑤0(𝑠, 𝑡)

1
𝑞 and ‖𝑔‖𝕃𝑞

𝑝 ( [𝑠,𝑡]) 6 𝑤0(𝑠, 𝑡)
1
𝑞 .

(a) Then for every 0 6 𝑣 < 𝑆 6 𝑇 6 1

‖
∫ 𝑇

𝑆

𝑔(𝑟, 𝐵𝑟 )𝑑𝑟 ‖𝐿𝑝 (Ω |F𝑣) 6 𝑁𝑤0(𝑆,𝑇 )
1
𝑞 Γ(1 + | log(Γ) |)

×
[
(𝑆 − 𝑣)−

𝑑
2𝑝 (𝑇 − 𝑆)

1
2−

1
𝑞 + (𝑆 − 𝑣)−

𝑑
𝑝 (𝑇 − 𝑆)1−

2
𝑞

]
. (4.12)

(b) If furthermore 𝑝, 𝑞 satisfy 𝑑
𝑝
+ 2
𝑞
< 1, then for any 𝑝 ∈ (0, 𝑝), there exists a constant 𝑁 =

𝑁 (𝑑, 𝑝, 𝑞, 𝑝) such that

‖ sup
𝑡∈[0,1]

|
∫ 𝑡

0
𝑔(𝑟, 𝐵𝑟 )𝑑𝑟 | ‖𝐿𝑝 (Ω) 6 𝑁 Γ(1 + | log(Γ) |)𝑤0(0, 1).

Proof. (a) Let 𝑣, 𝑆,𝑇 be fixed such that 0 6 𝑣 < 𝑆 < 𝑇 6 1. We can assume without loss of
generality that𝑤0(𝑆,𝑇 ) = 1. For each (𝑠, 𝑡) ∈ Δ( [𝑆,𝑇 ]), let

𝐴𝑠,𝑡 = 𝔼𝑠

∫ 𝑡

𝑠

𝑔(𝑟, 𝐵𝑟 )𝑑𝑟 =
∫ 𝑡

𝑠

𝑃𝑠,𝑟𝑔(𝑟, 𝐵𝑠)𝑑𝑟
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and

𝐽𝑠,𝑡 =

∫ 𝑡

𝑠

𝑔(𝑟, 𝐵𝑟 )𝑑𝑟 −𝐴𝑠,𝑡 .

In the above, we can interchange the conditional expectation and the integration due to Fubini
theorem and Lemma 4.5. Define the continuous control𝑤 on Δ( [𝑆,𝑇 ]) by

𝑤 (𝑠, 𝑡) =
[
(𝑠 − 𝑣)−

𝑑
2𝑝 (𝑡 − 𝑠)

1
2
− 1
𝑞𝑤0(𝑠, 𝑡)

1
𝑞

]2
+ (𝑠 − 𝑣)−

𝑑
2𝑝 (𝑡 − 𝑠)1−

1
𝑞𝑤0(𝑠, 𝑡)

1
𝑞 .

Applying Minkowski inequality, (4.1) and Hölder inequality, we have

‖ 𝐽𝑠,𝑡 ‖𝐿𝑝 (Ω |F𝑣) 6 2

∫ 𝑡

𝑠

‖𝑔(𝑟, 𝐵𝑟 )‖𝐿𝑝 (Ω |F𝑣)𝑑𝑟 .

∫ 𝑡

𝑠

(𝑟 − 𝑣)−
𝑑
2𝑝 ‖𝑔(𝑟, ·)‖𝐿𝑝 (ℝ𝑑 )𝑑𝑟

. (𝑠 − 𝑣)−
𝑑
2𝑝 ‖𝑔‖𝕃𝑞

𝑝 ( [𝑠,𝑡]) (𝑡 − 𝑠)
1− 1

𝑞 . 𝑤 (𝑠, 𝑡).

Furthermore, 𝔼𝑠 𝐽𝑠,𝑡 = 0, showing that (3.1) is satisfied.
On the other hand, we have

‖𝐴𝑠,𝑡 ‖𝐿𝑝 (Ω |F𝑣) 6

∫ 𝑡

𝑠

‖𝑃𝑠,𝑟𝑔(𝑟, 𝐵𝑠)‖𝐿𝑝 (Ω |F𝑣)𝑑𝑟

.

∫ 𝑡

𝑠

(𝑠 − 𝑣)−
𝑑
2𝑝 ‖𝑃𝑠,𝑟𝑔(𝑟, ·)‖𝐿𝑝 (ℝ𝑑 )𝑑𝑟

.

∫ 𝑡

𝑠

(𝑠 − 𝑣)−
𝑑
2𝑝 (𝑟 − 𝑠)− 1

2 ‖𝑔(𝑟, ·)‖𝐿−1,𝑝 (ℝ𝑑 )𝑑𝑟

. (𝑠 − 𝑣)−
𝑑
2𝑝 (𝑡 − 𝑠)

1
2
− 1
𝑞 ‖𝑔‖𝕃𝑞

−1,𝑝 ( [𝑠,𝑡]) .

Combining with our assumption on 𝑔 leads to ‖𝐴𝑠,𝑡 ‖𝐿𝑝 (Ω) . Γ𝑤 (𝑠, 𝑡)1/2. Since 𝛿 𝐽𝑠,𝑢,𝑡 = −𝛿𝐴𝑠,𝑢,𝑡 ,
this implies that 𝐽 satisfies (3.2). The condition (3.3) is trivial because 𝔼𝑠 𝐽𝑠,𝑡 = 0. Applying
Lemma 3.2, we have for every (𝑠, 𝑡) ∈ Δ( [𝑆,𝑇 ]),

‖ 𝐽𝑠,𝑡 ‖𝐿𝑝 (Ω |F𝑣) . Γ(1 + | log Γ |)𝑤 (𝑠, 𝑡) 1
2 + Γ𝑤 (𝑠, 𝑡)

and by triangle inequality,

‖
∫ 𝑡

𝑠

𝑔(𝑟, 𝐵𝑟 )𝑑𝑟 ‖𝐿𝑝 (Ω) . Γ(1 + | log Γ |)𝑤 (𝑠, 𝑡) 1
2 + Γ𝑤 (𝑠, 𝑡).

Because𝑤0(𝑠, 𝑡) 6 1 and 𝑡 − 𝑠 6 1, we have𝑤 (𝑠, 𝑡) 6 2(𝑠 − 𝑣)−
𝑑
𝑝 (𝑡 − 𝑠)1−

2
𝑞 . Hence, we deduce

(4.12) from the above estimate by taking (𝑠, 𝑡) = (𝑆,𝑇 ).
(b) Applying Lemma 3.4 and part (a), we have

‖
∫ 𝑡

𝑠

𝑔(𝑟, 𝐵𝑟 )𝑑𝑟 ‖𝐿𝑝 (Ω |F𝑣) . Γ(1 + | log(Γ) |)𝑤0(0, 1)
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for every 𝑣 < 𝑠 6 𝑡 6 1. In view of Lemma 4.5 and Kolmogorov continuity theorem, it is easy

to see that the process 𝑡 ↦→
∫ 𝑡

0
𝑔(𝑟, 𝐵𝑟 )𝑑𝑟 has a continuous version. Hence, the above inequality

holds for every 0 6 𝑣 = 𝑠 6 𝑡 6 1. Applying Lemma 3.1, we obtain the result. �

Proposition 4.7. Let 𝜈 ∈ [0, 1), 𝑝 ∈ [2,∞) and 𝑞 ∈ [2,∞], 𝑑
𝑝
+ 2
𝑞
+ 𝜈 < 2. Let 𝑔 be a function

in 𝕃
𝑞
𝑝 ( [0, 1]) ∩ 𝕃

𝑞
−𝜈,𝑝 ( [0, 1]) Then for any 𝑝 ∈ (0, 𝑝), there exists a constant 𝑁 = 𝑁 (𝜈, 𝑑, 𝑝, 𝑞, 𝑝)

such that

‖ sup
𝑡∈[0,1]

|
∫ 𝑡

0
𝑔(𝑟, 𝐵𝑟 )𝑑𝑟 | ‖𝐿𝑝 (Ω) 6 𝑁 ‖𝑔‖𝕃𝑞

−𝜈,𝑝 ( [0,1]) .

Proof. In view of Lemma 3.1, it suffices to show that

sup
(𝑠,𝑡)∈Δ

‖
∫ 𝑡

𝑠

𝑔(𝑟, 𝐵𝑟 )𝑑𝑟 ‖𝐿𝑝 (Ω |F𝑠 ) . ‖𝑔‖𝕃𝑞
−𝜈,𝑝 ( [0,1]) . (4.13)

The proof is similar to that of Proposition 4.6, however, the control can be chosen in a simpler
way. Let 𝑣 ∈ [0, 1] be fixed but arbitrary. For each (𝑠, 𝑡) ∈ Δ, 𝑠 > 𝑣 , define

𝐴𝑠,𝑡 = 𝔼𝑠

∫ 𝑡

𝑠

𝑔(𝑟, 𝐵𝑟 )𝑑𝑟 =
∫ 𝑡

𝑠

𝑃𝑠,𝑟𝑔(𝑟, 𝐵𝑟 )𝑑𝑟 .

and 𝐽𝑠,𝑡 =
∫ 𝑡

𝑠
𝑔(𝑟, 𝐵𝑟 )𝑑𝑟 −𝐴𝑠,𝑡 . As in the proof of Proposition 4.6, we have for every 𝑣 < 𝑠 6 𝑢 6 𝑡 ,

𝔼𝑠𝛿𝐴𝑠,𝑢,𝑡 = 0 and

‖ 𝐽𝑠,𝑡 ‖𝐿𝑝 (Ω |F𝑣) + ‖𝐴𝑠,𝑡 ‖𝐿𝑝 (Ω |F𝑣) . (𝑠 − 𝑣)−
𝑑
2𝑝 (𝑡 − 𝑠)1−

𝜈
2−

1
𝑞 ‖𝑔‖𝕃𝑞

−𝜈,𝑝 ( [𝑠,𝑡]) .

Let𝑤 be the control on Δ((𝑣, 1]) defined by

𝑤 (𝑠, 𝑡) =
[
(𝑠 − 𝑣)−

𝑑
2𝑝 (𝑡 − 𝑠)1−

𝜈
2−

1
𝑞 ‖𝑔‖𝕃𝑞

−𝜈,𝑝 ( [𝑠,𝑡])

]1/(1−𝜈/2)
.

The previous estimate yields ‖ 𝐽𝑠,𝑡 ‖𝐿𝑝 (Ω |F𝑣) + ‖𝐴𝑠,𝑡 ‖𝐿𝑝 (Ω |F𝑣) . 𝑤 (𝑠, 𝑡)1−𝜈/2. It is evident that
𝔼𝑠 𝐽𝑠,𝑡 = 0. Noting that 1 − 𝜈/2 > 1/2 and applying Lemma 3.2

‖ 𝐽𝑠,𝑡 ‖𝐿𝑝 (Ω |F𝑣) . 𝑤 (𝑠, 𝑡)1− 𝜈
2 .

By triangle inequality and the previous estimate for ‖𝐴𝑠,𝑡 ‖𝐿𝑝 (Ω |F𝑣) , we have for every (𝑠, 𝑡) ∈ Δ,
𝑠 > 𝑣 ,

‖
∫ 𝑡

𝑠

𝑔(𝑟, 𝐵𝑟 )𝑑𝑟 ‖𝐿𝑝 (Ω |F𝑣) . 𝑤 (𝑠, 𝑡)1− 𝜈
2 . (𝑠 − 𝑣)−

𝑑
2𝑝 (𝑡 − 𝑠)1−

𝜈
2−

1
𝑞 ‖𝑔‖𝕃𝑞

𝑝 ( [0,1]) .

An application of Lemma 3.4 gives

‖
∫ 𝑡

𝑠

𝑔(𝑟, 𝐵𝑟 )𝑑𝑟 ‖𝐿𝑝 (Ω |F𝑣) . ‖𝑔‖𝕃𝑞
𝑝 ( [0,1])

for every (𝑠, 𝑡) ∈ Δ, 𝑠 > 𝑣 . In view of Lemma 4.5 and Kolmogorov continuity theorem, the

process 𝑡 ↦→
∫ 𝑡

0
𝑔(𝑟, 𝐵𝑟 )𝑑𝑟 has a continuous version. For this version, we see that the previous

estimate holds for every (𝑠, 𝑡) ∈ Δ and 𝑣 = 𝑠 , which shows (4.13). �

25



5. Analysis of the discrete paths

We extend the results of Section 4 to functionals of the solution to the discrete scheme (1.3).

Theorem 5.1. Assume that Conditions 𝔄1 and𝔅 hold. Let 𝑋𝑛 be the solution to (1.3) and let 𝑓 ∈
𝕃
𝑞
𝑝 ( [0, 1])∩𝕃

𝑞
∞( [0, 1]) and𝑔 ∈ 𝕃

𝑞
1,𝑝 ( [0, 1])∩𝕃∞

∞( [0, 1]). Define 𝛽𝑛 (𝑓 ) = sup𝑡∈𝐷𝑛
‖ 𝑓 ‖𝕃𝑞

∞ ( [𝑡,𝑡+1/𝑛]) .
Then for any 𝑝 ∈ (0, 𝑝), there exists a constant 𝑁 = 𝑁 (𝑑, 𝑝, 𝑞, 𝑝) such that sup

𝑡∈[0,1]
|
∫ 𝑡

0
𝑔(𝑟, 𝑋𝑛𝑟 ) [𝑓 (𝑟, 𝑋𝑛𝑟 ) − 𝑓 (𝑟, 𝑋𝑛𝑘𝑛 (𝑟 ))]𝑑𝑟 |


𝐿𝑝 (Ω)

6 𝑁
[
‖𝑔‖𝕃∞

∞ ( [0,1]) + ‖𝑔‖𝕃𝑞
1,𝑝 ( [0,1])

]

×
[
(1/𝑛)1−

1
𝑞 𝛽𝑛 (𝑓 ) + (1/𝑛) 𝛼

2 ‖ 𝑓 ‖𝕃𝑞
𝑝 ( [0,1]) + (1/𝑛) 1

2 log(𝑛)‖ 𝑓 ‖𝕃𝑞
𝑝 ( [0,1])

]
. (5.1)

The rest of the current section is devoted for the proof of Theorem 5.1. We follow the idea
described in Section 4. First we derive some analytic estimates on the transition operators
associated the discrete Euler–Maruyama scheme without drift. These estimates are similar
to the ones in Lemma 4.1. By means of the stochastic sewing techniques (Lemma 3.2) and
Girsanov theorem, these analytic estimates are utilized to obtain the desired moment bound.
In what follows, we carry out this program in more detail. Conditions 𝔄1 and 𝔅 are enforced
throughout the current section unless indicated otherwise.

5.1. Analytic estimates. For each 𝑠 ∈ 𝐷𝑛 and 𝑥 ∈ ℝ𝑑 , let 𝑋𝑛 (𝑠, 𝑥) be the solution to the
following Euler–Maruyama scheme

𝑋𝑛𝑡 = 𝑥 +
∫ 𝑡

𝑠

𝜎 (𝑟, 𝑋𝑛𝑘𝑛 (𝑟 ))𝑑𝐵𝑟 , 𝑡 > 𝑠 . (5.2)

For each 𝑡 > 𝑠 and bounded measurable function 𝑓 , we define the function 𝑄𝑛𝑠,𝑡 𝑓 by

𝑄𝑛𝑠,𝑡 𝑓 (𝑥) = 𝔼𝑓 (𝑋𝑛𝑡 (𝑠, 𝑥)).
Let

𝑇 ∗
𝑠,𝑡 𝑓 (𝑦) = 𝔼𝑓

(
𝑦 +

∫ 𝑡

𝑠

𝜎 (𝑟,𝑦)𝑑𝐵𝑟
)
, (5.3)

and let the operator 𝑇𝑠,𝑡 be conjugate to 𝑇
∗
𝑠,𝑡 in 𝐿2-sense, which can be computed explicitly

𝑇𝑠,𝑡 𝑓 (𝑥) =
∫
ℝ𝑑

𝑓 (𝑦)𝑝Σ𝑠,𝑡 (𝑦) (𝑦 − 𝑥)𝑑𝑦, when 𝑠 < 𝑡 (5.4)

and 𝑇𝑠,𝑠 𝑓 (𝑥) = 𝑓 (𝑥), where Σ𝑖 𝑗𝑠,𝑡 = 1
2

∫ 𝑡

𝑠
𝑎
𝑖 𝑗
𝑟 𝑑𝑟 , 𝑎𝑟 = 𝜎𝑟𝜎

∗
𝑟 . Whenever 𝑠 < 𝑡 , the function 𝑇𝑠,𝑡 𝑓 (𝑥)

is infinitely differentiable and satisfies

𝜕𝑠𝑇𝑠,𝑡 𝑓 (𝑥) = −𝜕2𝑥𝑖𝑥 𝑗𝑇𝑠,𝑡 [𝑎
𝑖 𝑗
𝑠 𝑓 ] (𝑥) .

We also define for every 𝑟 < 𝑡

𝜂𝑟 (𝑥) =
∫ 𝑟

𝑘𝑛 (𝑟 )
𝜎 (𝑣, 𝑥)𝑑𝐵𝑣
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and

𝐻𝑛
𝑟,𝑡 𝑓 (𝑥) =

𝑑∑︁
𝑖, 𝑗=1

𝔼

[
𝑎
𝑖 𝑗
𝑟 (𝑥) (𝜕2𝑥𝑖𝑥 𝑗𝑇𝑟,𝑡 𝑓 ) (𝑥 + 𝜂𝑟 (𝑥)) − (𝜕2𝑥𝑖𝑥 𝑗𝑇𝑟,𝑡 [𝑎

𝑖 𝑗
𝑟 𝑓 ]) (𝑥 + 𝜂𝑟 (𝑥))

]
.

The function 𝜂 also depends on 𝑛, however, we omit this dependence in the notation. By direct
computations (see also [GK96, p.153] or [GK21, p.11]), we have

𝐻𝑛
𝑟,𝑡 𝑓 (𝑥) =

∫
ℝ𝑑

𝐾𝑛𝑟,𝑡 (𝑥,𝑦) 𝑓 (𝑦)𝑑𝑦

where

𝐾𝑛𝑟,𝑡 (𝑥,𝑦) =
𝑑∑︁

𝑖, 𝑗=1

[𝑎𝑖 𝑗𝑟 (𝑥) − 𝑎𝑖 𝑗𝑟 (𝑦)]𝜕2𝑖 𝑗𝑝Σ𝑘𝑛 (𝑟 ),𝑟 (𝑥)+Σ𝑟,𝑡 (𝑦) (𝑦 − 𝑥)

=

𝑑∑︁
𝑖, 𝑗=1

[𝑎𝑖 𝑗𝑟 (𝑥) − 𝑎𝑖 𝑗𝑟 (𝑦)] [(𝐴𝑟,𝑡 (𝑥,𝑦)𝑧)𝑖 (𝐴𝑟,𝑡 (𝑥,𝑦)𝑧) 𝑗 −𝐴𝑖 𝑗𝑟,𝑡 (𝑥,𝑦)]𝑝Σ𝑘𝑛 (𝑟 ),𝑟 (𝑥)+Σ𝑟,𝑡 (𝑦) (𝑧)
���
𝑧=𝑦−𝑥

and

𝐴𝑟,𝑡 (𝑥,𝑦) = (Σ𝑘𝑛 (𝑟 ),𝑟 (𝑥) + Σ𝑟,𝑡 (𝑦))−1.
The relation between 𝑄𝑛 and 𝑇,𝐻𝑛 is described in Lemma 5.4, which is a kind of Duhamel
formula. It is, however, convenient to obtain first analytic estimates for 𝐻𝑛 and 𝑇 . We make
use of the following result, inspired by [GK96, Lemma 4.1].5

Lemma 5.2. Let 𝜆, ℓ, 𝜀 > 0, 𝛼 ∈ [0, 1] be fixed numbers, let 𝑎1 be a symmetric 𝑑 × 𝑑 matrix and
let 𝑎(𝑥), 𝑎(𝑥) be 𝑑 ×𝑑 matrix-valued functions. Assume that for each 𝑥 , 𝑎(𝑥), 𝑎(𝑥) are symmetric,
𝜆−1ℓ𝐼 6 𝑎(𝑥)+𝑎1, 𝑎(𝑥)+𝑎1 6 𝜆ℓ𝐼 , where 𝐼 is the𝑑×𝑑 unit matrix, and sup𝑦 ‖𝑎(𝑦)−𝑎(𝑦)‖ 6 𝜀. Let
𝑔(𝑥) be a real function such that |𝑔(𝑥) −𝑔(𝑦) | 6 𝜆 |𝑥 −𝑦 |𝛼 for all 𝑥,𝑦. Let 𝜉 and 𝜂 be independent
𝑑-dimensional Gaussian vectors with zero means. Assume that 𝜉 has distribution N(0, 𝐼 ) and 𝜂
has distribution N(0,√𝑎1). Define an operator 𝑇 ∗ by the formula 𝑇 ∗𝑓 (𝑦) = 𝔼𝑓 (𝑦 +

√︁
𝑎(𝑦)𝜉) and

let 𝑇 be the conjugate for 𝑇 ∗ in 𝐿2-sense. Let 1 6 𝑖, 𝑗 6 𝑑 be fixed and define

𝐻 (𝑥) = 𝔼

[
𝑔(𝑥) (𝜕2𝑥𝑖𝑥 𝑗𝑇 𝑓 ) (𝑥 + 𝜂) − (𝜕2𝑥𝑖𝑥 𝑗𝑇 [𝑔𝑓 ]) (𝑥 + 𝜂)

]
.

Define𝑇 ∗,𝑇 and𝐻 (𝑥) analogously with 𝑎 replacing 𝑎. Then for any 𝑝 ∈ [1,∞] and bounded Borel
𝑓 ,

sup
𝑥∈ℝ𝑑

|𝐻 (𝑥) | 6 𝑁 ‖ 𝑓 ‖𝐿𝑝 (ℝ𝑑 )ℓ
𝛼
2 −1−

𝑑
2𝑝 , ‖𝐻 ‖𝐿𝑝 (ℝ𝑑 ) 6 𝑁 ‖ 𝑓 ‖𝐿𝑝 (ℝ𝑑 )ℓ

𝛼
2 −1, (5.5)

|𝐻 (𝑥) − 𝐻 (𝑥) | 6 𝑁 ‖ 𝑓 ‖𝐿𝑝 (ℝ𝑑 )𝜀ℓ
𝛼
2
−2− 𝑑

2𝑝 and ‖𝐻 − 𝐻 ‖𝐿𝑝 (ℝ𝑑 ) 6 𝑁 ‖ 𝑓 ‖𝐿𝑝 (ℝ𝑑 )𝜀ℓ
𝛼
2
−2,

(5.6)

5[GK21] recently corrected [GK96, Lemma 4.1]. Our assumptions and conclusions are different from both
works.
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where the constant 𝑁 depends only on 𝜆, 𝑑, 𝑝, 𝛼 .

Proof. By direct computations (see also [GK96, p.153] or [GK21, p.11]), we have

𝐻 (𝑥) =
∫
ℝ𝑑

[𝑔(𝑥) − 𝑔(𝑦)] 𝑓 (𝑦) [(𝐴(𝑦)𝑧)𝑖 (𝐴(𝑦)𝑧) 𝑗 −𝐴𝑖 𝑗 (𝑦)]𝑝𝑎(𝑦)+𝑎1 (𝑧)
���
𝑧=𝑦−𝑥

𝑑𝑦,

where 𝐴(𝑦) = (𝑎(𝑦) + 𝑎1)−1. A similar formula for 𝐻 (𝑥) is valid with 𝐴(𝑦) = (𝑎(𝑦) + 𝑎1)−1. By
ellipticity of 𝑎(𝑦) + 𝑎1 and Hölder continuity of 𝑔, we have

|𝐻 (𝑥) | .
∫
ℝ𝑑

|𝑥 − 𝑦 |𝛼 |𝑓 (𝑦) |
(
ℓ−2 |𝑦 − 𝑥 |2 + ℓ−1

)
𝑝2𝜆ℓ (𝑦 − 𝑥)𝑑𝑦.

Setting 𝑞 =
𝑝
𝑝−1 and applying Hölder inequality, we get

|𝐻 (𝑥) | . ‖ 𝑓 ‖𝐿𝑝 (ℝ𝑑 )

(∫
ℝ𝑑

|𝑦 |𝑞𝛼 (ℓ−2 |𝑦 |2 + ℓ−1)𝑞𝑝2𝜆ℓ (𝑦)𝑞𝑑𝑦
) 1
𝑞

. ‖ 𝑓 ‖𝐿𝑝 (ℝ𝑑 )ℓ
𝛼
2
−1− 𝑑

2𝑝 .

This shows the first estimate in (5.5). The second estimate in (5.5) is obtained by a similar
argument, using instead the Minkowski inequality.
It is evident that ‖𝐴(𝑦)‖, ‖𝐴(𝑦)‖ . ℓ−1 uniformly in 𝑦. For two invertible matrices 𝐶, 𝐷 ,

we have 𝐶−1 − 𝐷−1 = 𝐶−1(𝐷 − 𝐶)𝐷−1 so that ‖𝐶−1 − 𝐷−1‖ 6 ‖𝐶−1‖‖𝐷−1‖‖𝐷 − 𝐶 ‖. Thus
‖𝐴(𝑦) −𝐴(𝑦)‖ 6 ‖𝐴(𝑦)‖‖𝐴(𝑦)‖‖𝑎(𝑦) − 𝑎(𝑦)‖ . ℓ−2𝜀 and similarly

‖(𝐴(𝑦)𝑧)𝑖 (𝐴(𝑦) (𝑦 − 𝑥)) 𝑗 − (𝐴(𝑦)𝑧)𝑖 (𝐴(𝑦) (𝑦 − 𝑥)) 𝑗 ‖ . |𝑧 |2ℓ−3𝜀.
Using our assumptions, it is straightforward to verify that𝐾−1𝐼 6 (𝑎(𝑦) +𝑎1) (𝑎(𝑦) +𝑎1)−1 6 𝐾𝐼
and ‖𝐼 − (𝑎(𝑦) + 𝑎1) (𝑎(𝑦) + 𝑎1)−1‖ 6 𝐾ℓ−1𝜀 for some constant 𝐾 > 0. Hence, from (3.22), we
have

|𝑝𝑎(𝑦)+𝑎1 (𝑧) − 𝑝𝑎(𝑦)+𝑎1 (𝑧) | . ℓ−1𝜀
(
𝑝 (𝑎(𝑦)+𝑎1)/2(𝑧) + 𝑝 (𝑎(𝑦)+𝑎1)/2(𝑧)

)
. ℓ−1𝜀𝑝𝜆ℓ (𝑧),

where we have used the fact that 𝜆−1𝑡 6 𝑎(𝑦) + 𝑎1, 𝑎(𝑦) + 𝑎1 6 𝜆𝑡 . It follows that

|𝐻 (𝑥) − 𝐻 (𝑥) | . 𝜀
∫
ℝ𝑑

|𝑓 (𝑦) | |𝑦 − 𝑥 |𝛼
(
|𝑦 − 𝑥 |2ℓ−3 + ℓ−2

)
𝑝𝜆ℓ (𝑦 − 𝑥)𝑑𝑦.

From here, we apply Hölder inequality and Minkowski inequality as previously to obtain
(5.6). �

Lemma 5.3. Let 𝑝1, 𝑝2 ∈ [1,∞] be such that 𝑝1 6 𝑝2 and let 𝑓 be a function in 𝐿𝑝1 (ℝ𝑑). For
every 𝑟 < 𝑡 6 1, we have

‖𝑇𝑟,𝑡 𝑓 ‖𝐿𝑝2 (ℝ𝑑 ) 6 𝑁 (𝑡 − 𝑟 )
𝑑
2𝑝2

− 𝑑
2𝑝1 ‖ 𝑓 ‖𝐿𝑝1 (ℝ𝑑 ) (5.7)

and

‖𝐻𝑛
𝑟,𝑡 𝑓 ‖𝐿𝑝2 (ℝ𝑑 ) 6 𝑁 (𝑡 − 𝑘𝑛 (𝑟 ))

𝛼
2
−1+ 𝑑

2𝑝2
− 𝑑

2𝑝1 ‖ 𝑓 ‖𝐿𝑝1 (ℝ𝑑 ), (5.8)

where the constant 𝑁 depends only on 𝑑, 𝑝1, 𝑝2, 𝐾1, 𝐾2.
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Proof. By uniform ellipticity, there exists a constant 𝜆 > 0 such that for every 𝑥,𝑦 ∈ ℝ𝑑 ,

𝜆−1(𝑡 − 𝑘𝑛 (𝑟 )) 6
∫ 𝑡

𝑟

𝑎𝜃 (𝑦)𝑑𝜃 +
∫ 𝑟

𝑘𝑛 (𝑟 )
𝑎𝜃 (𝑥)𝑑𝜃 6 𝜆(𝑡 − 𝑘𝑛 (𝑟 )) . (5.9)

From here, we can derive (5.7) using standard Gaussian estimates.
Applying (5.5), we have

‖𝐻𝑛
𝑟,𝑡 𝑓 ‖𝐿∞ (ℝ𝑑 ) . (𝑡 − 𝑘𝑛 (𝑟 ))

𝛼
2
−1− 𝑑

2𝑝1 ‖ 𝑓 ‖𝐿𝑝1 (ℝ𝑑 )

and

‖𝐻𝑛
𝑟,𝑡 𝑓 ‖𝐿𝑝1 (ℝ𝑑 ) . (𝑡 − 𝑘𝑛 (𝑟 ))

𝛼
2
−1‖ 𝑓 ‖𝐿𝑝1 (ℝ𝑑 ) .

From the above estimates and the Hölder interpolation inequality

‖𝐻 ‖𝐿𝑝2 (ℝ𝑑 ) 6 ‖𝐻 ‖
𝑝1
𝑝2

𝐿𝑝1 (ℝ𝑑 ) ‖𝐻 ‖
1− 𝑝1

𝑝2

𝐿∞ (ℝ𝑑 ),

we deduce (5.8). �

The estimate (5.8) shows in particular that whenever 𝑟 < 𝑡 , 𝐻𝑛
𝑟,𝑡 maps bounded measurable

functions to bounded measurable functions. It is evident from their definitions that 𝑄𝑛𝑟,𝑡 ,𝑇𝑟,𝑡
also map bounded measurable functions to bounded measurable functions.

Lemma 5.4. Let 𝑠 ∈ 𝐷𝑛 and 𝑓 be a bounded uniformly continuous function. Then, for every 𝑡 > 𝑠

and 𝑥 ∈ ℝ𝑑

𝑄𝑛𝑠,𝑡 𝑓 (𝑥) = 𝑇𝑠,𝑡 𝑓 (𝑥) +
∫ 𝑡

𝑠

𝑄𝑛𝑠,𝑘𝑛 (𝑟 ) [𝐻
𝑛
𝑟,𝑡 𝑓 ] (𝑥)𝑑𝑟 . (5.10)

Proof. Let 𝑋𝑛 = 𝑋𝑛 (𝑠, 𝑥) and 𝜏 ∈ (𝑠, 𝑡). Applying Itô formula for 𝑟 ↦→ 𝑇𝑟,𝑡 𝑓 (𝑋𝑛𝑟 ), for any 𝑡 > 𝑠 ,
we obtain that

𝔼𝑇𝜏,𝑡 𝑓 (𝑋𝑛𝜏 ) = 𝑇𝑠,𝑡 𝑓 (𝑋𝑛𝑠 ) + 𝔼

∫ 𝜏

𝑠

[
𝑎
𝑖 𝑗
𝑟 (𝑋𝑛𝑘𝑛 (𝑟 )) (𝜕

2
𝑥𝑖𝑥 𝑗
𝑇𝑟,𝑡 𝑓 ) (𝑋𝑛𝑟 ) − (𝜕2𝑥𝑖𝑥 𝑗𝑇𝑟,𝑡 [𝑎

𝑖 𝑗
𝑟 𝑓 ]) (𝑋𝑛𝑟 )

]
𝑑𝑟 .

Writing 𝑋𝑛𝑟 = 𝑋𝑛
𝑘𝑛 (𝑟 ) + 𝜂𝑟 (𝑋

𝑛
𝑘𝑛 (𝑟 )), we take conditional expectation given F𝑘𝑛 (𝑟 ) ⊃ F𝑠 . This yields

𝔼𝑇𝜏,𝑡 𝑓 (𝑋𝑛𝜏 ) = 𝑇𝑠,𝑡 𝑓 (𝑋𝑛𝑠 ) +
∫ 𝜏

𝑠

𝔼𝐻𝑛
𝑟,𝑡 𝑓 (𝑋𝑛𝑘𝑛 (𝑟 ))𝑑𝑟 . (5.11)

We now take the limit 𝜏 ↑ 𝑡 in the above formula. By uniform continuity of 𝑓 and a.s. continuity
of 𝑋𝑛 , lim𝜏↑𝑡 𝑇𝜏,𝑡 𝑓 (𝑋𝑛𝜏 ) = 𝑓 (𝑋𝑛𝑡 ). From (5.8), we have∫ 𝑡

𝜏

|𝔼𝐻𝑛
𝑟,𝑡 𝑓 (𝑋𝑛𝑘𝑛 (𝑟 )) |𝑑𝑟 .

∫ 𝑡

𝜏

(𝑡 − 𝑘𝑛 (𝑟 ))
𝛼
2
−1‖ 𝑓 ‖𝐿∞ (ℝ𝑑 )𝑑𝑟 . ‖ 𝑓 ‖𝐿∞ (ℝ𝑑 ) (𝑡 − 𝜏)

𝛼
2 ,

which allows one to apply the limit 𝜏 ↑ 𝑡 to the last term in (5.11). Hence, we have

𝔼𝑓 (𝑋𝑛𝑡 ) = 𝑇𝑠,𝑡 𝑓 (𝑋𝑛𝑠 ) +
∫ 𝑡

𝑠

𝔼𝐻𝑛
𝑟,𝑡 𝑓 (𝑋𝑛𝑘𝑛 (𝑟 ))𝑑𝑟,

which deduces to (5.10). �
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Theorem 5.5. Assume that Condition 𝔄1 holds. Let 𝑝1, 𝑝2 ∈ [1,∞], 𝑝1 6 𝑝2, 𝑝1 < ∞ and let 𝑓

be a function in 𝐿𝑝1 (ℝ𝑑). There exists a constant 𝑁 = 𝑁 (𝑑, 𝑝1, 𝑝2, 𝛼, 𝐾1, 𝐾2) such that for every
𝑠 ∈ 𝐷𝑛 and 𝑡 ∈ (𝑠, 1], we have

‖𝑄𝑛𝑠,𝑡 𝑓 ‖𝐿𝑝2 (ℝ𝑑 ) 6 𝑁 (𝑡 − 𝑠)
𝑑
2𝑝2

− 𝑑
2𝑝1 ‖ 𝑓 ‖𝐿𝑝1 (ℝ𝑑 ) . (5.12)

Proof. We put 𝜌 = 𝑑
2𝑝1

− 𝑑
2𝑝2

.

Step 1.We show some rough estimates for ‖𝑄𝑛𝑠,𝑡 𝑓 ‖𝐿𝑝2 (ℝ𝑑 ) in terms of ‖ 𝑓 ‖𝐿𝑝1 (ℝ𝑑 ) . Assume first

that 𝑓 is a bounded uniformly continuous function. From (5.10) and Lemma 5.3, we have for
every 𝑡 ∈ [𝑠, 𝑠 + 1/𝑛]

‖𝑄𝑛𝑠,𝑡 𝑓 ‖𝐿𝑝2 (ℝ𝑑 ) 6 ‖𝑇𝑠,𝑡 𝑓 ‖𝐿𝑝2 (ℝ𝑑 ) +
∫ 𝑡

𝑠

‖𝐻𝑛
𝑟,𝑡 𝑓 ‖𝐿𝑝2 (ℝ𝑑 )𝑑𝑟

. (𝑡 − 𝑠)−𝜌 ‖ 𝑓 ‖𝐿𝑝1 (ℝ𝑑 ) +
∫ 𝑡

𝑠

(𝑡 − 𝑘𝑛 (𝑟 ))
𝛼
2 −1−𝜌 ‖ 𝑓 ‖𝐿𝑝1 (ℝ𝑑 )𝑑𝑟

. (𝑡 − 𝑠)−𝜌 ‖ 𝑓 ‖𝐿𝑝1 (ℝ𝑑 ),

where the last inequality follows from the fact that 𝑘𝑛 (𝑟 ) = 𝑠 for 𝑟 ∈ [𝑠, 𝑠 + 1/𝑛). Since smooth
functions are dense in 𝐿𝑝1 (ℝ𝑑), it follows that that ‖𝑄𝑛𝑠,𝑡 ‖𝐿𝑝2 (ℝ𝑑 ) . (𝑡 − 𝑠)−𝜌 ‖ 𝑓 ‖𝐿

𝑝1 (ℝ𝑑 )
for any

function 𝑓 in 𝐿𝑝1 (ℝ𝑑).
We proceed inductively. Let 𝑗 > 1 be an integer. Suppose that for every 𝑡 ∈ [𝑠, 𝑠 + 𝑗/𝑛] and

every function 𝑓 ∈ 𝐿𝑝1 (ℝ𝑑),

‖𝑄𝑛𝑠,𝑡 𝑓 ‖𝐿𝑝2 (ℝ𝑑 ) 6 𝐶 𝑗 (𝑡 − 𝑠)−𝜌 ‖ 𝑓 ‖𝐿𝑝1 (ℝ𝑑 ) (5.13)

for some constant 𝐶 𝑗 , independent from 𝑛, 𝑠, 𝑡, 𝑓 .
Let 𝑓 be a bounded uniformly continuous function. Then for each 𝑡 ∈ (𝑠 + 𝑗/𝑛, 𝑠 + ( 𝑗 + 1)/𝑛],

we obtain from (5.10), Lemma 5.3 and the inductive hypothesis that

‖𝑄𝑛𝑠,𝑡 𝑓 ‖𝐿𝑝2 (ℝ𝑑 ) . ‖𝑇𝑠,𝑡 𝑓 ‖𝐿𝑝2 (ℝ𝑑 ) +
∫ 𝑠+1/𝑛

𝑠

‖𝐻𝑛
𝑟,𝑡 𝑓 ‖𝐿𝑝2 (ℝ𝑑 )𝑑𝑟

+𝐶 𝑗
∫ 𝑡

𝑠+1/𝑛
(𝑘𝑛 (𝑟 ) − 𝑠)−𝜌 ‖𝐻𝑛

𝑟,𝑡 𝑓 ‖𝐿𝑝1 (ℝ𝑑 )𝑑𝑟 . (5.14)

The first two terms are estimated as previously, ‖𝑇𝑠,𝑡 𝑓 ‖𝐿𝑝2 (ℝ𝑑 ) . (𝑡 − 𝑠)−𝜌 ‖ 𝑓 ‖𝐿𝑝1 (ℝ𝑑 ) and∫ 𝑠+1/𝑛

𝑠

‖𝐻𝑛
𝑟,𝑡 𝑓 ‖𝐿𝑝2 (ℝ𝑑 )𝑑𝑟 . (1/𝑛)−𝜌 ‖ 𝑓 ‖𝐿𝑝1 (ℝ𝑑 ) .

Using Lemma 5.3, we have

‖𝐻𝑛
𝑟,𝑡 𝑓 ‖𝐿𝑝1 (ℝ𝑑 )) . (𝑡 − 𝑘𝑛 (𝑟 ))

𝛼
2 −1‖ 𝑓 ‖𝐿𝑝1 (ℝ𝑑 ) .
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Using the above estimate and the fact that 𝑘𝑛 (𝑟 ) − 𝑠 > 1/𝑛 for any 𝑟 > 𝑠 + 1/𝑛 and Lemma 3.10,
we have∫ 𝑡

𝑠+1/𝑛
(𝑘𝑛 (𝑟 ) − 𝑠)−𝜌 ‖𝐻𝑛

𝑟,𝑡 𝑓 ‖𝐿𝑝1 (ℝ𝑑 )𝑑𝑟 . (1/𝑛)−𝜌
∫ 𝑡

𝑠+1/𝑛
(𝑡 − 𝑘𝑛 (𝑟 ))

𝛼
2
−1𝑑𝑟 ‖ 𝑓 ‖𝐿𝑝1 (ℝ𝑑 )

. (1/𝑛)−𝜌 ‖ 𝑓 ‖𝐿𝑝1 (ℝ𝑑 ) .

Observe furthermore that (1/𝑛)−𝜌 6 ( 𝑗 + 1)𝜌 (𝑡 − 𝑠)−𝜌 . Putting these estimates in (5.14), we see
that (5.13) holds for 𝑡 ∈ (𝑠 + 𝑗/𝑛, 𝑠 + ( 𝑗 + 1)/𝑛] with a bounded uniformly continuous function
𝑓 and some constant 𝐶 𝑗+1. By approximation, we can extend the inequality to all functions

𝑓 ∈ 𝐿𝑝1 (ℝ𝑑).
To show that (5.13) actually holds uniformly in 𝑗 , we proceed as follows.

Step 2. Assuming that 𝜌 = 𝑑
2𝑝2

− 𝑑
2𝑝1

< 1, we show that there exists a constant 𝐶 > 0,

independent from 𝑛, such that

‖𝑄𝑛𝑠,𝑡 𝑓 ‖𝐿𝑝2 (ℝ𝑑 ) 6 𝐶 (𝑡 − 𝑠)
𝑑
2𝑝2

− 𝑑
2𝑝1 ‖ 𝑓 ‖𝐿𝑝1 (ℝ𝑑 ) for every 𝑡 > 𝑠 and function 𝑓 ∈ 𝐿𝑝1 (ℝ𝑑).

(5.15)

In view of (5.13), it suffices to consider 𝑡 > 𝑠 + 2/𝑛. Let 𝜆 > 1 be a constant to be chosen later.
For each 𝑡 ∈ [𝑠 + 2/𝑛, 1], define

𝑚𝑡 = 𝑒
−𝜆(𝑡−𝑠) (𝑡 − 𝑠)𝜌 sup

𝑔∈𝐿𝑝1 (ℝ𝑑 ) : ‖𝑔‖
𝐿𝑝1 (ℝ𝑑 )

=1

‖𝑄𝑛𝑠,𝑡𝑔‖𝐿𝑝2 (ℝ𝑑 )

and𝑚∗
𝑡 = sup𝑟∈[𝑠+2/𝑛,𝑡]𝑚𝑟 ,which are finite by the previous step. In particular, for every 𝑡 > 𝑠+2/𝑛

and 𝑔 ∈ 𝐿𝑝1 (ℝ𝑑), we have (the case ‖𝑔‖𝐿𝑝1 (ℝ𝑑 ) = 0 is treated by (5.13))

‖𝑄𝑛𝑠,𝑡𝑔‖𝐿𝑝2 (ℝ𝑑 ) 6 𝑚
∗
𝑡 𝑒
𝜆(𝑡−𝑠) (𝑡 − 𝑠)−𝜌 ‖𝑔‖𝐿𝑝1 (ℝ𝑑 ) . (5.16)

Let 𝑡 > 𝑠 + 2/𝑛 and 𝑓 be a bounded uniformly continuous function, ‖ 𝑓 ‖𝐿𝑝1 (ℝ𝑑 ) = 1. From

(5.10), (5.13) and (5.16), we have that

‖𝑄𝑛𝑠,𝑡 𝑓 ‖𝐿𝑝2 (ℝ𝑑 ) . ‖𝑇𝑠,𝑡 𝑓 ‖𝐿𝑝2 (ℝ𝑑 ) +
∫ 𝑠+2/𝑛

𝑠

‖𝐻𝑛
𝑟,𝑡 𝑓 ‖𝐿𝑝2 (ℝ𝑑 )𝑑𝑟

+𝑚∗
𝑡

∫ 𝑡

𝑠+2/𝑛
𝑒𝜆(𝑘𝑛 (𝑟 )−𝑠) (𝑘𝑛 (𝑟 ) − 𝑠)−𝜌 ‖𝐻𝑛

𝑟,𝑡 𝑓 ‖𝐿𝑝1 (ℝ𝑑 )𝑑𝑟 . (5.17)

From Lemma 5.3, we have ‖𝑇𝑠,𝑡 𝑓 ‖𝐿𝑝2 (ℝ𝑑 ) . (𝑡 − 𝑠)−𝜌 and
∫ 𝑠+2/𝑛

𝑠

‖𝐻𝑛
𝑟,𝑡 𝑓 ‖𝐿𝑝2 (ℝ𝑑 )𝑑𝑟 .

∫ 𝑠+2/𝑛

𝑠

(𝑡 − 𝑘𝑛 (𝑟 ))
𝛼
2 −1−𝜌𝑑𝑟 . (1/𝑛) (𝑡 − 𝑠 − 1/𝑛) 𝛼

2 −1−𝜌

. (𝑡 − 𝑠)−𝜌 ,
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where we have used the fact that 1/𝑛 6 𝑡 − 𝑠 6 1 and 𝑡 − 𝑠 − 1/𝑛 > (𝑡 − 𝑠)/2. Similarly, using
Lemma 5.3, we have∫ 𝑡

𝑠+2/𝑛
𝑒𝜆(𝑘𝑛 (𝑟 )−𝑠) (𝑘𝑛 (𝑟 ) − 𝑠)−𝜌 ‖𝐻𝑛

𝑟,𝑡 𝑓 ‖𝐿𝑝1 (ℝ𝑑 )𝑑𝑟

.

∫ 𝑡

𝑠+2/𝑛
𝑒𝜆(𝑘𝑛 (𝑟 )−𝑠) (𝑘𝑛 (𝑟 ) − 𝑠)−𝜌 (𝑡 − 𝑘𝑛 (𝑟 ))

𝛼
2
−1𝑑𝑟

.

∫ 𝑡

𝑠+1/𝑛
𝑒𝜆(𝑟−𝑠) (𝑟 − 𝑠 − 1/𝑛)−𝜌 (𝑡 − 𝑟 ) 𝛼

2
−1𝑑𝑟 .

To estimate the integrals on the right-hand sides above, we split them into two regions, putting
𝑠 = 𝑠 + 1/𝑛,∫ (𝑠+𝑡)/2

𝑠

𝑒−𝜆(𝑡−𝑟 ) (𝑟 − 𝑠)−𝜌 (𝑡 − 𝑟 ) 𝛼
2
−1𝑑𝑟 . 𝑒−

𝜆
2
(𝑡−𝑠) (𝑡 − 𝑠) 𝛼

2
−1

∫ (𝑠+𝑡)/2

𝑠

(𝑟 − 𝑠)−𝜌𝑑𝑟

. 𝑒−
𝜆
2
(𝑡−𝑠) (𝑡 − 𝑠) 𝛼

2
−𝜌
. 𝜆−

𝛼
2 (𝑡 − 𝑠)−𝜌

and ∫ 𝑡

(𝑠+𝑡)/2
𝑒−𝜆(𝑡−𝑟 ) (𝑟 − 𝑠)−𝜌 (𝑡 − 𝑟 ) 𝛼

2
−1𝑑𝑟 6 (𝑡 − 𝑠)−𝜌

∫ 𝑡

(𝑠+𝑡)/2
𝑒−𝜆(𝑡−𝑟 ) (𝑡 − 𝑟 ) 𝛼

2
−1𝑑𝑟

6 (𝑡 − 𝑠)−𝜌
∫ ∞

0

𝑒−𝜆𝑢𝑢
𝛼
2
−1𝑑𝑢 . 𝜆−

𝛼
2 (𝑡 − 𝑠)−𝜌 .

In the above, all integrals are finite because 𝛼 ∈ (0, 1] and 𝜌 < 1. Observe furthermore that
(𝑡 − 𝑠)/(𝑡 − 𝑠) 6 2. Thus we have∫ 𝑡

𝑠+2/𝑛
𝑒𝜆(𝑘𝑛 (𝑟 )−𝑠) (𝑘𝑛 (𝑟 ) − 𝑠)−𝜌 (𝑡 − 𝑘𝑛 (𝑟 ))

𝛼
2
−1𝑑𝑟 . 𝜆−

𝛼
2 𝑒𝜆(𝑡−𝑠) (𝑡 − 𝑠)−𝜌 .

Putting the previous estimates altogether into (5.17), we have

‖𝑄𝑛𝑠,𝑡 𝑓 ‖𝐿𝑝2 (ℝ𝑑 ) . (𝑡 − 𝑠)−𝜌 (1 +𝑚∗
𝑡 𝜆

−𝛼
2 𝑒𝜆(𝑡−𝑠)).

By approximations, the above estimate also holds for any function 𝑓 ∈ 𝐿𝑝1 (ℝ𝑑) with ‖ 𝑓 ‖𝐿𝑝1 (ℝ𝑑 ) =

1. It follows that𝑚𝑡 . 1 + 𝜆−𝛼
2𝑚∗

𝑡 for every 𝑡 > 𝑠 + 2/𝑛. By choosing 𝜆 sufficiently large, we
conclude that𝑚∗

1 is bounded by a constant independent from 𝑛 and thus obtain (5.15).
Step 3.We remove the restriction 𝜌 < 1 in the previous step.

Suppose that 𝜌 := 𝑑
2𝑝1

− 𝑑
2𝑝2

< 2. Define 𝑝3 ∈ [𝑝1, 𝑝2] by 𝑑
𝑝3

= 𝑑
2𝑝1

+ 𝑑
2𝑝2

so that 𝑑
2𝑝1

− 𝑑
2𝑝3

=

𝑑
2𝑝3

− 𝑑
2𝑝2

=
𝜌
2
< 1. Let 𝑡 > 𝑠 + 4/𝑛 and 𝑢 = (𝑠 + 𝑡)/2. Then by Markov property of the Euler–

Maruyama scheme, we have 𝑄𝑛𝑠,𝑡 = 𝑄
𝑛
𝑘𝑛 (𝑢),𝑡𝑄

𝑛
𝑠,𝑘𝑛 (𝑢) . It is easy to see that 𝑡 > 𝑘𝑛 (𝑢) > 𝑠 so that by

(5.15), we have for every 𝑓 ∈ 𝐿𝑝1 (ℝ𝑑) that

‖𝑄𝑛𝑠,𝑡 𝑓 ‖𝐿𝑝2 (ℝ𝑑 ) . (𝑡 − 𝑘𝑛 (𝑢))−
𝜌
2 ‖𝑄𝑛𝑠,𝑘𝑛 (𝑢) 𝑓 ‖𝐿𝑝3 (ℝ𝑑 )
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. (𝑡 − 𝑘𝑛 (𝑢))−
𝜌
2 (𝑘𝑛 (𝑢) − 𝑠)−

𝜌
2 ‖ 𝑓 ‖𝐿𝑝1 (ℝ𝑑 ) .

It is straightforward to see that 𝑡 − 𝑘𝑛 (𝑢) > (𝑡 − 𝑠)/2 and 𝑘𝑛 (𝑢) − 𝑠 > (𝑡 − 𝑠)/4. Hence, from
the above estimate, we deduce that ‖𝑄𝑛𝑠,𝑡 𝑓 ‖𝐿𝑝2 (ℝ𝑑 ) . (𝑡 − 𝑠)−𝜌 ‖ 𝑓 ‖𝐿𝑝1 (ℝ𝑑 ) for any 𝑡 > 𝑠 + 4/𝑛.
Combining with (5.13) from step 1., we see that (5.15) holds for any 𝑝1, 𝑝2 ∈ [1,∞] satisfying
𝑑
2𝑝1

− 𝑑
2𝑝2

< 2. We iterate the argument. After ⌊log2(𝑑/2)⌋ + 1 iterations, we see that (5.15) holds
whenever 𝜌 6 𝑑/2, which is trivially satisfied for any 𝑝1, 𝑝2 ∈ [1,∞]. Hence, we have shown
(5.12). �

Remark 5.6. Theorem 5.5 complements previous works. It is shown in [LM10] that for each
𝑠, 𝑡 ∈ 𝐷𝑛 , 𝑠 < 𝑡 , the operator 𝑄𝑛𝑠,𝑡 has a kernel density which has Gaussian upper bounds. From
here, one can deduce estimate (5.12) for discrete times 𝑠, 𝑡 ∈ 𝐷𝑛. Gaussian upper bounds for
the kernel density of 𝑄𝑛𝑠,𝑡 , which are valid for all times 𝑡 > 𝑠 , 𝑠 ∈ 𝐷𝑛, are also established in
[BHZ20, JM21] under Lipschitz regularity of 𝑎. Some related estimates are also obtained in
[GK96, GK21] under the additional condition 𝛼 > 𝑑/𝑝 . We are able to remove this condition
herein mainly due to (5.8), which was known previously with the factor (𝑡 −𝑟 ) on its right-hand
side.

Lemma 5.7. Let 𝑝1 ∈ [1,∞] and let 𝑟 < 𝑘𝑛 (𝑡). Then for every 𝑓 ∈ 𝐿𝑝1 (ℝ𝑑),

‖𝑇𝑟,𝑡 𝑓 −𝑇𝑟,𝑘𝑛 (𝑡) 𝑓 ‖𝐿𝑝1 (ℝ𝑑 ) 6 𝑁 (1/𝑛) (𝑡 − 𝑟 )−1‖ 𝑓 ‖𝐿𝑝1 (ℝ𝑑 ) (5.18)

and

‖𝐻𝑛
𝑟,𝑡 𝑓 − 𝐻𝑛

𝑟,𝑘𝑛 (𝑡) 𝑓 ‖𝐿𝑝1 (ℝ𝑑 ) 6 𝑁 (1/𝑛) (𝑡 − 𝑘𝑛 (𝑟 ))
𝛼
2 −2‖ 𝑓 ‖𝐿𝑝1 (ℝ𝑑 ), (5.19)

where the constant 𝑁 depends only on 𝑑, 𝑝1, 𝐾1, 𝐾2.

Proof. Wemake use of (5.9). Observe furthermore that 1/2 6 (𝑘𝑛 (𝑡)−𝑘𝑛 (𝑟 ))/(𝑡−𝑘𝑛 (𝑟 )) 6 1. It is
then straightforward to verify the hypothesis of Lemma 3.11 for Σ = Σ𝑟,𝑡 (𝑦) and Σ̄ = Σ𝑟,𝑘𝑛 (𝑡) (𝑦).
In addition

‖𝐼 − ΣΣ̄
−1‖ . (𝑡 − 𝑘𝑛 (𝑡)) (𝑡 − 𝑘𝑛 (𝑟 ))−1 . (1/𝑛) (𝑡 − 𝑘𝑛 (𝑟 ))−1.

From the definition of 𝑇 , we apply (3.22) to get that

|𝑇𝑟,𝑡 𝑓 (𝑥) −𝑇𝑟,𝑘𝑛 (𝑡) 𝑓 (𝑥) | . (1/𝑛) (𝑡 − 𝑟 )−1
∫
ℝ𝑑

𝑝𝑐 (𝑡−𝑟 ) (𝑦) |𝑓 (𝑦 − 𝑥) |𝑑𝑦

for some universal constant 𝑐 . From here, we apply Minkowski inequality to obtain (5.18). (5.19)
is obtained analogously, using (5.6). �

Corollary 5.8. Assuming Condition 𝔄1. Let 𝑓 be a function in 𝐿𝑝1 (ℝ𝑑), 𝑝1 ∈ [1,∞). Then for
any 𝑠 ∈ 𝐷𝑛 and 𝑡 ∈ (𝑠 + 2/𝑛, 1],

‖𝑄𝑛𝑠,𝑡 𝑓 −𝑄𝑛𝑠,𝑘𝑛 (𝑡) 𝑓 ‖𝐿𝑝1 (ℝ𝑑 ) 6 𝑁 (1/𝑛) 𝛼
2 ‖ 𝑓 ‖𝐿𝑝1 (ℝ𝑑 ) (𝑡 − 𝑠)−

𝛼
2 ,

where the constant 𝑁 depends only on 𝑑, 𝑝1, 𝐾1, 𝐾2.
33



Proof. By approximation, we can assume that 𝑓 is bounded and uniformly continuous. We put
𝑢 = 𝑘𝑛 (𝑡). From (5.10), 𝑄𝑛𝑠,𝑡 𝑓 −𝑄𝑛𝑠,𝑢 𝑓 = 𝐼1 + 𝐼2 + 𝐼3, where

𝐼1 = 𝑇𝑠,𝑡 𝑓 −𝑇𝑠,𝑢 𝑓 ,

𝐼2 =

∫ 𝑢

𝑠

𝑄𝑛𝑠,𝑘𝑛 (𝑟 ) [𝐻
𝑛
𝑟,𝑡 𝑓 − 𝐻𝑛

𝑟,𝑢 𝑓 ]𝑑𝑟, 𝐼3 =

∫ 𝑡

𝑢

𝑄𝑛𝑠,𝑘𝑛 (𝑟 ) [𝐻
𝑛
𝑟,𝑡 𝑓 ]𝑑𝑟 .

We estimate each 𝐼1, 𝐼2, 𝐼3 below. Note that 𝑠 < 𝑡 − 1/𝑛 implies 𝑠 < 𝑘𝑛 (𝑡). Applying (5.18), we
have ‖𝐼1‖𝐿𝑝 (ℝ𝑑 ) . (1/𝑛) (𝑡 − 𝑠)−1‖ 𝑓 ‖𝐿𝑝 (ℝ𝑑 ) .

From Theorem 5.5, we have

‖𝑄𝑛𝑠,𝑘𝑛 (𝑟 ) 𝑓 ‖𝐿𝑝 (ℝ𝑑 ) . ‖ 𝑓 ‖𝐿𝑝 (ℝ𝑑 )

for every 𝑟 > 𝑠 . It follows that

‖𝐼2‖𝐿𝑝 (ℝ𝑑 ) .

∫ 𝑢

𝑠

‖𝐻𝑛
𝑟,𝑡 𝑓 − 𝐻𝑛

𝑟,𝑢 𝑓 ‖𝐿𝑝 (ℝ𝑑 )𝑑𝑟 .

Applying (5.19) and Lemma 3.10 (noting that 𝑢 − 𝑠 > 1/𝑛), we have

‖𝐼2‖𝐿𝑝 (ℝ𝑑 ) .

∫ 𝑢

𝑠

(1/𝑛) (𝑢 − 𝑘𝑛 (𝑟 ))
𝛼
2
−2𝑑𝑟 ‖ 𝑓 ‖𝐿𝑝 (ℝ𝑑 ) . (1/𝑛) 𝛼

2 ‖ 𝑓 ‖𝐿𝑝 (ℝ𝑑 ) .

Applying Theorem 5.5 and Lemma 5.3, we have

‖𝐼3‖𝐿𝑝 (ℝ𝑑 ) .

∫ 𝑡

𝑢

‖𝐻𝑛
𝑟,𝑡 𝑓 ‖𝐿𝑝 (ℝ𝑑 )𝑑𝑟 .

∫ 𝑡

𝑢

(𝑡 − 𝑘𝑛 (𝑟 ))
𝛼
2
−1‖ 𝑓 ‖𝐿𝑝 (ℝ𝑑 )𝑑𝑟 . (1/𝑛) 𝛼

2 ‖ 𝑓 ‖𝐿𝑝 (ℝ𝑑 ) .

Combining the previous estimates, we obtain the result. �

Corollary 5.9. Let 𝑔 be a function in 𝐿1,𝑝 (ℝ𝑑) for some 𝑝 ∈ [1,∞)

‖𝑄𝑛𝑠,𝑡𝑔 − 𝑔‖𝐿𝑝 (ℝ𝑑 ) . ‖𝑔‖𝐿1,𝑝 (ℝ𝑑 ) (𝑡 − 𝑠)
𝛼
2 . (5.20)

Proof. By approximation,we can assume𝑔 is continuously differentiable andhas bounded deriva-

tives. From (5.10), we have 𝑄𝑛𝑠,𝑡𝑔 − 𝑔 = 𝐼1 + 𝐼2, where 𝐼1 = 𝑇𝑠,𝑡𝑔 − 𝑔 and 𝐼2 =
∫ 𝑡

𝑠
𝑄𝑛
𝑠,𝑘𝑛 (𝑟 ) [𝐻

𝑛
𝑟,𝑡𝑔]𝑑𝑟 .

From (5.4), we have

𝐼1 =

∫
ℝ𝑑

[𝑝Σ𝑠,𝑡 (𝑦) (𝑦 − 𝑥)𝑔(𝑦) − 𝑝Σ𝑠,𝑡 (𝑥) (𝑦 − 𝑥)𝑔(𝑥)]𝑑𝑦

=

∫
ℝ𝑑

[𝑝Σ𝑠,𝑡 (𝑦) (𝑦 − 𝑥) − 𝑝Σ𝑠,𝑡 (𝑥) (𝑦 − 𝑥)]𝑔(𝑦)𝑑𝑦 +
∫
ℝ𝑑

[𝑔(𝑦) − 𝑔(𝑥)]𝑝Σ𝑠,𝑡 (𝑥) (𝑦 − 𝑥)𝑑𝑦

= 𝐼11 + 𝐼12.

Using Condition 𝔄1, it is straightforward to verify that 𝜆−1𝐼 6 Σ𝑠,𝑡 (𝑦)Σ𝑠,𝑡 (𝑥)−1 6 𝜆𝐼 and
‖𝐼 − Σ𝑠,𝑡 (𝑥)Σ𝑠,𝑡 (𝑦)−1‖ 6 𝜆 |𝑥 −𝑦 |𝛼 for some finite constant 𝜆. Then, we apply Lemma 3.11 to get

|𝐼11 | .
∫
ℝ𝑑

|𝑥 − 𝑦 |𝛼𝑝𝑁 (𝑡−𝑠) (𝑥 − 𝑦) |𝑔(𝑦) |𝑑𝑦.
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Using Minkowski inequality, we obtain from the above that ‖𝐼11‖𝐿𝑝 (ℝ𝑑 ) . (𝑡 − 𝑠) 𝛼
2 ‖𝑔‖𝐿𝑝 (ℝ𝑑 ) .

From the Hardy-Littlewood maximal inequality, there is a non-negative function ℎ ∈ 𝐿𝑝 (ℝ𝑑)
such that ‖ℎ‖𝐿𝑝 (ℝ𝑑 ) . ‖∇𝑔‖𝐿𝑝 (ℝ𝑑 ) and

|𝑔(𝑦) − 𝑔(𝑥) | 6 |𝑥 − 𝑦 | (ℎ(𝑥) + ℎ(𝑦)), a.e. 𝑥,𝑦 ∈ ℝ
𝑑 .

Using ellipticity and the above estimate, we have that

|𝐼12 | 6
∫
ℝ𝑑

|𝑥 − 𝑦 | (ℎ(𝑥) + ℎ(𝑦))𝑝Σ𝑠,𝑡 (𝑥) (𝑥 − 𝑦)𝑑𝑦

. ℎ(𝑥) (𝑡 − 𝑠) 1
2 +

∫
ℝ𝑑

|𝑥 − 𝑦 |ℎ(𝑦)𝑝𝑁 (𝑡−𝑠) (𝑥 − 𝑦)𝑑𝑦.

Applying Minkowski inequality, we obtain that ‖𝐼12‖𝐿𝑝 (ℝ𝑑 ) . (𝑡 − 𝑠)1/2‖ℎ‖𝐿𝑝 (ℝ𝑑 ) . (𝑡 −
𝑠)1/2‖∇𝑔‖𝐿𝑝 (ℝ𝑑 ) . Applying Theorem 5.5 and Lemma 5.3, we have

‖𝐼2‖𝐿𝑝 (ℝ𝑑 ) .

∫ 𝑡

𝑠

‖𝐻𝑛
𝑟,𝑡𝑔‖𝐿𝑝 (ℝ𝑑 )𝑑𝑟 .

∫ 𝑡

𝑠

(𝑡 − 𝑟 ) 𝛼
2
−1‖𝑔‖𝐿𝑝 (ℝ𝑑 )𝑑𝑟 . (𝑡 − 𝑠) 𝛼

2 ‖𝑔‖𝐿𝑝 (ℝ𝑑 ) .

Combining the estimates for 𝐼11, 𝐼12 and 𝐼2, we obtain the result. �

5.2. Moment estimates. We consider the Euler–Maruyama scheme

𝑋𝑛𝑡 = 𝑥 +
∫ 𝑡

0

𝜎 (𝑠, 𝑋𝑛𝑘𝑛 (𝑠))𝑑𝐵𝑠, (5.21)

where𝑥0 is aF0-random variable. ByMarkov property, for every 𝑠 ∈ 𝐷𝑛 and boundedmeasurable
𝑓 , we have 𝔼[𝑓 (𝑋𝑛𝑡 ) |F𝑠] = 𝑄𝑛𝑠,𝑡 𝑓 (𝑋𝑛𝑠 ).

Proposition 5.10. Let 𝑋𝑛 be the solution to (5.21).
(i) Let ℎ be a measurable function such that ‖ℎ‖𝐿𝜌 (ℝ𝑑 ) is finite for some 𝜌 ∈ (0,∞]. Then for

every 𝑟, 𝑣 ∈ [0, 1], 𝑟 − 𝑣 > 2/𝑛,

‖ℎ(𝑋𝑛𝑟 )‖𝐿𝜌 (Ω |F𝑣) 6 𝑁 ‖ℎ‖𝐿𝜌 (ℝ𝑑 ) (𝑟 − 𝑣)
− 𝑑

2𝜌 . (5.22)

(ii) Let 𝑓 be a function in 𝐿𝑝 (ℝ𝑑), 𝑔 be a function in 𝐿1,𝑝 (ℝ𝑑) ∩ 𝐿∞(ℝ𝑑) for some 𝑝 ∈ [1,∞).
Then, for every 𝑟, 𝑠, 𝑣 ∈ [0, 1] such that 𝑟 − 𝑣 > 2/𝑛, 𝑟 > 𝑘𝑛 (𝑠) + 3/𝑛 and 𝑠 − 𝑣 > 2/𝑛,

‖𝔼𝑠 (𝑓 (𝑋𝑛𝑟 ) − 𝑓 (𝑋𝑛𝑘𝑛 (𝑟 )))‖𝐿𝑝 (Ω |F𝑣) 6 𝑁 (1/𝑛) 𝛼
2 ‖ 𝑓 ‖𝐿𝑝 (ℝ𝑑 ) (𝑠 − 𝑣)

− 𝑑
2𝑝

(
𝑟 − 𝑠 − 2

𝑛

)−𝛼
2

(5.23)

and

‖𝔼𝑠 (𝑔(𝑋𝑛𝑟 ) 𝑓 (𝑋𝑛𝑟 ) − 𝑔(𝑋𝑛𝑟 ) 𝑓 (𝑋𝑛𝑘𝑛 (𝑟 )))‖𝐿𝑝 (Ω |F𝑣)

6 𝑁 (1/𝑛) 𝛼
2 ‖ 𝑓 ‖𝐿𝑝 (ℝ𝑑 ) (𝑠 − 𝑣)

− 𝑑
2𝑝

[
‖𝑔‖𝐿∞ (ℝ𝑑 )

(
𝑟 − 𝑠 − 2

𝑛

)−𝛼
2

+ ‖𝑔‖𝐿1,𝑝 (ℝ𝑑 )

(
𝑟 − 𝑠 − 2

𝑛

)− 𝑑
2𝑝

]
.

(5.24)
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Proof. (i) Put 𝑣 = 𝑘𝑛 (𝑣) + 1/𝑛. In the case when 𝜌 < ∞, applying Theorem 5.5 (with the choice
𝑝1 = 1 and 𝑝2 = ∞), we have

𝔼[|ℎ(𝑋𝑛𝑟 ) |𝜌 |F𝑣 ] = 𝑄𝑛𝑣,𝑟 [|ℎ |𝜌] (𝑋𝑛𝑣 ) . (𝑟 − 𝑣)−𝑑
2 ‖ |ℎ |𝜌 ‖𝐿1 (ℝ𝑑 ) .

Noting that 𝑟 − 𝑣 > (𝑟 − 𝑣)/2, we obtain (5.22) for any 𝜌 ∈ (0,∞) from the above. When 𝜌 = ∞,
(5.22) is trivial.

(ii) Put 𝑠 = 𝑘𝑛 (𝑠) + 1/𝑛. Applying (5.22) and Corollary 5.8 (noting that 𝑠 − 𝑣 > 2/𝑛 and
𝑟 − 𝑠 > 2/𝑛), we have

‖𝔼𝑠 (𝑓 (𝑋𝑛𝑟 ) − 𝑓 (𝑋𝑛𝑘𝑛 (𝑟 )))‖𝐿𝑝 (Ω |F𝑣) = ‖𝑄𝑛𝑠,𝑟 𝑓 (𝑋𝑛𝑠 ) −𝑄𝑛𝑠,𝑘𝑛 (𝑟 ) 𝑓 (𝑋
𝑛
𝑠 )‖𝐿𝑝 (Ω |F𝑣)

. (𝑠 − 𝑣)−
𝑑
2𝑝 ‖𝑄𝑛𝑠,𝑟 𝑓 −𝑄𝑛𝑠,𝑘𝑛 (𝑟 ) 𝑓 ‖𝐿𝑝 (ℝ𝑑 )

. (1/𝑛) 𝛼
2 ‖ 𝑓 ‖𝐿𝑝 (ℝ𝑑 ) (𝑠 − 𝑣)

− 𝑑
2𝑝 (𝑘𝑛 (𝑟 ) − 𝑠)−

𝛼
2 .

We observe that 𝑠 − 𝑣 > 𝑠 − 𝑣 , 𝑘𝑛 (𝑟 ) − 𝑠 > 𝑟 − 𝑠 − 2/𝑛 and

‖𝔼𝑠 (𝑓 (𝑋𝑛𝑟 ) − 𝑓 (𝑋𝑛𝑘𝑛 (𝑟 )))‖𝐿𝑝 (Ω |F𝑣) 6 ‖𝔼𝑠 (𝑓 (𝑋𝑛𝑟 ) − 𝑓 (𝑋𝑛𝑘𝑛 (𝑟 )))‖𝐿𝑝 (Ω |F𝑣) .

From here, we obtain (5.23) by combining the previous estimates.
Lastly, we show (5.24). We write

𝑔(𝑋𝑛𝑟 ) 𝑓 (𝑋𝑛𝑟 ) − 𝑔(𝑋𝑛𝑟 ) 𝑓 (𝑋𝑛𝑘𝑛 (𝑟 ))
= [(𝑔𝑓 ) (𝑋𝑛𝑟 ) − (𝑔𝑓 ) (𝑋𝑛𝑘𝑛 (𝑟 ))] + [(𝑔(𝑋𝑛𝑘𝑛 (𝑟 )) − 𝑔(𝑋

𝑛
𝑟 )) 𝑓 (𝑋𝑛𝑘𝑛 (𝑟 ))] .

We observe that ‖ 𝑓 𝑔‖𝐿𝑝 (ℝ𝑑 ) 6 ‖ 𝑓 ‖𝐿𝑝 (ℝ𝑑 ) ‖𝑔‖𝐿∞ (ℝ𝑑 ) and apply (5.23) to see that𝔼𝑠 (
(𝑓 𝑔) (𝑋𝑛𝑟 ) − (𝑓 𝑔) (𝑋𝑛𝑘𝑛 (𝑟 ))

)
𝐿𝑝 (Ω |F𝑣)

is smaller than the right-hand side of (5.24). It suffices to estimate the 𝐿𝑝 (Ω |F𝑣 )-norm of

𝐴 := 𝔼𝑠 [(𝑔(𝑋𝑛𝑘𝑛 (𝑟 )) − 𝑔(𝑋
𝑛
𝑟 )) 𝑓 (𝑋𝑛𝑘𝑛 (𝑟 ))] .

By conditioning on F𝑘𝑛 (𝑟 ) , we have
𝐴 = 𝔼𝑠 [ℎ(𝑋𝑛𝑘𝑛 (𝑟 ))] = 𝑄

𝑛
𝑠,𝑘𝑛 (𝑟 ))ℎ(𝑋

𝑛
𝑠 ), where ℎ = (𝑔 −𝑄𝑛𝑘𝑛 (𝑟 ),𝑟𝑔) 𝑓 .

Applying (5.22),

‖𝐴‖𝐿𝑝 (Ω |F𝑣) . (𝑠 − 𝑣)−
𝑑
2𝑝 ‖𝑄𝑛𝑠,𝑘𝑛 (𝑟 )ℎ‖𝐿𝑝 (ℝ𝑑 ) .

We continue by applying Theorem 5.5 (with 𝑝1 = 𝑝/2 and 𝑝2 = 𝑝),

‖𝐴‖𝐿𝑝 (Ω |F𝑣) . (𝑠 − 𝑣)−
𝑑
2𝑝 (𝑘𝑛 (𝑟 ) − 𝑠)−

𝑑
2𝑝 ‖ℎ‖𝐿𝑝/2 (ℝ𝑑 ) .

By Hölder inequality

‖ℎ‖𝐿𝑝/2 (ℝ𝑑 ) 6 ‖𝑄𝑘𝑛 (𝑟 ),𝑟𝑔 − 𝑔‖𝐿𝑝 (ℝ𝑑 ) ‖ 𝑓 ‖𝐿𝑝 (ℝ𝑑 )

and by (5.20),

‖𝑄𝑘𝑛 (𝑟 ),𝑟𝑔 − 𝑔‖𝐿𝑝 (ℝ𝑑 ) . (𝑟 − 𝑘𝑛 (𝑟 ))
𝛼
2 ‖𝑔‖𝐿1,𝑝 (ℝ𝑑 ) .
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Combining the previous estimates, we see that ‖𝐴‖𝐿𝑝 (Ω |F𝑣) is also smaller than the right-hand
side of (5.24), finishing the proof. �

Remark 5.11. Concerning Proposition 5.10(i), if 𝑣 ∈ 𝐷𝑛, then there exists a constant 𝑁 =

𝑁 (𝑑, 𝜌, 𝛼, 𝐾1, 𝐾2) such that for every 𝑟 > 𝑣 , we have

‖ℎ(𝑋𝑛𝑟 )‖𝐿𝜌 (Ω |F𝑣) 6 𝑁 ‖ℎ‖𝐿𝜌 (ℝ𝑑 ) (𝑟 − 𝑣)
− 𝑑

2𝜌 . (5.25)

Indeed, the inequality is trivial when 𝜌 = ∞. When 𝜌 < ∞ and when 𝑣 ∈ 𝐷𝑛 , Theorem 5.5 is
applied directly, which yields

𝔼[|ℎ(𝑋𝑛𝑟 ) |𝜌 |F𝑣 ] = 𝑄𝑛𝑣,𝑟 [|ℎ |𝜌] (𝑋𝑛𝑣 ) . (𝑟 − 𝑣)−𝑑
2 ‖ |ℎ |𝜌 ‖𝐿1 (ℝ𝑑 ) .

From here, we deduce (5.25).

Proposition 5.12. Let 𝑋𝑛 be the solution to (5.21). Let 𝑓 ∈ 𝕃
𝑞
𝑝 ( [0, 1]) and 𝑔 ∈ 𝕃

𝑞
1,𝑝 ( [0, 1]) ∩

𝕃∞
∞( [0, 1]), with 𝑝, 𝑞 ∈ [2,∞) satisfying 𝑑

𝑝
+ 2
𝑞
< 1. Let 𝑣 ∈ [0, 1 − 4/𝑛] be a fixed number, 𝑛 > 4

is an integer. Then for every 𝑣 + 4
𝑛
6 𝑆 6 𝑇 6 1, one has the bound

‖
∫ 𝑇

𝑆

𝑔(𝑟, 𝑋𝑛𝑟 ) [𝑓 (𝑟, 𝑋𝑛𝑟 ) − 𝑓 (𝑟, 𝑋𝑛𝑘𝑛 (𝑟 ))]𝑑𝑟 ‖𝐿𝑝 (Ω |F𝑣)

6 𝑁 [(1/𝑛) 𝛼
2 + (1/𝑛) 1

2 log(𝑛)] (‖𝑔‖𝕃∞
∞ ( [𝑆,𝑇 ]) + ‖𝑔‖𝕃𝑞

1,𝑝 ( [𝑆,𝑇 ]))‖ 𝑓 ‖𝕃𝑞
𝑝 ( [𝑆,𝑇 ]), (5.26)

where 𝑁 = 𝑁 (𝑑, 𝑝, 𝑞, 𝐾1, 𝐾2) is a constant.

Proof. Let 𝑆,𝑇 be such that 𝑣 + 4/𝑛 6 𝑆 6 𝑇 6 1. By linearity, we can assume that ‖ 𝑓 ‖𝕃𝑞
𝑝 ( [𝑆,𝑇 ]) =

‖𝑔‖𝕃∞
∞ ( [𝑆,𝑇 ]) + ‖𝑔‖𝕃𝑞

1,𝑝 ( [𝑆,𝑇 ]) = 1.

For each (𝑠, 𝑡) ∈ Δ2( [𝑆,𝑇 ]), define

𝐴𝑠,𝑡 := 𝔼𝑠

∫ 𝑡

𝑠

𝑔(𝑟, 𝑋𝑛𝑟 ) (𝑓 (𝑟, 𝑋𝑛𝑟 ) − 𝑓 (𝑟, 𝑋𝑛𝑘𝑛 (𝑟 )))𝑑𝑟 .

We treat two cases 𝑡 6 𝑘𝑛 (𝑠) + 4
𝑛
and 𝑡 > 𝑘𝑛 (𝑠) + 4

𝑛
separately as following.

Case 1. For 𝑡 ∈ (𝑠, 𝑘𝑛 (𝑠)+ 4
𝑛
], by triangle inequality and (5.22) (note that𝑘𝑛 (𝑟 )−𝑣 > 𝑘𝑛 (𝑠)−𝑣 >

𝑠 − 𝑣 − 1/𝑛 > 2/𝑛) we have

‖𝐴𝑠,𝑡 ‖𝐿𝑝 (Ω |F𝑣) 6 ‖𝑔‖𝕃∞
∞ ( [𝑆,𝑇 ])

∫ 𝑡

𝑠

‖ 𝑓 (𝑟, 𝑋𝑛𝑟 )‖𝐿𝑝 (Ω |F𝑣) + ‖ 𝑓 (𝑟, 𝑋𝑛𝑘𝑛 (𝑟 ))‖𝐿𝑝 (Ω |F𝑣)𝑑𝑟

.

∫ 𝑡

𝑠

(𝑘𝑛 (𝑟 ) − 𝑣)−
𝑑
2𝑝 ‖ 𝑓 (𝑟, ·)‖𝐿𝑝 (ℝ𝑑 )𝑑𝑟 .

Note that 𝑘𝑛 (𝑟 ) − 𝑣 > 𝑘𝑛 (𝑠) − 𝑣 > (𝑠 − 𝑣)/2, applying Hölder inequality and the fact that
𝑡 − 𝑠 6 4/𝑛, we have∫ 𝑡

𝑠

(𝑘𝑛 (𝑟 ) − 𝑣)−
𝑑
2𝑝 ‖ 𝑓 (𝑟, ·)‖𝐿𝑝 (ℝ𝑑 )𝑑𝑟 . (𝑠 − 𝑣)−

𝑑
2𝑝 ‖ 𝑓 ‖𝕃𝑞

𝑝 ( [𝑠,𝑡]) (𝑡 − 𝑠)
1− 1

𝑞
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. (1/𝑛) 1
2 (𝑠 − 𝑣)−

𝑑
2𝑝 ‖ 𝑓 ‖𝕃𝑞

𝑝 ( [𝑠,𝑡]) (𝑡 − 𝑠)
1
2−

1
𝑞 .

This gives

‖𝐴𝑠,𝑡 ‖𝐿𝑝 (Ω |F𝑣) . (1/𝑛) 1
2 (𝑠 − 𝑣)−

𝑑
2𝑝 ‖ 𝑓 ‖𝕃𝑞

𝑝 ( [𝑠,𝑡]) (𝑡 − 𝑠)
1
2−

1
𝑞 . (5.27)

Case 2. When 𝑡 ∈ (𝑘𝑛 (𝑠) + 4
𝑛
, 1], by triangle inequality,

‖𝐴𝑠,𝑡 ‖𝐿𝑝 (Ω |F𝑣) 6 ‖𝐴𝑠,𝑘𝑛 (𝑠)+4/𝑛‖𝐿𝑝 (Ω |F𝑣)

+
∫ 𝑡

𝑘𝑛 (𝑠)+ 4
𝑛

‖𝔼𝑠 [𝑔(𝑟, 𝑋𝑛𝑟 ) (𝑓 (𝑟, 𝑋𝑛𝑟 ) − 𝑓 (𝑟, 𝑋𝑛𝑘𝑛 (𝑟 )))] ‖𝐿𝑝 (Ω |F𝑣)𝑑𝑟

=: 𝐼1 + 𝐼2.
For 𝐼1, from (5.27) we know

𝐼1 . (1/𝑛) 1
2 (𝑠 − 𝑣)−

𝑑
2𝑝 ‖ 𝑓 ‖𝕃𝑞

𝑝 ( [𝑠,𝑡])

(
𝑘𝑛 (𝑠) +

4

𝑛
− 𝑠

) 1
2−

1
𝑞

.

Because 𝑘𝑛 (𝑠) + 4
𝑛
− 𝑠 6 𝑡 − 𝑠 , we get

𝐼1 . (1/𝑛) 1
2 (𝑠 − 𝑣)−

𝑑
2𝑝 ‖ 𝑓 ‖𝕃𝑞

𝑝 ( [𝑠,𝑡]) (𝑡 − 𝑠)
1
2−

1
𝑞 .

Applying (5.24) and Hölder inequality, we have for 𝐼2

𝐼2 . (1/𝑛) 𝛼
2 (𝑠 − 𝑣)−

𝑑
2𝑝 ‖𝑔‖𝕃∞

∞ ( [𝑆,𝑇 ])

∫ 𝑡

𝑘𝑛 (𝑠)+ 4
𝑛

(
𝑟 − 𝑠 − 2

𝑛

)−𝛼
2

‖ 𝑓 (𝑟, ·)‖𝐿𝑝 (ℝ𝑑 )𝑑𝑟

+ (1/𝑛) 𝛼
2 (𝑠 − 𝑣)−

𝑑
2𝑝

∫ 𝑡

𝑘𝑛 (𝑠)+ 4
𝑛

(
𝑟 − 𝑠 − 2

𝑛

)− 𝑑
2𝑝

‖𝑔(𝑟, ·)‖𝐿1,𝑝 (ℝ𝑑 ) ‖ 𝑓 (𝑟, ·)‖𝐿𝑝 (ℝ𝑑 )𝑑𝑟

. (1/𝑛) 𝛼
2 (𝑠 − 𝑣)−

𝑑
2𝑝

[
‖ 𝑓 ‖𝕃𝑞

𝑝 ( [𝑠,𝑡]) (𝑡 − 𝑠)
1−𝛼

2 −
1
𝑞 + ‖𝑔‖𝕃𝑞

1,𝑝 ( [𝑠,𝑡]) ‖ 𝑓 ‖𝕃𝑞
𝑝 ( [𝑠,𝑡]) (𝑡 − 𝑠)

1− 𝑑
2𝑝−

2
𝑞

]
.

Combining these two cases together we obtain that for 𝑣 + 4/𝑛 6 𝑠 6 𝑡 6 1,

‖𝐴𝑠,𝑡 ‖𝐿𝑚 (Ω |F𝑣) . (1/𝑛) 1
2 (𝑠 − 𝑣)−

𝑑
2𝑝 ‖ 𝑓 ‖𝕃𝑞

𝑝 ( [𝑠,𝑡]) (𝑡 − 𝑠)
1
2−

1
𝑞

+ (1/𝑛) 𝛼
2 (𝑠 − 𝑣)−

𝑑
2𝑝

[
‖ 𝑓 ‖𝕃𝑞

𝑝 ( [𝑠,𝑡]) (𝑡 − 𝑠)
1−𝛼

2 −
1
𝑞 + ‖𝑔‖𝕃𝑞

1,𝑝 ( [𝑠,𝑡]) ‖ 𝑓 ‖𝕃𝑞
𝑝 ( [𝑠,𝑡]) (𝑡 − 𝑠)

1− 𝑑
2𝑝−

2
𝑞

]
.

(5.28)

Furthermore, for 𝑢 ∈ (𝑠, 𝑡), we have 𝔼𝑠𝛿𝐴𝑠,𝑢,𝑡 = 0. Let𝑤 be the continuous control on Δ( [𝑣 +
4/𝑛, 1]) defined by

𝑤 (𝑠, 𝑡) =
[
(𝑠 − 𝑣)−

𝑑
2𝑝 ‖ 𝑓 ‖𝕃𝑞

𝑝 ( [𝑠,𝑡]) (𝑡 − 𝑠)
1
2−

1
𝑞

]2
+

[
(𝑠 − 𝑣)−

𝑑
2𝑝 ‖ 𝑓 ‖𝕃𝑞

𝑝 ( [𝑠,𝑡]) (𝑡 − 𝑠)
1−𝛼

2 −
1
𝑞

]1/(1−𝛼
2 )
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+
[
(𝑠 − 𝑣)−

𝑑
2𝑝 ‖𝑔‖𝕃𝑞

1,𝑝 ( [𝑠,𝑡]) ‖ 𝑓 ‖𝕃𝑞
𝑝 ( [𝑠,𝑡]) (𝑡 − 𝑠)

1− 𝑑
2𝑝−

2
𝑞

]1/(1− 𝑑
2𝑝 )

+ (𝑠 − 𝑣)−
𝑑
2𝑝 ‖ 𝑓 ‖𝕃𝑞

𝑝 ( [𝑠,𝑡]) (𝑡 − 𝑠)
1− 1

𝑞 .

Denote

A𝑡 :=

∫ 𝑡

0
(𝑓 (𝑟, 𝑋𝑛𝑟 ) − 𝑓 (𝑟, 𝑋𝑛𝑘𝑛 (𝑟 )))𝑑𝑟, 𝐽𝑠,𝑡 := 𝛿A𝑠,𝑡 −𝐴𝑠,𝑡 .

Using similar estimates leading to (5.27), we have

‖ 𝐽𝑠,𝑡 ‖𝐿𝑝 (Ω |F𝑣) . (𝑠 − 𝑣)−
𝑑
2𝑝 ‖ 𝑓 ‖𝕃𝑞

𝑝 ( [𝑠,𝑡]) (𝑡 − 𝑠)
1− 1

𝑞 . 𝑤 (𝑠, 𝑡) .

Furthermore, 𝛿 𝐽𝑠,𝑢,𝑡 = −𝛿𝐴𝑠,𝑢,𝑡 and we derive from (5.28) that

‖𝛿 𝐽𝑠,𝑢,𝑡 ‖𝐿𝑝 (Ω |F𝑣) . (1/𝑛) 1
2𝑤 (𝑠, 𝑡) 1

2 + (1/𝑛) 𝛼
2

[
𝑤 (𝑠, 𝑡)1−𝛼

2 +𝑤 (𝑠, 𝑡)1−
𝑑
2𝑝

]
.

It is obvious that 𝔼𝑠 𝐽𝑠,𝑡 = 0 and hence 𝔼𝑠𝛿 𝐽𝑠,𝑢,𝑡 = 0. Applying Lemma 3.2, we have

‖ 𝐽𝑠,𝑡 ‖𝐿𝑝 (Ω |F𝑣) . [(1/𝑛) 𝛼
2 + (1/𝑛) 1

2 log(𝑛)]
[
𝑤 (𝑠, 𝑡) 1

2 +𝑤 (𝑠, 𝑡)1−𝛼
2 +𝑤 (𝑠, 𝑡)1−

𝑑
2𝑝 +𝑤 (𝑠, 𝑡)

]
.

By triangle inequality and (5.28), this implies that

‖𝛿A𝑠,𝑡 ‖𝐿𝑝 (Ω |F𝑣) . [(1/𝑛) 𝛼
2 + (1/𝑛) 1

2 log(𝑛)]
[
𝑤 (𝑠, 𝑡) 1

2 +𝑤 (𝑠, 𝑡)1−𝛼
2 +𝑤 (𝑠, 𝑡)1−

𝑑
2𝑝 +𝑤 (𝑠, 𝑡)

]
.

Because ‖ 𝑓 ‖𝕃𝑞
𝑝 ( [𝑠,𝑡]) 6 ‖ 𝑓 ‖𝕃𝑞

𝑝 ( [𝑆,𝑇 ]) = 1, we have

𝑤 (𝑠, 𝑡) 6
[
(𝑠 − 𝑣)−

𝑑
2𝑝 (𝑡 − 𝑠)

1
2−

1
𝑞

]2
+

[
(𝑠 − 𝑣)−

𝑑
2𝑝 (𝑡 − 𝑠)1−

𝛼
2 −

1
𝑞

]1/(1−𝛼
2 ) +

[
(𝑠 − 𝑣)−

𝑑
2𝑝 (𝑡 − 𝑠)1−

𝑑
2𝑝−

2
𝑞

]1/(1− 𝑑
2𝑝 )

+ (𝑠 − 𝑣)−
𝑑
2𝑝 (𝑡 − 𝑠)1−

1
𝑞 (5.29)

and hence

𝑤 (𝑠, 𝑡) 1
2 +𝑤 (𝑠, 𝑡)1−𝛼

2 +𝑤 (𝑠, 𝑡)1−
𝑑
2𝑝 +𝑤 (𝑠, 𝑡) .

16∑︁
𝑖=1

(𝑠 − 𝑣)−𝜂𝑖 (𝑡 − 𝑠)𝜏𝑖 ,

where for each 𝑖 = 1, . . . , 16; 𝜂𝑖, 𝜏𝑖 ∈ [0, 1] are some constants such that 𝜏𝑖−𝜂𝑖 > 0. The constants
𝜂𝑖, 𝜏𝑖 ’s can be calculated explicitly by applying the powers 1/2, 1 − 𝛼/2, 1 − 𝑑/(2𝑝) and 1 to the
singularity exponents and Hölder exponents in the right-hand side of (5.29), however, their
exact values are non-essential. That 𝜏𝑖 − 𝜂𝑖 is positive for each 𝑖 because the sums of the Hölder
exponents and the corresponding singular exponents of each factor on the right-hand side of
(5.29) are positive. Hence, we deduce from the above estimate that

‖
∫ 𝑇

𝑆

𝑔(𝑟, 𝑋𝑛𝑟 ) (𝑓 (𝑟, 𝑋𝑛𝑟 ) − 𝑓 (𝑟, 𝑋𝑛𝑘𝑛 (𝑟 )))𝑑𝑟 ‖𝐿𝑝 (Ω |F𝑣)
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6 𝑁 [(1/𝑛) 𝛼
2 + (1/𝑛) 1

2 log(𝑛)]
16∑︁
𝑖=1

(𝑆 − 𝑣)−𝜂𝑖 (𝑇 − 𝑆)𝜏𝑖 ,

which holds for every 𝑣 + 4/𝑛 6 𝑆 6 𝑇 6 1. We then apply Lemma 3.4 to obtain (5.26). �

Proposition 5.13. Let 𝑋𝑛 be the solution to (5.21). Let 𝑓 ∈ 𝕃
𝑞
𝑝 ( [0, 1]) ∩ 𝕃

𝑞
∞( [0, 1]) and 𝑔 ∈

𝕃
𝑞
1,𝑝 ( [0, 1]) ∩ 𝕃∞

∞( [0, 1]), with 𝑝, 𝑞 ∈ [2,∞) satisfying 𝑑
𝑝
+ 2
𝑞
< 1.

As in Proposition 4.4, we put 𝛽𝑛 (𝑓 ) = sup𝑟∈𝐷𝑛
‖ 𝑓 ‖𝕃𝑞

∞ ( [𝑟,𝑟+1/𝑛]) . Then for any 𝑝 ∈ (0, 𝑝), there
exists a constant 𝑁 = 𝑁 (𝑑, 𝑝, 𝑞, 𝑝) such that

‖ sup
𝑡∈[0,1]

|
∫ 𝑡

0
𝑔(𝑟, 𝑋𝑛𝑟 ) [𝑓 (𝑟, 𝑋𝑛𝑟 ) − 𝑓 (𝑟, 𝑋𝑛𝑘𝑛 (𝑟 ))]𝑑𝑟 | ‖𝐿𝑝 (Ω) 6 𝑁

[
‖𝑔‖𝕃∞

∞ ( [0,1]) + ‖𝑔‖𝕃𝑞
1,𝑝 ( [0,1])

]

×
[
(1/𝑛)1−

1
𝑞 𝛽𝑛 (𝑓 ) + (1/𝑛) 𝛼

2 ‖ 𝑓 ‖𝕃𝑞
𝑝 ( [0,1]) + (1/𝑛) 1

2 log(𝑛)‖ 𝑓 ‖𝕃𝑞
𝑝 ( [0,1])

]
.

Proof. This result is a consequence of Proposition 5.12 and Lemma 3.1. The proof is analogous
to that of Proposition 4.4, hence, omitted. �

Lemma 5.14. Let 𝑋𝑛 be the solution to (5.21) and 𝑓 be a function in 𝕃
𝑞1
𝑝1 ( [0, 1]) for some 𝑝1, 𝑞1 ∈

[1,∞] satisfying 𝑑
𝑝1

+ 2
𝑞1

< 2. Then

𝔼 exp

(∫ 1

0
𝑓 (𝑟, 𝑋𝑛𝑟 )𝑑𝑟

)
6 2 exp

(
𝑁 ‖ 𝑓 ‖1/(1−𝑑/(2𝑝1))

𝕃
𝑞1
𝑝1
( [0,1])

)
, (5.30)

where 𝑁 depends only on 𝑑, 𝛼, 𝑝1, 𝑞1, 𝐾1, 𝐾2.
Assume additionally that there are continuous control 𝑤0 on Δ and positive constants 𝑀,𝛾0

such that

(1/𝑛)1−
1
𝑞1 ‖ 𝑓 ‖𝕃𝑞1

∞ ( [𝑠,𝑡]) 6 𝑤0(𝑠, 𝑡)𝛾0 ∀ 0 6 𝑡 − 𝑠 6 1/𝑛 (5.31)

and

‖ 𝑓 ‖𝕃𝑞1
𝑝1
( [0,1]) +𝑤0(0, 1) 6 𝑀.

Then there exists a finite constant 𝑁 which depends only on𝑀,𝛾0, 𝑑, 𝛼, 𝑝1, 𝑞1, 𝐾1, 𝐾2 such that

𝔼 exp

(∫ 1

0
𝑓 (𝑟, 𝑋𝑛𝑘𝑛 (𝑟 ))𝑑𝑟

)
6 𝑁 . (5.32)

Proof. We can assume without loss of generality that 𝑓 is nonnegative. We rely on Lemma 3.5.

For each (𝑠, 𝑡) ∈ Δ, define 𝑠 = 𝑘𝑛 (𝑠)+1/𝑛. For each 𝑟 ∈ (𝑠, 𝑠),wewrite𝑋𝑛𝑟 = 𝑋𝑛𝑠 +
∫ 𝑟

𝑠
𝜎 (𝜃, 𝑋𝑛

𝑘𝑛 (𝑠))𝑑𝐵𝜃
so that

𝔼𝑠

∫ 𝑠∧𝑡

𝑠

𝑓 (𝑟, 𝑋𝑛𝑟 )𝑑𝑟 =
∫ 𝑠∧𝑡

𝑠

𝑃Σ𝑠,𝑟 (𝑋𝑛
𝑘𝑛 (𝑠) )

𝑓𝑟 (𝑋𝑛𝑠 )𝑑𝑟 .
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Using ellipticity of Σ𝑠,𝑟 and Gaussian estimates, we see that sup𝑦 ‖𝑃Σ𝑠,𝑟 (𝑦) 𝑓𝑟 ‖𝐿∞ (ℝ𝑑 ) . (𝑟 −
𝑠)−𝑑/(2𝑝1) ‖ 𝑓𝑟 ‖𝐿𝑝1 (ℝ𝑑 ) . Hence, using this estimate and Hölder inequality, we have

𝔼𝑠

∫ 𝑠∧𝑡

𝑠

𝑓 (𝑟, 𝑋𝑛𝑟 )𝑑𝑟 .
∫ 𝑡

𝑠

(𝑟 − 𝑠)−
𝑑
2𝑝1 ‖ 𝑓𝑟 ‖𝐿𝑝1 (ℝ𝑑 )𝑑𝑟 . ‖ 𝑓 ‖𝕃𝑞1

𝑝1
( [𝑠,𝑡]) (𝑡 − 𝑠)

1− 𝑑
2𝑝1

− 1
𝑞1 .

On the interval (𝑠 ∧ 𝑡, 𝑡), we use (5.25) and Hölder inequality to see that

𝔼𝑠

∫ 𝑡

𝑠∧𝑡
𝑓 (𝑟, 𝑋𝑛𝑟 )𝑑𝑟 .

∫ 𝑡

𝑠∧𝑡
(𝑟 − 𝑠)−

𝑑
2𝑝1 ‖ 𝑓𝑟 ‖𝐿𝑝1 (ℝ𝑑 )𝑑𝑟 . ‖ 𝑓 ‖𝕃𝑞1

𝑝1
( [𝑠,𝑡]) (𝑡 − 𝑠)

1− 𝑑
2𝑝1

− 1
𝑞1 .

It follows that

𝔼𝑠

∫ 𝑡

𝑠

𝑓 (𝑟, 𝑋𝑛𝑟 )𝑑𝑟 . ‖ 𝑓 ‖𝕃𝑞1
𝑝1
( [𝑠,𝑡]) (𝑡 − 𝑠)

1− 𝑑
2𝑝1

− 1
𝑞1 .

Observe that𝑤 defined by𝑤 (𝑠, 𝑡)1−
𝑑
2𝑝1 = ‖ 𝑓 ‖𝕃𝑞1

𝑝1
( [𝑠,𝑡]) (𝑡 − 𝑠)

1− 𝑑
2𝑝1

− 1
𝑞1 is a continuous control on

Δ. Applying Lemma 3.5, we obtain (5.30).
The second part is obtained in an analogous way. For each (𝑠, 𝑡) ∈ Δ, define 𝑠 = 𝑘𝑛 (𝑠) + 2/𝑛,

using Hölder inequality, (5.31) and (5.22), we have

𝔼𝑠

∫ 𝑠∧𝑡

𝑠

𝑓 (𝑟, 𝑋𝑛𝑘𝑛 (𝑟 ))𝑑𝑟 6
∫ 𝑠∧𝑡

𝑠

‖ 𝑓𝑟 ‖𝐿∞ (ℝ𝑑 )𝑑𝑟 . ‖ 𝑓 ‖𝕃𝑞1
∞ ( [𝑠,𝑠∧𝑡]) (1/𝑛)

1− 1
𝑞1 . 𝑤0(𝑠, 𝑡)𝛾0

and

𝔼𝑠

∫ 𝑡

𝑠∧𝑡
𝑓 (𝑟, 𝑋𝑛𝑘𝑛 (𝑟 ))𝑑𝑟 =

∫ 𝑡

𝑠∧𝑡
𝔼𝑠 𝑓 (𝑟, 𝑋𝑛𝑘𝑛 (𝑟 ))𝑑𝑟

.

∫ 𝑡

𝑠∧𝑡
(𝑘𝑛 (𝑟 ) − 𝑠)−

𝑑
2𝑝1 ‖ 𝑓𝑟 ‖𝐿𝑝1 (ℝ𝑑 )𝑑𝑟

.

∫ 𝑡

𝑠∧𝑡
(𝑟 − 𝑠)−

𝑑
2𝑝1 ‖ 𝑓𝑟 ‖𝐿𝑝1 (ℝ𝑑 )𝑑𝑟 . ‖ 𝑓 ‖𝕃𝑞1

𝑝1
( [𝑠,𝑡]) (𝑡 − 𝑠)

1− 𝑑
2𝑝1

− 1
𝑞1 .

Hence,𝔼𝑠
∫ 𝑡

𝑠
𝑓 (𝑟, 𝑋𝑛

𝑘𝑛 (𝑟 ))𝑑𝑟 . 𝑤0(𝑠, 𝑡)𝛾0 +𝑤 (𝑠, 𝑡)1−
𝑑
2𝑝1 , where𝑤 is the control defined previously.

Applying Lemma 3.5 and Remark 3.6, we obtain (5.32). �

Remark 5.15. From Remark 3.6, one can compute 𝑁 explicitly, however (5.32) is sufficient for
our considerations.

Proof of Theorem 5.1. For any continuous process 𝑍 , we define

H(𝑍 ) = sup
𝑡∈[0,1]

��� ∫ 𝑡

0
𝑔(𝑟, 𝑍𝑟 ) [𝑓 (𝑟, 𝑍𝑟 ) − 𝑓 (𝑟, 𝑍𝑘𝑛 (𝑟 ))]𝑑𝑟

���.
Let 𝑋𝑛 be the solution to (5.21) and

𝜌 := exp

(
−

∫ 1

0
(𝜎−1𝑏𝑛) (𝑟, 𝑋𝑛𝑘𝑛 (𝑟 ))𝑑𝐵𝑟 −

1

2

∫ 1

0

���(𝜎−1𝑏𝑛) (𝑟, 𝑋𝑛𝑘𝑛 (𝑟 ))
���2𝑑𝑟

)
.
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Using the fact that 𝜎−1𝑏𝑛 ∈ 𝕃
𝑞
∞( [0, 1]), we see that 𝜌 is a probability density. It follows from

Girsanov theorem (see e.g. [IW89, IV Corollary of Theorem 4.2]) and Hölder inequality for
1
𝛾 ′ +

1
𝛾
= 1 with 𝛾 > 1 close enough to 1 such that 𝛾𝑝 < 𝑝

𝔼H(𝑋𝑛)𝑝 = 𝔼(𝜌H(𝑋𝑛)𝑝) 6 [𝔼H(𝑋𝑛)𝛾𝑝]1/𝛾 [𝔼𝜌𝛾 ′]1/𝛾 ′ . (5.33)

From Proposition 5.13 we immediately get that

(𝔼H(𝑋𝑛)𝛾𝑝)
1
𝛾𝑝 = ‖H (𝑋𝑛)‖𝐿𝛾𝑝 (Ω) 6 𝑁

[
‖𝑔‖𝕃∞

∞ ( [0,1]) + ‖𝑔‖𝕃𝑞
1,𝑝 ( [0,1])

]
×

[
(1/𝑛)1−

1
𝑞 𝛽𝑛 (𝑓 ) + (1/𝑛) 𝛼

2 ‖ 𝑓 ‖𝕃𝑞
𝑝 ( [0,1]) + (1/𝑛) 1

2 log(𝑛)‖ 𝑓 ‖𝕃𝑞
𝑝 ( [0,1])

]
. (5.34)

Using Cauchy–Schwarz inequality, we have

𝔼𝜌𝛾
′
= 𝔼 exp

(
−𝛾 ′

∫ 1

0
(𝜎−1𝑏𝑛) (𝑟, 𝑋𝑛𝑘𝑛 (𝑟 ))𝑑𝐵𝑟 −

𝛾 ′

2

∫ 1

0

���(𝜎−1𝑏𝑛) (𝑟, 𝑋𝑛𝑘𝑛 (𝑟 ))
���2𝑑𝑟

)

6

[
𝔼 exp

(
−2𝛾 ′

∫ 1

0
(𝜎−1𝑏𝑛) (𝑟, 𝑋𝑛𝑘𝑛 (𝑟 ))𝑑𝐵𝑟 − 2𝛾 ′2

∫ 1

0

���(𝜎−1𝑏𝑛) (𝑟, 𝑋𝑛𝑘𝑛 (𝑟 ))
���2𝑑𝑟

)] 1
2

×
[
𝔼 exp

(
(2𝛾 ′2 − 𝛾 ′)

∫ 1

0

���(𝜎−1𝑏𝑛) (𝑟, 𝑋𝑛𝑘𝑛 (𝑟 ))
���2𝑑𝑟

)] 1
2

.

In the right-hand side above, the first factor is identical to 1 by martingale properties. For the
second factor, we recall Condition 𝔅 and the uniform ellipticity of 𝜎 , which imply that the

function 𝑓 := |𝜎−1𝑏𝑛 |2 belongs to 𝕃
𝑞/2
𝑝/2( [0, 1]) ∩ 𝕃

𝑞/2
∞ ( [0, 1]) and satisfies

(1/𝑛)1−
2
𝑞 ‖ 𝑓 ‖

𝕃
𝑞/2
∞ ( [𝑠,𝑡]) .

[
(1/𝑛)

1
2
− 1
𝑞 ‖𝑏𝑛‖𝕃𝑞

∞ ( [𝑠,𝑡])

]2
. 𝜇 (𝑠, 𝑡)2𝜃 , ∀ 0 6 𝑡 − 𝑠 6 1/𝑛.

Applying Lemma 3.5, we see that 𝔼 exp
(
(2𝛾 ′2 − 𝛾 ′)

∫ 1

0
| (𝜎−1𝑏𝑛) (𝑟, 𝑋𝑛

𝑘𝑛 (𝑟 )) |
2𝑑𝑟

)
is bounded uni-

formly by a finite constant. Hence, we have shown that 𝔼𝜌𝛾
′
is bounded uniformly in 𝑛.

Combining with (5.33) and (5.34), we obtain (5.1). �

6. Analysis of the continuum paths

To show Theorem 2.3, we need the following result, extending the results of Section 4 to
functionals of solutions to (1.1).

Theorem 6.1. Let 𝑋 be the solution to (1.1).
(i) Assuming Conditions 𝔄1 and 𝔅. Let ℎ be a function in 𝕃

𝑞1
𝑝1 ( [0, 1]) for some 𝑝1, 𝑞1 ∈ [1,∞]

satisfying 𝑑
𝑝1

+ 2
𝑞1

< 2. Then for every𝑚 > 1, there exists a constant 𝑁 = 𝑁 (𝑑, 𝑝, 𝑞,𝑚) such that

‖
∫ 1

0

ℎ(𝑟, 𝑋𝑟 )𝑑𝑟 ‖𝐿𝑚 (Ω) 6 𝑁 ‖ℎ‖𝕃𝑞1
𝑝1
( [0,1]) .
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(ii) Assuming Conditions 𝔄-𝔅 with 𝑞0 = ∞ and 1
𝑝
+ 1
𝑝0

< 1. Let 𝑔 be a function in 𝕃
𝑞2
𝑝2 ( [0, 1])

and let 𝜈 ∈ [0, 1) such that 𝑑
𝑝2

+ 2
𝑞2

+ 𝜈 < 2. Then for any 𝑝 ∈ (0, 𝑝2), there exists a constant

𝑁 = 𝑁 (𝜈, 𝑑, 𝑝, 𝑞, 𝑝2, 𝑞2, 𝑝) such that

‖ sup
𝑡∈[0,1]

|
∫ 𝑡

0
𝑔(𝑟, 𝑋𝑟 )𝑑𝑟 | ‖𝐿𝑝 (Ω) 6 𝑁 ‖𝑔‖𝕃𝑞2

−𝜈,𝑝2 ( [0,1])
.

(iii) Assuming Conditions 𝔄-𝔅 with 𝑞0 = ∞ and 1
𝑝
+ 1
𝑝0

< 1. Let 𝑔 be a function in 𝕃
𝑞2
𝑝2 ( [0, 1])

with 𝑑
𝑝2

+ 2
𝑞2

< 1, Γ be a nonnegative number and 𝑤0 be a continuous control on Δ. We assume

that for every (𝑠, 𝑡) ∈ Δ,

‖𝑔‖𝕃𝑞2
−1,𝑝2 ( [𝑠,𝑡])

6 Γ𝑤1(𝑠, 𝑡)
1
𝑞2 and ‖𝑔‖𝕃𝑞2

𝑝2
( [𝑠,𝑡]) 6 𝑤1(𝑠, 𝑡)

1
𝑞2 .

Then for any 𝑝 ∈ (0, 𝑝2), there exists a constant 𝑁 = 𝑁 (𝜈, 𝑑, 𝑝2, 𝑞2, 𝑝, 𝑞, 𝑝) such that

‖ sup
𝑡∈[0,1]

|
∫ 𝑡

0
𝑔(𝑟, 𝑋𝑟 )𝑑𝑟 | ‖𝐿𝑝 (Ω) 6 𝑁 Γ(1 + | log(Γ) |)𝑤1(0, 1)

1
𝑞2 .

Similar to the methods in Sections 4 and 5, first we derive some analytic estimates on the
transition operators associated to solutions of (1.1) without drift. Using these estimates, one can
apply stochastic sewing techniques (Lemma 3.2) and Girsanov theorem to obtain the desired
moment bounds.

6.1. Analytic estimates. For each 𝑡 ∈ (0, 1], we consider the parabolic differential equation

𝜕𝑠𝑢 + 1

2
𝑎𝑖 𝑗 𝜕2𝑖 𝑗𝑢 = 𝑓 , 𝑢 (𝑡, ·) = 0 (6.1)

where 𝑓 ∈ 𝕃
𝑞
−1,𝑝 ( [0, 1]) and Einstein’s convention of summation over repeated indices is

implied. Whenever the dependence on 𝑡 plays a role, we write 𝑢𝑡𝑠 (𝑥) for the solution to (6.1)
evaluated at (𝑠, 𝑥), 𝑠 6 𝑡 , 𝑥 ∈ ℝ𝑑 .

Theorem 6.2. Assuming Condition 𝔄 and that 𝑞0 = ∞. Let 𝑞 ∈ (2,∞) and 𝑝 ∈ (1,∞) be such
that 1

𝑝
+ 1
𝑝0

< 1. Then for every 𝜈 ∈ [0, 1], every 0 6 𝑠 6 𝑡 6 1 and 𝑓 ∈ 𝕃
𝑞
−𝜈,𝑝 ( [0, 1]), we have

‖𝑢𝑡𝑠 ‖𝐿𝑝 (ℝ𝑑 ) 6 𝑁 (𝑡 − 𝑠)1−
𝜈
2−

1
𝑞 ‖ 𝑓 ‖𝕃𝑞

−𝜈,𝑝 ( [𝑠,𝑡]) . (6.2)

Lemma 6.3. Let 𝑞 ∈ (2,∞) and 𝑝 ∈ (1,∞). Let 𝑡 ∈ [0, 1]. If 𝑢 (𝑟, 𝑥) = 0 for 𝑟 ∈ [𝑡, 1], then for
every 𝑠 ∈ [0, 𝑡]

‖𝑢 (𝑠)‖𝐿𝑝 (ℝ𝑑 ) . (𝑡 − 𝑠)
1
2−

1
𝑞 ‖𝜕𝑠𝑢 + 1

2
Δ𝑢‖𝕃𝑞

−1,𝑝 ( [𝑠,𝑡]) whenever 𝑢 ∈ 𝕃
𝑞
1,𝑝 ( [0, 1]) (6.3)

and

‖𝑢 (𝑠)‖𝐿𝑝 (ℝ𝑑 ) . (𝑡 − 𝑠)1−
1
𝑞 ‖𝜕𝑠𝑢 + 1

2
Δ𝑢‖𝕃𝑞

𝑝 ( [𝑠,𝑡]) whenever 𝑢 ∈ 𝕃
𝑞
2,𝑝 ( [0, 1]). (6.4)
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Proof. By approximation, we can assume that𝑢 is a smooth function on [0, 1]×ℝ𝑑 with compact
support. Put 𝑔 := 𝜕𝑠𝑢 + 1

2
Δ𝑢. Then by Duhamel’s formula

𝑢 (𝑠, 𝑥) =
∫ 𝑡

𝑠

𝑃𝑠,𝑟𝑔(𝑟, 𝑥)𝑑𝑟 .

Applying Minkowski inequality and [Tri13, Theorem 5.30], we have

‖𝑢𝑠 ‖𝐿𝑝 (ℝ𝑑 ) 6

∫ 𝑡

𝑠

‖𝑃𝑠,𝑟𝑔𝑟 ‖𝐿𝑝 (ℝ𝑑 )𝑑𝑟 .

∫ 𝑡

𝑠

(𝑟 − 𝑠)− 1
2 ‖𝑔𝑟 ‖𝐿−,1,𝑝 (ℝ𝑑 )𝑑𝑟 .

Using Hölder inequality, we have

‖𝑢𝑠 ‖𝐿𝑝 (ℝ𝑑 ) . (𝑡 − 𝑠)
1
2
− 1
𝑞 ‖𝑔‖𝕃𝑞

−1,𝑝 ( [𝑠,𝑡]) .

This shows (6.3). Inequality (6.4) is obtained in the same way. �

Proof of Theorem 6.2. By interpolation, it suffices to show that

‖𝑢𝑡𝑠 ‖𝐿𝑝 (ℝ𝑑 ) 6 𝑁 (𝑡 − 𝑠)
1
2
− 1
𝑞 ‖ 𝑓 ‖𝕃𝑞

−1,𝑝 ( [𝑠,𝑡]) for 𝑓 ∈ 𝕃
𝑞
−1,𝑝 ( [0, 1]), (6.5)

‖𝑢𝑡𝑠 ‖𝐿𝑝 (ℝ𝑑 ) 6 𝑁 (𝑡 − 𝑠)1−
1
𝑞 ‖ 𝑓 ‖𝕃𝑞

𝑝 ( [𝑠,𝑡]) for 𝑓 ∈ 𝕃
𝑞
𝑝 ( [0, 1]) . (6.6)

From Theorem A.4, we have for every 0 6 𝑠 6 𝑡 6 1

‖𝑢𝑡 ‖𝕃𝑞
1,𝑝 ( [𝑠,𝑡]) . ‖ 𝑓 ‖𝕃𝑞

−1,𝑝 ( [𝑠,𝑡]) . (6.7)

From (6.1), we have

𝜕𝑠𝑢 + 1

2
Δ𝑢 = 𝑓 + 1

2
(Δ − 𝑎𝑖 𝑗 𝜕2𝑖 𝑗 )𝑢.

It follows from Lemma 6.3 that

‖𝑢𝑡𝑠 ‖𝐿𝑝 (ℝ𝑑 ) . (𝑡 − 𝑠)
1
2
− 1
𝑞 (‖ 𝑓 ‖𝕃𝑞

−1,𝑝 ( [𝑠,𝑡]) + ‖(𝛿𝑖 𝑗 − 𝑎𝑖 𝑗 )𝜕2𝑖 𝑗𝑢𝑡 ‖𝕃𝑞
−1,𝑝 ( [𝑠,𝑡])),

where 𝛿𝑖 𝑗 = 1 if 𝑖 = 𝑗 and 𝛿𝑖 𝑗 = 0 otherwise. From Lemma A.2(iii), we have

‖(𝛿𝑖 𝑗 − 𝑎𝑖 𝑗 )𝜕2𝑖 𝑗𝑢𝑡 ‖𝐿−1,𝑝 ( [𝑠,𝑡]) . (‖𝑎𝑖 𝑗 ‖𝐿∞ (ℝ𝑑 ) + ‖∇𝑎𝑖 𝑗 ‖𝐿𝑝0 (ℝ𝑑 ))‖𝜕2𝑖 𝑗𝑢𝑡 ‖𝐿−1,𝑝 (ℝ𝑑 )

. ‖𝑢𝑡 ‖𝐿1,𝑝 (ℝ𝑑 ) .

Combining the previous estimates, we obtain (6.5).
Inequality (6.6) is shown analogously. Indeed, using Lemma 6.3, we have

‖𝑢𝑡𝑠 ‖𝐿𝑝 (ℝ𝑑 ) . (𝑡 − 𝑠)1−
1
𝑞 (‖ 𝑓 ‖𝕃𝑞

𝑝 ( [𝑠,𝑡]) + ‖(𝛿𝑖 𝑗 − 𝑎𝑖 𝑗 )𝜕2𝑖 𝑗𝑢𝑡 ‖𝕃𝑞
𝑝 ( [𝑠,𝑡]))

. (𝑡 − 𝑠)1−
1
𝑞 (‖ 𝑓 ‖𝕃𝑞

𝑝 ( [𝑠,𝑡]) + ‖𝜕2𝑖 𝑗𝑢𝑡 ‖𝕃𝑞
𝑝 ( [𝑠,𝑡])) .

It is known ([LX21, Theorem 2.1]) that

‖𝑢𝑡 ‖𝕃𝑞
2,𝑝 ( [𝑠,𝑡]) . ‖ 𝑓 ‖𝕃𝑞

𝑝 ( [𝑠,𝑡]) .

These estimates imply (6.6). �
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6.2. Moment estimates. Let 𝑋 be a solution to SDE

𝑑𝑋𝑡 = 𝜎 (𝑡, 𝑋𝑡 )𝑑𝐵𝑡 , 𝑋0 = 𝑥 ∈ ℝ
𝑑 . (6.8)

Under Condition 𝔄, it is well-known (see [SV06]) that the probability law of 𝑋 is unique and
Markov. In fact, solutions to equation (6.8) are strongly unique under Condition 𝔄. This follows
from the arguments in the proof of Theorem 2.2 in the following section. However, only the
law of 𝑋 is relevant to our considerations herein. Let 𝑄𝑠,𝑡 be the transition operator associated
to 𝑋 . In particular, we have 𝔼(𝑓 (𝑋𝑡 ) |F𝑠) = 𝑄𝑠,𝑡 𝑓 (𝑋𝑠) for any bounded measurable function 𝑓 .

Lemma 6.4. Assuming Condition 𝔄1. Let 𝑝1, 𝑝2 ∈ [1,∞], 𝑝1 6 𝑝2. There exists a constant

𝑁 = 𝑁 (𝛼,𝑑, 𝑝1, 𝑝2, 𝐾1, 𝐾2) such that for every 𝑓 ∈ 𝐿𝑝1 (ℝ𝑑) and 𝑠 6 𝑡 ,

‖𝑄𝑠,𝑡 𝑓 ‖𝐿𝑝2 (ℝ𝑑 ) 6 𝑁 (𝑡 − 𝑠)
𝑑
2𝑝2

− 𝑑
2𝑝1 ‖ 𝑓 ‖𝐿𝑝1 (ℝ𝑑 ) . (6.9)

Proof. Let 𝑋𝑛 be the solution to the Euler–Maruyama scheme (5.21). It suffices to show that
the laws of 𝑋𝑛 converge to the law of 𝑋 for (6.9) is then derived from Theorem 5.5. Let P𝑛

be the probability law of 𝑋𝑛 on 𝐶 ( [0, 1]). Here 𝐶 ( [0, 1]) is the space of continuous functions
𝜔 : [0, 1] → ℝ𝑑 equipped with the topology of uniform convergence, the Borel 𝜎-algebra and
the filtration 𝑡 ↦→ G𝑡 = 𝜎{𝜔𝑠 : 𝑠 ∈ [0, 𝑡]}. Let 𝜙 be a smooth function with bounded derivatives.
By Itô formula, we see that

𝑀𝑛
𝑡 (𝜔) = 𝜙 (𝜔𝑡 ) − 𝜙 (𝑥) −

1

2

∫ 𝑡

0

𝑎𝑖 𝑗 (𝑟, 𝜔𝑘𝑛 (𝑟 ))𝜕2𝑖 𝑗𝜙 (𝜔𝑟 )𝑑𝑟

is a martingale under P𝑛 (𝑑𝜔). Define

𝑀𝑡 (𝜔) = 𝜙 (𝜔𝑡 ) − 𝜙 (𝑥) −
1

2

∫ 𝑡

0

𝑎𝑖 𝑗 (𝑟, 𝜔𝑟 )𝜕2𝑖 𝑗𝜙 (𝜔𝑟 )𝑑𝑟 .

It is easy to see that

‖𝑋𝑛𝑡 − 𝑋𝑛𝑠 ‖𝐿𝑝 (Ω) . (𝑡 − 𝑠)1/2

for any 𝑝 > 2 and 𝑠 6 𝑡 . This implies that the probability laws {P𝑛}𝑛 are tight. Let P be a
probability measure such that P𝑛 converges to P through a subsequence, which we still denote
by P

𝑛 . Let 𝑠 6 𝑡 be fixed and 𝐺 ∈ G𝑠 . We have∫
𝛿𝑀𝑠,𝑡1𝐺𝑑P =

∫
𝛿𝑀𝑠,𝑡1𝐺 (𝑑P − 𝑑P𝑛) +

∫
(𝛿𝑀𝑠,𝑡 − 𝛿𝑀𝑛

𝑠,𝑡 )1𝐺𝑑P𝑛 +
∫

𝛿𝑀𝑛
𝑠,𝑡1𝐺𝑑P

𝑛

=: 𝐼1 + 𝐼2 + 𝐼3.
It is evident that lim𝑛 𝐼1 = 0. Using Hölder continuity of 𝑎 we have

|𝐼2 | .
∫ [∫ 𝑡

𝑠

|𝜔𝑟 − 𝜔𝑘𝑛 (𝑟 ) |𝛼𝑑𝑟
]
𝑑P𝑛 (𝜔) .

∫ 𝑡

𝑠

𝔼|𝑋𝑛𝑟 − 𝑋𝑛𝑘𝑛 (𝑟 ) |
𝛼𝑑𝑟

.

∫ 𝑡

𝑠

|𝑟 − 𝑘𝑛 (𝑟 ) |𝛼/2𝑑𝑟 .
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This implies that lim𝑛 𝐼2 = 0. Because 𝑀𝑛 is a martingale under P𝑛 , 𝐼3 = 0. It follows that∫
𝛿𝑀𝑠,𝑡1𝐺𝑑P = 0, and hence𝑀 is a martingale under P. In other words, P is a solution to the

martingale problem associated to equation (6.8), which is unique ([SV06]). We have shown that
{P𝑛}𝑛 has exactly one accumulating point, which is the law of (6.8). This also means that 𝑋𝑛

converges weakly to 𝑋 . �

Lemma 6.5. Assuming Condition 𝔄1. Let ℎ be a measurable function on ℝ𝑑 such that ‖ℎ‖𝐿𝜌 (ℝ𝑑 )
is finite for some 𝜌 ∈ (0,∞]. Then there exists a finite constant 𝑁 = 𝑁 (𝛼,𝑑, 𝜌, 𝐾1, 𝐾2) such that
for every 𝑟, 𝑣 ∈ [0, 1], 𝑟 > 𝑣 ,

‖ℎ(𝑋𝑟 )‖𝐿𝜌 (Ω |F𝑣) 6 𝑁 (𝑟 − 𝑣)−
𝑑
2𝜌 ‖ℎ‖𝐿𝜌 (ℝ𝑑 ) . (6.10)

Proof. This is a direct consequence of (6.9). The argument is similar to that of Proposition 5.10(i),
hence, is omitted. �

The next result is a special case of Theorem 6.1 when 𝑏 = 0, which is an analogue of
Propositions 4.6 and 4.7.

Proposition 6.6. Let 𝑝 ∈ (1,∞), 𝑞 ∈ (2,∞). Let 𝑋 be a solution to (6.8).
(i) Assuming Condition𝔄1. Let ℎ be a function in 𝕃

𝑞1
𝑝1 ( [0, 1]) for some 𝑝1, 𝑞1 ∈ [1,∞] satisfying

𝑑
𝑝1

+ 2
𝑞1

< 2. Then for every𝑚 > 1, there exists a constant 𝑁 = 𝑁 (𝑑, 𝑝1, 𝑞1,𝑚) such that

‖
∫ 1

0

ℎ(𝑟, 𝑋𝑟 )𝑑𝑟 ‖𝐿𝑚 (Ω) 6 𝑁 ‖ℎ‖𝕃𝑞1
𝑝1
( [0,1]) .

(ii) Assuming Condition 𝔄 with 𝑞0 = ∞ and 1
𝑝
+ 1
𝑝0

< 1. Let 𝑔 be a function in 𝕃
𝑞
𝑝 ( [0, 1])

and let 𝜈 ∈ [0, 1) such that 𝑑
𝑝
+ 2
𝑞
+ 𝜈 < 2. Then for any 𝑝 ∈ (0, 𝑝), there exists a constant

𝑁 = 𝑁 (𝜈, 𝑑, 𝑝, 𝑞, 𝑝) such that

‖ sup
𝑡∈[0,1]

|
∫ 𝑡

0
𝑔(𝑟, 𝑋𝑟 )𝑑𝑟 | ‖𝐿𝑝 (Ω) 6 𝑁 ‖𝑔‖𝕃𝑞

−𝜈,𝑝 ( [0,1]) .

(iii) Assuming Condition 𝔄 with 𝑞0 = ∞, 1
𝑝
+ 1
𝑝0

< 1 and 𝑑
𝑝
+ 2
𝑞
< 1. Let 𝑔 be a function in

𝕃
𝑞
𝑝 ( [0, 1]), Γ be a nonnegative number and𝑤1 be a continuous control on Δ. We assume that for

every (𝑠, 𝑡) ∈ Δ,

‖𝑔‖𝕃𝑞
−1,𝑝 ( [𝑠,𝑡]) 6 Γ𝑤1(𝑠, 𝑡)

1
𝑞 and ‖𝑔‖𝕃𝑞

𝑝 ( [𝑠,𝑡]) 6 𝑤1(𝑠, 𝑡)
1
𝑞 .

Then for any 𝑝 ∈ (0, 𝑝), there exists a constant 𝑁 = 𝑁 (𝜈, 𝑑, 𝑝, 𝑞, 𝑝) such that

‖ sup
𝑡∈[0,1]

|
∫ 𝑡

0
𝑔(𝑟, 𝑋𝑟 )𝑑𝑟 | ‖𝐿𝑝 (Ω) 6 𝑁 Γ(1 + | log(Γ) |)𝑤1(0, 1)

1
𝑞 .

Proof. (i) Using Minkowski inequality, Lemma 6.5 and Hölder inequality, we have

‖
∫ 𝑡

𝑠

ℎ(𝑟, 𝑋𝑟 )𝑑𝑟 ‖𝐿𝑝1 (Ω |F𝑠 ) 6

∫ 𝑡

𝑠

‖ℎ(𝑟, 𝑋𝑟 )‖𝐿𝑝1 (Ω |F𝑠 )𝑑𝑟
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.

∫ 𝑡

𝑠

(𝑟 − 𝑠)−
𝑑
2𝑝1 ‖ℎ𝑟 ‖𝐿𝑝1 (ℝ𝑑 )𝑑𝑟 . (𝑡 − 𝑠)1−

𝑑
2𝑝1

− 1
𝑞1 ‖ℎ‖𝕃𝑞1

𝑝1
( [𝑠,𝑡]) .

This implies that

𝔼𝑠

∫ 𝑡

𝑠

|ℎ(𝑟, 𝑋𝑟 ) |𝑑𝑟 . (𝑡 − 𝑠)1−
𝑑
2𝑝1

− 1
𝑞1 ‖ℎ‖𝕃𝑞1

𝑝1
( [𝑠,𝑡]) . (6.11)

From here, we apply Lemma 3.5 to obtain part (i).
The proofs of parts (ii,iii) are similar to those of Propositions 4.6 and 4.7. The statistical

estimates for Brownian motion are replaced by those obtained in Theorem 6.2. The condition
𝑑
𝑝
+ 2
𝑞
+ 𝜈 < 2 appears when applying Lemma 3.4. We only provide proof of (iii) while the proof

of (ii) is left to the readers.
(iii) For each (𝑠, 𝑡) ∈ Δ, put

𝐴𝑠,𝑡 = 𝔼𝑠

∫ 𝑡

𝑠

𝑔(𝑟, 𝑋𝑟 )𝑑𝑟 and 𝐽𝑠,𝑡 =

∫ 𝑡

𝑠

𝑔(𝑟, 𝑋𝑟 )𝑑𝑟 −𝐴𝑠,𝑡 .

Define the control𝑤 by

𝑤 (𝑠, 𝑡) =
[
(𝑠 − 𝑣)−

𝑑
2𝑝 (𝑡 − 𝑠)

1
2−

1
𝑞𝑤1(𝑠, 𝑡)

1
𝑞

]2
+ (𝑠 − 𝑣)−

𝑑
2𝑝 (𝑡 − 𝑠)1−

1
𝑞𝑤1(𝑠, 𝑡)

1
𝑞 .

Let 𝑢𝑡 ∈ 𝕃
𝑞
2,𝑝 ( [0, 𝑡]) be the solution ([LX21, Theorem 2.1]) to

(𝜕𝑠 +
1

2
𝑎𝑖 𝑗 𝜕2𝑖 𝑗 )𝑢 + 𝑔 = 0, 𝑢 (𝑡, ·) = 0.

Applying Itô formula for non-degenerate diffusions (see [XXZZ20, Lemma 4.1]), we see that
𝐴𝑠,𝑡 = 𝑢

𝑡
𝑠 (𝑋𝑠). Applying (6.10) and Theorem 6.2, we have

‖𝐴𝑠,𝑡 ‖𝐿𝑝 (Ω |F𝑣) . (𝑠 − 𝑣)−
𝑑
2𝑝 ‖𝑢𝑡𝑠 ‖𝐿𝑝 (ℝ𝑑 )

. (𝑠 − 𝑣)−
𝑑
2𝑝 (𝑡 − 𝑠)

1
2−

1
𝑞 ‖𝑔‖𝕃𝑞

−1,𝑝 ( [𝑠,𝑡]) .

By our assumption, the previous estimate implies that ‖𝛿 𝐽𝑠,𝑢,𝑡 ‖𝐿𝑝 (Ω |F𝑣) . Γ𝑤 (𝑠, 𝑡)1/2 for every
𝑣 < 𝑠 6 𝑢 6 𝑡 6 1. It is evident that 𝔼𝑠 𝐽𝑠,𝑡 = 0 and hence 𝔼𝑠𝛿 𝐽𝑠,𝑢,𝑡 = 0. This verifies the
conditions (3.2) and (3.3) of Lemma 3.2.

On the other hand, using Minkowski inequality, (6.10) and Hölder inequality, we have

‖ 𝐽𝑠,𝑡 ‖𝐿𝑝 (Ω |F𝑣) 6 2

∫ 𝑡

𝑠

‖𝑔(𝑟, 𝑋𝑟 )‖𝐿𝑝 (Ω |F𝑣)𝑑𝑟 .

∫ 𝑡

𝑠

(𝑟 − 𝑣)−
𝑑
2𝑝 ‖𝑔𝑟 ‖𝐿𝑝 (ℝ𝑑 )𝑑𝑟

. (𝑟 − 𝑣)−
𝑑
2𝑝 (𝑡 − 𝑠)1−

1
𝑞 ‖𝑔‖𝕃𝑞

𝑝 ( [𝑠,𝑡]) . 𝑤 (𝑠, 𝑡),

verifying condition (3.1). An application of Lemma 3.2 yields that ‖ 𝐽𝑠,𝑡 ‖𝐿𝑝 (Ω |F𝑣) . Γ(1 +
| log(Γ) |)𝑤 (𝑠, 𝑡)1/2 + Γ𝑤 (𝑠, 𝑡) for every 𝑣 < 𝑠 6 𝑢 6 𝑡 6 1. From here, the argument fol-
lows analogously as in the proof of Proposition 4.6, using Lemma 3.4 to remove the singularity
near 𝑣 then using Lemma 3.1 to obtain the desired estimate for the supremum. �
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Proof of Theorem 6.1. Let 𝑋 be a solution to (6.8). Similar to the proof of Theorem 5.1, we
use Girsanov transformation to deduce the moment estimates for 𝑋 from those obtained in
Proposition 6.6. Indeed, define the measure ℙ̄ := 𝜌ℙ where

𝜌 := exp

(
−

∫ 1

0
(𝜎−1𝑏) (𝑟, 𝑋𝑟 )𝑑𝐵𝑟 −

1

2

∫ 1

0

���(𝜎−1𝑏) (𝑟, 𝑋𝑟 )���2𝑑𝑟
)
.

From [XXZZ20, Lemma 4.1] and Novikov criterion, we see that 𝔼𝜌𝑟 < ∞ for every 𝑟 ∈ ℝ. By
Girsanov theorem, ℙ̄ is a probability measure and the law of𝑋 under ℙ̄ is the same as the law of
𝑋 under ℙ. From here, we deduce Theorem 6.1 from Proposition 6.6, using similar computations
as in the proof of Theorem 5.1. �

Remark 6.7. Observe that pathwise uniqueness is not necessary and only weak uniqueness
of (1.1) is used in the above proof. In addition, reasoning as in [KR05, Lemmas 3.2, 3.3 and
Remark 3.5], one can derive weak uniqueness for (1.1) from Proposition 6.6(i). Consequently,
Theorem 6.1 holds for any adapted solution to (1.1).

7. Proof of the main results

We present in the current section the proofs of Theorems 2.2 and 2.3. We state a maximal
regularity result for parabolic equations, which is a direct consequence of [XXZZ20, Theorem
3.2].

Lemma 7.1. Assume Conditions 𝔄-𝔅. Let 𝑓 ∈ 𝕃
𝑞
𝑝 ( [0, 1]) and𝑀 > 0 be such that

‖ 𝑓 ‖𝕃𝑞
𝑝 ( [0,1]) + ‖𝑏‖𝕃𝑞

𝑝 ( [0,1]) 6 𝑀.

Then there exists 𝜆0 = 𝜆0(𝑀,𝑎) > 1 such that that for all 𝜆 > 𝜆0, there is a unique solution 𝑢 in
𝕃
𝑞
2,𝑝 ( [0, 1]) to the equation

𝜕𝑡𝑢 + 1

2
𝑎𝑖 𝑗 𝜕2𝑖 𝑗𝑢 + 𝑏 · ∇𝑢 + 𝑓 = 𝜆𝑢, 𝑢 (1, ·) = 0. (7.1)

Furthermore, for any 𝛾 ∈ [0, 2), 𝑝1 ∈ [𝑝,∞), 𝑞1 ∈ [𝑞,∞) with 𝑑
𝑝
+ 2
𝑞
< 2 − 𝛾 + 𝑑

𝑝1
+ 2
𝑞1
, there is a

constant 𝐶 = 𝐶 (𝑀,𝛾, 𝑝1, 𝑞1) > 0 such that for any 𝜆 > 𝜆0,

𝜆
1
2
(2−𝛾+ 𝑑

𝑝1
+ 2
𝑞1
−𝑑

𝑝−
2
𝑞 ) ‖𝑢‖𝕃𝑞1

𝛾,𝑝1
( [0,1]) + ‖𝜕𝑡𝑢‖𝕃𝑞

𝑝 ( [0,1]) + ‖𝑢‖𝕃𝑞
2,𝑝 ( [0,1]) 6 𝐶 ‖ 𝑓 ‖𝕃𝑞

𝑝 ( [0,1]) .

Lemma 7.2. Let 𝑋𝑛 be the solution to (1.3). Then for every𝑚 > 2,

sup
𝑡∈[0,1]

‖𝑋𝑛𝑡 − 𝑋𝑛𝑘𝑛 (𝑡) ‖𝐿𝑚 (Ω) . (1/𝑛) 1
2 .

Proof. We have

𝑋𝑛𝑡 − 𝑋𝑛𝑘𝑛 (𝑡) =
∫ 𝑡

𝑘𝑛 (𝑡)
𝑏𝑛 (𝑟, 𝑋𝑛𝑘𝑛 (𝑡))𝑑𝑟 +

∫ 𝑡

𝑘𝑛 (𝑡)
𝜎 (𝑟, 𝑋𝑛𝑘𝑛 (𝑡))𝑑𝐵𝑟 .

Using BDG inequality and Hölder, we have

‖𝑋𝑛𝑡 − 𝑋𝑛𝑘𝑛 (𝑡) ‖𝐿𝑚 (Ω) . (𝑡 − 𝑘𝑛 (𝑡))1−
1
𝑞 ‖𝑏𝑛‖𝕃𝑞

∞ ( [𝑘𝑛 (𝑡),𝑡]) + (𝑡 − 𝑘𝑛 (𝑡))1/2.
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Using 𝑡 − 𝑘𝑛 (𝑡) 6 1/𝑛 and Condition 𝔅,

(𝑡 − 𝑘𝑛 (𝑡))1−
1
𝑞 ‖𝑏𝑛‖𝕃𝑞

∞ ( [𝑘𝑛 (𝑡),𝑡]) . (1/𝑛) 1
2 .

Combining these estimates, we obtain the result. �

Recall that𝑈 is the solution to the equation (2.3). In view of Lemma 7.1 and Conditions 𝔄-𝔅,
there exists 𝜆0 > 0 such that for every 𝜆 > 𝜆0

sup
𝑛

‖𝜕𝑡𝑈 ‖𝕃𝑞
𝑝 ( [0,1]) + ‖𝑈 ‖𝕃𝑞

2,𝑝 ( [0,1]) < ∞ and sup
𝑛

‖∇𝑈 ‖𝕃∞
∞ ( [0,1]) = 𝑜𝜆 (1), (7.2)

where 𝑜𝜆 (1) denotes any constant such that lim𝜆→∞ 𝑜𝜆 (1) = 0. LetM be the Hardy-Littlewood
maximal operator defined as

M 𝑓 (𝑥) := sup
0<𝑟<∞

1

|B𝑟 |

∫
B𝑟

𝑓 (𝑥 + 𝑦)𝑑𝑦, B𝑟 := {𝑥 ∈ ℝ
𝑑 : |𝑥 | < 𝑟 }, 𝑟 > 0.

It is well-known that M is bounded on 𝐿𝑝 (ℝ𝑑). Thus we have
‖M 𝑓 ‖𝕃𝑞

𝑝 ( [0,1]) . ‖ 𝑓 ‖𝕃𝑞
𝑝 ( [0,1]) . (7.3)

Define

𝐴𝑛𝑡 := 𝑡 +
∫ 𝑡

0

[
M|∇2𝑈 | (𝑠, 𝑋𝑠) +M|∇2𝑈 | (𝑠, 𝑋𝑛𝑠 )

]2
𝑑𝑠

+
∫ 𝑡

0

[
M|∇𝜎 | (𝑠, 𝑋𝑠) +M|∇𝜎 | (𝑠, 𝑋𝑛𝑠 )

]2
𝑑𝑠. (7.4)

Proposition 7.3. For every 𝑝 ∈ (1, 𝑝), there exists a finite positive constant 𝑐𝑝 such that𝑒−𝑐𝑝 |𝐴𝑛
1 |max(𝑝/2,1)

sup
𝑡∈[0,1]

|𝑋𝑡 − 𝑋𝑛𝑡 |

𝐿𝑝 (Ω)

. ‖𝑥0 − 𝑥𝑛0 ‖𝐿𝑝 (Ω) +𝜛𝑛 (𝑝) + (1/𝑛) 𝛼
2 + (1/𝑛) 1

2 log(𝑛) .

Proof. Applying Itô’s formula ([XXZZ20, Lemma 4.1]) for𝑈 (𝑡, 𝑋𝑡 ), we obtain that∫ 𝑡

0
𝑏𝑛 (𝑟, 𝑋𝑟 )𝑑𝑟 = 𝑈 (0, 𝑋0) −𝑈 (𝑡, 𝑋𝑡 ) + 𝜆

∫ 𝑡

0
𝑈 (𝑟, 𝑋𝑟 )𝑑𝑟

+
∫ 𝑡

0
∇𝑈 (𝑟, 𝑋𝑟 ) [𝑏 (𝑟, 𝑋𝑟 ) − 𝑏𝑛 (𝑟, 𝑋𝑟 )]𝑑𝑟 +

∫ 𝑡

0
(∇𝑈 · 𝜎) (𝑟, 𝑋𝑟 )𝑑𝐵𝑟 , (7.5)

and similarly,∫ 𝑡

0
𝑏𝑛 (𝑟, 𝑋𝑛𝑟 )𝑑𝑟 = 𝑈 (0, 𝑋𝑛0 ) −𝑈 (𝑡, 𝑋𝑛𝑡 ) + 𝜆

∫ 𝑡

0
𝑈 (𝑟, 𝑋𝑛𝑟 )𝑑𝑟

+
∫ 𝑡

0
∇𝑈 (𝑟, 𝑋𝑛𝑟 ) [𝑏𝑛 (𝑟, 𝑋𝑛𝑘𝑛 (𝑟 )) − 𝑏

𝑛 (𝑟, 𝑋𝑛𝑟 )]𝑑𝑟

+
∫ 𝑡

0
∇2𝑈 (𝑟, 𝑋𝑟 ) [𝑎(𝑟, 𝑋𝑛𝑘𝑛 (𝑟 )) − 𝑎(𝑟, 𝑋

𝑛
𝑟 )]𝑑𝑟
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+
∫ 𝑡

0
∇𝑈 (𝑟, 𝑋𝑛𝑟 )𝜎 (𝑟, 𝑋𝑛𝑘𝑛 (𝑟 ))𝑑𝐵𝑟 . (7.6)

From equations (1.1) and (1.3), we have

𝑋𝑡 − 𝑋𝑛𝑡 = 𝑥0 − 𝑥𝑛0 +
∫ 𝑡

0
[𝑏𝑛 (𝑟, 𝑋𝑟 ) − 𝑏𝑛 (𝑟, 𝑋𝑛𝑟 )]𝑑𝑟

+
∫ 𝑡

0
[𝑏 (𝑟, 𝑋𝑟 ) − 𝑏𝑛 (𝑟, 𝑋𝑟 )]𝑑𝑟 +

∫ 𝑡

0
[𝑏𝑛 (𝑟, 𝑋𝑛𝑟 ) − 𝑏𝑛 (𝑟, 𝑋𝑛𝑘𝑛 (𝑟 ))]𝑑𝑟

+
∫ 𝑡

0
[𝜎 (𝑟, 𝑋𝑟 ) − 𝜎 (𝑟, 𝑋𝑛𝑟 )]𝑑𝐵𝑟 +

∫ 𝑡

0
[𝜎 (𝑟, 𝑋𝑛𝑟 ) − 𝜎 (𝑟, 𝑋𝑛𝑘𝑛 (𝑟 ))]𝑑𝐵𝑟 .

We plug (7.5) and (7.6) into the previous identity, raise to 𝑝-th power to find that

𝜉𝑡 := sup
𝑠∈[0,𝑡]

|𝑋𝑠 − 𝑋𝑛𝑠 |𝑝 . |𝑥0 − 𝑥𝑛0 |𝑝 +𝑉 0
𝑡 +

3∑︁
𝑖=1

𝑉 𝑖𝑡 +
3∑︁
𝑖=1

𝐼 𝑖𝑡 ,

where

𝑉 0
𝑡 = |𝑈 (0, 𝑥0) −𝑈 (0, 𝑥𝑛0 ) |𝑝 + sup

𝑠∈[0,𝑡]
|𝑈 (𝑠, 𝑋𝑠) −𝑈 (𝑠, 𝑋𝑛𝑠 ) |𝑝 + 𝜆𝑝

��� ∫ 𝑠

0
|𝑈 (𝑟, 𝑋𝑟 ) −𝑈 (𝑟, 𝑋𝑛𝑟 ) |𝑑𝑟

���𝑝,
𝑉 1
𝑡 = sup

𝑠∈[0,𝑡]

��� ∫ 𝑠

0
[𝐼 + ∇𝑈 (𝑟, 𝑋𝑟 )] [𝑏 (𝑟, 𝑋𝑟 ) − 𝑏𝑛 (𝑟, 𝑋𝑟 )]𝑑𝑟

���𝑝,
𝑉 2
𝑡 = sup

𝑠∈[0,𝑡]

��� ∫ 𝑠

0
[𝐼 + ∇𝑈 (𝑟, 𝑋𝑛𝑟 )] [𝑏𝑛 (𝑟, 𝑋𝑛𝑟 ) − 𝑏𝑛 (𝑟, 𝑋𝑛𝑘𝑛 (𝑟 ))]𝑑𝑟

���𝑝,
𝑉 3
𝑡 = sup

𝑠∈[0,𝑡]

��� ∫ 𝑠

0
∇2𝑈 (𝑟, 𝑋𝑟 ) [𝑎(𝑟, 𝑋𝑛𝑘𝑛 (𝑟 )) − 𝑎(𝑟, 𝑋

𝑛
𝑟 )]𝑑𝑟

���𝑝,
𝐼 1𝑡 = sup

𝑠∈[0,𝑡]

��� ∫ 𝑠

0
[𝐼 + ∇𝑈 (𝑟, 𝑋𝑛𝑟 )] [𝜎 (𝑟, 𝑋𝑟 ) − 𝜎 (𝑟, 𝑋𝑛𝑟 )]𝑑𝐵𝑟

���𝑝,
𝐼 2𝑡 = sup

𝑠∈[0,𝑡]

��� ∫ 𝑠

0
[𝐼 + ∇𝑈 (𝑟, 𝑋𝑛𝑟 )] [𝜎 (𝑟, 𝑋𝑛𝑟 ) − 𝜎 (𝑟, 𝑋𝑛𝑘𝑛 (𝑟 ))]𝑑𝐵𝑟

���𝑝,
𝐼 3𝑡 = sup

𝑠∈[0,𝑡]

��� ∫ 𝑠

0
[∇𝑈 (𝑟, 𝑋𝑟 ) − ∇𝑈 (𝑟, 𝑋𝑛𝑟 )] · 𝜎 (𝑟, 𝑋𝑟 )𝑑𝐵𝑟

���𝑝 .
Using (7.2) and Cauchy–Schwarz inequality

𝑉 0
𝑡 . |𝑥0 − 𝑥𝑛0 |𝑝 + 𝑜𝜆 (1) sup

𝑠∈[0,𝑡]
|𝑋𝑠 − 𝑋𝑛𝑠 |𝑝 +

(∫ 𝑡

0
𝜉
2/𝑝
𝑟 𝑑𝑟

) 𝑝
2

.

To estimate 𝐼 1, 𝐼 2, 𝐼 3, we will utilize a special case of the pathwise Burkholder-Davis-Gundy
(BDG) inequality of [Sio18, Theorem 5]. Namely, there exists a constant 𝐶 = 𝐶 (𝑝,𝑑) such that
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for any cádlág martingale �̄� , there exists a local martingale𝑀 such that with probability one,

sup
𝑠∈[0,𝑡]

|�̄�𝑠 |𝑝 6 𝐶 [�̄�]
𝑝
2

𝑡 +𝑀𝑡 , ∀𝑡 .

In the above, [�̄�] is the quadratic variation of �̄� . We now estimate 𝐼 1. By property of maximal
function (see [HTV20, Proposition C.1]) and continuity of 𝜎 , we have for every 𝑟 ∈ [0, 1] and
every 𝑥,𝑦 ∈ ℝ𝑑

|𝜎 (𝑟, 𝑥) − 𝜎 (𝑟,𝑦) | . |𝑥 − 𝑦 | (M|∇𝜎 (𝑟, 𝑥) | +M|∇𝜎 (𝑟,𝑦) |).

Using this, (7.2) and the pathwise BDG inequality, we can find a local martingale𝑀1 such that

𝐼 1𝑡 .

(∫ 𝑡

0

|𝐼 + ∇𝑈 (𝑟, 𝑋𝑛𝑟 ) |2 |𝑋𝑟 − 𝑋𝑛𝑟 |2
(
M|∇𝜎 | (𝑟, 𝑋𝑟 ) +M|∇𝜎 | (𝑟, 𝑋𝑛𝑟 )

)2
𝑑𝑟

) 𝑝
2

+𝑀1
𝑡

.

(∫ 𝑡

0

𝜉
2/𝑝
𝑟 𝑑𝐴𝑛𝑟

) 𝑝
2

+𝑀1
𝑡 .

Similarly,

𝐼 3𝑡 .

(∫ 𝑡

0

𝜉
2/𝑝
𝑟 𝑑𝐴𝑛𝑟

) 𝑝
2

+𝑀3
𝑡

for some local martingale𝑀3. Using Lemma 7.2, (7.2), Hölder continuity of 𝜎 and the pathwise
BDG inequality, we have

𝐼 2𝑡 .

(∫ 𝑡

0

|𝑋𝑛𝑟 − 𝑋𝑛𝑘𝑛 (𝑟 ) |
2𝛼𝑑𝑟

) 𝑝
2

+𝑀2
𝑡 . (1/𝑛)𝑝 𝛼

2 +𝑀2
𝑡 .

It follows that

𝜉𝑡 . 𝑜𝜆 (1)𝜉𝑡 +
(∫ 𝑡

0

𝜉2/𝑝𝑑𝐴𝑛
) 𝑝

2

+𝑉𝑡 +𝑀𝑡

where 𝑉 = |𝑥0 − 𝑥𝑛0 |𝑝 +𝑉 1 +𝑉 2 +𝑉 3 and𝑀 = 𝑀1 +𝑀2 +𝑀3. By choosing 𝜆 sufficiently large,
this deduces to

𝜉𝑡 .

(∫ 𝑡

0

𝜉2/𝑝𝑑𝐴𝑛
) 𝑝

2

+𝑉𝑡 +𝑀𝑡

Applying stochastic Gronwall lemma, Lemma 3.8, we have

𝔼𝑒−𝑐𝑝 |𝐴
𝑛
1 |max(𝑝/2,1)

𝜉1 6 𝔼𝑉1 (7.7)

for some finite positive constant 𝑐𝑝 . In view of Definition 2.1, it is evident that

𝔼𝑉 1
1 . 𝜛𝑛 (𝑝)𝑝 .
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Using Theorem 5.1, (7.2) and Condition 𝔅, we have

𝔼𝑉 2
1 .

[
(1/𝑛)1−

1
𝑞 𝛽𝑛 (𝑏𝑛) + (1/𝑛) 𝛼

2 + (1/𝑛) 1
2 log(𝑛)

]𝑝
.

[
(1/𝑛) 𝛼

2 + (1/𝑛) 1
2 log(𝑛)

]𝑝
.

Using Condition 𝔄 and Cauchy–Schwarz inequality, we have

𝔼𝑉 3
1 . 𝔼

��� ∫ 1

0

|∇2𝑈 (𝑟, 𝑋𝑟 ) | |𝑋𝑛𝑟 − 𝑋𝑛𝑘𝑛 (𝑟 ) |
𝛼𝑑𝑟

���𝑝

6 𝔼

(∫ 1

0

|∇2𝑈 (𝑟, 𝑋𝑟 ) |2𝑑𝑟
) 𝑝

2
(∫ 1

0

|𝑋𝑛𝑟 − 𝑋𝑛𝑘𝑛 (𝑟 ) |
2𝛼𝑑𝑟

) 𝑝
2

6

[
𝔼

(∫ 1

0

|∇2𝑈 (𝑟, 𝑋𝑟 ) |2𝑑𝑟
)𝑝 ]1/2 [

𝔼

(∫ 1

0

|𝑋𝑛𝑟 − 𝑋𝑛𝑘𝑛 (𝑟 ) |
2𝛼𝑑𝑟

)𝑝 ]1/2
.

In view of (7.2), Theorem 6.1(i) and Lemma 7.2

𝔼𝑉 3
1 . (1/𝑛)𝑝 𝛼

2 .

The previous estimates for 𝔼𝑉 𝑖1 ’s and (7.7) yield the result. �

Lemma 7.4. Let 𝜌 ∈ (0, 𝑝∧𝑝0
𝑑

) and 𝜅 > 0 be some fixed constants. Then sup𝑛 𝔼𝑒
𝜅 |𝐴𝑛

1 |𝜌 is finite.

Proof. We observe that

𝔼𝑠𝛿𝐴
𝑛
𝑠,𝑡 . (𝑡 − 𝑠) + (𝑡 − 𝑠)1−

𝑑
𝑝−

2
𝑞 ‖M|∇2𝑢 | ‖2

𝕃
𝑞
𝑝 ( [𝑠,𝑡])

+ (𝑡 − 𝑠)1−
𝑑
𝑝0
− 2
𝑞0 ‖M|∇𝜎 | ‖2

𝕃
𝑞0
𝑝0
( [𝑠,𝑡]) .

Indeed, the estimates for functionals of 𝑋𝑛 follow from Proposition 5.10 and Girsanov theorem.
The estimates for the functionals of 𝑋 follows from (6.11), Lemma 3.5 and Girsanov theorem;
or alternatively can be derived from those of 𝑋𝑛 and the weak convergence of 𝑋𝑛 to 𝑋 . In view
of Remark 3.6, this implies that for any 𝜆 > 0

𝔼𝑒𝜆𝐴
𝑛
1 . 𝑒𝑐𝜆

𝑎

,
1

𝑎
= 1 − 𝑑

𝑝 ∧ 𝑝0
,

where 𝑐 is some universal positive constant. For simplicity, we write 𝐴 for 𝐴𝑛1 below. For every
𝑥 > 0, using Chebyshev inequality, we have

ℙ(𝐴 > 𝑥) = ℙ(𝑒𝜆𝐴 > 𝑒𝜆𝑥 ) 6 𝑒−𝜆𝑥𝔼𝑒𝜆𝐴 . 𝑒−𝜆𝑥+𝑐𝜆𝑎 .
One can optimize in 𝜆 to obtain that for every 𝑥 bounded away from 0,

ℙ(𝐴 > 𝑥) . 𝑒−𝑐𝑥𝑎
′
,

1

𝑎
+ 1

𝑎′
= 1,

where 𝑐 is another positive constant. In view of layer cake representation

𝔼𝑒𝜅𝐴
𝜌

= 𝜅𝜌

∫ ∞

0
𝑒𝜅𝑥

𝜌

𝑥𝜌−1ℙ(𝐴 > 𝑥)𝑑𝑥,

we see that 𝔼𝑒𝜅𝐴
𝜌
is finite if 𝜌 < 𝑎′, completing the proof because 𝑎′ = (𝑝 ∧ 𝑝0)/𝑑 . �
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Proof of Theorem 2.2. For 𝑝 ∈ (0, 2𝑝∧𝑝0
𝑑

), we obtain from Lemma 7.4 that sup𝑛 𝔼𝑒
𝜅 |𝐴𝑛

1 |max(𝛾/2,1)

is finite for any constant positive 𝜅 . From here, we obtain (2.4) from Proposition 7.3 and Hölder
inequality. �

Proof of Theorem 2.3. We put 𝑔 = ∇𝑈 . From Lemma 7.1, we have

sup
𝑛
(‖𝑔‖𝕃𝑞2

𝜈,𝑝2
( [0,1]) + ‖𝑔‖𝕃∞

∞ ( [0,1]) + ‖𝑔‖𝕃𝑞
1,𝑝 ( [0,1])) < ∞

for all 𝑝2 ∈ [𝑝,∞), 𝑞2 ∈ [𝑞,∞) and 𝜈 ∈ [0, 1) with
𝑑

𝑝
+ 2

𝑞
+ 𝜈 − 1 <

𝑑

𝑝2
+ 2

𝑞2
. (7.8)

Part (i). Let 𝑝1, 𝑞1 be as in Theorem 2.3(i). From Theorem 6.1(i), we have

𝜛𝑛 (𝑚) . ‖(1 + 𝑔) (𝑏 − 𝑏𝑛)‖𝕃𝑞1
𝑝1
. (1 + ‖𝑔‖𝕃∞

∞)‖𝑏 − 𝑏
𝑛‖𝕃𝑞1

𝑝1

which shows (2.6).
Part (ii). Define 𝑞3 by

1
𝑞3

= 1
𝑞2

+ 1
𝑞
. For each 𝜈 ∈ [0, 1] and 𝑝3 ∈ (1,∞) satisfying

1

𝑝
6

1

𝑝3
6

1

𝑝
+ 1

𝑝2
<

1

𝑝3
+ 𝜈
𝑑
, (7.9)

an application of Lemma A.2(ii) and Hölder inequality shows that the pointwise multiplication
is a continuous bilinear map

𝕃
𝑞
−𝜈,𝑝 ( [0, 1]) × 𝕃

𝑞2
𝜈,𝑝2 ( [0, 1]) → 𝕃

𝑞3
−𝜈,𝑝3 ( [0, 1]) .

If 𝑝3 can be chosen such that

𝑑

𝑝3
+ 2

𝑞2
+ 2

𝑞
< 2 − 𝜈, (7.10)

then Theorem 6.1(ii) can be applied, which gives for every 𝑝 ∈ (0, 𝑝3),

‖ sup
𝑡∈[0,𝑡]

|
∫ 𝑡

0
𝑔(𝑏 − 𝑏𝑛) (𝑟, 𝑋𝑟 )𝑑𝑟 | ‖𝐿𝑝 (Ω) . ‖𝑔(𝑏 − 𝑏𝑛)‖𝕃𝑞3

−𝜈,𝑝3
. ‖𝑏 − 𝑏𝑛‖𝕃𝑞

−𝜈,𝑝
,

To obtain the last step, we apply the multiplication result above to see that

‖𝑔(𝑏 − 𝑏𝑛)‖𝕃𝑞3
−𝜈,𝑝3
. ‖𝑔‖𝕃𝑞2

𝜈,𝑝2
‖𝑏 − 𝑏𝑛‖𝕃𝑞

−𝜈,𝑝
. ‖𝑏 − 𝑏𝑛‖𝕃𝑞

−𝜈,𝑝
.

On the other hand, applying Theorem 6.1(ii), we have

‖ sup
𝑡∈[0,1]

|
∫ 𝑡

0
(𝑏 − 𝑏𝑛) (𝑟, 𝑋𝑟 )𝑑𝑟 | ‖𝐿𝑝 (Ω) . ‖𝑏 − 𝑏𝑛‖𝕃𝑞

−𝜈,𝑝
.

These estimates verify (2.8).
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Next, we verify that it is possible to choose 𝑝2, 𝑞2, 𝑝3 satisfying all the above conditions. Given
𝑝2, 𝑞2, 𝑝, 𝑞, 𝜈 , there exists 𝑝3 ∈ (1,∞) satisfying (7.9) and (7.10) iff



𝑑

𝑝
< 2 − 𝜈 − 2

𝑞2
− 2

𝑞

𝑑

𝑝
+ 𝑑

𝑝2
− 𝜈 < 2 − 𝜈 − 2

𝑞2
− 2

𝑞

which is deduced to


2

𝑞2
< 2 − 𝜈 − 𝑑

𝑝
− 2

𝑞

𝑑

𝑝2
+ 2

𝑞2
< 2 − 𝑑

𝑝
− 2

𝑞

(7.11)

Given 𝑝, 𝑞, 𝜈 , the existence 𝑝2 ∈ [𝑝,∞), 𝑞2 ∈ [𝑞,∞) satisfying (7.8) and (7.11) is equivalent to
the problem (P): find 𝑥 ∈ (0, 𝑎), 𝑦 ∈ (0, 𝑏) such that 𝑐1 < 𝑥 +𝑦 < 𝑐2. Here, we have put 𝑥 = 𝑑/𝑝2,
𝑦 = 2/𝑞2, 𝑎 = 𝑑/𝑝 , 𝑏 = min(2/𝑞, 2 − 𝜈 − 𝜁 ), 𝑐1 = 𝜁 + 𝜈 − 1, 𝑐2 = 2 − 𝜁 and 𝜁 = 𝑑/𝑝 + 2/𝑞. With
some plotting aid, it is seen that this problem has a solution (𝑥,𝑦) iff 𝑐1 < 𝑎 +𝑏 and 𝑐2 > 0. This
deduces to the condition (2.7).
Since (2.8) is valid for all 𝑝 ∈ (0, 𝑝3), it remains to identify the largest possible value for 𝑝3,

denoted by 𝑝∗3 . From (7.9) and (7.10), we see that

1

𝑝∗3
= max

(
1

𝑝
,
1

𝑝
+ 1

𝑝2
− 𝜈

𝑑

)
.

We observe that the problem (P) with the additional constraint 𝑑/𝑝2 6 𝜈 has a solution (𝑥,𝑦)
iff (2.7) holds. In other words, we can choose 𝑝2 so that 𝑑/𝑝2 6 𝜈 and hence 𝑝∗3 = 𝑝 . This shows
that (2.8) holds for every 𝑝 ∈ (0, 𝑝).
Part (iii). When 𝜈 = 1, we ought to take 𝑝2 = 𝑝 , 𝑞2 = 2. We can also choose 𝑝3 = 𝑝 and

𝑞3 = 𝑞/2. Condition (7.9) is trivially satisfied while condition (7.10) is verified by (2.9). Define
the control𝑤1 by

𝑤1(𝑠, 𝑡) =
(
‖𝑔‖𝑞/2

𝕃
𝑞
−1,𝑝 ( [𝑠,𝑡])

+ ‖𝑔‖𝑞/2
𝕃
𝑞
∞ ( [𝑠,𝑡])

)
𝑤0(𝑠, 𝑡)1/2

Then by the multiplacation result above, Hölder inequality and (2.10), we have

‖𝑔(𝑏 − 𝑏𝑛)‖
𝕃
𝑞/2
−1,𝑝 ( [𝑠,𝑡])

. ‖𝑔‖𝕃𝑞
−1,𝑝 ( [𝑠,𝑡]) ‖𝑏 − 𝑏

𝑛‖𝕃𝑞
−1,𝑝 ( [𝑠,𝑡]) . Γ𝑤1(𝑠, 𝑡)

2
𝑞 ,

‖𝑔(𝑏 − 𝑏𝑛)‖
𝕃
𝑞/2
𝑝 ( [𝑠,𝑡]) . ‖𝑔‖𝕃𝑞

∞ ( [𝑠,𝑡]) ‖𝑏 − 𝑏𝑛‖𝕃𝑞
𝑝 ( [𝑠,𝑡]) . 𝑤1(𝑠, 𝑡)

2
𝑞 .

We then apply Theorem 6.1(iii) to get

‖ sup
𝑡∈[0,𝑡]

|
∫ 𝑡

0
𝑔(𝑏 − 𝑏𝑛) (𝑟, 𝑋𝑟 )𝑑𝑟 | ‖𝐿𝑝 (Ω) . Γ(1 + | log Γ |)𝑤1(0, 1)

2
𝑞

. Γ(1 + | log Γ |)𝑤0(0, 1)
1
𝑞 .
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On the other hand, applying Theorem 6.1(iii) under condition (2.10) yields

‖ sup
𝑡∈[0,1]

|
∫ 𝑡

0
(𝑏 − 𝑏𝑛) (𝑟, 𝑋𝑟 )𝑑𝑟 | ‖𝐿𝑝 (Ω) . Γ(1 + | log Γ |)𝑤0(𝑠, 𝑡)

1
𝑞 .

Combining the previous two estimates, we obtain (2.11). �

8. Application: stochastic transport eqations

Let (𝑊𝑡 ) be a standard 𝑑-dimensional Brownian motion on a filtered probability space
(Ω, F , (F𝑡 )𝑡∈[0,1],ℙ) and let 𝑏 : [0, 1] × ℝ𝑑 → ℝ𝑑 be a Borel measurable function satisfying
(1.2). In this section, we propose a numerical scheme for the following (forward) stochastic
linear transport equation

𝜕𝑡𝑢 + 𝑏 · ∇𝑢 + ∇𝑢 ◦ 𝑑𝑊𝑡 = 0, 𝑢 (0, 𝑥) = 𝜌 (𝑥), (8.1)

where 𝜌 ∈ ∩𝑟>1𝐿1,𝑟 (ℝ𝑑) and ∇𝑢 ◦ 𝑑𝑊𝑡 is interpreted in Stratonovich sense. As in [FF13], we
say 𝑢 is a weakly differentiable solution to (8.1) if

• 𝑢 : Ω × [0, 1] ×ℝ𝑑 → ℝ is measurable,
∫
ℝ𝑑 𝑢 (𝑡, 𝑥)𝜓 (𝑥)𝑑𝑥 is progressively measurable

for each𝜓 ∈ 𝐶∞
0 (ℝ𝑑);

• ℙ(𝑢 (𝑡, ·) ∈ ∩𝑟>1𝐿𝑙𝑜𝑐1,𝑟 (ℝ𝑑)) = 1 for 𝑡 ∈ [0, 1] and both𝑢 and∇𝑢 are in𝐶 ( [0, 1];∩𝑟>1𝐿𝑟 (ℝ𝑑×
Ω));

• for any𝜓 ∈ 𝐶∞
0 (ℝ𝑑) and 𝑡 ∈ [0, 1] with probability one the following holds∫

ℝ𝑑

𝑢 (𝑡, 𝑥)𝜓 (𝑥)𝑑𝑥+
∫ 𝑡

0

∫
ℝ𝑑

𝑏 (𝑠, 𝑥) · ∇𝑢 (𝑠, 𝑥)𝜓 (𝑥)𝑑𝑥𝑑𝑠

=

∫
ℝ𝑑

𝜌 (𝑥)𝜓 (𝑥)𝑑𝑥 +
𝑑∑︁
𝑖=1

∫ 𝑡

0

( ∫
ℝ𝑑

𝑢 (𝑠, 𝑥)𝜕𝑥𝑖𝜓 (𝑥)𝑑𝑥
)
𝑑𝑊 𝑖

𝑠

+ 1

2

∫ 𝑡

0

∫
ℝ𝑑

𝑢 (𝑠, 𝑥)Δ𝜓 (𝑥)𝑑𝑥𝑑𝑠.

It is known from [FF13, Theorems 10, 11] that a weakly differentiable solution 𝑢 to (8.1) exists
uniquely and has the representation 𝑢 (𝜏, 𝑥) = 𝜌 (𝜙𝜏0 (𝑥)), where 𝜙𝜏0 (𝑥) is the inverse of the
stochastic flow of homeomorphisms generated by the solution (𝑋𝜏 (𝑥))𝜏∈[0,1] to the SDE

𝑑𝑋𝜏 (𝑥) = 𝑏 (𝜏, 𝑋𝜏 (𝑥))𝑑𝜏 + 𝑑𝑊𝜏 , 𝜏 ∈ [0, 1], 𝑋0(𝑥) = 𝑥 .
For each fixed 𝜏 ∈ [0, 1], consider the backward-in-time SDE

𝑋𝜏,𝑠 (𝑥) = 𝑥 −
∫ 𝜏

𝑠

𝑏 (𝑟, 𝑋𝜏,𝑟 (𝑥))𝑑𝑟 +𝑊𝜏 −𝑊𝑠, 0 6 𝑠 6 𝜏, 𝑋𝜏,𝜏 (𝑥) = 𝑥 .

The inverse flow𝜙𝜏0 (𝑥) is directly related to the solution to the previous SDE. Indeed, there exists
a set Ω′ with ℙ(Ω′) = 1 such that for all (𝜏, 𝑥, 𝜔) ∈ [0, 1] ×ℝ𝑑 × Ω

′, one has 𝜙𝜏0 (𝑥) = 𝑋𝜏,0(𝑥),
see [Kun19, RL18].
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To devise a numerical scheme for (8.1), it convenes to introduce 𝑋 𝜏𝑠 (𝑥) := 𝑋𝜏,𝜏−𝑠 (𝑥). By a
change of variables, we find that

𝑋 𝜏𝑠 (𝑥) = 𝑥 −
∫ 𝑠

0

𝑏𝜏 (𝑟, 𝑋 𝜏𝑟 (𝑥))𝑑𝑟 +𝑊 𝜏
𝑠 , 0 6 𝑠 6 𝜏, (8.2)

where 𝑏𝜏 (𝑟, 𝑥) := 𝑏 (𝜏 − 𝑟, 𝑥) and𝑊 𝜏
𝑟 :=𝑊𝜏 −𝑊𝜏−𝑟 for 𝑟 ∈ [0, 𝜏]. Observe that (𝑊 𝜏

𝑡 )𝑡∈[0,𝜏] is a
(F 𝜏

𝑡 )-Brownian motion with F 𝜏
𝑡 := 𝜎 (𝑊𝜏−𝑟1 −𝑊𝜏−𝑟2, 0 6 𝑟1 6 𝑟2 6 𝑡) for 𝑡 ∈ [0, 𝜏]. Hence, we

have the representation 𝑢 (𝜏, 𝑥) = 𝜌 (𝑋 𝜏𝜏 (𝑥)). This naturally suggests the numerical scheme

𝑢𝑛 (𝜏, 𝑥) = 𝜌 (𝑋 𝜏,𝑛𝜏 (𝑥)),
where for each 𝜏 ∈ (0, 1], (𝑋 𝜏,𝑛𝑠 )𝑠∈[0,𝜏] is the tamed Euler–Maruyama approximation for (8.2),
namely

𝑋 𝜏,𝑛𝑠 (𝑥) = 𝑥 −
∫ 𝑠

0

𝑏𝜏,𝑛 (𝑟, 𝑋 𝜏,𝑛
𝑘𝑛 (𝑟 ) (𝑥))𝑑𝑟 +𝑊

𝜏
𝑠 , 0 6 𝑠 6 𝜏 . (8.3)

Here, 𝑏𝜏,𝑛 (𝑟, 𝑥) := 𝑏𝑛 (𝜏 − 𝑟, 𝑥) for 𝑟 ∈ [0, 𝜏] and 𝑏𝑛 is an approximation for 𝑏 satisfying Condi-
tion 𝔅.

Theorem 8.1. Suppose that Condition 𝔅 holds. Let 𝜈 ∈ [0, 1) satisfy (2.7) and 𝑝1, 𝑞1 ∈ [1,∞]
satisfy 𝑑

𝑝1
+ 2
𝑞1

< 2. Then for any 𝑙 ∈ (1, 𝑝 ∧ 2𝑝
𝑑
), any 𝑟 ∈ (1,∞) satisfying 1

𝑟
<

1
𝑙
− 1

𝑝
(1 ∨ 𝑑

2
), we

have

sup
(𝜏,𝑥)∈[0,1]×ℝ𝑑

𝜏
𝑑
2𝑟 ‖𝑢𝑛 (𝜏, 𝑥) − 𝑢 (𝜏, 𝑥)‖𝐿𝑙 (Ω)

6 𝑁 ‖∇𝜌 ‖𝐿𝑟 (ℝ𝑑 ) ((1/𝑛)
1
2 log𝑛 +min(‖𝑏 − 𝑏𝑛‖𝕃𝑞1

𝑝1
( [0,1]), ‖𝑏 − 𝑏𝑛‖𝕃𝑞

−𝜈,𝑝 ( [0,1]))),
(8.4)

where 𝑁 depends on 𝐾4, 𝑝, 𝑑, 𝑙 , 𝑝1, 𝑞1 and 𝑟 .

Proof. We put 𝑏 (𝑟, 𝑥) = 0 and 𝑏𝑛 (𝑟, 𝑥) = 0 whenever 𝑟 ∈ ℝ \ [0, 1] so that 𝑏𝜏 (𝑟, 𝑥) and 𝑏𝜏,𝑛 (𝑟, 𝑥)
are well-defined functions on [0, 1] ×ℝ𝑑 . Let (�̂�𝑡 )𝑡∈[0,1] be a standard (F̂𝑡 )-Brownian motion
which is independent from (𝑊𝑡 )𝑡∈[0,1] and define

𝑊 𝜏
𝑟 :=

{
𝑊𝜏 −𝑊𝜏−𝑟 if 𝑟 ∈ [0, 𝜏],
𝑊𝜏 + �̂�𝑟 − �̂�𝜏 if 𝑟 ∈ (𝜏, 1],

(8.5)

which is a standard Brownian motion with respect to the filtration (G𝜏
𝑡 )𝑡∈[0,1] := (F 𝜏

𝑡∧𝜏 ∨
F̂𝑡∨𝜏 )𝑡∈[0,1] . Equations (8.2) and (8.3) (for each fixed 𝜏 ∈ [0, 1]) are extended uniquely over the
whole time interval [0, 1].

By property of maximal function and continuity of 𝜌 (see [HTV20, Proposition C.1]) we have
for every 𝑥,𝑦 ∈ ℝ𝑑 ,

|𝜌 (𝑥) − 𝜌 (𝑦) | . |𝑥 − 𝑦 | (M|∇𝜌 | (𝑥) +M|∇𝜌 | (𝑦)) .
It follows that

|𝑢 (𝜏, 𝑥) − 𝑢𝑛 (𝜏, 𝑥) | . |𝑋 𝜏𝜏 (𝑥) − 𝑋 𝜏,𝑛𝜏 (𝑥) | (M|∇𝜌 | (𝑋 𝜏𝜏 (𝑥)) +M|∇𝜌 | (𝑋 𝜏,𝑛𝜏 (𝑥))). (8.6)
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Next, we estimate the terms on the right-hand side of the previous inequality.
In order to apply Theorem 2.2 to obtain estimates for 𝑋 𝜏 (𝑥) − 𝑋 𝜏,𝑛 (𝑥), we verify that 𝑏𝜏 and

𝑏𝜏,𝑛 fulfill Condition 𝔅 for each 𝜏 . Indeed, it is evident that 𝑏𝜏 ∈ 𝕃
𝑞
𝑝 ( [0, 1]), 𝑏𝜏,𝑛 ∈ 𝕃

𝑞
𝑝 ( [0, 1]) ∩

𝕃
𝑞
∞( [0, 1]) and that ‖𝑏𝜏,𝑛‖𝕃𝑞

𝑝 ( [0,1]) 6 ‖𝑏𝑛‖𝕃𝑞
𝑝 ( [0,1]) which is bounded uniformly in 𝑛. In addition,

define 𝜇𝜏,𝑛 (𝑠, 𝑡) = 𝜇𝑛 ((𝜏 − 𝑡) ∨ 0, (𝜏 − 𝑠) ∨ 0), which is a continuous control on the simplex
Δ( [−1, 1]). We have ‖𝑏𝜏,𝑛‖𝕃𝑞

∞ ( [𝑠,𝑡]) = ‖𝑏𝑛‖𝕃𝑞
∞ ( [(𝜏−𝑡)∨0,(𝜏−𝑠)∨0]) and hence by (2.2)

(1/𝑛)
1
2
− 1
𝑞 ‖𝑏𝜏,𝑛‖𝕃𝑞

∞ ( [𝑠,𝑡]) 6 𝜇
𝜏,𝑛 (𝑠, 𝑡)𝜃 .

Similarly, ‖𝑏𝜏,𝑛‖𝕃𝑞
𝑝 ( [0,1]) = ‖𝑏𝑛‖𝕃𝑞

𝑝 ( [0,𝜏]) 6 ‖𝑏𝑛‖𝕃𝑞
𝑝 ( [0,1]) and 𝜇

𝜏,𝑛 (0, 1) = 𝜇𝑛 (0, 𝜏) 6 𝜇𝑛 (0, 1) so
that

sup
𝑛>1

(
‖𝑏𝜏,𝑛‖𝕃𝑞

𝑝 ( [0,1]) + 𝜇
𝜏,𝑛 (0, 1)

)
6 𝐾4,

where 𝐾4 is the constant in Condition 𝔅.
Hence Theorem 2.3(i-ii) yields that for 𝑝 ∈ [1, 𝑝)

𝜛𝑛 (𝑝) 6 𝑁min(‖𝑏 − 𝑏𝑛‖𝕃𝑞1
𝑝1
( [0,1]), ‖𝑏 − 𝑏𝑛‖𝕃𝑞

−𝜈,𝑝 ( [0,1])).

Theorem 2.2 yields for any 𝛾 ∈ (0, 1) and 𝑝 ∈ [1, 𝑝 ∧ 2𝑝
𝑑
),

sup
(𝑡,𝑥)∈[0,1]×ℝ𝑑

‖𝑋 𝜏𝑡 (𝑥) − 𝑋 𝜏,𝑛𝑡 (𝑥)‖𝐿𝛾𝑝 (Ω)

6 𝑁
(
𝑛−1/2 log𝑛 +min(‖𝑏 − 𝑏𝑛‖𝕃𝑞1

𝑝1
( [0,1]), ‖𝑏 − 𝑏𝑛‖𝕃𝑞

−𝜈,𝑝 ( [0,1]))
)
. (8.7)

The constant 𝑁 depends on 𝐾4, 𝜈, 𝑝, 𝑞, 𝑝1, 𝑞1, 𝑝 .
Similar to the arguments used in the proofs of Theorems 5.1 and 6.1, using Girsanov theorem,

one can deduce the estimates for 𝑋 𝜏,𝑛, 𝑋 𝜏 to estimates for Brownian motion, which is obtained
in Lemma 4.1. Hence, for any 𝑟 > 𝑟 > 1, we have that

‖M|∇𝜌 | (𝑋 𝜏𝜏 (𝑥))‖𝐿𝑟 (Ω) . ‖M|∇𝜌 | (𝐵𝜏 )‖𝐿𝑟 (Ω) . 𝜏−
𝑑
2𝑟 ‖M|∇𝜌 | ‖𝐿𝑟 (ℝ𝑑 ) . 𝜏

− 𝑑
2𝑟 ‖∇𝜌 ‖𝐿𝑟 (ℝ𝑑 ),

and similarly,

‖M|∇𝜌 | (𝑋 𝜏,𝑛𝜏 (𝑥))‖𝐿𝑟 (Ω) . 𝜏−
𝑑
2𝑟 ‖∇𝜌 ‖𝐿𝑟 (ℝ𝑑 ) .

Given 𝑙, 𝑟 as in the statement, we can choose 𝑟 ∈ (1, 𝑟 ), 𝑝 ∈ (1, 𝑝 ∧ 2𝑝
𝑑
), 𝛾 ∈ (0, 1) such that

1
𝑟
+ 1
𝛾𝑝

= 1
𝑙
. From (8.6), applying Hölder inequality, we have

‖𝑢𝑛 (𝜏, 𝑥) − 𝑢 (𝜏, 𝑥)‖𝐿𝑙 (Ω)
. ‖𝑋 𝜏𝜏 (𝑥) − 𝑋 𝜏,𝑛𝜏 (𝑥)‖𝐿𝛾𝑝 (Ω) (‖M|∇𝜌 | (𝑋 𝜏𝜏 (𝑥))‖𝐿𝑟 (Ω) + ‖M|∇𝜌 | (𝑋 𝜏,𝑛𝜏 (𝑥))‖𝐿𝑟 (Ω)).

Combining with the estimates obtained previously, we obtain that

‖𝑢𝑛 (𝜏, 𝑥) − 𝑢 (𝜏, 𝑥)‖𝐿𝑙 (Ω)
. 𝜏−

𝑑
2𝑟 ‖∇𝜌 ‖𝐿𝑟 (ℝ𝑑 )

(
𝑛−1/2 log𝑛 +min(‖𝑏 − 𝑏𝑛‖𝕃𝑞1

𝑝1
( [0,1]), ‖𝑏 − 𝑏𝑛‖𝕃𝑞

−𝜈,𝑝 ( [0,1]))
)
,
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which implies (8.4). �

Appendix A. Parabolic eqations with distributional forcing

For each 𝑟 ∈ [1,∞], we denote its Hölder conjugate by 𝑟 ′, i.e. 1
𝑟
+ 1
𝑟 ′ = 1. For each Banach

space E, we denote its topological dual by E∗, and the dual paring between E and E∗ by 〈·, ·〉E∗,E .
We consider the parabolic partial differential equations (PDEs)

(𝜕𝑠 + 𝑎𝑖 𝑗 𝜕2𝑖 𝑗 )𝑢 = 𝑓 , 𝑢 (1, ·) = 0 (A.1)

and

𝜕𝑡𝑣 − 𝜕2𝑖 𝑗 (𝑎𝑖 𝑗𝑣) + 𝑔 = 0, 𝑣 (0, ·) = 0 (A.2)

under the following assumptions:6

Condition 𝔄′.

1. 𝑎 is a 𝑑 × 𝑑-symmetric matrix-valued measurable function on [0, 1] ×ℝ𝑑 . There exists a
constant 𝑘1 ∈ [1,∞) such that for every 𝑠 ∈ [0, 1] and 𝑥 ∈ ℝ𝑑

𝑘−11 𝐼 6 𝑎(𝑠, 𝑥) 6 𝑘1𝐼 . (A.3)

Furthermore, 𝑎(𝑠, ·) is weakly differentiable for a.e. 𝑠 ∈ [0, 1] and 𝑘3 := ‖∇𝑎‖𝕃∞
𝑝0
( [0,1]) is

finite for some 𝑝0 ∈ (𝑑,∞).
2. 𝑓 ∈ 𝕃

𝑞
−1,𝑝 ( [0, 1]) and 𝑔 ∈ 𝕃

𝑞′

−1,𝑝 ′ ( [0, 1]) for some 𝑝, 𝑞 ∈ (1,∞) satisfying 1
𝑝
+ 1
𝑝0

< 1.

Definition A.1. A measurable function 𝑢 : [0, 1] × ℝ𝑑 → ℝ is a solution to (A.1) if 𝑢 ∈
𝕃
𝑞
1,𝑝 ( [0, 1]), 𝜕𝑠𝑢 ∈ 𝕃

𝑞
−1,𝑝 ( [0, 1]), 𝑢 (1, ·) = 0 and equation (A.1) holds in 𝕃

𝑞′

−1,𝑝 ′ ( [0, 1]), i.e. for
every 𝜙 ∈ 𝕃

𝑞′

1,𝑝 ′ ( [0, 1])∫ 1

0

〈(𝜕𝑠 + 𝑎𝑖 𝑗 𝜕2𝑖 𝑗 )𝑢𝑡 , 𝜙𝑡 〉𝐿−1,𝑝 (ℝ𝑑 )×𝐿1,𝑝 ′ (ℝ𝑑 )𝑑𝑡 =

∫ 1

0

〈𝑓𝑡 , 𝜙𝑡 〉𝐿−1,𝑝 (ℝ𝑑 )×𝐿1,𝑝 ′ (ℝ𝑑 )𝑑𝑡 . (A.4)

Likewise, a measurable function 𝑣 : [0, 1] ×ℝ𝑑 is a solution to (A.2) if 𝑣 ∈ 𝕃
𝑞′

1,𝑝 ′ ( [0, 1]), 𝜕𝑡𝑣 ∈
𝕃
𝑞′

−1,𝑝 ′ ( [0, 1]), 𝑣 (0, ·) = 0 and equation (A.2) holds in 𝕃
𝑞
−1,𝑝 ( [0, 1]), i.e. for every 𝜙 ∈ 𝕃

𝑞
1,𝑝 ( [0, 1])∫ 1

0

〈𝜕𝑡𝑣𝑠 − 𝜕2𝑖 𝑗 (𝑎𝑖 𝑗𝑣𝑠), 𝜙𝑠〉𝐿−1,𝑝 ′ (ℝ𝑑 )×𝐿1,𝑝 (ℝ𝑑 )𝑑𝑠 +
∫ 1

0

〈𝑔𝑠, 𝜙𝑠〉𝐿−1,𝑝 ′ (ℝ𝑑 )×𝐿1,𝑝 (ℝ𝑑 )𝑑𝑠 = 0. (A.5)

In the above definitions, we have implicitly understood that 𝑎𝑖 𝑗 𝜕2𝑖 𝑗𝑢 and 𝜕2𝑖 𝑗 (𝑎𝑖 𝑗𝑣) are well-
defined distributions in 𝕃

𝑞′

−1,𝑝 ′ ( [0, 1]) and 𝕃
𝑞
−1,𝑝 ( [0, 1]) respectively. To see this, we need the

following multiplication result:

6Parabolic PDEs with distributional forcing have been considered by Kim [Kim08]. However, his result is
applicable to (A.1) and (A.2) only when 𝑎 is continuously differentiable in the spatial variables with bounded
derivatives and hence Condition 𝔄′ is excluded.
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Lemma A.2. Let 𝑝, 𝑝1, 𝑝2 be real numbers in (1,∞) and let 𝜈 ∈ (0, 1].
(i) Assume that 𝑝1, 𝑝2 > 𝑝 and that 1

𝑝
6

1
𝑝1
+ 1
𝑝2

<
1
𝑝
+ 𝜈
𝑑
. Then the pointwise multiplication is a

continuous bilinear map

𝐿𝜈,𝑝1 (ℝ𝑑) × 𝐿𝜈,𝑝2 (ℝ𝑑) → 𝐿𝜈,𝑝 (ℝ𝑑).
(ii) Assume that 𝑝1 > 𝑝 , that 𝑝2 > 𝑝′1 and that 1

𝑝
6

1
𝑝1

+ 1
𝑝2

<
1
𝑝
+ 𝜈
𝑑
. Then the pointwise

multiplication is a continuous bilinear map

𝐿−𝜈,𝑝1 (ℝ𝑑) × 𝐿𝜈,𝑝2 (ℝ𝑑) → 𝐿−𝜈,𝑝 (ℝ𝑑).

(iii) Let 𝑔 be a bounded measurable function such that ∇𝑔 ∈ 𝐿𝑝0 (ℝ𝑑) for some 𝑝0 ∈ (𝑑,∞). Let
𝑓 be in 𝐿1,𝑝 ′ (ℝ𝑑), ℎ be in 𝐿−1,𝑝 (ℝ𝑑) and assume that 1

𝑝
+ 1
𝑝0

< 1. Then 𝑓 𝑔 belongs to 𝐿1,𝑝 ′ (ℝ𝑑), 𝑔ℎ
belongs to 𝐿−1,𝑝 (ℝ𝑑) and

‖ 𝑓 𝑔‖𝐿1,𝑝 ′ (ℝ𝑑 ) . (‖𝑔‖𝐿∞ (ℝ𝑑 ) + ‖∇𝑔‖𝐿𝑝0 (ℝ𝑑 ))‖ 𝑓 ‖𝐿1,𝑝 ′ (ℝ𝑑 ), (A.6)

‖𝑔ℎ‖𝐿−1,𝑝 (ℝ𝑑 ) . (‖𝑔‖𝐿∞ (ℝ𝑑 ) + ‖∇𝑔‖𝐿𝑝0 (ℝ𝑑 ))‖ℎ‖𝐿−1,𝑝 (ℝ𝑑 ) . (A.7)

Proof. (i-ii) are consequences of [ZZ17, Lemma 2.2]. Concerning (iii), define 𝑝3 by
1
𝑝 ′ =

1
𝑝0

+ 1
𝑝3
.

Then by Hölder inequality

‖∇𝑔𝑓 ‖𝐿𝑝 ′ (ℝ𝑑 ) 6 ‖∇𝑔‖𝐿𝑝0 (ℝ𝑑 ) ‖ 𝑓 ‖𝐿𝑝3 (ℝ𝑑 ) .

The embedding 𝐿1,𝑝 ′ (ℝ𝑑) ↩→ 𝐿𝑝3 (ℝ𝑑) is valid if 1
𝑝 ′ −

1
𝑑
6

1
𝑝3
6

1
𝑝 ′ , which is justified by our

assumption. It follows that ‖∇𝑔𝑓 ‖𝐿𝑝 ′ (ℝ𝑑 ) . ‖∇𝑔‖𝐿𝑝0 (ℝ𝑑 ) ‖ 𝑓 ‖𝐿1,𝑝 ′ (ℝ𝑑 ) . It is evident that

‖𝑔𝑓 ‖𝐿𝑝 ′ (ℝ𝑑 ) + ‖𝑔∇𝑓 ‖𝐿𝑝 ′ (ℝ𝑑 ) . ‖𝑔‖𝐿∞ (ℝ𝑑 ) ‖ 𝑓 ‖𝐿1,𝑝 ′ (ℝ𝑑 ) .

From here, we obtain (A.6). To show (A.7), we note that by duality and (A.6),

‖ 𝑓 𝑔ℎ‖𝐿1 (ℝ𝑑 ) . ‖ℎ‖𝐿−1,𝑝 (ℝ𝑑 ) ‖ 𝑓 𝑔‖𝐿1,𝑝 ′ (ℝ𝑑 )

. ‖ℎ‖𝐿−1,𝑝 (ℝ𝑑 ) (‖𝑔‖𝐿∞ (ℝ𝑑 ) + ‖∇𝑔‖𝐿𝑝0 (ℝ𝑑 ))‖ 𝑓 ‖𝐿1,𝑝 ′ (ℝ𝑑 ) .

This implies (A.7) by duality. �

Proposition A.3. For every 𝑢 ∈ 𝕃
𝑞
1,𝑝 ( [0, 1]) and 𝑣 ∈ 𝕃

𝑞′

1,𝑝 ′ ( [0, 1]), under Condition 𝔄′ we have

𝑎𝑖 𝑗 𝜕2𝑖 𝑗𝑢 ∈ 𝕃
𝑞
−1,𝑝 ( [0, 1]) and 𝜕2𝑖 𝑗 (𝑎𝑖 𝑗𝑣) ∈ 𝕃

𝑞′

−1,𝑝 ′ ( [0, 1]) .

Proof. Using Lemma A.2(iii), we see that

‖𝑎𝑖 𝑗 𝜕2𝑖 𝑗𝑢‖𝐿−1,𝑝 (ℝ𝑑 ) . (‖𝑎𝑖 𝑗 ‖𝐿∞ (ℝ𝑑 ) + ‖∇𝑎𝑖 𝑗 ‖𝐿𝑝0 (ℝ𝑑 ))‖𝜕2𝑖 𝑗𝑢‖𝐿−1,𝑝 (ℝ𝑑 )

. (‖𝑎𝑖 𝑗 ‖𝐿∞ (ℝ𝑑 ) + ‖∇𝑎𝑖 𝑗 ‖𝐿𝑝0 (ℝ𝑑 ))‖𝑢‖𝐿1,𝑝 (ℝ𝑑 )

and

‖𝜕2𝑖 𝑗 (𝑎𝑖 𝑗𝑣)‖𝐿−1,𝑝 ′ (ℝ𝑑 ) . ‖𝑎𝑖 𝑗𝑣 ‖𝐿1,𝑝 ′ (ℝ𝑑 ) . (‖𝑎𝑖 𝑗 ‖𝐿∞ (ℝ𝑑 ) + ‖∇𝑎𝑖 𝑗 ‖𝐿𝑝0 (ℝ𝑑 ))‖𝑣 ‖𝐿1,𝑝 ′ (ℝ𝑑 ) .

These estimates imply the result. �
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Theorem A.4. Under Condition 𝔄′, there exist a unique solution 𝑢 to (A.1) and a unique solution
𝑣 to (A.2). Furthermore, we have

‖𝑢‖𝕃𝑞
1,𝑝 ( [0,1]) + ‖𝜕𝑠𝑢‖𝕃𝑞

−1,𝑝 ( [0,1]) 6 𝑁 ‖ 𝑓 ‖𝕃𝑞
−1,𝑝 ( [0,1]), (A.8)

‖𝑣 ‖
𝕃
𝑞′
1,𝑝 ′ ( [0,1])

+ ‖𝜕𝑡𝑣 ‖𝕃𝑞′
−1,𝑝 ′ ( [0,1])

6 𝑁 ‖𝑔‖
𝕃
𝑞′
−1,𝑝 ′ ( [0,1])

, (A.9)

where 𝑁 is a finite positive constant depending on 𝑑, 𝑝, 𝑞, 𝑝0, 𝑘1, 𝑘3.

Before giving the proof of the above theorem, we show several auxiliary results.

Lemma A.5 ([ZZ17, Lemma 4.1]). Let 𝜁 be a nonzero smooth function with compact support.
Define 𝜁 𝑧 (𝑥) = 𝜁 (𝑥 − 𝑧). For any 𝜈 ∈ ℝ and 𝑝 ∈ (1,∞), there exists a constant 𝐶 > 1 depending

only on 𝜈, 𝑝, 𝜁 such that for any 𝑓 ∈ 𝐿𝜈,𝑝 (ℝ𝑑),

𝐶−1‖ 𝑓 ‖𝐿𝜈,𝑝 (ℝ𝑑 ) 6

(∫
ℝ𝑑

‖ 𝑓 𝜁 𝑧 ‖𝑝
𝐿𝜈,𝑝 (ℝ𝑑 )𝑑𝑧

)1/𝑝
6 𝐶 ‖ 𝑓 ‖𝐿𝜈,𝑝 (ℝ𝑑 ) .

Lemma A.6. [Kim08, Lemma 2.5] For 𝑘 = 1, . . . , 𝑛, let 𝑎𝑘 : ℝ+ → ℝ𝑑 × ℝ𝑑 be a measurable
function satisfying (A.3). For fixed 𝜈 ∈ ℝ, 𝑝 ∈ (1,∞), let 𝑢𝑘 ∈ 𝕃

𝑞
𝜈,𝑝 ( [0, 1]) solve the following PDE

(𝜕𝑠 + 𝑎𝑖 𝑗𝑘 𝜕
2
𝑖 𝑗 )𝑢𝑘 = 𝑓 𝑘 , 𝑢 (1, ·) = 0.

Then ∫ 1

0

𝑛∏
𝑘=1

‖∇2𝑢𝑘 (𝑡)‖𝑝
𝐿𝜈,𝑝 (ℝ𝑑 )𝑑𝑡 6 𝑁

𝑛∑︁
𝑘=1

∫ 1

0

‖ 𝑓 𝑘 ‖𝑝
𝐿𝜈,𝑝 (ℝ𝑑 )

∏
𝑗≠𝑘

‖∇2𝑢 𝑗 (𝑡)‖𝑝
𝐿𝜈,𝑝 (ℝ𝑑 )𝑑𝑡 .

Lemma A.7. Assuming Condition 𝔄′. Let𝜓1 be a smooth function supported in the ball B1 :=

{𝑥 ∈ ℝ𝑑 : |𝑥 | 6 1}. For each 𝜌 > 0 and 𝑧 ∈ ℝ𝑑 , define B𝑧
𝜌 := {𝑥 ∈ ℝ𝑑 : |𝑥 − 𝑧 | 6 𝜌},

𝜓𝑧𝜌 (𝑥) := 𝜓1( 𝑥−𝑧𝜌 ) and 𝑎(𝑧) (𝑡, 𝑥) = 1
|B𝑧

𝜌 |
∫
B𝑧
𝜌
𝑎(𝑡, 𝑦)𝑑𝑦. Then we have

lim
𝜌↓0

sup
(𝑡,𝑧)∈[0,1]×ℝ𝑑

‖(𝑎 − 𝑎(𝑧))𝜓𝑧𝜌 ‖𝐿1,𝑝0 (ℝ𝑑 ) = 0.

Here𝜓𝑧𝜌 (𝑥) := 𝜓1( 𝑥−𝑧𝜌 ), 𝑥, 𝑧 ∈ ℝ𝑑 , 𝜌 > 0.

Proof. Observe that

𝐼1 := sup
𝑧∈ℝ𝑑

‖(𝑎 − 𝑎(𝑧))𝜓𝑧𝜌 ‖𝐿𝑝0 (ℝ𝑑 ) . ‖𝜓1‖𝐿∞ (ℝ𝑑 ) ‖𝑎‖𝐿∞ (ℝ𝑑 ) ‖1B2𝜌 ‖𝐿𝑝0 (ℝ𝑑 )

and

𝐼2 := sup
𝑧∈ℝ𝑑

‖∇𝑎𝜓𝑧𝜌 ‖𝐿𝑝0 (ℝ𝑑 ) . ‖𝜓1‖𝐿∞ (ℝ𝑑 ) ‖∇𝑎 · 1B2𝜌 ‖𝐿𝑝0 (ℝ𝑑 ) .

Using Poincaré inequality ([Giu03, Theorem 3.17])

𝐼3 := sup
𝑧∈ℝ𝑑

‖(𝑎 − 𝑎(𝑧))∇𝜓𝑧𝜌 ‖𝐿𝑝0 (ℝ𝑑 ) . ‖∇𝜓1‖𝐿∞ (ℝ𝑑 ) ‖∇𝑎 · 1B2𝜌 ‖𝐿𝑝0 (ℝ𝑑 ) .
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Since

sup
𝑧∈ℝ𝑑

‖(𝑎 − 𝑎(𝑧))𝜓𝑧𝜌 ‖𝐿1,𝑝0 (ℝ𝑑 ) . (𝐼1 + 𝐼2 + 𝐼3),

by letting 𝜌 ↓ 0 for each 𝐼1, 𝐼2 and 𝐼3 we get the desired result. �

We will make use the following:
Convention. If 𝜌 > 0 is some parameter, we write 𝑜𝜌 (1) for any constant whose exact value
may change from one instance to another, but lim𝜌→0 𝑜𝜌 (1) = 0. In particular, the inequality
𝐴 . 𝐷 + 𝑜𝜌 (1)𝐹 means 𝐴 6 𝑐𝐷 + 𝑜𝜌 (1)𝐹 for some constants 𝑐 .

Lemma A.8. Assuming Condition 𝔄′ and additionally that 𝑞 > 𝑝 . Then there exists a unique
solution 𝑢 to (A.1) which satisfies (A.8).

Proof. By Marcinkiewicz interpolation theorem, it suffices to show the result when 𝑞 = 𝑛𝑝 for
any integer 𝑛 > 1. Let 𝑛 > 1 be a fixed integer. By the method of continuity (e.g. see [GT01,
Theorem 5.2]), it suffices to show that there exists positive 𝑁 = 𝑁 (𝑑, 𝑝, 𝑞, 𝑝0, 𝑘1, 𝑘3) such that
whenever 𝑢 is a solution to (A.1),

‖𝑢‖
𝕃
�̄�𝑝
1,𝑝 ( [0,1])

6 𝑁 ‖ 𝑓 ‖
𝕃
�̄�𝑝
−1,𝑝 ( [0,1])

. (A.10)

Note that if 𝑢 is a solution to (A.1), then using Proposition A.3, the above estimate implies that

‖𝜕𝑡𝑢‖𝕃�̄�𝑝
−1,𝑝 ( [0,1])

. ‖ 𝑓 ‖
𝕃
�̄�𝑝
−1,𝑝 ( [0,1])

.

Let 𝜌 > 0 be a fixed constant and𝜙 be a nonnegative smooth function such that𝜙 is supported
in the ball B𝜌 := {𝑥 ∈ ℝ𝑑 : |𝑥 | 6 𝜌} and ‖𝜙 ‖𝐿𝑝 (ℝ𝑑 ) = 1. For each 𝑧 ∈ ℝ𝑑 , define 𝑎(𝑧) as in
Lemma A.7 and

𝜙𝑧 (𝑥) := 𝜙 (𝑥 − 𝑧), 𝑢𝑧 (𝑠, 𝑥) := 𝑢 (𝑠, 𝑥)𝜙𝑧 (𝑥), 𝑓 𝑧 (𝑠, 𝑥) := 𝑓 (𝑠, 𝑥)𝜙𝑧 (𝑥) .
Then 𝑢𝑧 satisfies the relation

𝜕𝑡𝑢
𝑧 + 𝑎𝑖 𝑗 (𝑧)𝜕2𝑖 𝑗𝑢𝑧 = 𝐹𝑧, 𝑢𝑧 (1, ·) = 0, (A.11)

𝐹𝑧 := 𝑓 𝜙𝑧 + 2𝑎𝑖 𝑗 𝜕𝑖𝑢𝜕 𝑗𝜙
𝑧 + 𝑎𝑖 𝑗𝑢𝜕2𝑖 𝑗𝜙𝑧 + (𝑎𝑖 𝑗 (𝑧) − 𝑎𝑖 𝑗 )𝜕2𝑖 𝑗𝑢𝑧 .

The proof is now divided into several steps.
Step 1.We show that for each 𝑡 ∈ [0, 1],(∫

ℝ𝑑

‖𝐹𝑧𝑡 ‖
𝑝

𝐿−1,𝑝 (ℝ𝑑 )𝑑𝑧

)1/𝑝
. ‖ 𝑓𝑡 ‖𝐿−1,𝑝 (ℝ𝑑 ) + ‖𝑢𝑡 ‖𝐿𝑝 (ℝ𝑑 ) + 𝑜𝜌 (1)‖𝑢𝑡 ‖𝐿1,𝑝 (ℝ𝑑 ) (A.12)

where 𝑜𝜌 (1) is some constants, independent from 𝑡 and lim𝜌↓0 𝑜𝜌 (1) = 0. Applying Lemma A.5

(with 𝜁 = 𝜙, 𝜕 𝑗𝜙, 𝜕
2
𝑖 𝑗𝜙 respectively) and Lemma A.2, we see that

(∫
ℝ𝑑

‖ 𝑓 𝜙𝑧 + 2𝑎𝑖 𝑗 𝜕𝑖𝑢𝜕 𝑗𝜙
𝑧 + 𝑎𝑖 𝑗𝑢𝜕2𝑖 𝑗𝜙𝑧 ‖

𝑝

𝐿−1,𝑝 (ℝ𝑑 )𝑑𝑧

)1/𝑝
. ‖ 𝑓 ‖𝐿−1,𝑝 (ℝ𝑑 ) + ‖𝑎𝑖 𝑗 𝜕𝑖𝑢‖𝐿−1,𝑝 (ℝ𝑑 ) + ‖𝑎𝑖 𝑗𝑢‖𝐿−1,𝑝 (ℝ𝑑 ) . ‖ 𝑓 ‖𝐿−1,𝑝 (ℝ𝑑 ) + ‖𝑢‖𝐿𝑝 (ℝ𝑑 ) .
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We note that the implicit constant above depends on 𝜌 . Let 𝜓 be a smooth function on ℝ𝑑

such that 𝜓 (𝑥) = 1 if |𝑥 | 6 𝜌 and 𝜓 (𝑥) = 0 if |𝑥 | > 2𝜌 . Define 𝜓𝑧 (𝑥) = 𝜓 (𝑥 − 𝑧). Applying
Lemma A.2 (whose hypothesis is justified because 𝑝0 > 𝑝

′ and 𝑝0 > 𝑑), we have

‖(𝑎𝑖 𝑗 (𝑧) − 𝑎𝑖 𝑗 )𝜕2𝑖 𝑗𝑢𝑧 ‖𝐿−1,𝑝0 (ℝ𝑑 ) . ‖(𝑎𝑖 𝑗 (𝑧) − 𝑎𝑖 𝑗 )𝜓𝑧 ‖𝐿1,𝑝0 (ℝ𝑑 ) ‖𝜕2𝑖 𝑗𝑢𝑧 ‖𝐿−1,𝑝 (ℝ𝑑 ) .

By Lemma A.7, we see that

sup
𝑧∈ℝ𝑑

‖(𝑎𝑖 𝑗 (𝑧) − 𝑎𝑖 𝑗 )𝜓𝑧 ‖𝐿1,𝑝0 (ℝ𝑑 ) = 𝑜𝜌 (1) .

Hence,

‖(𝑎𝑖 𝑗 (𝑧) − 𝑎𝑖 𝑗 )𝜕2𝑖 𝑗𝑢𝑧 ‖𝐿−1,𝑝0 (ℝ𝑑 ) 6 𝑜𝜌 (1)‖𝑢𝑧 ‖𝐿1,𝑝 (ℝ𝑑 ) .

It is easy to see that
∫
ℝ𝑑 ‖ℎ𝜙𝑧 ‖

𝑝

𝐿𝑝 (ℝ𝑑 )𝑑𝑧 = ‖ℎ‖𝐿𝑝 (ℝ𝑑 ) for any ℎ ∈ 𝐿𝑝 (ℝ𝑑). Hence, by Minkowski

inequality and Lemma A.5, we have(∫
ℝ𝑑

‖𝑢𝑧 ‖𝑝
𝐿1,𝑝
𝑑𝑧

)1/𝑝
6

(∫
ℝ𝑑

‖∇𝑢𝑧 ‖𝑝
𝐿𝑝
𝑑𝑧

)1/𝑝
+

(∫
ℝ𝑑

‖𝑢𝑧 ‖𝑝
𝐿𝑝
𝑑𝑧

)1/𝑝

6

(∫
ℝ𝑑

‖∇𝑢𝜙𝑧 ‖𝑝
𝐿𝑝
𝑑𝑧

)1/𝑝
+

(∫
ℝ𝑑

‖𝑢∇𝜙𝑧 ‖𝑝
𝐿𝑝
𝑑𝑧

)1/𝑝
+

(∫
ℝ𝑑

‖𝑢𝑧 ‖𝑝
𝐿𝑝
𝑑𝑧

)1/𝑝
6 ‖∇𝑢‖𝐿𝑝 (ℝ𝑑 ) +𝐶𝜌 ‖𝑢‖𝐿𝑝 (ℝ𝑑 ) . (A.13)

This shows that(∫
ℝ𝑑

‖(𝑎𝑖 𝑗 (𝑧) − 𝑎𝑖 𝑗 )𝜕2𝑖 𝑗𝑢𝑧 ‖
𝑝

𝐿−1,𝑝 (ℝ𝑑 )𝑑𝑧

)1/𝑝
. 𝑜𝜌 (1)‖𝑢‖𝐿1,𝑝 (ℝ𝑑 ) + ‖𝑢‖𝐿𝑝 (ℝ𝑑 ) .

Hence, we have (A.12).
Step 2.We show that for every integer 1 6 𝑛 6 𝑛 and every 𝑠 ∈ [0, 1],

‖𝑢‖
𝕃
𝑛𝑝
1,𝑝 ( [𝑠,1])

. ‖ 𝑓 ‖
𝕃
𝑛𝑝
−1,𝑝 ( [𝑠,1])

+ ‖𝑢‖
𝕃
𝑛𝑝
−1,𝑝 ( [𝑠,1])

. (A.14)

Since

‖𝑢‖
𝕃
𝑛𝑝
1,𝑝 ( [𝑠,1])

≈ ‖∇2𝑢‖
𝕃
𝑛𝑝
−1,𝑝 ( [𝑠,1])

+ ‖𝑢‖
𝕃
𝑛𝑝
−1,𝑝 ( [𝑠,1])

, (A.15)

it suffices to estimate ‖∇2𝑢‖
𝕃
𝑛𝑝
−1,𝑝 ( [𝑠,1])

. From Lemma A.5, we have

‖∇2𝑢‖𝑛𝑝
𝕃
𝑛𝑝
−1,𝑝 ( [𝑠,1])

.

∫ 1

𝑠

(∫
ℝ𝑑

‖∇2𝑢𝑧𝑡 ‖
𝑝

𝐿−1,𝑝 (ℝ𝑑 )𝑑𝑧

)𝑛
𝑑𝑡 +

∫ 1

𝑠

‖𝑢𝑡 ‖𝑛𝑝𝐿𝑝 (ℝ𝑑 )𝑑𝑡 . (A.16)

From Tonelli’s theorem, Lemma A.6 and (A.12),∫ 1

𝑠

(∫
ℝ𝑑

‖∇2𝑢𝑧𝑡 ‖
𝑝

𝐿−1,𝑝 (ℝ𝑑 )𝑑𝑧

)𝑛
𝑑𝑡

.

∫ 1

𝑠

(∫
ℝ𝑑

‖∇2𝑢𝑧𝑡 ‖
𝑝

𝐿−1,𝑝 (ℝ𝑑 )𝑑𝑧

)𝑛−1 (
‖ 𝑓𝑡 ‖𝐿−1,𝑝 (ℝ𝑑 ) + ‖𝑢𝑡 ‖𝐿𝑝 (ℝ𝑑 ) + 𝑜𝜌 (1)‖𝑢𝑡 ‖𝐿1,𝑝 (ℝ𝑑 )

)𝑝
𝑑𝑡 .
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Applying Hölder inequality, we have

∫ 1

𝑠

(∫
ℝ𝑑

‖∇2𝑢𝑧𝑡 ‖
𝑝

𝐿−1,𝑝 (ℝ𝑑 )𝑑𝑧

)𝑛
𝑑𝑡 .

[∫ 1

𝑠

(∫
ℝ𝑑

‖∇2𝑢𝑧𝑡 ‖
𝑝

𝐿−1,𝑝 (ℝ𝑑 )𝑑𝑧

)𝑛
𝑑𝑡

]1− 1
𝑛

×
[∫ 1

𝑠

(
‖ 𝑓 ‖𝐿−1,𝑝 (ℝ𝑑 ) + ‖𝑢‖𝐿𝑝 (ℝ𝑑 ) + 𝑜𝜌 (1)‖𝑢‖𝐿1,𝑝 (ℝ𝑑 )

)𝑛𝑝
𝑑𝑡

] 1
𝑛

,

which yields∫ 1

𝑠

(∫
ℝ𝑑

‖∇2𝑢𝑧𝑡 ‖
𝑝

𝐿−1,𝑝 (ℝ𝑑 )𝑑𝑧

)𝑛
𝑑𝑡 .

∫ 1

𝑠

(
‖ 𝑓 ‖𝑛𝑝

𝐿−1,𝑝 (ℝ𝑑 ) + ‖𝑢‖𝑛𝑝
𝐿𝑝 (ℝ𝑑 ) + 𝑜𝜌 (1)‖𝑢‖

𝑛𝑝

𝐿1,𝑝 (ℝ𝑑 )

)
𝑑𝑡 .

Putting this into (A.16), we obtain

‖∇2𝑢‖𝑛𝑝
𝕃
𝑛𝑝
−1,𝑝 ( [𝑠,1])

. ‖ 𝑓 ‖𝑛𝑝
𝕃
𝑛𝑝
−1,𝑝 ( [𝑠,1])

+ ‖𝑢‖𝑛𝑝
𝕃
𝑛𝑝
𝑝 ( [𝑠,1]) + 𝑜𝜌 (1)‖𝑢‖

𝑛𝑝

𝕃
𝑛𝑝
1,𝑝 ( [𝑠,1])

.

Using interpolation inequality

‖𝑢‖
𝕃
𝑛𝑝
𝑝 ( [𝑠,1]) 6 𝐶𝜌 ‖𝑢‖𝕃𝑛𝑝

−1,𝑝 ( [𝑠,1])
+ 𝑜𝜌 (1)‖𝑢‖𝕃𝑛𝑝

1,𝑝 ( [𝑠,1])
, (A.17)

we get

‖∇2𝑢‖
𝕃
𝑛𝑝
−1,𝑝 ( [𝑠,1])

. ‖ 𝑓 ‖
𝕃
𝑛𝑝
−1,𝑝 ( [𝑠,1])

+ ‖𝑢‖
𝕃
𝑛𝑝
−1,𝑝 ( [𝑠,1])

+ 𝑜𝜌 (1)‖𝑢‖𝕃𝑛𝑝
1,𝑝 ( [𝑠,1])

.

In view of (A.15), we have

‖𝑢‖
𝕃
𝑛𝑝
1,𝑝 ( [𝑠,1])

. ‖ 𝑓 ‖
𝕃
𝑛𝑝
−1,𝑝 ( [𝑠,1])

+𝐶𝜌 ‖𝑢‖𝕃𝑛𝑝
−1,𝑝 ( [𝑠,1])

+ 𝑜𝜌 (1)‖𝑢‖𝕃𝑛𝑝
1,𝑝 ( [𝑠,1])

.

By choosing 𝜌 sufficiently small, we derive (A.14) from the above estimate.
Step 3. We show that

‖𝑢‖𝕃∞
−1,𝑝 ( [0,1]) . ‖ 𝑓 ‖

𝕃
𝑝
−1,𝑝 ( [0,1])

. (A.18)

From (A.11), we have

𝑢𝑧𝑠 =

∫ 1

𝑠

𝑃Σ𝑠,𝑡 (𝑧)𝐹
𝑧
𝑡 𝑑𝑡, where Σ𝑠,𝑡 (𝑧) = 2

∫ 𝑡

𝑠

𝑎(𝑟, 𝑧)𝑑𝑟 .

Then Minkowski inequality and [Tri13, Theorem 5.30] yield

‖𝑢𝑧𝑠 ‖𝐿−1,𝑝 (ℝ𝑑 ) .

∫ 1

𝑠

‖𝐹𝑧𝑡 ‖𝐿−1,𝑝 (ℝ𝑑 )𝑑𝑡 .

Applying Hölder inequality, Lemma A.5, (A.12) and the interpolation inequality (A.17), we
obtain from the above that

‖𝑢𝑠 ‖𝑝𝐿−1,𝑝 (ℝ𝑑 ) .

∫ 1

𝑠

∫
ℝ𝑑

‖𝐹𝑧𝑡 ‖
𝑝

𝐿−1,𝑝 (ℝ𝑑 )𝑑𝑧𝑑𝑡

.

∫ 1

𝑠

[
‖ 𝑓𝑡 ‖𝑝𝐿−1,𝑝 (ℝ𝑑 ) + ‖𝑢𝑡 ‖𝑝𝐿−1,𝑝 (ℝ𝑑 ) + ‖𝑢𝑡 ‖𝑝𝐿1,𝑝 (ℝ𝑑 )

]
𝑑𝑡 .
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Applying (A.14) (with 𝑛 = 1), we have

‖𝑢𝑠 ‖𝑝𝐿−1,𝑝 (ℝ𝑑 ) . ‖ 𝑓 ‖𝑝
𝕃
𝑝
1,𝑝 ( [0,1])

+
∫ 1

𝑠

‖𝑢𝑡 ‖𝑝𝐿−1,𝑝 (ℝ𝑑 )𝑑𝑡,

which implies (A.18) by Gronwall inequality.
Step 4. Using (A.18) in (A.14) yields

‖𝑢‖
𝕃
𝑛𝑝
1,𝑝 ( [0,1])

. ‖ 𝑓 ‖
𝕃
𝑛𝑝
1,𝑝 ( [0,1])

+ ‖ 𝑓 ‖
𝕃
𝑝
1,𝑝 ( [0,1])

. ‖ 𝑓 ‖
𝕃
𝑛𝑝
1,𝑝 ( [0,1])

,

which implies (A.8). �

Lemma A.9. Assuming Condition 𝔄′ and additionally that 𝑞′ > 𝑝′. Then there exists a unique
solution 𝑣 to (A.2) which satisfies (A.9).

Proof. The proof is similar to that of Lemma A.8. The main differences are the computations
in step 1 of the proof of Lemma A.8, which we will explain below. Let 𝑣 be a solution to (A.2).
Define 𝜙𝑧, 𝑎(𝑧) as in the proof of Lemma A.8. In addition, define 𝑔𝑧 (𝑡, 𝑧) = 𝑔(𝑡, 𝑥)𝜙𝑧 (𝑥) and
𝑣𝑧 (𝑡, 𝑥) = 𝑣 (𝑡, 𝑥)𝜙𝑧 (𝑥). Then 𝑣𝑧 satisfies the parabolic equation

𝜕𝑡𝑣
𝑧 − 𝑎𝑖 𝑗 (𝑧)𝜕2𝑖 𝑗𝑣𝑧 +𝐺𝑧 = 0, 𝑣𝑧 (0, ·) = 0,

where

𝐺𝑧 = 𝑔𝑧 + 𝑎𝑖 𝑗 (𝑧)𝜕2𝑖 𝑗𝑣𝑧 − 𝜕2𝑖 𝑗 (𝑎𝑖 𝑗𝑣)𝜙𝑧

= 𝑔𝑧 − 𝜕2𝑖 𝑗
(
(𝑎𝑖 𝑗 − 𝑎𝑖 𝑗 (𝑧))𝑣𝑧

)
+ 2𝜕𝑖 (𝑎𝑖 𝑗𝑣)𝜕 𝑗𝜙𝑧 + 𝑎𝑖 𝑗𝑣𝜕2𝑖 𝑗𝜙𝑧 .

Let𝜓 be a smooth function onℝ𝑑 such that𝜓 (𝑥) = 1 if |𝑥 | 6 𝜌 and𝜓 (𝑥) = 0 if |𝑥 | > 2𝜌 . Define
𝜓𝑧 (𝑥) = 𝜓 (𝑥 − 𝑧). Applying Lemmas A.2 and A.7

‖𝜕𝑖 𝑗 ((𝑎𝑖 𝑗 − 𝑎𝑖 𝑗 (𝑧))𝑣𝑧)‖𝐿−1,𝑝 ′ (ℝ𝑑 ) . ‖(𝑎𝑖 𝑗 − 𝑎𝑖 𝑗 (𝑧))𝑣𝑧 ‖𝐿1,𝑝 ′ (ℝ𝑑 )

. ‖(𝑎𝑖 𝑗 − 𝑎𝑖 𝑗 (𝑧))𝜓𝑧 ‖𝐿1,𝑝0 (ℝ𝑑 ) ‖𝑣𝑧 ‖𝐿1,𝑝 ′ (ℝ𝑑 ) 6 𝑜𝜌 (1)‖𝑣𝑧 ‖𝐿1,𝑝 ′ (ℝ𝑑 )

and

‖𝑎𝑖 𝑗𝑣𝜕2𝑖 𝑗𝜙𝑧 ‖𝐿−1,𝑝 ′ (ℝ𝑑 ) . ‖𝑎𝑖 𝑗𝜓𝑧 ‖𝐿1,𝑝0 (ℝ𝑑 ) ‖𝑣𝜕2𝑖 𝑗𝜙𝑧 ‖𝐿−1,𝑝 ′ (ℝ𝑑 ) . ‖𝑣𝜕2𝑖 𝑗𝜙𝑧 ‖𝐿−1,𝑝 ′ (ℝ𝑑 ) .

Similar to (A.13), we have(∫
ℝ𝑑

‖𝑣𝑧 ‖𝑝
′

𝐿1,𝑝 (ℝ𝑑 )

)1/𝑝 ′
6 ‖𝑣 ‖𝐿1,𝑝 ′ (ℝ𝑑 ) +𝐶𝜌 ‖𝑣 ‖𝐿′𝑝 (ℝ𝑑 ) .

This yields(∫
ℝ𝑑

‖𝜕𝑖 𝑗 ((𝑎𝑖 𝑗 − 𝑎𝑖 𝑗 (𝑧))𝑣𝑧) + 𝑎𝑖 𝑗𝑣𝜕2𝑖 𝑗𝜙𝑧 ‖
𝑝 ′

𝐿−1,𝑝 ′ (ℝ𝑑 )𝑑𝑧

)1/𝑝 ′
. ‖𝑣 ‖𝐿𝑝 ′ (ℝ𝑑 ) + 𝑜𝜌 (1)‖𝑣 ‖𝐿1,𝑝 ′ (ℝ𝑑 ) .

Applying Lemma A.5, we have(∫
ℝ𝑑

‖𝑔𝑧 + 2𝜕𝑖 (𝑎𝑖 𝑗𝑣)𝜕 𝑗𝜙𝑧 ‖𝑝
′

𝐿−1,𝑝 ′ (ℝ𝑑 )𝑑𝑧

)
. ‖𝑔‖𝐿−1,𝑝 ′ (ℝ𝑑 ) + ‖𝜕𝑖 (𝑎𝑖 𝑗𝑣)‖𝐿−1,𝑝 ′ (ℝ𝑑 )
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. ‖𝑔‖𝐿−1,𝑝 ′ (ℝ𝑑 ) + ‖𝑣 ‖𝐿𝑝 ′ (ℝ𝑑 ) .

These estimates imply that(∫
ℝ𝑑

‖𝐺𝑧 ‖𝑝
′

𝐿−1,𝑝 ′ (ℝ𝑑 )𝑑𝑧

)1/𝑝 ′
. ‖𝑔‖𝐿−1,𝑝 ′ (ℝ𝑑 ) + ‖𝑣 ‖𝐿𝑝 ′ (ℝ𝑑 ) + 𝑜𝜌 (1)‖𝑣 ‖𝐿1,𝑝 ′ (ℝ𝑑 ) .

Using the interpolation inequality

‖𝑣 ‖𝐿𝑝 ′ (ℝ𝑑 ) 6 𝐶𝜀 ‖𝑣 ‖𝐿−1,𝑝 ′ (ℝ𝑑 ) + 𝜀‖𝑣 ‖𝐿1,𝑝 ′ (ℝ𝑑 ),

we obtain from the previous estimate, by choosing 𝜀 sufficiently small, that(∫
ℝ𝑑

‖𝐺𝑧 ‖𝑝
′

𝐿−1,𝑝 ′ (ℝ𝑑 )𝑑𝑧

)1/𝑝 ′
. ‖𝑔‖𝐿−1,𝑝 ′ (ℝ𝑑 ) + ‖𝑣 ‖𝐿−1,𝑝 ′ (ℝ𝑑 ) + 𝑜𝜌 (1)‖𝑣 ‖𝐿1,𝑝 ′ (ℝ𝑑 ) .

One can now follow steps 2,3 of the proof of Lemma A.8 to obtain (A.9). �

Proof of Theorem A.4. Concerning equation (A.1), by the method of continuity it suffices to
show (A.8) whenever 𝑢 is a solution to (A.1). The case 𝑞 > 𝑝 has been treated in Lemma A.8.

Consider the case 𝑞 < 𝑝 , which is equivalent to 𝑞′ > 𝑝′. For each 𝑔 ∈ 𝕃
𝑞′

−1,𝑝 ′ ( [0, 1]), let 𝑣 be
the solution to (A.9), which exists uniquely by Lemma A.9. We take 𝜙 = 𝑣 in (A.4) and use the
equation (A.2) for 𝑣 to see that∫ 1

0
〈𝑢𝑠, 𝑔𝑠〉𝐿1,𝑝 (ℝ𝑑 )×𝐿−1,𝑝 ′ (ℝ𝑑 )𝑑𝑠 =

∫ 1

0
〈𝑣𝑡 , 𝑓𝑡 〉𝐿1,𝑝 ′ (ℝ𝑑 )×𝐿−1,𝑝 (ℝ𝑑 )𝑑𝑡 .

Applying Hölder inequality and (A.9), we have����
∫ 1

0
〈𝑣𝑡 , 𝑓𝑡 〉𝐿1,𝑝 ′ (ℝ𝑑 )×𝐿−1,𝑝 (ℝ𝑑 )𝑑𝑡

���� 6 ‖𝑣 ‖
𝕃
𝑞′
1,𝑝 ′ ( [0,1])

‖ 𝑓 ‖
𝕃
𝑞′
−1,𝑝 ′ ( [0,1])

. ‖𝑔‖
𝕃
𝑞′
−1,𝑝 ′ ( [0,1])

‖ 𝑓 ‖
𝕃
𝑞′
−1,𝑝 ′ ( [0,1])

,

and hence����
∫ 1

0
〈𝑢𝑠, 𝑔𝑠〉𝐿1,𝑝 (ℝ𝑑 )×𝐿−1,𝑝 ′ (ℝ𝑑 )𝑑𝑠

���� . ‖𝑔‖
𝕃
𝑞′
−1,𝑝 ′ ( [0,1])

‖ 𝑓 ‖
𝕃
𝑞′
−1,𝑝 ′ ( [0,1])

.

Since 𝑔 is arbitrary, this implies (A.8). The result for equation (A.2) follows from similar argu-
ments. �
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