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TAMING SINGULAR STOCHASTIC DIFFERENTIAL EQUATIONS: A
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We consider a generic and explicit tamed Euler–Maruyama scheme for
multidimensional time-inhomogeneous stochastic differential equations with
multiplicative Brownian noise. The diffusive coefficient is uniformly elliptic,
Hölder continuous and weakly differentiable in the spatial variables while the
drift satisfies the strict Ladyzhenskaya–Prodi–Serrin condition, as considered
by Krylov and Röckner (2005). In the discrete scheme, the drift is tamed by
replacing it by an approximation. A strong rate of convergence of the scheme
is provided in terms of the approximation error of the drift in a suitable and
possibly very weak topology. A few examples of approximating drifts are
discussed in detail. The parameters of the approximating drifts can vary and—
under suitable conditions— be fine-tuned to achieve a strong convergence rate
which is arbitrarily close to the benchmark 0.5 rate. The result is then applied
to provide numerical solutions for stochastic transport equations with singular
vector fields satisfying the aforementioned condition.
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1. Introduction. The aim of this article is to devise a numerical scheme and obtain its
strong convergence rate for stochastic differential equations (SDEs) with integrable drift
coefficients and elliptic regular diffusive coefficients. We consider the SDE

dXt = b(t,Xt)dt+ σ(t,Xt)dBt, X0 = x0, t ∈ [0,1],(1.1)

where d⩾ 1, b : [0,1]×R
d →R

d is a Borel measurable function satisfying
∫ 1

0

[∫

Rd

|b(t, x)|pdx
] q

p

dt <∞ with q, p ∈ [2,∞) and
d

p
+

2

q
< 1,(1.2)
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and σ : [0,1]× R
d → R

d × R
d is a bounded Borel measurable function, continuous in the

spatial variables and uniformly elliptic, (Bt)t⩾0 is a d-dimensional standard Brownian motion
defined on some complete filtered probability space (Ω,F , (Ft)t⩾0,P) and x0 is a F0-random
variable. With ⩽ 1 in place of < 1, (1.2) is known in the fluid dynamics’ literature as the
Ladyzhenskaya–Prodi–Serrin condition.

In the seminal paper [41], Krylov and Röckner, building upon [74, 68], show that (1.1) has a
unique strong solution assuming that σ is the identity matrix and b satisfies (1.2). This result is
later extended by Zhang [71] (complemented by [69])1 for variable diffusive coefficients which
are weakly differentiable, uniformly elliptic, uniformly bounded and uniformly continuous in
x locally uniformly in time.

While theoretical solutions of (1.1) are well understood since [41], numerical analysis of
(1.1) under condition (1.2) has been an open problem. At the moment of writing, we are aware
of two publications on the topic. Jourdain and Menozzi consider in [35] the case σ is the
identity matrix and show that the marginal density of a tamed Euler–Maruyama scheme with
truncated drifts converges at the rate 1

2 − d
2p − 1

q . Gyöngy and Krylov in [26] recently show
that the tamed Euler–Maruyama scheme with truncated drifts converges in probability to the
exact solution, albeit without any rate. Needless to say, a strong convergence rate is desirable
and is of independent interest. For this purpose, we consider the discrete scheme defined by

(1.3) dXn
t = bn(t,Xn

kn(t)
)dt+ σ(t,Xn

kn(t)
)dBt, Xn

0 = xn0 , t ∈ [0,1],

where xn0 is a F0-random variable and bn is an approximation of the vector field b and

kn(t) =
j

n
whenever

j

n
⩽ t <

j + 1

n
for some integer j ⩾ 0.

We note that (1.3) with the choice bn = b is the usual Euler–Maruyama scheme, which,
however, is not well-behaved for a merely integrable function b even when b is replaced by
b1(|b|<∞). This is because the simulation for the usual Euler–Maruyama scheme may enter a
neighborhood of a singularity of b, making the scheme unstable and uncontrollable. We thus
have to tame the vector field b, replacing it by a suitable approximation bn. Henceforth, we
call (1.3) a tamed Euler–Maruyama scheme. The terminology is borrowed from [32], who
consider a specific case of (1.3) to approximate SDEs with regular but super-linear drifts. The
name “tamed Euler–Maruyama” thus should be understood in a broad sense, and in particular,
(1.3) also includes the “truncated Euler–Maruyama” scheme considered in [54].

Natural choices for bn are the truncated vector fields

bnr (x) = br(x)1(|br(x)|⩽Cnχ∥br∥Lp(Rd))
,(1.4)

bnr (x) = br(x)1(|br(x)|⩽Cnχ),(1.5)

for some constants C,χ > 0. Another practical choice is the regularized vector field

bnr (x) = p1/nχ ∗ br(x),(1.6)

where χ > 0, pt(x) is the Gaussian density of variance t and ∗ is the spatial convolution.
Alternatively, multiresolution approximations by wavelet ([56]) or the truncated discrete
φ-transform ([19]) could be used whenever desirable.

The main results of the article, Theorems 2.2 and 2.3 below, assert the strong convergence
of (1.3) to (1.1) with an explicit rate under some mild regularity conditions on σ and on the
approximating drifts bn. When the approximating drifts take one of the forms (1.4)-(1.6),
Corollary 2.4 expresses the convergence rates which are proportional to χ. For each form

1[71, Theorem 5.1] is non-trivial whose proof is provided in [69].
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of bn, a suitable validity range of χ is identified in terms of the parameters p, q, d. For the
approximating drifts (1.5) and Lipschitz σ, the parameter χ can be tuned within the interval
(0,1/2) to obtain a strong convergence rate χ, which is arbitrarily close to the benchmark 0.5
rate. For the approximating drifts (1.4) and (1.6), such sharp rate can be achieved under some
restricted conditions on p, q.

We expect that Theorems 2.2 and 2.3 are useful in algorithm designs when the vector field
b is not explicitly available but rather arises from another analytic system which itself needs
to be numerically evaluated. Such situations appear in hydrodynamic-type equations due to
their fundamental connection with singular SDEs, see for instance, [12, 70, 73] where the
SDE (1.1) is coupled with another analytic constraint on b. In such scenarios, bn does not
have an explicit form, but nevertheless, Theorems 2.2 and 2.3 could be implemented. While
we leave this problem for future investigations, herein we focus on a simpler application
to stochastic transport equations with vector fields satisfying (1.2) (see Eq. (8.1)). While
theoretical solutions for such equations have been considered in [18, 17, 60, 7], singularity of
the coefficients have prevented the study of numerical solutions by standard tools ([11, 61]).
We propose in Theorem 8.1 an explicit numerical scheme with rate for such equations, based
upon the method of characteristics.

Literatures on convergence of Euler–Maruyama schemes for SDEs is vast and expanding,
for which we provide a brief and personalized overview. When the coefficients are continuous,
convergence rates of the Euler–Maruyama scheme are well-studied. For Lipschitz continuous
coefficients and non-trivial diffusive coefficients, the optimal strong rate of convergence is 1/2,
as shown in [43, 34]. Results on the strong rate of convergence for Hölder / Dini continuous
drifts are discussed in [27, 5, 55] and only settled recently by Dareiotis and Gerencsér in
[13], who obtain the L2(Ω)-rate 1/2 − ε, for any ε ∈ (0,1/2), when b is Dini continuous
and σ is the identity matrix. This result is extended in [10] for the case when b is Hölder
continuous and σ is uniformly elliptic and twice continuously differentiable. For an in-depth
overview and more complete lists of other contributions, see [9, 38, 39, 57] and the references
therein. Results for discontinuous drifts are more sparse but are attracting attention. The case
of piecewise Lipschitz drifts are considered in [49, 50, 58]. [59] considers one-dimensional
SDEs with additive noise and bounded measurable drifts with a positive Sobolev–Slobodecki-
regularity. [6] considers bounded measurable drifts with a certain Gaussian–Besov-regularity.
For merely bounded measurable drifts without any regularity, the recent article [14] obtains
the Lp(Ω)-rate 1/2− ε, for any p⩾ 2 and ε ∈ (0,1/2), extending the results of [13, 10]. At
last, we mention the work [2] who consider similar tamed Euler–Maruyama schemes for one
dimensional SDEs with distributional drifts. For comparison, our approach is different, our
results are in a multidimensional setting and allow completely generic approximating drifts bn.
Furthermore, we emphasize that one dimensional SDEs are more specific, often well-posed
even for distributional drifts, and usually require tailored techniques, [44, 29]. This list is
surely not exhaustive.

The article is organized as follows. In Section 2, we state our standing assumptions and
the main results. Section 3 contains auxiliary results which are collected and adapted from
previous works. Section 4 is pivotal and contains a case study of moment estimation for some
relevant functionals of Brownian motion. While some results in this section will not be used
directly to prove the main results, the section showcases our main estimates in a simpler
setting. Sections 5 and 6 extend the moment estimates in Section 4 respectively to functionals
of the solutions of (1.3) and (1.1). The two sections contain most of the technical estimates of
the paper which build up a foundation for the proofs of the main results. In Section 7, we give
the proofs of Theorems 2.2 and 2.3, using the moment estimates from the prior sections. The
application to numerical solutions for stochastic transport equations is discussed in Section 8.
The appendix contains maximal regularity estimates for parabolic equations with variable
coefficients and distributional forcing, which are needed but independent from the main text.
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2. Main results. We first fix a few notation. Let p, q ∈ [1,∞] be some fixed parameters.
Lp(R

d) andLp(Ω) denote the Lebesgue spaces respectively on R
d and Ω. The expectation with

respect to P is denoted by E. For each ν ∈R, Lν,p(R
d) := (I−∆)−ν/2

(
Lp(Rd)

)
is the usual

Bessel potential space on R
d equipped with the norm ∥f∥Lν,p(Rd) := ∥(I−∆)ν/2f∥Lp(Rd),

where (I − ∆)ν/2f is defined through Fourier’s transform. Lq
ν,p([0,1]) denotes the space

of measurable function f : [0,1]→ Lν,p(R
d) such that ∥f∥Lq

ν,p([0,1]) is finite. Here, for each
s, t ∈ [0,1] satisfying s⩽ t, we denote

∥f∥Lq
ν,p([s,t]) :=

(∫ t

s
∥f(r, ·)∥qLν,p(Rd)dr

) 1

q

with obvious modification when q =∞. When ν = 0, we simply write L
q
p([0,1]) instead of

L
q
0,p([0,1]). In particular, Lq

p([0,1]) contains Borel measurable functions f : [0,1]×R
d →R

such that
∫ 1
0

[∫
Rd |f(t, x)|pdx

]q/p
dt is finite. For each ρ ∈ (0,1), Lρ(R

d) denotes the space
of all measurable functions f on R

d such that ∥f∥Lρ(Rd) := (
∫
Rd |f(x)|ρdx)1/ρ is finite. Note

that in this case, ∥ · ∥Lρ(Rd) is not a norm.
For each X ∈ {Lq

ν,p([0,1]),Lp(R
d),Lp(Ω)}, an R

m-valued function f = (f1, . . . , fm) be-
longs to X , if all components f1, . . . , fm belong to X , and we put ∥f∥X =maxi=1,...,m{∥f i∥X }.
Since we only deal with either scalars or Rd-valued functions and random variables, we conven-
tionally drop the dimension of the range in the notation of the spaces Lq

ν,p([0,1]),Lp(R
d),Lp(Ω).

Put Dn = {i/n : i= 0, . . . , n}. For each S ⩽ T , we put ∆([S,T ]) = {(s, t) ∈ [S,T ]2 : s⩽
t} and ∆2([S,T ]) = {(s,u, t) ∈ [S,T ]3 : s⩽ u⩽ t}. We abbreviate ∆=∆([0,1]) and ∆2 =
∆2([0,1]). We say that a function w : ∆([S,T ])→ [0,∞) is a control if w(s,u) +w(u, t)⩽
w(s, t) for every (s,u, t) ∈∆2([S,T ]). For a d× d-matrix P , P ∗ denotes its transpose and
∥P∥ denotes its Hilbert–Schmidt norm. The following conditions are enforced throughout
unless noted otherwise.

COND ITI ON A. The diffusion coefficient σ is a d×d-matrix-valued measurable function
on [0,1]×R

d . There exists a constant K1 ∈ [1,∞) such that for every s ∈ [0,1] and x ∈R
d

K−1
1 I ⩽ (σσ∗)(s,x)⩽K1I.(2.1)

Furthermore, the following conditions hold.

1. There are constants α ∈ (0,1] and K2 ∈ (0,∞) such that for every s ∈ [0,1] and x, y ∈R
d

|(σσ∗)(s,x)− (σσ∗)(s, y)|⩽K2|x− y|α.
2. σ(s, ·) is weakly differentiable for a.e. s ∈ [0,1] and there are constants p0 ∈ [2,∞),
q0 ∈ (2,∞] and K3 ∈ (0,∞) such that

d

p0
+

2

q0
< 1 and ∥∇σ∥Lq0

p0 ([0,1])
⩽K3.

CONDITI ON B. x0 belongs to Lp(Ω,F0) and b belongs to L
q
p([0,1]) for some p, q ∈

[2,∞) satisfying d
p + 2

q < 1. For each n, xn0 belongs to Lp(Ω,F0) and bn belongs to
L
q
p([0,1]) ∩ L

q
∞([0,1]) with p, q as above. Furthermore, there exist finite positive constants

K4, θ and continuous controls {µn}n such that supn⩾1(∥bn∥Lq
p([0,1]) + µn(0,1))⩽K4 and

(1/n)
1

2
− 1

q ∥bn∥Lq
∞([s,t]) ⩽ µn(s, t)θ ∀ t− s⩽ 1/n.(2.2)
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In the above, I denotes the identity matrix. If one replaces Hölder continuity by uniform
continuity, Conditions A-B are comparable to those from [71, 69], who show strong unique-
ness for (1.1). Hence, hereafter, we assume that the solution to (1.1) exists and is strongly
unique.2 Next, we define an important quantity which controls the strong convergence rate.

DEFINITI ON 2.1. Let λ > 0 be a fixed number which is sufficiently large. Let U =
(U1, . . . ,Ud) where for each h= 1, . . . , d, Uh is the solution to the following equation

∂tU
h +

d∑

i,j=1

1

2
(σσ∗)ij∂2ijU

h + bn,h · ∇Uh = λUh − bn,h, Uh(1, ·) = 0.(2.3)

Let X be the solution to (1.1). For each p̄ ∈ [1,∞), we put

ϖn(p̄) =
∥∥∥ sup
t∈[0,1]

∣∣∣
∫ t

0
(1 +∇U)[b− bn](r,Xr)dr

∣∣∣
∥∥∥
Lp̄(Ω)

.

In the above and hereafter, we omit the dependence of U on n. Equation (2.3) arises from a
Zvonkin transformation, which we postpone to Section 7 for the details. It is known that when
λ is sufficiently large, equation (2.3) has a unique solution, see Lemma 7.1 below.

THEOREM 2.2. Assume that Conditions A-B hold. Let (Xn
t )t∈[0,1] be the solution to

(1.3) and (Xt)t∈[0,1] be the solution to SDE (1.1). Then for any p̄ ∈ (1, p)∩ (1, 2d(p∧ p0)) and

any γ ∈ (0,1), there exists a finite constant N(K1,K2,K3,K4, α, p0, q0, p, q, d, p̄, γ) such

that

∥ sup
t∈[0,1]

|Xn
t −Xt|∥Lγp̄(Ω) ⩽N

[
∥xn0 − x0∥Lp̄(Ω) + (1/n)

α

2 + (1/n)
1

2 log(n) +ϖn(p̄)
]
.

(2.4)

Actually, by adding an exponential weight, moments up to order p-th can be estimated, see
Proposition 7.3 below. The condition p̄ < 2

d(p∧ p0) ensures finiteness of the moments of the
exponential weight and therefore deduces (2.4) by an application of Hölder inequality.

Under uniform ellipticity and Hölder regularity of σ, pathwise uniqueness for (1.1), p > d/α,
limn b

n = b in L
q
p([0,1]) and the following condition

sup
n⩾1

(1/n)
1

2
− 1

q ∥bn∥Lq
∞([0,1]) <∞,(2.5)

[26, Theorem 2.11] recently shows that the tamed Euler–Maruyama scheme (1.3) converges
in probability to the solution of (1.1). It is evident that (2.5) implies (2.2) (with the choice
µn(s, t)

1

q = (1/n)
1

2
− 1

q ∥bn∥Lq
∞([s,t])). However, because of the interchangeability between

t− s and 1/n in (2.2), truncated vector fields with higher truncation levels, which yield better
convergence rates, satisfy (2.2) but not (2.5), see Corollary 2.4 below. Under Conditions A-B,
the above result provides an upper bound for the moments of supt∈[0,1] |Xn

t −Xt| which
depends on n and ϖn. When limn b

n = b in L
q
p([0,1]) as in the setting of [26], one can show

that limnϖn = 0 (cf. Corollary 2.4). However, the topology of Lq
p does not provide any explicit

rate. There are, of course, many other topologies for limn b
n = b so that one can actually obtain

an explicit rate. The choice of a suitable topology depends on the approximating vector fields
bn. Our next main result relates ϖn with the convergence of bn to b with respective to the
topologies of Lq1

p1 (for some p1, q1 ∈ [1,∞]) and L
q
−ν,p (for some ν ∈ [0,1)).

2Actually the results from [71, 69] are for deterministic x0 ∈R
d, however, can be easily extended to our case

by conditioning and utilizing Markov property of Brownian motion. See also Remark 2.6 below.
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THEOREM 2.3. Assume that Conditions A-B hold.

(i) Let p1, q1 ∈ [1,∞] be such that d
p1
+ 2

q1
< 2. Then for everym⩾ 1, there exists a constant

N depending on K1, K2, K3, K4, α, p0, q0, p1, q1, p, q, d, m such that

ϖn(m)⩽N∥b− bn∥Lq1
p1 ([0,1])

.(2.6)

(ii) Assuming furthermore that q0 =∞ and 1
p +

1
p0
< 1. Let ν ∈ [0,1) be such that

ν <
3

2
− d

2p
− 2

q
.(2.7)

Then for every p̄ ∈ [1, p), there exists a constant N depending on K1, K2, K3, K4, α, p0, p, q,

d, p̄, ν such that

ϖn(p̄)⩽N∥b− bn∥Lq
−ν,p([0,1])

.(2.8)

(iii) Assuming furthermore that q0 =∞, 1
p +

1
p0
< 1 and

d

p
+

4

q
< 1.(2.9)

Suppose that there exists a continuous control w0 on ∆ and a constant Γ⩾ 0 such that

∥b− bn∥Lq
−1,p([s,t])

⩽ Γw0(s, t)
1

q and ∥b− bn∥Lq
p([s,t]) ⩽w0(s, t)

1

q(2.10)

for every (s, t) ∈∆. Then for every p̄ ∈ [1, p), there exists a constant N depending on K1, K2,

K3, K4, α, p0, p, q, d, p̄ such that

ϖn(p̄)⩽NΓ(1 + | logΓ|)w0(0,1)
1

q .(2.11)

Using Theorems 2.2 and 2.3, we can derive explicit strong convergence rates for the scheme
(1.3) when the approximating vector field bn take one of the forms (1.4)-(1.6).

COROLLARY 2.4. Assume that Condition A holds. Let b, x0, x
n
0 be as in Condition B;

and p̄, γ be as in Theorem 2.2.

(a) Let C > 0 and χ ∈ (0,1/2− 1/q] be constants and define bn by (1.4). Let ρ ∈ (1, p] be

a number such that ρd
p +

2
q < 2. Then there exists a constant N depending on K1, K2, K3,

K4, α, p0, q0, p, q, d, p̄, γ, ρ, χ, C such that

(2.12) ∥ sup
t∈[0,1]

|Xn
t −Xt|∥Lγp̄(Ω)

⩽N
[
∥x0 − xn0∥Lp̄(Ω) + (1/n)χ(ρ−1) + (1/n)

α

2 + (1/n)
1

2 log(n)
]
.

(b) Let C > 0 and χ ∈ (0,1/2) be constants and define bn by (1.5). Then there exists a

constant N depending on K1, K2, K3, K4, α, p0, q0, p, q, d, p̄, γ, ρ, χ, C such that (2.12)

holds for any ρ ∈ (1, p∧ q] satisfying ρ
(
d
p +

2
q

)
< 2.

(c) Let χ ∈
(
0, pd

(
1− 2

q

)]
and define bn by (1.6). Let ν ∈ (0,1) be any number satisfying

(2.7). Assume furthermore that q0 = ∞ and 1
p + 1

p0
< 1. Then there exists a constant N

depending on K1, K2, K3, K4, α, p0, p, q, d, p̄, ν, γ, χ such that

∥ sup
t∈[0,1]

|Xn
t −Xt|∥Lγp̄(Ω) ⩽N

[
∥x0 − xn0∥Lp̄(Ω) + (1/n)χ

ν

2 + (1/n)
α

2 + (1/n)
1

2 log(n)
]
.

(2.13)
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PRO OF . In view of Theorem 2.2, it suffices to estimate ϖn(p̄). (a) It is obvious that
∥bn∥Lq

p([0,1]) ⩽ ∥b∥Lq
p([0,1]). From the inequality ∥bnr ∥L∞(Rd) ⩽ Cnχ∥br∥Lp(Rd), we see that

∥bn∥Lq
∞([s,t]) ≲ nχ∥b∥Lq

p([s,t]). It follows that for every 0⩽ t− s⩽ 1/n,

(1/n)
1

2
− 1

q ∥bn∥Lq
∞([s,t]) ≲ (1/n)

1

2
− 1

q
−χ∥b∥Lq

p([s,t]) ≲ ∥b∥Lq
p([s,t]),

verifying Condition B with µn(s, t) = ∥b∥q
L

q
p([s,t])

and θ = 1/q. Furthermore,

|br(x)− bnr (x)|⩽ |br(x)|1(|br(x)|>Cnχ∥br∥Lp(Rd))
⩽C1−ρn−χ(ρ−1)∥br∥1−ρ

Lp(Rd)|br(x)|
ρ.

The function (r,x) 7→ ∥br∥1−ρ
Lp(Rd)|br(x)|ρ belongs to L

q
p/ρ([0,1]) and hence,

∥b− bn∥Lq
p/ρ([0,1])

≲ n−χ(ρ−1)∥b∥Lq
p([0,1]).

It follows from (2.6) that ϖn ≲ (1/n)χ(ρ−1)∥b∥Lq
p([0,1]). The stated estimate is then a conse-

quence of (2.4).
(b) For the vector field bn defined by (1.5), we have ∥bnr ∥L∞(Rd) ≲ nχ so that for every

0⩽ t− s⩽ 1/n,

(1/n)
1

2
− 1

q ∥bn∥Lq
∞([s,t]) ≲ (1/n)

1

2
− 1

q
−χ(t− s)

1

q ≲ (t− s)θ

for any θ > 0 such that θ ⩽min(1/q,1/2−χ). This verifies Condition B with µn(s, t) = t−s.
On the other hand, |b− bn|≲ n−χ(ρ−1)|b|ρ so that ∥b− bn∥

L
q/ρ

p/ρ([0,1])
≲ n−χ(ρ−1)∥b∥ρ

L
q
p([0,1])

.

It follows from (2.6) that ϖn ≲ n−χ(ρ−1)∥b∥ρ
L

q
p([0,1])

.

(c) We have ∥bnr ∥L∞(Rd) ≲ nχ
d

2p ∥br∥Lp(Rd) and hence, for every 0⩽ t− s⩽ 1/n,

(1/n)
1

2
− 1

q ∥bn∥Lq
∞([s,t]) ≲ (1/n)

1

2
− 1

q
−χ d

2p ∥b∥Lq
p([s,t]) ≲ ∥b∥Lq

p([s,t]),

verifying condition (2.2) with µn(s, t) = ∥b∥q
L

q
p([s,t])

and θ = 1/q. We also have

∥b− bn∥Lq
−ν,p

≲ (1/n)χν/2∥b∥Lq
p
.

Applying (2.8), we have ϖn(p̄)≲ (1/n)χ
ν

2 .

REMARK 2.5. Similar truncated vector fields to (1.5) with the values χ = 1/2 and
χ = d/(2p) + 1/q were considered in [35], in which a weak rate of convergence of order
1
2 − d

2p − 1
q was obtained. While Corollary 2.4(b) excludes the value χ= 1/2, by choosing

ρ= 2, it yields the strong rate

∥x0 − xn0∥Lp̄(Ω) + (1/n)χ + (1/n)
α

2 + (1/n)
1

2 log(n),

in which χ can be as close as one desires to 1/2.
Similar (but different) regularized vector fields to (1.6) was considered in [2] in a different

setting.

REMARK 2.6. The proof of Theorem 2.2 actually works for any adapted solution to
(1.1), see Remark 6.5 and Section 7. Consequently, Theorem 2.2 yields an alternative proof
([71, 69]) of pathwise uniqueness for (1.1) under Conditions A-B.

The restriction on the unit time interval in Theorems 2.2 and 2.3 is of course artificial and it
is straightforward to extend the above results on arbitrary finite time intervals. In such case,
the constants in our estimates also depend on the length the time interval. The logarithmic
factor in (2.4) arises from the stochastic Davie–Grönwall lemma with critical exponents (see
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[20] or Lemma 3.2 herein). The explicit estimation for square moments from [13] suggests
that the logarithmic factor in (2.4) could be improved. Because of the role of the stochastic
Davie–Grönwall lemma in the study of rough/stochastic ordinary/partial differential equations
([20, 4, 15, 16]), it is an important problem to identify the sharpness of the logarithmic factor.
However, we do not pursue this direction herein.

Let us briefly explain our general method and strategy. Starting from (1.1) and (1.3), we
decompose the difference Xt −Xn

t into three types of differences:

• differences between functionals of b(t,Xt) and bn(t,Xt),
• differences between functionals of Xt and functionals of Xn

t ,
• differences between functionals of Xn

t and functionals of Xn
kn(t)

.

At this stage, our strategy aligns with the classical works [43, 34] for SDE’s with Lipschitz
coefficients. However, in order to utilize the regularizing effect of the noise in compensation for
the lack of regularity of the drift, our treatments for these functionals are different and follow
the recent approach of [14]. The differences of the first type can be easily estimated from
above by ϖn. For the differences of the second type, we use a Zvonkin-type transformation
to show that they depend on supt∈[0,1] |Xt −Xn

t | in a Lipschitz sense. The differences of the
last type contain, for instance, the functional

sup
t∈[0,1]

∣∣∣∣
∫ t

0
[bn(s,Xn

kn(s)
)− bn(s,Xn

s )]ds

∣∣∣∣ .

Because b and bn are not continuous (uniformly in n), estimation for the above functional is a
challenging problem and one has to utilize the regularizing effect from the noise, an important
observation made by Dareiotis and Gerencsér in [13]. For these differences, we use stochastic
sewing techniques—originated from [45] and further extended in [20, 47]—to estimate them
by a constant multiple of (1/n)α/2 + (1/n)1/2 log(n). From here, we obtain an integral
inequality for the moment of supt∈[0,1] |Xt −Xn

t |. An application of the stochastic Grönwall
inequality yields the desired estimate in Theorem 2.2. From this analysis, one observes that
the strong rate of convergence for (1.3) is deduced from the rates of the estimations for the
differences of the first and the last types. The estimates for ϖn in Theorem 2.3 are obtained by
mean of Krylov estimates, Khasminskii estimates and stochastic sewing techniques, utilizing
statistical properties of the solution to (1.1).

We make a few observations comparing with previous works. Setting technicalities aside,
our proof of Theorem 2.2 follows the approach of [14]; and similar to [10], we also apply
stochastic sewing techniques to obtain moment estimates for the differences of the last type.
However, the works [10, 14] crucially rely on the fact that the drifts are either continuous or
bounded, which is not available under Conditions A-B. In particular, the stochastic lemmas
in [10, 14] cannot be applied under Conditions A-B because the resulting Hölder exponents
are strictly below 1/2; and even if control functions were employed, one would end up with
a regularity exponent of exactly 1/2 (cf. Propositions 4.2 and 5.12).3 In other words, the
situations considered herein are at the border line and are critical to a certain extent. To
successfully adapt the method above to the current setting, to overcome criticality and to
remove the ε-loss in the obtained rate, we have benefited from the recent stochastic Davie–
Grönwall lemma with critical exponents from [20], the analysis for singular paths from [8]
and novel usage of control functions inspired by Lyon’s theory of rough paths [52]. To the
authors’ knowledge, these tools, which are developed within rough path theory, have not
been utilized previously in stochastic numerics. Lastly, in order to verify the hypotheses for

3We recall that an exponent of 1/2 + ε is required in these stochastic sewing lemmas.
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stochastic sewing and of independent interests, we have obtained some new and improved
analytic estimates ([37, 69, 35, 26, 48, 6]) for the probability laws of the solutions to the
discrete scheme (1.3) and to equation (1.1) (see Sections 5 and 6).

While this article was under review, progress had been made in improving our main results.
Namely, [46] removes the moment restrictions in Theorems 2.2 and 2.3 and consequently in
Corollary 2.4. This is accomplished by taking advantage of two other recent developments
(after the first appearance of the current article). One is the stability results from Galeati and
the second named author in [22]. The other is the John–Nirenberg inequality for stochastic
processes of bounded mean oscillations as discussed in [46].

Convention. Whenever convenience, we place temporal variables into subscript right after
the function, e.g. ft(x) = f(t, x). The relation A≲ B means that A⩽ CB for some finite
constant C ⩾ 0. The implicit constants C may change from one inequality to another and their
values may depend on other parameters which are clear from the context. We will also make
use of Einstein’s convention of summation over repeated indices.

3. Preliminaries. In the current section, we collect and enhance some relevant results
which appear separately in previous works from various authors. These results form a useful
toolbox which is used in later sections to prove our main results.

For any one-parameter process t 7→ Yt and any two-parameter process (s, t) 7→ As,t, we
denote δYs,t = Yt − Ys and δAs,u,t =As,t −As,u −Au,t for every s⩽ u⩽ t. We say that Y
(resp. A) is Lm-integrable if ∥Yt∥Lm(Ω) (resp. ∥As,t∥Lm(Ω)) is finite for each t (resp. (s, t));
we say A is adapted if As,t is Ft-measurable whenever s⩽ t. Let v ∈ [0,1] and let P|Fv be
the probability measure conditioned on Fv . We denote by Lp(Ω|Fv) the space of random
variables Z such that

∥Z∥Lp(Ω|Fv) := ess sup
ω

[E(|Z|p|Fv)]
1/p <∞.

The advantages of considering the conditional moment norms over the usual moment norms
are summarized in the following result, which is implicit in [14, 20].

LEMMA 3.1. Let A = (At)t∈[0,1] be a continuous adapted stochastic process and let

p,N ∈ (0,∞) be some fixed constants. Assume that A0 = 0 and

sup
0⩽s⩽t⩽1

∥δAs,t∥Lp(Ω|Fs) ⩽N.

Then the following statements hold.

(i) There exists a constant c(p) such that ∥Aτ∥Lp(Ω) ⩽ c(p)N for any stopping time τ ⩽ 1.

(ii) For every p̄ ∈ (0, p), there exists a constant c(p̄, p) such that

∥ sup
t∈[0,1]

|At|∥Lp̄(Ω) ⩽ c(p̄, p)N.

PRO OF . Let τ be a stopping time taking finitely many values {tj} ⊂ [0,1]. By assumption,
we have

E(|δAτ,1|p) = E

∑

j

1(τ=tj)E(|δAtj ,1|p|Ftj )⩽ E

∑

j

1(τ=tj)N
p ⩽Np.

Using the elementary inequality (a+ b)p ≲ ap + bp, we have

∥Aτ∥Lp(Ω) ≲ ∥δAτ,1∥Lp(Ω) + ∥A1∥Lp(Ω) ≲N.

By approximations and continuity of A, the above inequality also holds for all stopping times
τ ⩽ 1. This shows (i). Part (ii) is a consequence of part (i) and Lenglart inequality.
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The next result is a variant of the stochastic Davie–Grönwall lemma from [20] and is closely
related to the stochastic sewing lemmas from [45, 47].

LEMMA 3.2 (Stochastic sewing). Let ε > 0; v,S,T,C1,C2,C3,Γ1,Γ2 ⩾ 0 be fixed

numbers such that 0⩽ v < S < T . Let w be a deterministic control on ∆([S,T ]) which is

continuous. Let J be a Lm-integrable adapted process indexed by ∆([S,T ]) such that

∥Js,t∥Lm(Ω|Fv) ⩽C2w(s, t)
1

2
+ε , ∥EsJs,t∥Lm(Ω|Fv) ⩽C1w(s, t)

1+ε,(3.1)

∥δJs,u,t∥Lm(Ω|Fv) ⩽ Γ2w(s, t)
1

2 +C3Γ2w(s, t)
1

2
+ε(3.2)

and

∥EsδJs,u,t∥Lm(Ω|Fv) ⩽ Γ1w(s, t)
1+ε(3.3)

for every (s,u, t) in ∆2([S,T ]). Then there exists a constant N = N(ε,m), in particular

independent from Γ1,Γ2,C1,C2, S,T, v and w, such that for every (s, t) ∈∆([S,T ])

∥Js,t∥Lm(Ω|Fv) ⩽NΓ2

[
(1 + | logΓ2|)w(s, t)

1

2 +C1w(s, t)
1+ε + (C2 +C3)w(s, t)

1

2
+ε
]

+NΓ1w(s, t)
1+ε.(3.4)

PRO OF . For each (s, t) ∈∆([S,T ]), define

u= inf{r ∈ [s, t] :w(s, r)⩾
1

2
w(s, t)}

and call u the w-midpoint of [s, t]. Since t trivially belongs to the set defining u above, such a
point always exists and uniquely defined. If u is a w-midpoint of [s, t], then it follows from
continuity of w that

w(s,u)⩽
1

2
w(s, t) and w(u, t)⩽

1

2
w(s, t).

See [47] for more detail. For convenience, we denote (s|t) for the w-midpoint of [s, t].
Let (s, t) be in ∆([S,T ]). Define d00(s, t) = s and d01(s, t) = t. For each integers h ⩾ 0

and i = 0, . . . ,2h+1, we set dh+1
i (s, t) = dhi/2(s, t) if i is even and dh+1

i (s, t) equal to the

w-midpoint of [dh(i−1)/2(s, t), d
h
(i+1)/2(s, t)] if i is odd. Set Dh

w(s, t) := {dhi (s, t)}2
h

i=0 for each

h⩾ 0. It is readily checked that for every integers h⩾ 0 and i= 0, . . . ,2h − 1, we have

Dh
w(s, t)⊂Dh+1

w (s, t),(3.5)

[dhi (s, t), d
h
i+1(s, t)] = [dh+1

2i (s, t), dh+1
2i+1(s, t)]∪ [dh+1

2i+1(s, t), d
h+1
2i+2(s, t)],(3.6)

w(dhi (s, t), d
h
i+1(s, t))⩽ 2−hw(s, t).(3.7)

Herein, we abbreviate ∥ · ∥ for ∥ · ∥Lm(Ω|Fv). The implicit constants below only depend on
ε and m. By triangle inequality, we have

∥Js,t∥⩽
∥∥ ∑

[u,v]∈Dh
w(s,t)

Ju,v
∥∥+

∥∥Js,t −
∑

[u,v]∈Dh
w(s,t)

Ju,v
∥∥.

We estimate the first term using conditional BDG inequality ([47, Section 2]), condition (3.1)
and (3.7),

∥
∑

[u,v]∈Dh
w(s,t)

Ju,v∥≲
∑

[u,v]∈Dh
w(s,t)

∥EuJu,v∥+


 ∑

[u,v]∈Dh
w(s,t)

∥Ju,v∥2



1/2

≲C12
−hεw(s, t)1+ε +C22

−hεw(s, t)
1

2
+ε.
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For the second term, we derive from (3.6) (cf. [47, Lemma 3.6]) and conditional BDG inequal-
ity that for h⩾ 1

∥Js,t −
∑

[u,v]∈Dh
w(s,t)

Ju,v∥= ∥
h−1∑

k=0

∑

[u,v]∈Dk
w(s,t)

δJu,(u|v),v∥

≲

h−1∑

k=0

∑

[u,v]∈Dk
w(s,t)

∥EuδJu,(u|v),v∥+
h−1∑

k=0


 ∑

[u,v]∈Dk
w(s,t)

∥δJu,(u|v),v∥2



1/2

.

Applying (3.3), (3.2) and (3.7), we have
∑

[u,v]∈Dk
w(s,t)

∥EuδJu,(u|v),v∥≲ 2−kεΓ1w(s, t)
1+ε

and

 ∑

[u,v]∈Dk
w(s,t)

∥δJu,(u|v),v∥2



1

2

≲ Γ2w(s, t)
1

2 + 2−kεC3Γ2w(s, t)
1

2
+ε.

Summing in k, we have
∥∥Js,t −

∑

[u,v]∈Dh
w(s,t)

Ju,v
∥∥≲ Γ1w(s, t)

1+ε + hΓ2w(s, t)
1

2 +C3Γ2w(s, t)
1

2
+ε.

Combining the previous estimates, we have shown that for every integer h ⩾ 1 and each
(s, t) ∈∆

(3.8) ∥Js,t∥≲ 2−hε
[
C1w(s, t)

1+ε +C2w(s, t)
1

2
+ε
]

+Γ1w(s, t)
1+ε + hΓ2w(s, t)

1

2 +C3Γ2w(s, t)
1

2
+ε .

If Γ2 ⩾ 1, we choose h= 1 while if Γ2 < 1, we choose h such that 2−hε ≈ Γ2. In both cases,
we obtain (3.4) from (3.8).

Some controls which are relevant for our purpose are given below.

EXAM PLE 3.3. (a) For any ϕ ∈ Lq([0,1]), q ∈ [1,∞), w(s, t) = ∥ϕ∥qLq([s,t])
is a contin-

uous control on ∆([0,1]). (b) For any ν ⩾ 0, w(s, t) = s−ν(t− s) is a continuous control
on ∆([S,T ]) for any 0 < S ⩽ T . (c) For any controls w1,w2 and any number θ ∈ [0,1],
w = wθ

1w
1−θ
2 is another control. For further examples and basic properties of controls, we

refer to [21, Chapter 5].

The following result is an excerpt from [8, Lemma 2.3].

LEM MA 3.4. Let (E ,∥ · ∥) be a normed vector space, s−1, τi, ηi ∈ [0,1], i= 1, . . . , h be

fixed numbers and let Y : (0,1]→E be a function such that

∥Yt − Ys∥⩽
h∑

i=1

Cis
−ηi(t− s)τi ∀s−1 ⩽ s⩽ t⩽ 1, s ̸= 0(3.9)

for some constant C1, . . . ,Ch ⩾ 0. Assume that τi − ηi > 0 for each i. Then

∥Yt − Ys∥⩽
h∑

i=1

(1− 2ηi−τi)−1Ci(t− s)τi−ηi ∀s−1 ⩽ s⩽ t⩽ 1, s ̸= 0.
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PRO OF . Observe that (3.9) implies that Y is continuous on [s−1,1] \ {0}. We fix s−1 ⩽
s < t ⩽ 1, s ̸= 0, and put sn = s + (t − s)2−n for each integer n ⩾ 0. By continuity and
triangle inequality, we have

∥Yt − Ys∥⩽
∞∑

n=0

∥Ysn − Ysn+1
∥⩽

∞∑

n=0

h∑

i=1

Cis
−ηi

n+1(sn − sn+1)
τi .

Note that sn+1 ⩾ (t− s)2−n−1 and sn − sn+1 = (t− s)2−n−1. Hence, from the previous
estimate, we have

∥Yt − Ys∥⩽
h∑

i=1

∞∑

n=0

Ci(t− s)τi−ηi2−(n+1)(τi−ηi).

Because
∑∞

n=0 2
−(n+1)(τi−ηi) ⩽ (1− 2ηi−τi)−1 for each i, this yields the stated estimate.

The following result is the Khasminskii’s lemma4 enhanced with some quantitative esti-
mates.

LEM MA 3.5 (Quantitative Khasminskii’s lemma). Let S,T be such that 0⩽ S ⩽ T and

let {β(t)}t∈[S,T ] be a nonnegative measurable (Ft)-adapted process. Assume that for all

S ⩽ s⩽ t⩽ T ,
∥∥∥∥
∫ t

s
β(r)dr

∥∥∥∥
L1(Ω|Fs)

⩽ ρ(s, t),(3.10)

where (s, t) 7→ ρ(s, t) is a nonrandom function on ∆([S,T ]) satisfying the following condi-

tions:

(i) ρ(t1, t2)⩽ ρ(t3, t4) if (t1, t2)⊂ (t3, t4),
(ii) limh↓0 supS⩽s<t⩽T,|t−s|⩽h ρ(s, t) = κ, κ⩾ 0.

Then for any real λ < κ−1, (if κ= 0, then κ−1 =∞), and any integer m⩾ 1

E exp
(
λ

∫ T

S
β(r)dr

)
<∞ and

∥∥∥∥
∫ T

S
β(r)dr

∥∥∥∥
Lm(Ω)

⩽ (m!)
1

m ρ(S,T ).

Suppose additionally that there exist γ > 0 and a continuous control w on ∆([S,T ]) such

that

(iii) ρ(s, t)⩽w(s, t)γ for each (s, t) ∈∆([S,T ]).

Then for every λ > 0,

E exp
(
λ

∫ T

S
β(r)dr

)
⩽ 21+(2λ)1/γw(S,T ).

PRO OF . The former statement is an excerpt from [63, pg. 1 Lemma 1.1.], which gives the
following estimate

E exp

(
λ

∫ T

S
β(r)dr

)
⩽

n∏

k=1

(1− λρ(tk−1, tk))
−1.(3.11)

4This result goes back at least to the paper [36] of Khasminskii, although in a less general form and with a
smallness condition, then rediscovered without the smallness condition by Portenko [62], who considered (iii) with
w(s, t) = t− s. The general version here is based on [63]. For a bit of history, see [1, pg. 214].
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In the above, S = t0 < t1 < . . . < tn = T are chosen so that supk=1,...,n λρ(tk−1, tk)< 1.
To obtain the estimate in Lm(Ω)-norm, we apply Tonelli theorem and the assumption to

see that

E

(∫ T

S
β(r)dr

)m

=m!E

∫

S<r1<...<rm<T
β(r1) . . . β(rm)dr1 . . . drm

⩽m!ρ(0, T )E

∫

S<r1<...<rm−1<T
β(r1) . . . β(rm−1)dr1 . . . drm−1.

Iterating the above inequality, we obtain the stated estimate for ∥
∫ T
S β(r)dr∥Lm(Ω).

Under the additional condition (iii), we can choose t0 = S and for each k ⩾ 1,

tk = sup{t ∈ [tk−1, T ] : λw(tk−1, t)
γ ⩽ 1/2}.

With this choice, we have λw(tk−1, tk)
γ = 1/2 for k = 1, . . . , n−1 and λw(tn−1, tn)

γ ⩽ 1/2.
By definition of controls, we have

n− 1

(2λ)
1

γ

⩽

n∑

k=1

w(tk−1, tk)⩽w(S,T ),

which yields n⩽ 1 + (2λ)1/γw(S,T ). Hence, from (3.11), we have

E exp

(
λ

∫ T

S
β(r)dr

)
⩽ 2n ⩽ 21+(2λ)1/γw(S,T ),

completing the proof.

REMARK 3.6. In the setting of Lemma 3.5, if for each (s, t) ∈ ∆([S,T ]), ρ(s, t) ⩽
w1(s, t)

γ1 +w2(s, t)
γ2 for some continuous controls w1,w2 and some constants 0< γ1 ⩽ γ2.

Then we have

E exp

(
λ

∫ T

S
β(r)dr

)
⩽ 21+(4λ)1/γ1(w1(S,T )+w2(S,T )γ2/γ1).(3.12)

Indeed, the function w = w1 + w
γ2/γ1

2 is a control (see [21, Excersice 1.10]) and we have
ρ(s, t)⩽ 2w(s, t)γ1 . Then Lemma 3.5(iii) implies (3.12).

REMARK 3.7. In Lemma 3.5, we can assume without loss of generality that γ ⩽
1—for otherwise, condition (3.10) implies the trivial identification β ≡ 0. Furthermore,
Lemma 3.5(iii) implies that for every κ > 0 and every ρ ∈ (0, 1

1−γ ), with 1
1−γ =∞ if γ = 1,

we have

E exp

(
κ

(∫ T

S
β(r)dr

)ρ
)
<∞.

This follows from the same argument used in Lemma 7.4 below.

The next result is a kind of stochastic Grönwall inequality, which is of independent interest.

LEM MA 3.8 (Stochastic Grönwall inequality). Let ξt, Vt be nonnegative nondecreasing

processes, let At be a continuous nondecreasing Ft-adapted process with A0 = 0, and let Mt

be Ft-local martingale with M0 = 0. Suppose that there exists a constant θ ∈ (0,∞) such

that with probability one,

ξt ⩽

(∫ t

0
ξ1/θs dAs

)θ

+Mt + Vt, ∀t⩾ 0.(3.13)
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Then for any bounded stopping time τ , we have

E2−21/θAτ ξτ ⩽ 2EVτ when θ ⩽ 1(3.14)

and

E2−2Aθ
τ ξτ ⩽ 2EVτ when θ > 1.(3.15)

PRO OF . We put G=M + V and consider two cases.
Case 1: when θ ⩽ 1. Define

ξ̄t =

(∫ t

0
ξ1/θs dAs

)θ

+Gt so that 0⩽ ξt ⩽ ξ̄t.

We assume first that M is a uniformly integrable martingale. For any t⩾ s⩾ 0, we have

δξ̄s,t =

(∫ t

0
ξ1/θr dAr

)θ

−
(∫ s

0
ξ1/θr dAr

)θ

+ δGs,t.

We use the inequality aθ − bθ ⩽ (a− b)θ (valid for any a⩾ b⩾ 0) to obtain from the previous
identity that

δξ̄s,t ⩽

(∫ t

s
ξ1/θr dAr

)θ

+ δGs,t.(3.16)

Define t0 = 0 and for each integer j ⩾ 1, the stopping time

tj = inf{t > tj−1 : At −Atj−1 ⩾ 2−1/θ}.
Let j ⩾ 1 be fixed. For every t ∈ [tj−1, tj ], we derive from (3.16) that

δξ̄tj−1,t ⩽
1

2
ξt + δGtj−1,t ⩽

1

2
ξ̄t + δGtj−1,t

which yields ξ̄t ⩽ 2ξ̄tj−1
+ 2δGtj−1,t. By iteration and the fact that ξ̄0 = V0, we have

ξ̄t ⩽ 2jV0 +

j∑

i=1

2j−i+1δGti−1,ti∧t, ∀t ∈ [tj−1, tj ].(3.17)

Next, let τ be a bounded stopping time and let N be an (random) integer such that tN > τ .
We have

2−21/θAτ ξ̄τ =

N∑

j=1

1[tj−1,tj)(τ)2
−21/θAτ ξ̄τ ⩽

N∑

j=1

1[tj−1,tj)(τ)2
−(j−1)ξ̄τ .

Using (3.17), we have

2−21/θAτ ξ̄τ ⩽ 2

N∑

j=1

1[tj−1,tj)(τ)

(
V0 +

j∑

i=1

21−iδGti−1,τ∧ti

)

= 2V0 + 2

N∑

i=1

N∑

j=i

1[tj−1,tj)(τ)2
1−iδGti−1,τ∧ti

= 2V0 + 2

N∑

i=1

1[ti−1,tN )(τ)2
1−iδGti−1,τ∧ti ,
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which is rewritten as

(3.18) 2−21/θAτ ξ̄τ ⩽ 2V0 + 2

∞∑

i=1

1[ti−1,∞)(τ)2
1−iδVτ∧ti−1,τ∧ti

+ 2

∞∑

i=1

1[ti−1,∞)(τ)2
1−iδMτ∧ti−1,τ∧ti .

By martingale property, boundedness of τ and uniform integrability, E|δMτ∧ti−1,τ∧ti | ⩽
E|Mτ∧ti−1

|+ E|Mτ∧ti | ⩽ 2 supt⩾0E|Mt| <∞. Hence, by Fubini theorem and martingale
property,

E

∞∑

i=1

1[ti−1,∞)(τ)2
1−iδMτ∧ti−1,τ∧ti = E

∞∑

i=1

1[ti−1,∞)(τ)2
1−i

E(δMτ∧ti−1,τ∧ti |Fτ∧ti−1
) = 0.

Taking expectation in (3.18) gives

E2−21/θAτ ξ̄τ ⩽ E

(
2V0 + 2

∞∑

i=1

1[ti−1,∞)(τ)2
1−iδVτ∧ti−1,τ∧ti

)

⩽ E

(
2V0 + 2

N∑

i=1

δVτ∧ti−1,τ∧ti

)
= 2EVτ .

In the general case when M is a local martingale, let {τn} be a sequence of increasing stopping
times such that limn τn =∞ a.s. and for each n, Mτn∧· is a uniformly integrable martingale.
For a bounded stopping time τ , the previous case implies that

E2−21/θAτ∧τn ξ̄τ∧τn ⩽ 2EVτ∧τn .

Sending n→∞ yields (3.14).
Case 2: when θ > 1. Using Hölder inequality and integration by parts
(∫ t

0
ξ1/θdA

)θ

⩽

(∫ t

0
ξdA

)
Aθ−1

t =

∫ t

0

∫ s

0
ξdA(θ− 1)Aθ−2

s dAs +

∫ t

0
Aθ−1ξdA.

By monotonicity,
∫ s
0 ξdA⩽ ξsAs so that
∫ t

0

∫ s

0
ξdA(θ− 1)Aθ−2

s dAs ⩽

∫ t

0
ξs(θ− 1)Aθ−1

s dAs.

Hence, we have
(∫ t

0
ξ1/θdA

)θ

⩽

∫ t

0
ξsθA

θ−1
s dAs =

∫ t

0
ξsdA

θ
s.

Together with (3.13), we have

ξt ⩽

∫ t

0
ξdAθ +Mt + Vt, ∀t⩾ 0.

Using the result from the previous case, we obtain (3.15).

REMARK 3.9. Stochastic Grönwall inequality is useful in applications to obtain moment
estimates for solutions to SDEs. Starting from [64], there have been several extensions, for
instance [30, 31, 53]. The setting of Lemma 3.8 is similar to that of [53], however, our
result comes with less stringent hypotheses and stronger conclusions. In particular,estimates
(3.14) and (3.15) hold for any θ ∈ (0,∞) and do not depend on the quadratic variation of the
martingale part.
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LEMMA 3.10. Let ε > 0, s ∈Dn and r > s. Then
∫ r

s
(r− kn(θ))

−1−εdθ ⩽Nε[min(r− s,1/n)]−ε + 1(r/∈Dn)(r− kn(r))
−ε,(3.19)

∫ r

s
(r− kn(θ))

−1dθ ⩽ log(n(kn(r)− s)) + 2,(3.20)

∫ r

s
(r− kn(θ))

−1+εdθ ⩽Nε(r− s)ε.(3.21)

PRO OF . If r− s⩽ 1/n, we have
∫ r

s
(r− kn(θ))

−1−εdθ =

∫ r

s
(r− s)−1−εdθ = (r− s)−ε.

We now assume that r− s > 1/n. If r ∈Dn then
∫ r

s
(r− kn(θ))

−1−εdθ ⩽ (1/n)−ε
∞∑

j=1

j−1−ε =N(1/n)−ε.

If r /∈Dn, then we have r > kn(r) and
∫ r

s
(r− kn(θ))

−1−εdθ =

∫ kn(r)

s
(r− kn(θ))

−1−εdθ+

∫ r

kn(r)
(r− kn(θ))

−1−εdθ

⩽N(1/n)−ε + (r− kn(r))
−ε.

This shows (3.19).
When ε= 0, we argue analogously. The only notable difference is the following estimate

∫ kn(r)

s
(r− kn(θ))

−1dθ ⩽

n(kn(r)−s)∑

j=1

j−1 ⩽ log(n(kn(r)− s)) + 1.

This shows (3.20).
Since r− kn(θ)⩾ r− θ, estimate (3.21) is obvious.

LEM MA 3.11 ([14, Proposition 2.7]). Let K > 0 be a constant and let Σ, Σ̄ be symmetric

invertible matrices such that K−1I ⩽ΣΣ̄−1 ⩽KI . Then for all x ∈R
d, one has the bound

|pΣ(x)− pΣ̄(x)|⩽N∥I −ΣΣ̄−1∥
(
pΣ/2(x) + pΣ̄/2(x)

)
(3.22)

where N is a constant depending only on d,K .

4. Regularizing properties of Brownian paths—a case study. We obtain various mo-
ment estimates for the following functionals of Brownian paths

∫ t

s
[f(r,Br)− f(r,Bkn(r))]dr and

∫ t

s
g(r,Br)dr

where f, g are measurable functions in L
q
p([0,1]). In typical applications herein, we take

f = bn and g = b− bn. Hence, f usually has an additional property of being in L
q
∞([0,1]). To

extract a rate from b− bn, one has to measure g with respect to a norm which is weaker than
that of Lq

p. For this purpose, we measure g in L
q
−ν,p([0,1]) for some ν ∈ [0,1] or in L

q1
p1([0,1])

for some q1 ⩽ q and some p1 ⩽ p.
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In later sections, analogous functionals of the solutions to (1.1) and (1.3) will play a central
role in the proofs of Theorems 2.2 and 2.3. While not being applied directly in proving the
main results, the analysis in the current section are relatively simpler, mostly due to the fact
that statistical properties of Brownian motion are well-understood. In addition, some of the
arguments generalizes directly when B is replaced by another stochastic process which has
similar analytic estimates. Therefore, we present these results at an early stage in the hope
of easing out the technicalities and outlining our method. Readers who are familiar with the
stochastic sewing techniques, of course, may go directly to the following sections.

Let pt(x) := (2πt)−d/2e−|x|2/(2t) and Ps,tf(x) := pt−s ∗ f(x).

LEMMA 4.1. Let p ∈ [1,∞], δ ∈ (0,1), for 0 < s < t, there exists N =N(d, p, δ) > 0
such that for any f ∈ Lp(R

d) and 0< s< t,

∥f(Bt)∥Lp(Ω) ⩽Nt−
d

2p ∥f∥Lp(Rd)(4.1)

and

∥P0,tf − P0,sf∥Lp(Rd) ⩽N |t− s|δ|s|−δ∥f∥Lp(Rd).(4.2)

PRO OF . Inequality (4.1) is taken from [14, Lemma 2.5]. We only show (4.2). First

∥∇2Ptf∥Lp(Rd) ⩽∥∇2pt∥L1(Rd)∥f∥Lp(Rd) ≲ t−1∥f∥Lp(Rd).

Then for δ ∈ (0,1), we have

∥P0,tf − P0,sf∥Lp(Rd) ⩽

∫ t

s
∥∂tP0,rf∥Lp(Rd)dr =

∫ t

s
∥∆P0,rf∥Lp(Rd)dr

≲

∫ t

s
r−1+δr−δdr∥f∥Lp(Rd) ≲ s−δ(t− s)δ∥f∥Lp(Rd),

completing the proof.

While not being used directly, the following result is pivotal.

PRO POSITI ON 4.2. Let f ∈ L
q
p([0,1]), with p, q ∈ [2,∞) satisfying d

p +
2
q < 1. Then for

all 2/n⩽ S ⩽ T ⩽ 1 and n ∈N one has the bounds

(4.3) ∥
∫ T

S
(f(r,Br)− f(r,Bkn(r)))dr∥Lp(Ω)

⩽N(1/n)
1

2 log(n)∥f∥Lq
p([S,T ])

[
S− d

2p |T − S|
1

2
− 1

q + S− d

p |T − S|1−
2

q

]

and

∥
∫ T

S
(f(r,Br)− f(r,Bkn(r)))dr∥Lp(Ω) ⩽N(1/n)

1

2 log(n)∥f∥Lq
p([S,T ])|T − S|

1

2
− 1

q
− d

2p .

(4.4)

PRO OF . (4.4) is a direct consequence of (4.3) and Lemma 3.4. We show (4.3) below. Let
2/n⩽ S ⩽ T ⩽ 1 be fixed. By linearity, we can assume that ∥f∥Lq

p([S,T ]) = 1. For S ⩽ s⩽
t⩽ T , let

As,t := Es

∫ t

s
(f(r,Br)− f(r,Bkn(r)))dr.
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We treat two cases t⩽ kn(s) +
2
n and t > kn(s) +

2
n separately as following.

Case 1. For t ∈ (s, kn(s) +
2
n ], by triangle inequality and (4.1) we have

∥As,t∥Lp(Ω) ⩽

∫ t

s
∥f(r,Br)∥Lp(Ω) + ∥f(r,Bkn(r))∥Lp(Ω)dr

≲

∫ t

s
kn(r)

− d

2p ∥f(r, ·)∥Lp(Rd)dr.

Note that kn(r)⩾ kn(s)⩾ s/2, applying Hölder inequality and the fact that t− s⩽ 2/n, we
have ∫ t

s
kn(r)

− d

2p ∥f(r, ·)∥Lp(Rd)dr ≲ s−
d

2p ∥f∥Lq
p([s,t])(t− s)1−

1

q

≲ (1/n)1/2s−
d

2p ∥f∥Lq
p([s,t])(t− s)

1

2
− 1

q .

This gives

∥As,t∥Lp(Ω) ≲ (1/n)
1

2 s−
d

2p ∥f∥Lq
p([s,t])(t− s)

1

2
− 1

q .(4.5)

Case 2. When t ∈ (kn(s) +
2
n ,1], by triangle inequality,

∥As,t∥Lp(Ω) ⩽

∫ kn(s)+
2

n

s
∥Es(f(r,Br)− f(r,Bkn(r)))∥Lp(Ω)dr

+

∫ t

kn(s)+
2

n

∥Es(f(r,Br)− f(r,Bkn(r)))∥Lp(Ω)dr =: I1 + I2.

For I1, from (4.5) we know that

I1 ≲ (1/n)
1

2 s−
d

2p ∥f∥Lq
p([s,t])

(
kn(s)− s+

2

n

) 1

2
− 1

q

.

Because kn(s)− s+ 2
n ⩽ t− s, we get

I1 ≲ (1/n)
1

2 s−
d

2p ∥f∥Lq
p([s,t])(t− s)

1

2
− 1

q .

By (4.1) and (4.2) we have for I2

I2 ≲

∫ t

kn(s)+
2

n

∥Ps,rf(r,Bs)− Ps,kn(r)f(r,Bs)∥Lp(Ω)dr

≲

∫ t

kn(s)+
2

n

s−
d

2p ∥Ps,rf(r, ·)− Ps,kn(r)f(r, ·)∥Lp(Rd)dr

≲

∫ t

kn(s)+
2

n

s−
d

2pn−
1

2 (kn(r)− s)−
1

2 ∥f(r, ·)∥Lp(Rd)dr

≲ (1/n)
1

2 s−
d

2p ∥f∥Lq
p([s,t])(t− s)

1

2
− 1

q .

Combining these two cases together we obtain that for S ⩽ s⩽ t⩽ T ,

∥As,t∥Lp(Ω) ≲ (1/n)
1

2 s−
d

2p ∥f∥Lq
p([s,t])(t− s)

1

2
− 1

q .(4.6)

Furthermore, for u ∈ (s, t), we have EsδAs,u,t = 0. Let w be the continuous control defined
by

w(s, t) =
[
s−

d

2p ∥f∥Lq
p([s,t])(t− s)

1

2
− 1

q

]2
+ s−

d

2p ∥f∥Lq
p([s,t])(t− s)1−

1

q .
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(See Example 3.3 for a justification that w is a control.) Denote

At :=

∫ t

0
(f(r,Br)− f(r,Bkn(r)))dr, Js,t := δAs,t −As,t.

Using similar estimates leading to (4.5), we have

∥Js,t∥Lp(Ω) ≲ s−
d

2p ∥f∥Lq
p([s,t])(t− s)1−

1

q ≲w(s, t).

Furthermore, δJs,u,t =−δAs,u,t and we derive from (4.6) that

∥δJs,u,t∥Lp(Ω) ≲ (1/n)
1

2w(s, t)
1

2 .

It is obvious that EsJs,t = 0 and hence EsδJs,u,t = 0. Applying Lemma 3.2, we have

∥Js,t∥Lp(Ω) ≲ (1/n)
1

2 log(n)
[
w(s, t)

1

2 +w(s, t)
]

for every S ⩽ s⩽ t⩽ T . By triangle inequality and (4.6), this implies that

∥δAs,t∥Lp(Ω) ≲ (1/n)
1

2 log(n)
[
w(s, t)

1

2 +w(s, t)
]
.

Because ∥f∥Lq
p([s,t]) ⩽ ∥f∥Lq

p([S,T ]) = 1 and t − s ⩽ 1, we have w(s, t) ⩽ 2s−
d

p (t − s)1−
2

q .
Hence, we deduce (4.3) from the above estimate.

In the following result, the Lp(Ω)-norm in (4.4) is improved to Lp(Ω|Fv)-norm.

PROPOSI TION 4.3. Let f ∈ L
q
p([0,1]), with p, q ∈ [2,∞) satisfying d

p + 2
q < 1. Let

v ∈ [0,1− 2/n] be a fixed number. Then for all v+ 2/n⩽ S ⩽ T ⩽ 1 and all n, one has the

bound

∥
∫ T

S
[f(r,Br)− f(r,Bkn(r))]dr∥Lp(Ω|Fv) ⩽N(1/n)

1

2 log(n)∥f∥Lq
p([S,T ])|T − S|

1

2
− 1

q
− d

2p ,

(4.7)

where N =N(p, d) is a constant.

PRO OF . We follow the argument used in Proposition 4.2, replacing the Lp(Ω)-norm by
the Lp(Ω|Fv)-norm. The estimate (4.1) used therein (whose purpose is to deduce the analytic
Lp(R

d)-norm from the probabilistic Lp(Ω)-norm) is replaced by the following estimate

∥g(Bt)∥Lp(Ω|Fv) ⩽N(t− v)−
d

2p ∥g∥Lp(Rd) ∀g ∈ Lp(R
d), t > v,(4.8)

with the same constant N as in (4.1). This yields the following estimate, which corresponds
to (4.3),

(4.9) ∥
∫ T

S
[f(r,Br)− f(r,Bkn(r))]dr∥Lp(Ω|Fv)

⩽N(1/n)
1

2 log(n)∥f∥Lq
p([S,T ])

[
(S − v)−

d

2p |T − S|
1

2
− 1

q + (S − v)−
d

p |T − S|1−
2

q

]
.

Applying Lemma 3.4, we obtain (4.7).

An advantage of the conditional norms over the usual ones is realized the next result.



20

PROPOSI TIO N 4.4. Let f be a Borel function in L
q
p([0,1])∩L

q
∞([0,1]) for some p, q ∈

[2,∞) satisfying d
p +

2
q < 1.

We put βn(f) = supr∈Dn
∥f∥Lq

∞([r,r+1/n]). Then for any p̄ ∈ (0, p), there exists a constant

N =N(d, p, q, p̄) such that

∥ sup
t∈[0,1]

|
∫ t

0
[f(r,Br)− f(r,Bkn(r))]dr|∥Lp̄(Ω)

⩽N
[
(1/n)1−

1

q βn(f) + (1/n)
1

2 log(n)∥f∥Lq
p([0,1])

]
.

PRO OF . Put At =
∫ t
0 (f(r,Br)− f(r,Bkn(r)))dr which has continuous sample paths by

(4.11). In view of Lemma 3.1, it suffices to show that there exists a constant N =N(d, p, q)
such that

∥δAs,t∥Lp(Ω|Fs) ⩽N
[
(1/n)1−

1

q βn(f) + (1/n)
1

2 log(n)∥f∥Lq
p([0,1])

]
(4.10)

for every (s, t) ∈∆.
Indeed, by assumption and Hölder inequality, we have

|δAs,t|⩽ 2

∫ t

s
∥fr∥L∞(Rd)dr ≲ ∥f∥Lq

∞([s,t])(t− s)1−
1

q(4.11)

for every (s, t) ∈∆. For every (s, t) ∈∆ satisfying t− s⩾ 2/n, we obtain from (4.11) and
(4.7) that

∥δAs,t∥Lp(Ω|Fs) ⩽ ∥δAs,s+2/n∥Lp(Ω|Fs) + ∥δAs+2/n,t∥Lp(Ω|Fs)

≲ (1/n)1−
1

q ∥f∥Lq
∞([s,s+2/n]) + (1/n)

1

2 log(n)∥f∥Lq
p([0,1]).

Note that ∥f∥Lq
∞([s,s+2/n]) ≲ βn(f). For every (s, t) ∈∆ satisfying t− s⩽ 2/n, (4.11) triv-

ially implies that

∥δAs,t∥Lp(Ω|Fs) ≲ (1/n)1−
1

q ∥f∥Lq
∞([s,s+2/n]) ≲ (1/n)1−

1

q βn(f).

Hence, in both cases, we have obtained (4.10).

Next, we turn to the functional
∫ t
s g(r,Br)dr.

LEM MA 4.5. Let g be a function in L
q
p([0,1]) for some p, q ∈ [1,∞] satisfying d

p +
2
q < 2.

Then for every m⩾ 1, there exists a constant N =N(m,d, p, q) such that for every (s, t) ∈∆,

∥
∫ t

s
g(r,Br)dr∥Lm(Ω) ⩽N∥g∥Lq

p([s,t])(t− s)1−
d

2p
− 1

q .

PRO OF . We can assume that g is nonnegative. Using standard estimate for the heat kernel
and Hölder inequality, we have for every (s, t) ∈∆ that

Es

∫ t

s
g(r,Br)dr =

∫ t

s
Ps,rg(r,Bs)dr ≲

∫ t

s
(r− s)−

d

2p ∥gr∥Lp(Rd)dr

≲ ∥g∥Lq
p([s,t])(t− s)1−

d

2p
− 1

q .

Applying Lemma 3.5, we obtain the stated estimate for every integer m⩾ 1. This and the
Hölder interpolation inequality implies the estimate for any real m⩾ 1.
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PRO POSITION 4.6. Let p ∈ [2,∞) and q ∈ [2,∞]. Let Γ be a positive number, w0 be a

continuous control on ∆ and g be a function in L
q
p([0,1]) such that for any (s, t) ∈∆,

∥g∥Lq
−1,p([s,t])

⩽ Γw0(s, t)
1

q and ∥g∥Lq
p([s,t]) ⩽w0(s, t)

1

q .

(a) Then for every 0⩽ v < S ⩽ T ⩽ 1

(4.12) ∥
∫ T

S
g(r,Br)dr∥Lp(Ω|Fv) ⩽Nw0(S,T )

1

qΓ(1 + | log(Γ)|)

×
[
(S − v)−

d

2p (T − S)
1

2
− 1

q + (S − v)−
d

p (T − S)1−
2

q

]
.

(b) If furthermore p, q satisfy d
p + 2

q < 1, then for any p̄ ∈ (0, p), there exists a constant

N =N(d, p, q, p̄) such that

∥ sup
t∈[0,1]

|
∫ t

0
g(r,Br)dr|∥Lp̄(Ω) ⩽NΓ(1 + | log(Γ)|)w0(0,1).

PRO OF . (a) Let v,S,T be fixed such that 0 ⩽ v < S < T ⩽ 1. We can assume without
loss of generality that w0(S,T ) = 1. For each (s, t) ∈∆([S,T ]), let

As,t = Es

∫ t

s
g(r,Br)dr =

∫ t

s
Ps,rg(r,Bs)dr and Js,t =

∫ t

s
g(r,Br)dr−As,t.

In the above, we can interchange the conditional expectation and the integration due to Fubini
theorem and Lemma 4.5. Define the continuous control w on ∆([S,T ]) by

w(s, t) =
[
(s− v)−

d

2p (t− s)
1

2
− 1

qw0(s, t)
1

q

]2
+ (s− v)−

d

2p (t− s)1−
1

qw0(s, t)
1

q .

Applying Minkowski inequality, (4.1) and Hölder inequality, we have

∥Js,t∥Lp(Ω|Fv) ⩽ 2

∫ t

s
∥g(r,Br)∥Lp(Ω|Fv)dr ≲

∫ t

s
(r− v)−

d

2p ∥g(r, ·)∥Lp(Rd)dr

≲ (s− v)−
d

2p ∥g∥Lq
p([s,t])(t− s)1−

1

q ≲w(s, t).

Furthermore, EsJs,t = 0, showing that (3.1) is satisfied.
On the other hand, we have

∥As,t∥Lp(Ω|Fv) ⩽

∫ t

s
∥Ps,rg(r,Bs)∥Lp(Ω|Fv)dr

≲

∫ t

s
(s− v)−

d

2p ∥Ps,rg(r, ·)∥Lp(Rd)dr

≲

∫ t

s
(s− v)−

d

2p (r− s)−
1

2 ∥g(r, ·)∥L−1,p(Rd)dr

≲ (s− v)−
d

2p (t− s)
1

2
− 1

q ∥g∥Lq
−1,p([s,t])

.

Combining with our assumption on g leads to ∥As,t∥Lp(Ω) ≲ Γw(s, t)1/2. Since δJs,u,t =
−δAs,u,t, this implies that J satisfies (3.2). The condition (3.3) is trivial because EsJs,t = 0.
Applying Lemma 3.2, we have for every (s, t) ∈∆([S,T ]),

∥Js,t∥Lp(Ω|Fv) ≲ Γ(1 + | logΓ|)w(s, t) 1

2 +Γw(s, t)
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and by triangle inequality,

∥
∫ t

s
g(r,Br)dr∥Lp(Ω) ≲ Γ(1 + | logΓ|)w(s, t) 1

2 +Γw(s, t).

Because w0(s, t) ⩽ 1 and t− s ⩽ 1, we have w(s, t) ⩽ 2(s− v)−
d

p (t− s)1−
2

q . Hence, we
deduce (4.12) from the above estimate by taking (s, t) = (S,T ).

(b) Applying Lemma 3.4 and part (a), we have

∥
∫ t

s
g(r,Br)dr∥Lp(Ω|Fv) ≲ Γ(1 + | log(Γ)|)w0(0,1)

for every v < s ⩽ t ⩽ 1. In view of Lemma 4.5 and Kolmogorov continuity theorem, it is
easy to see that the process t 7→

∫ t
0 g(r,Br)dr has a continuous version. Hence, the above

inequality holds for every 0⩽ v = s⩽ t⩽ 1. Applying Lemma 3.1, we obtain the result.

PROPOSI TION 4.7. Let ν ∈ [0,1), p ∈ [2,∞) and q ∈ [2,∞], d
p + 2

q + ν < 2. Let g

be a function in L
q
p([0,1]) ∩ L

q
−ν,p([0,1]) Then for any p̄ ∈ (0, p), there exists a constant

N =N(ν, d, p, q, p̄) such that

∥ sup
t∈[0,1]

|
∫ t

0
g(r,Br)dr|∥Lp̄(Ω) ⩽N∥g∥Lq

−ν,p([0,1])
.

PROO F . In view of Lemma 3.1, it suffices to show that

sup
(s,t)∈∆

∥
∫ t

s
g(r,Br)dr∥Lp(Ω|Fs) ≲ ∥g∥Lq

−ν,p([0,1])
.(4.13)

The proof is similar to that of Proposition 4.6, however, the control can be chosen in a simpler
way. Let v ∈ [0,1] be fixed but arbitrary. For each (s, t) ∈∆, s > v, define As,t and Js,t as in
the proof of Proposition 4.6. As in the aforementioned proof, we have for every v < s⩽ u⩽ t,
EsδAs,u,t = 0 and

∥Js,t∥Lp(Ω|Fv) + ∥As,t∥Lp(Ω|Fv) ≲ (s− v)−
d

2p (t− s)1−
ν

2
− 1

q ∥g∥Lq
−ν,p([s,t])

.

Let w be the control on ∆((v,1]) defined by

w(s, t) =
[
(s− v)−

d

2p (t− s)1−
ν

2
− 1

q ∥g∥Lq
−ν,p([s,t])

]1/(1−ν/2)
.

The previous estimate yields ∥Js,t∥Lp(Ω|Fv)+∥As,t∥Lp(Ω|Fv) ≲w(s, t)1−ν/2. It is evident that
EsJs,t = 0. Noting that 1− ν/2> 1/2 and applying Lemma 3.2

∥Js,t∥Lp(Ω|Fv) ≲w(s, t)1−
ν

2 .

By triangle inequality and the previous estimate for ∥As,t∥Lp(Ω|Fv), we have for every (s, t) ∈
∆, s > v,

∥
∫ t

s
g(r,Br)dr∥Lp(Ω|Fv) ≲w(s, t)1−

ν

2 ≲ (s− v)−
d

2p (t− s)1−
ν

2
− 1

q ∥g∥Lq
p([0,1]).

An application of Lemma 3.4 gives

∥
∫ t

s
g(r,Br)dr∥Lp(Ω|Fv) ≲ ∥g∥Lq

p([0,1])

for every (s, t) ∈∆, s > v. In view of Lemma 4.5 and Kolmogorov continuity theorem, the
process t 7→

∫ t
0 g(r,Br)dr has a continuous version. For this version, we see that the previous

estimate holds for every (s, t) ∈∆ and v = s, which shows (4.13).
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5. Analysis of the discrete paths. We extend the results of Section 4 to functionals of
the solution to the discrete scheme (1.3).

THEOREM 5.1. Assume that Conditions A1 and B hold. Let Xn be the solution to

(1.3) and let f ∈ L
q
p([0,1]) ∩ L

q
∞([0,1]) and g ∈ L

q
1,p([0,1]) ∩ L

∞
∞([0,1]). Define βn(f) =

supt∈Dn
∥f∥Lq

∞([t,t+1/n]). Then for any p̄ ∈ (0, p), there exists a constant N =N(d, p, q, p̄)
such that

∥∥∥ sup
t∈[0,1]

|
∫ t

0
g(r,Xn

r )[f(r,X
n
r )− f(r,Xn

kn(r)
)]dr|

∥∥∥
Lp̄(Ω)

(5.1)

⩽N
[
∥g∥L∞

∞
([0,1]) + ∥g∥Lq

1,p([0,1])

]

×
[
(1/n)1−

1

q βn(f) + (1/n)
α

2 ∥f∥Lq
p([0,1]) + (1/n)

1

2 log(n)∥f∥Lq
p([0,1])

]
.

The rest of the current section is devoted for the proof of Theorem 5.1. We follow the idea
described in Section 4. First we derive some analytic estimates on the transition operators
associated the discrete Euler–Maruyama scheme without drift. These estimates are similar
to the ones in Lemma 4.1. By means of the stochastic sewing techniques (Lemma 3.2) and
Girsanov theorem, these analytic estimates are utilized to obtain the desired moment bound.
In what follows, we carry out this program in more detail. Conditions A1 and B are enforced
throughout the current section unless indicated otherwise.

5.1. Analytic estimates. For each s ∈Dn and x ∈R
d, let X̄n(s,x) be the solution to the

following Euler–Maruyama scheme

(5.2) X̄n
t = x+

∫ t

s
σ(r, X̄n

kn(r)
)dBr, t⩾ s.

For each t⩾ s and bounded measurable function f , we define the function Qn
s,tf by

Qn
s,tf(x) = Ef(X̄n

t (s,x)).

Let

T ∗
s,tf(y) = Ef

(
y+

∫ t

s
σ(r, y)dBr

)
,(5.3)

and let the operator Ts,t be conjugate to T ∗
s,t in L2-sense, which can be computed explicitly

Ts,tf(x) =

∫

Rd

f(y)pΣs,t(y)(y− x)dy, when s < t(5.4)

and Ts,sf(x) = f(x), where Σij
s,t =

1
2

∫ t
s a

ij
r dr, ar = σrσ

∗
r . Whenever s < t, the function

Ts,tf(x) is infinitely differentiable and satisfies

∂sTs,tf(x) =−∂2xixj
Ts,t[a

ij
s f ](x).

We also define for every r < t

ηr(x) =

∫ r

kn(r)
σ(v,x)dBv

and

Hn
r,tf(x) = E

[
aijr (x)(∂

2
xixj

Tr,tf)(x+ ηr(x))− (∂2xixj
Tr,t[a

ij
r f ])(x+ ηr(x))

]
.
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The function η also depends on n, however, we omit this dependence in the notation. By direct
computations (see also [25, p.153] or [26, p.11]), we have

Hn
r,tf(x) =

∫

Rd

Kn
r,t(x, y)f(y)dy

where

Kn
r,t(x, y) = [aijr (x)− aijr (y)]∂

2
ijpΣkn(r),r(x)+Σr,t(y)(y− x)

= [aijr (x)− aijr (y)][(Ar,t(x, y)z)
i(Ar,t(x, y)z)

j −Aij
r,t(x, y)]pΣkn(r),r(x)+Σr,t(y)(z)

∣∣∣
z=y−x

and

Ar,t(x, y) = (Σkn(r),r(x) + Σr,t(y))
−1.

The relation between Qn and T,Hn is described in Lemma 5.4, which is a kind of Duhamel
formula. It is, however, convenient to obtain first analytic estimates for Hn and T . We make
use of the following result, inspired by [25, Lemma 4.1].5

LEMMA 5.2. Let λ, ℓ, ε > 0, α ∈ [0,1] be fixed numbers, let a1 be a symmetric d× d
matrix and let a(x), ā(x) be d× d matrix-valued functions. Assume that for each x, a(x), ā(x)
are symmetric, λ−1ℓI ⩽ a(x) + a1, ā(x) + a1 ⩽ λℓI , where I is the d× d unit matrix, and

supy ∥ā(y)− a(y)∥⩽ ε. Let g(x) be a real function such that |g(x)− g(y)|⩽ λ|x− y|α for

all x, y. Let ξ and η be independent d-dimensional Gaussian vectors with zero means. Assume

that ξ has distribution N (0, I) and η has distribution N (0,
√
a1). Define an operator T ∗ by

the formula T ∗f(y) = Ef(y+
√
a(y)ξ) and let T be the conjugate for T ∗ in L2-sense. Let

1⩽ i, j ⩽ d be fixed and define

H(x) = E

[
g(x)(∂2xixj

Tf)(x+ η)− (∂2xixj
T [gf ])(x+ η)

]
.

Define T̄ ∗, T̄ and H̄(x) analogously with ā replacing a. Then for any p ∈ [1,∞] and bounded

Borel f ,

sup
x∈Rd

|H(x)|⩽N∥f∥Lp(Rd)ℓ
α

2
−1− d

2p , ∥H∥Lp(Rd) ⩽N∥f∥Lp(Rd)ℓ
α

2
−1,

(5.5)

|H̄(x)−H(x)|⩽N∥f∥Lp(Rd)εℓ
α

2
−2− d

2p and ∥H̄ −H∥Lp(Rd) ⩽N∥f∥Lp(Rd)εℓ
α

2
−2,

(5.6)

where the constant N depends only on λ,d, p,α.

PRO OF . By direct computations (see also [25, p.153] or [26, p.11]), we have

H(x) =

∫

Rd

[g(x)− g(y)]f(y)[(A(y)z)i(A(y)z)j −Aij(y)]pa(y)+a1
(z)
∣∣∣
z=y−x

dy,

where A(y) = (a(y)+a1)
−1. A similar formula for H̄(x) is valid with Ā(y) = (ā(y)+a1)

−1.
By ellipticity of a(y) + a1 and Hölder continuity of g, we have

|H(x)|≲
∫

Rd

|x− y|α|f(y)|
(
ℓ−2|y− x|2 + ℓ−1

)
p2λℓ(y− x)dy.

5[26] recently corrected [25, Lemma 4.1]. Our assumptions and conclusions are different from both works.
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Setting q = p
p−1 and applying Hölder inequality, we get

|H(x)|≲ ∥f∥Lp(Rd)

(∫

Rd

|y|qα(ℓ−2|y|2 + ℓ−1)qp2λℓ(y)
qdy

) 1

q

≲ ∥f∥Lp(Rd)ℓ
α

2
−1− d

2p .

This shows the first estimate in (5.5). The second estimate in (5.5) is obtained by a similar
argument, using instead the Minkowski inequality.

It is evident that ∥A(y)∥,∥Ā(y)∥≲ ℓ−1 uniformly in y. For two invertible matrices C,D,
we have C−1 −D−1 = C−1(D −C)D−1 so that ∥C−1 −D−1∥⩽ ∥C−1∥∥D−1∥∥D −C∥.
Thus ∥Ā(y)−A(y)∥⩽ ∥A(y)∥∥Ā(y)∥∥ā(y)− a(y)∥≲ ℓ−2ε and similarly

∥(Ā(y)z)i(Ā(y)(y− x))j − (A(y)z)i(A(y)(y− x))j∥≲ |z|2ℓ−3ε.

Using our assumptions, it is straightforward to verify thatK−1I ⩽ (a(y)+a1)(ā(y)+a1)
−1 ⩽

KI and ∥I − (a(y) + a1)(ā(y) + a1)
−1∥⩽Kℓ−1ε for some constant K > 0. Hence, from

(3.22), we have

|pā(y)+a1
(z)− pa(y)+a1

(z)|≲ ℓ−1ε
(
p(ā(y)+a1)/2(z) + p(a(y)+a1)/2(z)

)

≲ ℓ−1εpλℓ(z),

where we have used the fact that λ−1t⩽ a(y) + a1, ā(y) + a1 ⩽ λt. It follows that

|H̄(x)−H(x)|≲ ε

∫

Rd

|f(y)||y− x|α
(
|y− x|2ℓ−3 + ℓ−2

)
pλℓ(y− x)dy.

From here, we apply Hölder inequality and Minkowski inequality as previously to obtain
(5.6).

LEM MA 5.3. Let p1, p2 ∈ [1,∞] be such that p1 ⩽ p2 and let f be a function in Lp1
(Rd).

For every r < t⩽ 1, we have

∥Tr,tf∥Lp2 (R
d) ⩽N(t− r)

d

2p2
− d

2p1 ∥f∥Lp1 (R
d)(5.7)

and

∥Hn
r,tf∥Lp2

(Rd) ⩽N(t− kn(r))
α

2
−1+ d

2p2
− d

2p1 ∥f∥Lp1
(Rd),(5.8)

where the constant N depends only on d, p1, p2,K1,K2.

PRO OF . By uniform ellipticity, there exists a constant λ > 0 such that for every x, y ∈R
d,

λ−1(t− kn(r))⩽

∫ t

r
aθ(y)dθ+

∫ r

kn(r)
aθ(x)dθ ⩽ λ(t− kn(r)).(5.9)

From here, we can derive (5.7) using standard Gaussian estimates.
Applying (5.5), we have

∥Hn
r,tf∥L∞(Rd) ≲ (t− kn(r))

α

2
−1− d

2p1 ∥f∥Lp1
(Rd)

and

∥Hn
r,tf∥Lp1

(Rd) ≲ (t− kn(r))
α

2
−1∥f∥Lp1

(Rd).

From the above estimates and the Hölder interpolation inequality

∥H∥Lp2
(Rd) ⩽ ∥H∥

p1
p2

Lp1
(Rd)∥H∥1−

p1
p2

L∞(Rd),

we deduce (5.8).
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The estimate (5.8) shows in particular that whenever r < t, Hn
r,t maps bounded measurable

functions to bounded measurable functions. It is evident from their definitions that Qn
r,t, Tr,t

also map bounded measurable functions to bounded measurable functions.

LEMMA 5.4. Let s ∈Dn and f be a bounded uniformly continuous function. Then, for

every t > s and x ∈R
d

Qn
s,tf(x) = Ts,tf(x) +

∫ t

s
Qn

s,kn(r)
[Hn

r,tf ](x)dr.(5.10)

PRO OF . Let X̄n = X̄n(s,x) and τ ∈ (s, t). Applying Itô formula for r 7→ Tr,tf(X̄
n
r ), for

any t > s, we obtain that

ETτ,tf(X̄
n
τ )

= Ts,tf(X̄
n
s ) +E

∫ τ

s

[
aijr (X̄

n
kn(r)

)(∂2xixj
Tr,tf)(X̄

n
r )− (∂2xixj

Tr,t[a
ij
r f ])(X̄

n
r )
]
dr.

Writing X̄n
r = X̄n

kn(r)
+ ηr(X̄

n
kn(r)

), we take conditional expectation given Fkn(r) ⊃Fs. This
yields

ETτ,tf(X̄
n
τ ) = Ts,tf(X̄

n
s ) +

∫ τ

s
EHn

r,tf(X̄
n
kn(r)

)dr.(5.11)

We now take the limit τ ↑ t in the above formula. By uniform continuity of f and a.s. continuity
of X̄n, limτ↑t Tτ,tf(X̄

n
τ ) = f(X̄n

t ). From (5.8), we have
∫ t

τ
|EHn

r,tf(X̄
n
kn(r)

)|dr ≲
∫ t

τ
(t− kn(r))

α

2
−1∥f∥L∞(Rd)dr ≲ ∥f∥L∞(Rd)(t− τ)

α

2 ,

which allows one to apply the limit τ ↑ t to the last term in (5.11). Hence, we have

Ef(X̄n
t ) = Ts,tf(X̄

n
s ) +

∫ t

s
EHn

r,tf(X̄
n
kn(r)

)dr,

which deduces to (5.10).

THEOREM 5.5. Assume that Condition A1 holds. Let p1, p2 ∈ [1,∞], p1 ⩽ p2, p1 <∞
and let f be a function in Lp1

(Rd). There exists a constant N =N(d, p1, p2, α,K1,K2) such

that for every s ∈Dn and t ∈ (s,1], we have

∥Qn
s,tf∥Lp2

(Rd) ⩽N(t− s)
d

2p2
− d

2p1 ∥f∥Lp1
(Rd).(5.12)

PRO OF . We put ρ= d
2p1

− d
2p2

.
Step 1. We show some rough estimates for ∥Qn

s,tf∥Lp2
(Rd) in terms of ∥f∥Lp1

(Rd). Assume
first that f is a bounded uniformly continuous function. From (5.10) and Lemma 5.3, we have
for every t ∈ [s, s+ 1/n]

∥Qn
s,tf∥Lp2

(Rd) ⩽ ∥Ts,tf∥Lp2
(Rd) +

∫ t

s
∥Hn

r,tf∥Lp2
(Rd)dr

≲ (t− s)−ρ∥f∥Lp1 (R
d) +

∫ t

s
(t− kn(r))

α

2
−1−ρ∥f∥Lp1

(Rd)dr

≲ (t− s)−ρ∥f∥Lp1
(Rd),
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where the last inequality follows from the fact that kn(r) = s for r ∈ [s, s+1/n). Since smooth
functions are dense in Lp1

(Rd), it follows that that ∥Qn
s,t∥Lp2(Rd)

≲ (t− s)−ρ∥f∥Lp1(Rd)
for

any function f in Lp1
(Rd).

We proceed inductively. Let j ⩾ 1 be an integer. Suppose that for every t ∈ [s, s+ j/n] and
every function f ∈ Lp1

(Rd),

∥Qn
s,tf∥Lp2

(Rd) ⩽Cj(t− s)−ρ∥f∥Lp1
(Rd)(5.13)

for some constant Cj , independent from n, s, t, f .
Let f be a bounded uniformly continuous function. Then for each t ∈ (s+ j/n, s+ (j +

1)/n], we obtain from (5.10), Lemma 5.3 and the inductive hypothesis that

(5.14) ∥Qn
s,tf∥Lp2

(Rd) ≲ ∥Ts,tf∥Lp2
(Rd) +

∫ s+1/n

s
∥Hn

r,tf∥Lp2
(Rd)dr

+Cj

∫ t

s+1/n
(kn(r)− s)−ρ∥Hn

r,tf∥Lp1
(Rd)dr.

The first two terms are estimated as previously, ∥Ts,tf∥Lp2
(Rd) ≲ (t− s)−ρ∥f∥Lp1

(Rd) and
∫ s+1/n

s
∥Hn

r,tf∥Lp2
(Rd)dr ≲ (1/n)−ρ∥f∥Lp1

(Rd).

Using Lemma 5.3, we have

∥Hn
r,tf∥Lp1 (R

d))≲ (t− kn(r))
α

2
−1∥f∥Lp1 (R

d).

Using the above estimate and the fact that kn(r) − s ⩾ 1/n for any r ⩾ s + 1/n and
Lemma 3.10, we have
∫ t

s+1/n
(kn(r)− s)−ρ∥Hn

r,tf∥Lp1
(Rd)dr ≲ (1/n)−ρ

∫ t

s+1/n
(t− kn(r))

α

2
−1dr∥f∥Lp1

(Rd)

≲ (1/n)−ρ∥f∥Lp1 (R
d).

Observe furthermore that (1/n)−ρ ⩽ (j + 1)ρ(t− s)−ρ. Putting these estimates in (5.14), we
see that (5.13) holds for t ∈ (s+ j/n, s+ (j + 1)/n] with a bounded uniformly continuous
function f and some constant Cj+1. By approximation, we can extend the inequality to all
functions f ∈ Lp1

(Rd).
To show that (5.13) actually holds uniformly in j, we proceed as follows.
Step 2. Assuming that ρ = d

2p2
− d

2p1
< 1, we show that there exists a constant C > 0,

independent from n, such that

∥Qn
s,tf∥Lp2

(Rd) ⩽C(t− s)
d

2p2
− d

2p1 ∥f∥Lp1
(Rd) for every t > s and function f ∈ Lp1

(Rd).

(5.15)

In view of (5.13), it suffices to consider t⩾ s+ 2/n. Let λ > 1 be a constant to be chosen
later. For each t ∈ [s+ 2/n,1], define

mt = e−λ(t−s)(t− s)ρ sup
g∈Lp1 (R

d) : ∥g∥Lp1
(Rd)=1

∥Qn
s,tg∥Lp2

(Rd)

and m∗
t = supr∈[s+2/n,t]mr, which are finite by the previous step. In particular, for every

t⩾ s+ 2/n and g ∈ Lp1
(Rd), we have (the case ∥g∥Lp1 (R

d) = 0 is treated by (5.13))

∥Qn
s,tg∥Lp2

(Rd) ⩽m∗
t e

λ(t−s)(t− s)−ρ∥g∥Lp1
(Rd).(5.16)
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Let t⩾ s+ 2/n and f be a bounded uniformly continuous function, ∥f∥Lp1
(Rd) = 1. From

(5.10), (5.13) and (5.16), we have that

(5.17) ∥Qn
s,tf∥Lp2

(Rd) ≲ ∥Ts,tf∥Lp2
(Rd) +

∫ s+2/n

s
∥Hn

r,tf∥Lp2
(Rd)dr

+m∗
t

∫ t

s+2/n
eλ(kn(r)−s)(kn(r)− s)−ρ∥Hn

r,tf∥Lp1
(Rd)dr.

From Lemma 5.3, we have ∥Ts,tf∥Lp2
(Rd) ≲ (t− s)−ρ and

∫ s+2/n

s
∥Hn

r,tf∥Lp2
(Rd)dr ≲

∫ s+2/n

s
(t− kn(r))

α

2
−1−ρdr ≲ (1/n)(t− s− 1/n)

α

2
−1−ρ

≲ (t− s)−ρ,

where we have used the fact that 1/n ⩽ t− s ⩽ 1 and t− s− 1/n ⩾ (t− s)/2. Similarly,
using Lemma 5.3, we have

∫ t

s+2/n
eλ(kn(r)−s)(kn(r)− s)−ρ∥Hn

r,tf∥Lp1 (R
d)dr

≲

∫ t

s+2/n
eλ(kn(r)−s)(kn(r)− s)−ρ(t− kn(r))

α

2
−1dr

≲

∫ t

s+1/n
eλ(r−s)(r− s− 1/n)−ρ(t− r)

α

2
−1dr.

To estimate the integrals on the right-hand sides above, we split them into two regions, putting
s̄= s+ 1/n,

∫ (s̄+t)/2

s̄
e−λ(t−r)(r− s̄)−ρ(t− r)

α

2
−1dr ≲ e−

λ

2
(t−s̄)(t− s̄)

α

2
−1

∫ (s̄+t)/2

s̄
(r− s̄)−ρdr

≲ e−
λ

2
(t−s̄)(t− s̄)

α

2
−ρ ≲ λ−

α

2 (t− s̄)−ρ

and

∫ t

(s̄+t)/2
e−λ(t−r)(r− s̄)−ρ(t− r)

α

2
−1dr ⩽ (t− s̄)−ρ

∫ t

(s̄+t)/2
e−λ(t−r)(t− r)

α

2
−1dr

⩽ (t− s̄)−ρ

∫ ∞

0
e−λuu

α

2
−1du≲ λ−

α

2 (t− s̄)−ρ.

In the above, all integrals are finite because α ∈ (0,1] and ρ < 1. Observe furthermore that
(t− s)/(t− s̄)⩽ 2. Thus we have

∫ t

s+2/n
eλ(kn(r)−s)(kn(r)− s)−ρ(t− kn(r))

α

2
−1dr ≲ λ−

α

2 eλ(t−s)(t− s)−ρ.

Putting the previous estimates altogether into (5.17), we have

∥Qn
s,tf∥Lp2 (R

d) ≲ (t− s)−ρ(1 +m∗
tλ

−α

2 eλ(t−s)).

By approximations, the above estimate also holds for any function f ∈ Lp1
(Rd) with

∥f∥Lp1
(Rd) = 1. It follows that mt ≲ 1 + λ−

α

2m∗
t for every t ⩾ s + 2/n. By choosing λ
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sufficiently large, we conclude that m∗
1 is bounded by a constant independent from n and thus

obtain (5.15).
Step 3. We remove the restriction ρ < 1 in the previous step.
Suppose that ρ := d

2p1
− d

2p2
< 2. Define p3 ∈ [p1, p2] by d

p3
= d

2p1
+ d

2p2
so that d

2p1
− d

2p3
=

d
2p3

− d
2p2

= ρ
2 < 1. Let t⩾ s+4/n and u= (s+ t)/2. Then by Markov property of the Euler–

Maruyama scheme, we have Qn
s,t =Qn

kn(u),t
Qn

s,kn(u)
. It is easy to see that t > kn(u)> s so

that by (5.15), we have for every f ∈ Lp1
(Rd) that

∥Qn
s,tf∥Lp2

(Rd) ≲ (t− kn(u))
− ρ

2 ∥Qn
s,kn(u)

f∥Lp3
(Rd)

≲ (t− kn(u))
− ρ

2 (kn(u)− s)−
ρ

2 ∥f∥Lp1
(Rd).

It is straightforward to see that t− kn(u)⩾ (t− s)/2 and kn(u)− s⩾ (t− s)/4. Hence, from
the above estimate, we deduce that ∥Qn

s,tf∥Lp2
(Rd) ≲ (t−s)−ρ∥f∥Lp1

(Rd) for any t⩾ s+4/n.
Combining with (5.13) from step 1., we see that (5.15) holds for any p1, p2 ∈ [1,∞] satisfying
d

2p1
− d

2p2
< 2. We iterate the argument. After ⌊log2(d/2)⌋+ 1 iterations, we see that (5.15)

holds whenever ρ⩽ d/2, which is trivially satisfied for any p1, p2 ∈ [1,∞]. Hence, we have
shown (5.12).

REMARK 5.6. Theorem 5.5 complements previous works. It is shown in [48] that for
each s, t ∈Dn, s < t, the operator Qn

s,t has a kernel density which has Gaussian upper bounds.
From here, one can deduce estimate (5.12) for discrete times s, t ∈Dn. Gaussian upper bounds
for the kernel density of Qn

s,t, which are valid for all times t > s, s ∈Dn, are also established
in [6, 35] under Lipschitz regularity of a. Some related estimates are also obtained in [25, 26]
under the additional condition α > d/p. We are able to remove this condition herein mainly
due to (5.8), which was known previously with the factor (t− r) on its right-hand side.

LEMMA 5.7. Let p1 ∈ [1,∞] and let r < kn(t). Then for every f ∈ Lp1
(Rd),

∥Tr,tf − Tr,kn(t)f∥Lp1
(Rd) ⩽N(1/n)(t− r)−1∥f∥Lp1

(Rd)(5.18)

and

∥Hn
r,tf −Hn

r,kn(t)
f∥Lp1

(Rd) ⩽N(1/n)(t− kn(r))
α

2
−2∥f∥Lp1

(Rd),(5.19)

where the constant N depends only on d, p1,K1,K2.

PRO OF . We make use of (5.9). Observe furthermore that 1/2 ⩽ (kn(t) − kn(r))/(t −
kn(r))⩽ 1. It is then straightforward to verify the hypothesis of Lemma 3.11 for Σ=Σr,t(y)
and Σ̄ = Σr,kn(t)(y). In addition

∥I −ΣΣ̄−1∥≲ (t− kn(t))(t− kn(r))
−1 ≲ (1/n)(t− kn(r))

−1.

From the definition of T , we apply (3.22) to get that

|Tr,tf(x)− Tr,kn(t)f(x)|≲ (1/n)(t− r)−1

∫

Rd

pc(t−r)(y)|f(y− x)|dy

for some universal constant c. From here, we apply Minkowski inequality to obtain (5.18).
(5.19) is obtained analogously, using (5.6).

COROLLARY 5.8. Assuming Condition A1. Let f be a function in Lp1
(Rd), p1 ∈ [1,∞).

Then for any s ∈Dn and t ∈ (s+ 2/n,1],

∥Qn
s,tf −Qn

s,kn(t)
f∥Lp1

(Rd) ⩽N(1/n)
α

2 ∥f∥Lp1
(Rd)(t− s)−

α

2 ,

where the constant N depends only on d, p1,K1,K2.
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PRO OF . By approximation, we can assume that f is bounded and uniformly continuous.
We put u= kn(t). From (5.10), Qn

s,tf −Qn
s,uf = I1 + I2 + I3, where

I1 = Ts,tf − Ts,uf,

I2 =

∫ u

s
Qn

s,kn(r)
[Hn

r,tf −Hn
r,uf ]dr, I3 =

∫ t

u
Qn

s,kn(r)
[Hn

r,tf ]dr.

We estimate each I1, I2, I3 below. Note that s < t− 1/n implies s < kn(t). Applying (5.18),
we have ∥I1∥Lp(Rd) ≲ (1/n)(t− s)−1∥f∥Lp(Rd).

From Theorem 5.5, we have ∥Qn
s,kn(r)

f∥Lp(Rd) ≲ ∥f∥Lp(Rd) for every r > s. It follows that

∥I2∥Lp(Rd) ≲

∫ u

s
∥Hn

r,tf −Hn
r,uf∥Lp(Rd)dr.

Applying (5.19) and Lemma 3.10 (noting that u− s⩾ 1/n), we have

∥I2∥Lp(Rd) ≲

∫ u

s
(1/n)(u− kn(r))

α

2
−2dr∥f∥Lp(Rd) ≲ (1/n)

α

2 ∥f∥Lp(Rd).

Applying Theorem 5.5 and Lemma 5.3, we have

∥I3∥Lp(Rd) ≲

∫ t

u
∥Hn

r,tf∥Lp(Rd)dr ≲

∫ t

u
(t− kn(r))

α

2
−1∥f∥Lp(Rd)dr ≲ (1/n)

α

2 ∥f∥Lp(Rd).

Combining the previous estimates, we obtain the result.

CORO LLARY 5.9. Let g be a function in L1,p(R
d) for some p ∈ [1,∞)

∥Qn
s,tg− g∥Lp(Rd) ≲ ∥g∥L1,p(Rd)(t− s)

α

2 .(5.20)

PRO OF . By approximation, we can assume g is continuously differentiable and has
bounded derivatives. From (5.10), we have Qn

s,tg − g = I1 + I2, where I1 = Ts,tg − g and

I2 =
∫ t
s Q

n
s,kn(r)

[Hn
r,tg]dr. From (5.4), we have

I1 =

∫

Rd

[pΣs,t(y)(y− x)g(y)− pΣs,t(x)(y− x)g(x)]dy

=

∫

Rd

[pΣs,t(y)(y− x)− pΣs,t(x)(y− x)]g(y)dy+

∫

Rd

[g(y)− g(x)]pΣs,t(x)(y− x)dy

= I11 + I12.

Using Condition A1, it is straightforward to verify that λ−1I ⩽Σs,t(y)Σs,t(x)
−1 ⩽ λI and

∥I −Σs,t(x)Σs,t(y)
−1∥⩽ λ|x− y|α for some finite constant λ. Then, we apply Lemma 3.11

to get

|I11|≲
∫

Rd

|x− y|αpN(t−s)(x− y)|g(y)|dy.

Using Minkowski inequality, we obtain from the above that ∥I11∥Lp(Rd) ≲ (t− s)
α

2 ∥g∥Lp(Rd).
From the Hardy–Littlewood maximal inequality, there is a non-negative function h ∈ Lp(R

d)
such that ∥h∥Lp(Rd) ≲ ∥∇g∥Lp(Rd) and

|g(y)− g(x)|⩽ |x− y|(h(x) + h(y)), a.e. x, y ∈R
d.
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Using ellipticity and the above estimate, we have that

|I12|⩽
∫

Rd

|x− y|(h(x) + h(y))pΣs,t(x)(x− y)dy

≲ h(x)(t− s)
1

2 +

∫

Rd

|x− y|h(y)pN(t−s)(x− y)dy.

Applying Minkowski inequality, we obtain that ∥I12∥Lp(Rd) ≲ (t − s)1/2∥h∥Lp(Rd) ≲ (t −
s)1/2∥∇g∥Lp(Rd). Applying Theorem 5.5 and Lemma 5.3, we have

∥I2∥Lp(Rd) ≲

∫ t

s
∥Hn

r,tg∥Lp(Rd)dr ≲

∫ t

s
(t− r)

α

2
−1∥g∥Lp(Rd)dr ≲ (t− s)

α

2 ∥g∥Lp(Rd).

Combining the estimates for I11, I12 and I2, we obtain the result.

5.2. Moment estimates. We consider the Euler–Maruyama scheme

X̄n
t = x+

∫ t

0
σ(s, X̄n

kn(s)
)dBs,(5.21)

where x0 is a F0-random variable. By Markov property, for every s ∈ Dn and bounded
measurable f , we have E[f(X̄n

t )|Fs] =Qn
s,tf(X̄

n
s ).

PRO POSITION 5.10. Let X̄n be the solution to (5.21).
(i) Let h be a measurable function such that ∥h∥Lρ(Rd) is finite for some ρ ∈ (0,∞]. Then

for every r, v ∈ [0,1], r− v ⩾ 2/n,

∥h(X̄n
r )∥Lρ(Ω|Fv) ⩽N∥h∥Lρ(Rd) (r− v)−

d

2ρ .(5.22)

(ii) Let f be a function in Lp(R
d), g be a function in L1,p(R

d) ∩ L∞(Rd) for some p ∈
[1,∞). Then, for every r, s, v ∈ [0,1] such that r−v ⩾ 2/n, r > kn(s)+3/n and s−v ⩾ 2/n,

(5.23)

∥Es(f(X̄
n
r )− f(X̄n

kn(r)
))∥Lp(Ω|Fv) ⩽N(1/n)

α

2 ∥f∥Lp(Rd) (s− v)−
d

2p

(
r− s− 2

n

)−α

2

and

(5.24) ∥Es(g(X̄
n
r )f(X̄

n
r )− g(X̄n

r )f(X̄
n
kn(r)

))∥Lp(Ω|Fv) ⩽N(1/n)
α

2 ∥f∥Lp(Rd) (s− v)−
d

2p

×
[
∥g∥L∞(Rd)

(
r− s− 2

n

)−α

2

+ ∥g∥L1,p(Rd)

(
r− s− 2

n

)− d

2p

]
.

PRO OF . (i) Put v̄ = kn(v) + 1/n. In the case when ρ <∞, applying Theorem 5.5 (with
the choice p1 = 1 and p2 =∞), we have

E[|h(X̄n
r )|ρ|Fv̄] =Qn

v̄,r[|h|ρ](X̄n
v̄ )≲ (r− v̄)−

d

2 ∥|h|ρ∥L1(Rd).

Noting that r − v̄ ⩾ (r − v)/2, we obtain (5.22) for any ρ ∈ (0,∞) from the above. When
ρ=∞, (5.22) is trivial.

(ii) Put s̄= kn(s) + 1/n. Applying (5.22) and Corollary 5.8 (noting that s̄− v ⩾ 2/n and
r− s̄ > 2/n), we have

∥Es̄(f(X̄
n
r )− f(X̄n

kn(r)
))∥Lp(Ω|Fv) = ∥Qn

s̄,rf(X̄
n
s̄ )−Qn

s̄,kn(r)
f(X̄n

s̄ )∥Lp(Ω|Fv)

≲ (s̄− v)−
d

2p ∥Qn
s̄,rf −Qn

s̄,kn(r)
f∥Lp(Rd)

≲ (1/n)
α

2 ∥f∥Lp(Rd) (s̄− v)−
d

2p (kn(r)− s̄)−
α

2 .
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We observe that s̄− v ⩾ s− v, kn(r)− s̄⩾ r− s− 2/n and

∥Es(f(X̄
n
r )− f(X̄n

kn(r)
))∥Lp(Ω|Fv) ⩽ ∥Es̄(f(X̄

n
r )− f(X̄n

kn(r)
))∥Lp(Ω|Fv).

From here, we obtain (5.23) by combining the previous estimates.
Lastly, we show (5.24). We write

g(X̄n
r )f(X̄

n
r )− g(X̄n

r )f(X̄
n
kn(r)

)

= [(gf)(X̄n
r )− (gf)(X̄n

kn(r)
)] + [(g(X̄n

kn(r)
)− g(X̄n

r ))f(X̄
n
kn(r)

)].

We observe that ∥fg∥Lp(Rd) ⩽ ∥f∥Lp(Rd)∥g∥L∞(Rd) and apply (5.23) to see that
∥∥∥Es

(
(fg)(X̄n

r )− (fg)(X̄n
kn(r)

)
)∥∥∥

Lp(Ω|Fv)

is smaller than the right-hand side of (5.24). It suffices to estimate the Lp(Ω|Fv)-norm of

A := Es̄[(g(X̄
n
kn(r)

)− g(X̄n
r ))f(X̄

n
kn(r)

)].

By conditioning on Fkn(r), we have

A= Es̄[h(X̄
n
kn(r)

)] =Qn
s̄,kn(r))

h(X̄n
s̄ ), where h= (g−Qn

kn(r),r
g)f.

Applying (5.22),

∥A∥Lp(Ω|Fv) ≲ (s̄− v)−
d

2p ∥Qn
s̄,kn(r)

h∥Lp(Rd).

We continue by applying Theorem 5.5 (with p1 = p/2 and p2 = p),

∥A∥Lp(Ω|Fv) ≲ (s̄− v)−
d

2p (kn(r)− s̄)−
d

2p ∥h∥Lp/2(Rd).

By Hölder inequality

∥h∥Lp/2(Rd) ⩽ ∥Qkn(r),rg− g∥Lp(Rd)∥f∥Lp(Rd)

and by (5.20),

∥Qkn(r),rg− g∥Lp(Rd) ≲ (r− kn(r))
α

2 ∥g∥L1,p(Rd).

Combining the previous estimates, we see that ∥A∥Lp(Ω|Fv) is also smaller than the right-hand
side of (5.24), finishing the proof.

REM ARK 5.11. Concerning Proposition 5.10(i), if v ∈Dn, then there exists a constant
N =N(d, ρ,α,K1,K2) such that for every r > v, we have

∥h(X̄n
r )∥Lρ(Ω|Fv) ⩽N∥h∥Lρ(Rd) (r− v)−

d

2ρ .(5.25)

Indeed, the inequality is trivial when ρ=∞. When ρ <∞ and when v ∈Dn, Theorem 5.5 is
applied directly, which yields

E[|h(X̄n
r )|ρ|Fv] =Qn

v,r[|h|ρ](X̄n
v )≲ (r− v)−

d

2 ∥|h|ρ∥L1(Rd).

From here, we deduce (5.25).

PROPOSI TION 5.12. Let X̄n be the solution to (5.21). Let f ∈ L
q
p([0,1]) and g ∈

L
q
1,p([0,1]) ∩ L

∞
∞([0,1]), with p, q ∈ [2,∞) satisfying d

p + 2
q < 1. Let v ∈ [0,1 − 4/n] be

a fixed number, n⩾ 4 is an integer. Then for every v+ 4
n ⩽ S ⩽ T ⩽ 1, one has the bound

(5.26) ∥
∫ T

S
g(r, X̄n

r )[f(r, X̄
n
r )− f(r, X̄n

kn(r)
)]dr∥Lp(Ω|Fv)

⩽N [(1/n)
α

2 + (1/n)
1

2 log(n)](∥g∥L∞

∞
([S,T ]) + ∥g∥Lq

1,p([S,T ]))∥f∥Lq
p([S,T ]),

where N =N(d, p, q,K1,K2) is a constant.
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PRO OF . Let S,T be such that v + 4/n⩽ S ⩽ T ⩽ 1. By linearity, we can assume that
∥f∥Lq

p([S,T ]) = ∥g∥L∞

∞
([S,T ]) + ∥g∥Lq

1,p([S,T ]) = 1.
For each (s, t) ∈∆2([S,T ]), define

As,t := Es

∫ t

s
g(r, X̄n

r )(f(r, X̄
n
r )− f(r, X̄n

kn(r)
))dr.

We treat two cases t⩽ kn(s) +
4
n and t > kn(s) +

4
n separately as following.

Case 1. For t ∈ (s, kn(s) +
4
n ], by triangle inequality and (5.22) (note that kn(r)− v ⩾

kn(s)− v ⩾ s− v− 1/n⩾ 2/n) we have

∥As,t∥Lp(Ω|Fv) ⩽ ∥g∥L∞

∞
([S,T ])

∫ t

s
∥f(r, X̄n

r )∥Lp(Ω|Fv) + ∥f(r, X̄n
kn(r)

)∥Lp(Ω|Fv)dr

≲

∫ t

s
(kn(r)− v)−

d

2p ∥f(r, ·)∥Lp(Rd)dr.

Note that kn(r)− v ⩾ kn(s)− v ⩾ (s− v)/2, applying Hölder inequality and the fact that
t− s⩽ 4/n, we have

∫ t

s
(kn(r)− v)−

d

2p ∥f(r, ·)∥Lp(Rd)dr ≲ (s− v)−
d

2p ∥f∥Lq
p([s,t])(t− s)1−

1

q

≲ (1/n)
1

2 (s− v)−
d

2p ∥f∥Lq
p([s,t])(t− s)

1

2
− 1

q .

This gives

∥As,t∥Lp(Ω|Fv) ≲ (1/n)
1

2 (s− v)−
d

2p ∥f∥Lq
p([s,t])(t− s)

1

2
− 1

q .(5.27)

Case 2. When t ∈ (kn(s) +
4
n ,1], by triangle inequality,

∥As,t∥Lp(Ω|Fv) ⩽ ∥As,kn(s)+4/n∥Lp(Ω|Fv)

+

∫ t

kn(s)+
4

n

∥Es[g(r, X̄
n
r )(f(r, X̄

n
r )− f(r, X̄n

kn(r)
))]∥Lp(Ω|Fv)dr

=: I1 + I2.

For I1, from (5.27) we know that

I1 ≲ (1/n)
1

2 (s− v)−
d

2p ∥f∥Lq
p([s,t])

(
kn(s) +

4

n
− s

) 1

2
− 1

q

.

Because kn(s) + 4
n − s⩽ t− s, we get

I1 ≲ (1/n)
1

2 (s− v)−
d

2p ∥f∥Lq
p([s,t])(t− s)

1

2
− 1

q .

Applying (5.24) and Hölder inequality, we have for I2

I2 ≲ (1/n)
α

2 (s− v)−
d

2p ∥g∥L∞

∞
([S,T ])

∫ t

kn(s)+
4

n

(
r− s− 2

n

)−α

2

∥f(r, ·)∥Lp(Rd)dr

+ (1/n)
α

2 (s− v)−
d

2p

∫ t

kn(s)+
4

n

(
r− s− 2

n

)− d

2p

∥g(r, ·)∥L1,p(Rd)∥f(r, ·)∥Lp(Rd)dr

≲ (1/n)
α

2 (s−v)−
d

2p

[
∥f∥Lq

p([s,t])(t− s)1−
α

2
− 1

q + ∥g∥Lq
1,p([s,t])

∥f∥Lq
p([s,t])(t− s)1−

d

2p
− 2

q

]
.
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Combining these two cases together we obtain that for v+ 4/n⩽ s⩽ t⩽ 1,

(5.28) ∥As,t∥Lp(Ω|Fv) ≲ (1/n)
1

2 (s− v)−
d

2p ∥f∥Lq
p([s,t])(t− s)

1

2
− 1

q

+(1/n)
α

2 (s− v)−
d

2p

[
∥f∥Lq

p([s,t])(t− s)1−
α

2
− 1

q + ∥g∥Lq
1,p([s,t])

∥f∥Lq
p([s,t])(t− s)1−

d

2p
− 2

q

]
.

Furthermore, for u ∈ (s, t), we have EsδAs,u,t = 0. Let w be the continuous control on
∆([v+ 4/n,1]) defined by

w(s, t) =
[
(s− v)−

d

2p ∥f∥Lq
p([s,t])(t− s)

1

2
− 1

q

]2

+
[
(s− v)−

d

2p ∥f∥Lq
p([s,t])(t− s)1−

α

2
− 1

q

]1/(1−α

2
)

+
[
(s− v)−

d

2p ∥g∥Lq
1,p([s,t])

∥f∥Lq
p([s,t])(t− s)1−

d

2p
− 2

q

]1/(1− d

2p
)

+ (s− v)−
d

2p ∥f∥Lq
p([s,t])(t− s)1−

1

q .

Denote

At :=

∫ t

0
(f(r, X̄n

r )− f(r, X̄n
kn(r)

))dr, Js,t := δAs,t −As,t.

Using similar estimates leading to (5.27), we have

∥Js,t∥Lp(Ω|Fv) ≲ (s− v)−
d

2p ∥f∥Lq
p([s,t])(t− s)1−

1

q ≲w(s, t).

Furthermore, δJs,u,t =−δAs,u,t and we derive from (5.28) that

∥δJs,u,t∥Lp(Ω|Fv) ≲ (1/n)
1

2w(s, t)
1

2 + (1/n)
α

2

[
w(s, t)1−

α

2 +w(s, t)1−
d

2p

]
.

It is obvious that EsJs,t = 0 and hence EsδJs,u,t = 0. Applying Lemma 3.2, we have

∥Js,t∥Lp(Ω|Fv)

≲ [(1/n)
α

2 + (1/n)
1

2 log(n)]
[
w(s, t)

1

2 +w(s, t)1−
α

2 +w(s, t)1−
d

2p +w(s, t)
]
.

By triangle inequality and (5.28), this implies that

∥δAs,t∥Lp(Ω|Fv)

≲ [(1/n)
α

2 + (1/n)
1

2 log(n)]
[
w(s, t)

1

2 +w(s, t)1−
α

2 +w(s, t)1−
d

2p +w(s, t)
]
.

Because ∥f∥Lq
p([s,t]) ⩽ ∥f∥Lq

p([S,T ]) = 1, we have

w(s, t)⩽
[
(s− v)−

d

2p (t− s)
1

2
− 1

q

]2

+
[
(s− v)−

d

2p (t− s)1−
α

2
− 1

q

]1/(1−α

2
)
+
[
(s− v)−

d

2p (t− s)1−
d

2p
− 2

q

]1/(1− d

2p
)

+ (s− v)−
d

2p (t− s)1−
1

q(5.29)

and hence

w(s, t)
1

2 +w(s, t)1−
α

2 +w(s, t)1−
d

2p +w(s, t)≲

16∑

i=1

(s− v)−ηi(t− s)τi ,
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where for each i = 1, . . . ,16; ηi, τi ∈ [0,1] are some constants such that τi − ηi > 0. The
constants ηi, τi’s can be calculated explicitly by applying the powers 1/2, 1−α/2, 1− d/(2p)
and 1 to the singularity exponents and Hölder exponents in the right-hand side of (5.29),
however, their exact values are non-essential. That τi − ηi is positive for each i because the
sums of the Hölder exponents and the corresponding singular exponents of each factor on the
right-hand side of (5.29) are positive. Hence, we deduce from the above estimate that

∥
∫ T

S
g(r, X̄n

r )(f(r, X̄
n
r )− f(r, X̄n

kn(r)
))dr∥Lp(Ω|Fv)

⩽N [(1/n)
α

2 + (1/n)
1

2 log(n)]

16∑

i=1

(S − v)−ηi(T − S)τi ,

which holds for every v+ 4/n⩽ S ⩽ T ⩽ 1. We then apply Lemma 3.4 to obtain (5.26).

PROPOSI TION 5.13. Let X̄n be the solution to (5.21). Let f ∈ L
q
p([0,1]) ∩ L

q
∞([0,1])

and g ∈ L
q
1,p([0,1])∩L

∞
∞([0,1]), with p, q ∈ [2,∞) satisfying d

p +
2
q < 1.

As in Proposition 4.4, we put βn(f) = supr∈Dn
∥f∥Lq

∞([r,r+1/n]). Then for any p̄ ∈ (0, p),
there exists a constant N =N(d, p, q, p̄) such that

∥ sup
t∈[0,1]

|
∫ t

0
g(r, X̄n

r )[f(r, X̄
n
r )−f(r, X̄n

kn(r)
)]dr|∥Lp̄(Ω) ⩽N

[
∥g∥L∞

∞
([0,1]) + ∥g∥Lq

1,p([0,1])

]

×
[
(1/n)1−

1

q βn(f) + (1/n)
α

2 ∥f∥Lq
p([0,1]) + (1/n)

1

2 log(n)∥f∥Lq
p([0,1])

]
.

PRO OF . This result is a consequence of Proposition 5.12 and Lemma 3.1. The proof is
analogous to that of Proposition 4.4, hence, omitted.

LEMMA 5.14. Let X̄n be the solution to (5.21) and f be a function in L
q1
p1([0,1]) for

some p1, q1 ∈ [1,∞] satisfying d
p1

+ 2
q1
< 2. Then

E exp

(∫ 1

0
f(r, X̄n

r )dr

)
⩽ 2exp

(
N∥f∥1/(1−d/(2p1))

L
q1
p1 ([0,1])

)
,(5.30)

where N depends only on d,α, p1, q1,K1,K2.

Assume additionally that there are continuous control w0 on ∆ and positive constants

M,γ0 such that

(1/n)
1− 1

q1 ∥f∥Lq1
∞([s,t]) ⩽w0(s, t)

γ0 ∀ 0⩽ t− s⩽ 1/n(5.31)

and

∥f∥Lq1
p1 ([0,1])

+w0(0,1)⩽M.

Then there exists a finite constant N̄ which depends only on M,γ0, d,α, p1, q1,K1,K2 such

that

E exp

(∫ 1

0
f(r, X̄n

kn(r)
)dr

)
⩽ N̄ .(5.32)

PRO OF . We can assume without loss of generality that f is nonnegative. We rely on
Lemma 3.5. For each (s, t) ∈ ∆, define s̄ = kn(s) + 1/n. For each r ∈ (s, s̄), we write
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X̄n
r = X̄n

s +
∫ r
s σ(θ, X̄

n
kn(s)

)dBθ so that

Es

∫ s̄∧t

s
f(r, X̄n

r )dr =

∫ s̄∧t

s
PΣs,r(X̄n

kn(s))
fr(X̄

n
s )dr.

Using ellipticity of Σs,r and Gaussian estimates, we see that supy ∥PΣs,r(y)fr∥L∞(Rd) ≲

(r− s)−d/(2p1)∥fr∥Lp1
(Rd). Hence, using this estimate and Hölder inequality, we have

Es

∫ s̄∧t

s
f(r, X̄n

r )dr ≲

∫ t

s
(r− s)

− d

2p1 ∥fr∥Lp1 (R
d)dr ≲ ∥f∥Lq1

p1 ([s,t])
(t− s)

1− d

2p1
− 1

q1 .

On the interval (s̄∧ t, t), we use (5.25) and Hölder inequality to see that

Es

∫ t

s̄∧t
f(r, X̄n

r )dr ≲

∫ t

s̄∧t
(r− s̄)

− d

2p1 ∥fr∥Lp1
(Rd)dr ≲ ∥f∥Lq1

p1 ([s,t])
(t− s)

1− d

2p1
− 1

q1 .

It follows that

Es

∫ t

s
f(r, X̄n

r )dr ≲ ∥f∥Lq1
p1 ([s,t])

(t− s)
1− d

2p1
− 1

q1 .

Observe that w defined by w(s, t)1−
d

2p1 = ∥f∥Lq1
p1 ([s,t])

(t− s)1−
d

2p1
− 1

q1 is a continuous control
on ∆. Applying Lemma 3.5, we obtain (5.30).

The second part is obtained in an analogous way. For each (s, t) ∈∆, define s̃= kn(s) +
2/n, using Hölder inequality, (5.31) and (5.22), we have

Es

∫ s̃∧t

s
f(r, X̄n

kn(r)
)dr ⩽

∫ s̃∧t

s
∥fr∥L∞(Rd)dr ≲ ∥f∥Lq1

∞([s,s̃∧t])(1/n)
1− 1

q1 ≲w0(s, t)
γ0

and

Es

∫ t

s̃∧t
f(r, X̄n

kn(r)
)dr =

∫ t

s̃∧t
Esf(r, X̄

n
kn(r)

)dr ≲

∫ t

s̃∧t
(kn(r)− s)

− d

2p1 ∥fr∥Lp1
(Rd)dr

≲

∫ t

s̃∧t
(r− s)

− d

2p1 ∥fr∥Lp1
(Rd)dr ≲ ∥f∥Lq1

p1 ([s,t])
(t− s)

1− d

2p1
− 1

q1 .

Hence, Es

∫ t
s f(r, X̄

n
kn(r)

)dr ≲w0(s, t)
γ0 +w(s, t)

1− d

2p1 , where w is the control defined pre-
viously. Applying Lemma 3.5 and Remark 3.6, we obtain (5.32).

REMARK 5.15. From Remark 3.6, one can compute N̄ explicitly, however (5.32) is
sufficient for our considerations.

Proof of Theorem 5.1. For any continuous process Z , we define

H(Z) = sup
t∈[0,1]

∣∣∣
∫ t

0
g(r,Zr)[f(r,Zr)− f(r,Zkn(r))]dr

∣∣∣.

Let X̄n be the solution to (5.21) and

ρ :=exp

(
−
∫ 1

0
(σ−1bn)(r, X̄n

kn(r)
)dBr −

1

2

∫ 1

0

∣∣∣(σ−1bn)(r, X̄n
kn(r)

)
∣∣∣
2
dr

)
.

Using the fact that σ−1bn ∈ L
q
∞([0,1]), we see that ρ is a probability density. It follows from

Girsanov theorem (see e.g. [33, IV Corollary of Theorem 4.2]) and Hölder inequality for
1
γ′ +

1
γ = 1 with γ > 1 close enough to 1 such that γp̄ < p

EH(Xn)p̄ = E(ρH(X̄n)p̄)⩽ [EH(X̄n)γp̄]1/γ [Eργ
′

]1/γ
′

.(5.33)
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From Proposition 5.13 we immediately get that

(5.34) (EH(X̄n)γp̄)
1

γp̄ = ∥H(X̄n)∥Lγp̄(Ω) ⩽N
[
∥g∥L∞

∞
([0,1]) + ∥g∥Lq

1,p([0,1])

]

×
[
(1/n)1−

1

q βn(f) + (1/n)
α

2 ∥f∥Lq
p([0,1]) + (1/n)

1

2 log(n)∥f∥Lq
p([0,1])

]
.

Using Cauchy–Schwarz inequality, we have

Eργ
′

= E exp

(
−γ′

∫ 1

0
(σ−1bn)(r, X̄n

kn(r)
)dBr −

γ′

2

∫ 1

0

∣∣∣(σ−1bn)(r, X̄n
kn(r)

)
∣∣∣
2
dr

)

⩽

[
E exp

(
−2γ′

∫ 1

0
(σ−1bn)(r, X̄n

kn(r)
)dBr − 2γ′

2
∫ 1

0

∣∣∣(σ−1bn)(r, X̄n
kn(r)

)
∣∣∣
2
dr

)] 1

2

×
[
E exp

(
(2γ′

2 − γ′)

∫ 1

0

∣∣∣(σ−1bn)(r, X̄n
kn(r)

)
∣∣∣
2
dr

)] 1

2

.

In the right-hand side above, the first factor is identical to 1 by martingale properties. For the
second factor, we recall Condition B and the uniform ellipticity of σ, which imply that the
function f := |σ−1bn|2 belongs to L

q/2
p/2([0,1])∩L

q/2
∞ ([0,1]) and satisfies

(1/n)1−
2

q ∥f∥
L

q/2
∞ ([s,t]) ≲

[
(1/n)

1

2
− 1

q ∥bn∥Lq
∞([s,t])

]2
≲ µ(s, t)2θ, ∀ 0⩽ t− s⩽ 1/n.

Applying Lemma 5.14, we see that E exp
(
(2γ′2 − γ′)

∫ 1
0 |(σ−1bn)(r, X̄n

kn(r)
)|2dr

)
is

bounded uniformly by a finite constant. Hence, we have shown that Eργ
′

is bounded uniformly
in n. Combining with (5.33) and (5.34), we obtain (5.1).

6. Analysis of the continuum paths. To show Theorem 2.3, we need the following result,
extending the results of Section 4 to functionals of solutions to (1.1).

THEOREM 6.1. Let X be the solution to (1.1).
(i) Assuming Conditions A1 and B. Let h be a function in L

q1
p1([0,1]) for some p1, q1 ∈

[1,∞] satisfying d
p1

+ 2
q1
< 2. Then for every m⩾ 1, there exists a constant N =N(d, p, q,m)

such that

∥
∫ 1

0
h(r,Xr)dr∥Lm(Ω) ⩽N∥h∥Lq1

p1 ([0,1])
.

(ii) Assuming Conditions A-B with q0 = ∞ and 1
p + 1

p0
< 1. Let g be a function in

L
q2
p2([0,1]) and let ν ∈ [0,1) such that d

p2
+ 2

q2
+ ν < 2. Then for any p̄ ∈ (0, p2), there exists

a constant N =N(ν, d, p, q, p2, q2, p̄) such that

∥ sup
t∈[0,1]

|
∫ t

0
g(r,Xr)dr|∥Lp̄(Ω) ⩽N∥g∥Lq2

−ν,p2
([0,1]).

(iii) Assuming Conditions A-B with q0 = ∞ and 1
p + 1

p0
< 1. Let g be a function in

L
q2
p2([0,1]) with d

p2
+ 2

q2
< 1, Γ be a nonnegative number and w0 be a continuous control on

∆. We assume that for every (s, t) ∈∆,

∥g∥Lq2
−1,p2

([s,t]) ⩽ Γw1(s, t)
1

q2 and ∥g∥Lq2
p2 ([s,t])

⩽w1(s, t)
1

q2 .
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Then for any p̄ ∈ (0, p2), there exists a constant N =N(ν, d, p2, q2, p, q, p̄) such that

∥ sup
t∈[0,1]

|
∫ t

0
g(r,Xr)dr|∥Lp̄(Ω) ⩽NΓ(1 + | log(Γ)|)w1(0,1)

1

q2 .

Similar to the methods in Sections 4 and 5, first we derive some analytic estimates on the
transition operators associated to solutions of (1.1) without drift. Using these estimates, one
can apply stochastic sewing techniques (Lemma 3.2) and Girsanov theorem to obtain the
desired moment bounds.

We begin with moment bounds on the solutions to the driftless SDEs. Let X̄ be a solution
to SDE

dX̄t = σ(t, X̄t)dBt, X̄0 = x ∈R
d.(6.1)

Under Condition A, it is well-known (see [66]) that the probability law of X̄ is unique and
Markov. In fact, solutions to equation (6.1) are strongly unique under Condition A. This follows
from the arguments in the proof of Theorem 2.2 in the following section. However, only the
law of X̄ is relevant to our considerations herein. Let Qs,t be the transition operator associated
to X̄ . In particular, we have E(f(X̄t)|Fs) =Qs,tf(X̄s) for any bounded measurable function
f .

LEMMA 6.2. Assuming Condition A1. Let p1, p2 ∈ [1,∞], p1 ⩽ p2. There exists a con-

stant N =N(α,d, p1, p2,K1,K2) such that for every f ∈ Lp1
(Rd) and s⩽ t,

∥Qs,tf∥Lp2 (R
d) ⩽N(t− s)

d

2p2
− d

2p1 ∥f∥Lp1 (R
d).(6.2)

PRO OF . Let X̄n be the solution to the Euler–Maruyama scheme (5.21). It suffices to show
that the laws of X̄n converge to the law of X̄ for (6.2) is then derived from Theorem 5.5.
Let Pn be the probability law of X̄n on C([0,1]). Here C([0,1]) is the space of continuous
functions ω : [0,1]→ R

d equipped with the topology of uniform convergence, the Borel σ-
algebra and the filtration t 7→ Gt = σ{ωs : s ∈ [0, t]}. Let ϕ be a smooth function with bounded
derivatives. By Itô formula, we see that

Mn
t (ω) = ϕ(ωt)− ϕ(x)− 1

2

∫ t

0
aij(r,ωkn(r))∂

2
ijϕ(ωr)dr

is a martingale under Pn(dω). Define

Mt(ω) = ϕ(ωt)− ϕ(x)− 1

2

∫ t

0
aij(r,ωr)∂

2
ijϕ(ωr)dr.

It is easy to see that ∥X̄n
t −X̄n

s ∥Lp(Ω) ≲ (t−s)1/2 for any p⩾ 2 and s⩽ t. This implies that
the probability laws {Pn}n are tight. Let P be a probability measure such that Pn converges
to P through a subsequence, which we still denote by P

n. Let s⩽ t be fixed and G ∈ Gs. We
have∫

δMs,t1GdP=

∫
δMs,t1G(dP− dPn) +

∫
(δMs,t − δMn

s,t)1GdP
n +

∫
δMn

s,t1GdP
n

=: I1 + I2 + I3.

It is evident that limn I1 = 0. Using Hölder continuity of a we have

|I2|≲
∫ [∫ t

s
|ωr − ωkn(r)|αdr

]
dPn(ω)≲

∫ t

s
E|X̄n

r − X̄n
kn(r)

|αdr

≲

∫ t

s
|r− kn(r)|α/2dr.
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This implies that limn I2 = 0. Because Mn is a martingale under Pn, I3 = 0. It follows that∫
δMs,t1GdP= 0, and hence M is a martingale under P. In other words, P is a solution to

the martingale problem associated to equation (6.1), which is unique ([66]). We have shown
that {Pn}n has exactly one accumulating point, which is the law of (6.1). This also means
that X̄n converges weakly to X̄ .

LEMMA 6.3. Assuming Condition A1. Let h be a measurable function on R
d such

that ∥h∥Lρ(Rd) is finite for some ρ ∈ (0,∞]. Then there exists a finite constant N =
N(α,d, ρ,K1,K2) such that for every r, v ∈ [0,1], r > v,

∥h(X̄r)∥Lρ(Ω|Fv) ⩽N(r− v)−
d

2ρ ∥h∥Lρ(Rd).(6.3)

PRO OF . This is a direct consequence of (6.2). The argument is similar to that of Proposi-
tion 5.10(i), hence, is omitted.

The next result is a special case of Theorem 6.1 when b = 0, which is an analogue of
Propositions 4.6 and 4.7.

PRO POSITION 6.4. Let p ∈ (1,∞), q ∈ (2,∞). Let X̄ be a solution to (6.1).
(i) Assuming Condition A1. Let h be a function in L

q1
p1([0,1]) for some p1, q1 ∈ [1,∞]

satisfying d
p1

+ 2
q1
< 2. Then for every m ⩾ 1, there exists a constant N = N(d, p1, q1,m)

such that

∥
∫ 1

0
h(r, X̄r)dr∥Lm(Ω) ⩽N∥h∥Lq1

p1 ([0,1])
.

(ii) Assuming Condition A with q0 =∞ and 1
p +

1
p0
< 1. Let g be a function in L

q
p([0,1])

and let ν ∈ [0,1) such that d
p + 2

q + ν < 2. Then for any p̄ ∈ (0, p), there exists a constant

N =N(ν, d, p, q, p̄) such that

∥ sup
t∈[0,1]

|
∫ t

0
g(r, X̄r)dr|∥Lp̄(Ω) ⩽N∥g∥Lq

−ν,p([0,1])
.

(iii) Assuming Condition A with q0 =∞, 1
p +

1
p0
< 1 and d

p +
2
q < 1. Let g be a function in

L
q
p([0,1]), Γ be a nonnegative number and w1 be a continuous control on ∆. We assume that

for every (s, t) ∈∆,

∥g∥Lq
−1,p([s,t])

⩽ Γw1(s, t)
1

q and ∥g∥Lq
p([s,t]) ⩽w1(s, t)

1

q .

Then for any p̄ ∈ (0, p), there exists a constant N =N(ν, d, p, q, p̄) such that

∥ sup
t∈[0,1]

|
∫ t

0
g(r, X̄r)dr|∥Lp̄(Ω) ⩽NΓ(1 + | log(Γ)|)w1(0,1)

1

q .

PRO OF . (i) Using Minkowski inequality, Lemma 6.3 and Hölder inequality, we have

∥
∫ t

s
h(r, X̄r)dr∥Lp1 (Ω|Fs) ⩽

∫ t

s
∥h(r, X̄r)∥Lp1 (Ω|Fs)dr

≲

∫ t

s
(r− s)

− d

2p1 ∥hr∥Lp1
(Rd)dr ≲ (t− s)

1− d

2p1
− 1

q1 ∥h∥Lq1
p1 ([s,t])

.
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This implies that

Es

∫ t

s
|h(r, X̄r)|dr ≲ (t− s)

1− d

2p1
− 1

q1 ∥h∥Lq1
p1 ([s,t])

.(6.4)

From here, we apply Lemma 3.5 to obtain part (i).
The proofs of parts (ii,iii) are similar to those of Propositions 4.6 and 4.7. The statistical

estimates for Brownian motion are replaced by those obtained in Theorem A.11. The condition
d
p +

2
q + ν < 2 appears when applying Lemma 3.4. We only provide proof of (iii) while the

proof of (ii) is left to the readers.
(iii) For each (s, t) ∈∆, put

As,t = Es

∫ t

s
g(r, X̄r)dr and Js,t =

∫ t

s
g(r, X̄r)dr−As,t.

Define the control w by

w(s, t) =
[
(s− v)−

d

2p (t− s)
1

2
− 1

qw1(s, t)
1

q

]2
+ (s− v)−

d

2p (t− s)1−
1

qw1(s, t)
1

q .

Let ut ∈ L
q
2,p([0, t]) be the solution ([51, Theorem 2.1]) to

(∂s +
1

2
aij∂2ij)u+ g = 0, u(t, ·) = 0.

Applying Itô formula for non-degenerate diffusions (see [69, Lemma 4.1]), we see that As,t =
uts(X̄s). Applying (6.3) and Theorem A.11, we have

∥As,t∥Lp(Ω|Fv) ≲ (s− v)−
d

2p ∥uts∥Lp(Rd) ≲ (s− v)−
d

2p (t− s)
1

2
− 1

q ∥g∥Lq
−1,p([s,t])

.

By our assumption, the previous estimate implies that ∥δJs,u,t∥Lp(Ω|Fv) ≲ Γw(s, t)1/2 for
every v < s⩽ u⩽ t⩽ 1. It is evident that EsJs,t = 0 and hence EsδJs,u,t = 0. This verifies
the conditions (3.2) and (3.3) of Lemma 3.2.

On the other hand, using Minkowski inequality, (6.3) and Hölder inequality, we have

∥Js,t∥Lp(Ω|Fv) ⩽ 2

∫ t

s
∥g(r, X̄r)∥Lp(Ω|Fv)dr ≲

∫ t

s
(r− v)−

d

2p ∥gr∥Lp(Rd)dr

≲ (r− v)−
d

2p (t− s)1−
1

q ∥g∥Lq
p([s,t]) ≲w(s, t),

verifying condition (3.1). An application of Lemma 3.2 yields that ∥Js,t∥Lp(Ω|Fv) ≲ Γ(1 +

| log(Γ)|)w(s, t)1/2 +Γw(s, t) for every v < s⩽ u⩽ t⩽ 1. From here, the argument follows
analogously as in the proof of Proposition 4.6, using Lemma 3.4 to remove the singularity
near v then using Lemma 3.1 to obtain the desired estimate for the supremum.

Proof of Theorem 6.1. Let X̄ be a solution to (6.1). Similar to the proof of Theorem 5.1,
we use Girsanov transformation to deduce the moment estimates for X from those obtained in
Proposition 6.4. Indeed, define the measure P̄ := ρP where

ρ := exp

(
−
∫ 1

0
(σ−1b)(r, X̄r)dBr −

1

2

∫ 1

0

∣∣∣(σ−1b)(r, X̄r)
∣∣∣
2
dr

)
.

From [69, Lemma 4.1] and Novikov criterion, we see that Eρr <∞ for every r ∈ R. By
Girsanov theorem, P̄ is a probability measure and the law of X under P̄ is the same as the
law of X̄ under P. From here, we deduce Theorem 6.1 from Proposition 6.4, using similar
computations as in the proof of Theorem 5.1.

REMARK 6.5. Observe that pathwise uniqueness is not necessary and only weak unique-
ness of (1.1) is used in the above proof. In addition, reasoning as in [41, Lemmas 3.2, 3.3 and
Remark 3.5], one can derive weak uniqueness for (1.1) from Proposition 6.4(i). Consequently,
Theorem 6.1 holds for any adapted solution to (1.1).
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7. Proof of the main results. We present in the current section the proofs of Theorems 2.2
and 2.3. We state a maximal regularity result for parabolic equations, which is a direct
consequence of [69, Theorem 3.2].

LEMMA 7.1. Assume Conditions A-B. Let f ∈ L
q
p([0,1]) and M > 0 be such that

∥f∥Lq
p([0,1]) + ∥b∥Lq

p([0,1]) ⩽M.

Then there exists λ0 = λ0(M,a)⩾ 1 such that that for all λ⩾ λ0, there is a unique solution u
in L

q
2,p([0,1]) to the equation

∂tu+
1

2
aij∂2iju+ b · ∇u+ f = λu, u(1, ·) = 0.(7.1)

Furthermore, for any γ ∈ [0,2), p1 ∈ [p,∞), q1 ∈ [q,∞) with d
p +

2
q < 2− γ + d

p1
+ 2

q1
, there

is a constant C =C(M,γ, p1, q1)> 0 such that for any λ⩾ λ0,

λ
1

2
(2−γ+ d

p1
+ 2

q1
− d

p
− 2

q
)∥u∥Lq1

γ,p1 ([0,1])
+ ∥∂tu∥Lq

p([0,1]) + ∥u∥Lq
2,p([0,1])

⩽C∥f∥Lq
p([0,1]).

LEMMA 7.2. Let Xn be the solution to (1.3). Then for every m⩾ 2,

sup
t∈[0,1]

∥Xn
t −Xn

kn(t)
∥Lm(Ω) ≲ (1/n)

1

2 .

PRO OF . We have

Xn
t −Xn

kn(t)
=

∫ t

kn(t)
bn(r,Xn

kn(t)
)dr+

∫ t

kn(t)
σ(r,Xn

kn(t)
)dBr.

Using BDG inequality and Hölder, we have

∥Xn
t −Xn

kn(t)
∥Lm(Ω) ≲ (t− kn(t))

1− 1

q ∥bn∥Lq
∞([kn(t),t]) + (t− kn(t))

1/2.

Using t− kn(t)⩽ 1/n and Condition B,

(t− kn(t))
1− 1

q ∥bn∥Lq
∞([kn(t),t]) ≲ (1/n)

1

2 .

Combining these estimates, we obtain the result.

Recall that U is the solution to the equation (2.3). Under Conditions A-B, there exists
λ0 > 0 such that for every λ⩾ λ0, ∇U is bounded Hölder continuous on [0,1]×R

d,

sup
n

[
∥∂tU∥Lq

p([0,1]) + ∥U∥Lq
2,p([0,1])

]
<∞ and sup

n
sup

(t,x)∈[0,1]×Rd

|∇U(t, x)|= oλ(1),

(7.2)

where oλ(1) denotes any constant such that limλ→∞ oλ(1) = 0. Indeed, existence and unique-
ness and the first estimate in (7.2) follow from Lemma 7.1. Hölder continuity of ∇U and the
second estimate in (7.2) follow by applying [41, Lemma 10.2] and the estimate in Lemma 7.1.
Let M be the Hardy–Littlewood maximal operator defined as

Mf(x) := sup
0<r<∞

1

|Br|

∫

Br

f(x+ y)dy, Br := {x ∈R
d : |x|< r}, r > 0.

It is well-known that M is bounded on Lp(R
d). Thus we have

∥Mf∥Lq
p([0,1]) ≲ ∥f∥Lq

p([0,1]).(7.3)
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Define

(7.4) An
t := t+

∫ t

0

[
M|∇2U |(s,Xs) +M|∇2U |(s,Xn

s )
]2
ds

+

∫ t

0
[M|∇σ|(s,Xs) +M|∇σ|(s,Xn

s )]
2 ds.

PROPOSI TION 7.3. For every p̄ ∈ (1, p), there exists a finite positive constant cp̄ such

that ∥∥∥∥∥e
−cp̄|An

1 |
max(p̄/2,1)

sup
t∈[0,1]

|Xt −Xn
t |
∥∥∥∥∥
Lp̄(Ω)

≲ ∥x0 − xn0∥Lp̄(Ω) +ϖn(p̄)

+ (1/n)
α

2 + (1/n)
1

2 log(n).

PRO OF . Applying Itô’s formula ([69, Lemma 4.1]) for U(t,Xt), we obtain that

(7.5)
∫ t

0
bn(r,Xr)dr = U(0,X0)−U(t,Xt) + λ

∫ t

0
U(r,Xr)dr

+

∫ t

0
∇U(r,Xr)[b(r,Xr)− bn(r,Xr)]dr+

∫ t

0
(∇U · σ)(r,Xr)dBr,

and similarly,
∫ t

0
bn(r,Xn

r )dr = U(0,Xn
0 )−U(t,Xn

t ) + λ

∫ t

0
U(r,Xn

r )dr

+

∫ t

0
∇U(r,Xn

r )[b
n(r,Xn

kn(r)
)− bn(r,Xn

r )]dr

+

∫ t

0
∇2U(r,Xr)[a(r,X

n
kn(r)

)− a(r,Xn
r )]dr

+

∫ t

0
∇U(r,Xn

r )σ(r,X
n
kn(r)

)dBr.(7.6)

From equations (1.1) and (1.3), we have

Xt −Xn
t = x0 − xn0 +

∫ t

0
[bn(r,Xr)− bn(r,Xn

r )]dr

+

∫ t

0
[b(r,Xr)− bn(r,Xr)]dr+

∫ t

0
[bn(r,Xn

r )− bn(r,Xn
kn(r)

)]dr

+

∫ t

0
[σ(r,Xr)− σ(r,Xn

r )]dBr +

∫ t

0
[σ(r,Xn

r )− σ(r,Xn
kn(r)

)]dBr.

We plug (7.5) and (7.6) into the previous identity, raise to p̄-th power to find that

ξt := sup
s∈[0,t]

|Xs −Xn
s |p̄ ≲ |x0 − xn0 |p̄ + V 0

t +

3∑

i=1

V i
t +

3∑

i=1

Iit ,
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where

V 0
t = |U(0, x0)−U(0, xn0 )|p̄ + sup

s∈[0,t]
|U(s,Xs)−U(s,Xn

s )|p̄

+ λp̄
∣∣∣
∫ t

0
|U(r,Xr)−U(r,Xn

r )|dr
∣∣∣
p̄

,

V 1
t = sup

s∈[0,t]

∣∣∣
∫ s

0
[I +∇U(r,Xr)][b(r,Xr)− bn(r,Xr)]dr

∣∣∣
p̄
,

V 2
t = sup

s∈[0,t]

∣∣∣
∫ s

0
[I +∇U(r,Xn

r )][b
n(r,Xn

r )− bn(r,Xn
kn(r)

)]dr
∣∣∣
p̄
,

V 3
t = sup

s∈[0,t]

∣∣∣
∫ s

0
∇2U(r,Xr)[a(r,X

n
kn(r)

)− a(r,Xn
r )]dr

∣∣∣
p̄
,

I1t = sup
s∈[0,t]

∣∣∣
∫ s

0
[I +∇U(r,Xn

r )][σ(r,Xr)− σ(r,Xn
r )]dBr

∣∣∣
p̄
,

I2t = sup
s∈[0,t]

∣∣∣
∫ s

0
[I +∇U(r,Xn

r )][σ(r,X
n
r )− σ(r,Xn

kn(r)
)]dBr

∣∣∣
p̄
,

I3t = sup
s∈[0,t]

∣∣∣
∫ s

0
[∇U(r,Xr)−∇U(r,Xn

r )] · σ(r,Xr)dBr

∣∣∣
p̄
.

Using (7.2) and Cauchy–Schwarz inequality

V 0
t ≲ |x0 − xn0 |p̄ + oλ(1) sup

s∈[0,t]
|Xs −Xn

s |p̄ +
(∫ t

0
ξ2/p̄r dr

) p̄

2

.

To estimate I1, I2, I3, we will utilize a special case of the pathwise Burkholder–Davis–
Gundy (BDG) inequality of [65, Theorem 5]. Namely, there exists a constant C = C(p̄, d)

such that for any cádlág martingale M̄ , there exists a local martingale M̃ such that with
probability one,

sup
s∈[0,t]

|M̄s|p̄ ⩽C[M̄ ]
p̄

2

t + M̃t, ∀t.

In the above, [M̄ ] is the quadratic variation of M̄ . We now estimate I1. By property of maximal
function (see [28, Proposition C.1]) and continuity of σ, we have for every r ∈ [0,1] and every
x, y ∈R

d

|σ(r,x)− σ(r, y)|≲ |x− y|(M|∇σ(r,x)|+M|∇σ(r, y)|).
Using this, (7.2) and the pathwise BDG inequality, we can find a local martingale M1 such
that

I1t ≲

(∫ t

0
|I +∇U(r,Xn

r )|2|Xr −Xn
r |2 (M|∇σ|(r,Xr) +M|∇σ|(r,Xn

r ))
2 dr

) p̄

2

+M1
t

≲

(∫ t

0
ξ2/p̄r dAn

r

) p̄

2

+M1
t .

Similarly,

I3t ≲

(∫ t

0
ξ2/p̄r dAn

r

) p̄

2

+M3
t
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for some local martingale M3. Using Lemma 7.2, (7.2), Hölder continuity of σ and the
pathwise BDG inequality, we have

I2t ≲

(∫ t

0
|Xn

r −Xn
kn(r)

|2αdr
) p̄

2

+M2
t ≲ (1/n)p̄

α

2 +M2
t .

It follows that

ξt ≲ oλ(1)ξt +

(∫ t

0
ξ2/p̄dAn

) p̄

2

+ Vt +Mt

where V = |x0−xn0 |p̄+V 1+V 2+V 3 andM =M1+M2+M3. By choosing λ sufficiently
large, this deduces to

ξt ≲

(∫ t

0
ξ2/p̄dAn

) p̄

2

+ Vt +Mt

Applying stochastic Grönwall lemma, Lemma 3.8, we have

Ee−cp̄|An
1 |

max(p̄/2,1)

ξ1 ⩽ EV1(7.7)

for some finite positive constant cp̄. In view of Definition 2.1, it is evident that

EV 1
1 ≲ϖn(p̄)

p̄.

Using Theorem 5.1, (7.2) and Condition B, we have

EV 2
1 ≲

[
(1/n)1−

1

q βn(b
n) + (1/n)

α

2 + (1/n)
1

2 log(n)
]p̄

≲
[
(1/n)

α

2 + (1/n)
1

2 log(n)
]p̄
.

Using Condition A and Cauchy–Schwarz inequality, we have

EV 3
1 ≲ E

∣∣∣
∫ 1

0
|∇2U(r,Xr)||Xn

r −Xn
kn(r)

|αdr
∣∣∣
p̄

⩽ E

(∫ 1

0
|∇2U(r,Xr)|2dr

) p̄

2
(∫ 1

0
|Xn

r −Xn
kn(r)

|2αdr
) p̄

2

⩽

[
E

(∫ 1

0
|∇2U(r,Xr)|2dr

)p̄
]1/2 [

E

(∫ 1

0
|Xn

r −Xn
kn(r)

|2αdr
)p̄
]1/2

.

In view of (7.2), Theorem 6.1(i) and Lemma 7.2

EV 3
1 ≲ (1/n)p̄

α

2 .

The previous estimates for EV i
1 ’s and (7.7) yield the result.

LEMMA 7.4. Let ρ ∈ (0, p∧p0

d ) and κ > 0 be some fixed constants. Then supnEe
κ|An

1 |
ρ

is finite.

PRO OF . We observe that

EsδA
n
s,t ≲ (t− s) + (t− s)1−

d

p
− 2

q ∥M|∇2u|∥2
L

q
p([s,t])

+ (t− s)
1− d

p0
− 2

q0 ∥M|∇σ|∥2
L

q0
p0 ([s,t])

.

Indeed, the estimates for functionals ofXn follow from Proposition 5.10 and Girsanov theorem.
The estimates for the functionals of X follows from (6.4), Lemma 3.5 and Girsanov theorem;
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or alternatively can be derived from those of Xn and the weak convergence of Xn to X . In
view of Remark 3.6, this implies that for any λ⩾ 0

EeλA
n
1 ≲ ecλ

a

,
1

a
= 1− d

p∧ p0
,

where c is some universal positive constant. For simplicity, we write A for An
1 below. For

every x > 0, using Chebyshev inequality, we have

P(A> x) = P(eλA > eλx)⩽ e−λx
EeλA ≲ e−λx+cλa

.

One can optimize in λ to obtain that for every x bounded away from 0,

P(A> x)≲ e−cxa′

,
1

a
+

1

a′
= 1,

where c is another positive constant. In view of layer cake representation

EeκA
ρ

= κρ

∫ ∞

0
eκx

ρ

xρ−1
P(A> x)dx,

we see that EeκA
ρ

is finite if ρ < a′, completing the proof because a′ = (p∧ p0)/d.

Proof of Theorem 2.2. For p̄ ∈ (0,2p∧p0

d ), we obtain from Lemma 7.4 that the quantity

supnEe
κ|An

1 |
max(γ/2,1)

is finite for any constant positive κ. From here, we obtain (2.4) from
Proposition 7.3 and Hölder inequality.

Proof of Theorem 2.3. We put g =∇U . From Lemma 7.1, we have

sup
n
(∥g∥Lq2

ν,p2 ([0,1])
+ ∥g∥L∞

∞
([0,1]) + ∥g∥Lq

1,p([0,1])
)<∞

for all p2 ∈ [p,∞), q2 ∈ [q,∞) and ν ∈ [0,1) with

d

p
+

2

q
+ ν − 1<

d

p2
+

2

q2
.(7.8)

Part (i). Let p1, q1 be as in Theorem 2.3(i). From Theorem 6.1(i), we have

ϖn(m)≲ ∥(1 + g)(b− bn)∥Lq1
p1
≲ (1 + ∥g∥L∞

∞
)∥b− bn∥Lq1

p1

which shows (2.6).
Part (ii). Define q3 by 1

q3
= 1

q2
+ 1

q . For each ν ∈ [0,1] and p3 ∈ (1,∞) satisfying

1

p
⩽

1

p3
⩽

1

p
+

1

p2
<

1

p3
+
ν

d
,(7.9)

an application of Lemma A.3(ii) and Hölder inequality shows that the pointwise multiplication
is a continuous bilinear map

L
q
−ν,p([0,1])×L

q2
ν,p2

([0,1])→ L
q3
−ν,p3

([0,1]).

If p3 can be chosen such that

d

p3
+

2

q2
+

2

q
< 2− ν,(7.10)

then Theorem 6.1(ii) can be applied, which gives for every p̄ ∈ (0, p3),

∥ sup
t∈[0,t]

|
∫ t

0
g(b− bn)(r,Xr)dr|∥Lp̄(Ω) ≲ ∥g(b− bn)∥Lq3

−ν,p3
≲ ∥b− bn∥Lq

−ν,p
,
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To obtain the last step, we apply the multiplication result above to see that

∥g(b− bn)∥Lq3
−ν,p3

≲ ∥g∥Lq2
ν,p2

∥b− bn∥Lq
−ν,p

≲ ∥b− bn∥Lq
−ν,p

.

On the other hand, applying Theorem 6.1(ii), we have

∥ sup
t∈[0,1]

|
∫ t

0
(b− bn)(r,Xr)dr|∥Lp̄(Ω) ≲ ∥b− bn∥Lq

−ν,p
.

These estimates verify (2.8).
Next, we verify that it is possible to choose p2, q2, p3 satisfying all the above conditions.

Given p2, q2, p, q, ν, there exists p3 ∈ (1,∞) satisfying (7.9) and (7.10) iff




d

p
< 2− ν − 2

q2
− 2

q

d

p
+
d

p2
− ν < 2− ν − 2

q2
− 2

q

which is deduced to

(7.11)





2

q2
< 2− ν − d

p
− 2

q

d

p2
+

2

q2
< 2− d

p
− 2

q
.

Given p, q, ν, the existence p2 ∈ [p,∞), q2 ∈ [q,∞) satisfying (7.8) and (7.11) is equivalent to
the problem (P): given real numbers a > 0, b > 0 and c1 < c2, find x ∈ (0, a), y ∈ (0, b) such
that c1 < x+y < c2. Here, we have put x= d/p2, y = 2/q2, a= d/p, b=min(2/q,2−ν−ζ),
c1 = ζ + ν − 1, c2 = 2− ζ and ζ = d/p+ 2/q. With some plotting aid, it is seen that this
problem has a solution (x, y) iff c1 < a+ b and c2 > 0. This deduces to the condition (2.7).

Since (2.8) is valid for all p̄ ∈ (0, p3), it remains to identify the largest possible value for
p3, denoted by p∗3. From (7.9) and (7.10), we see that

1

p∗3
=max

(
1

p
,
1

p
+

1

p2
− ν

d

)
.

We observe that the problem (P) with the additional constraint d/p2 ⩽ ν has a solution (x, y)
iff (2.7) holds. In other words, we can choose p2 so that d/p2 ⩽ ν and hence p∗3 = p. This
shows that (2.8) holds for every p̄ ∈ (0, p).

Part (iii). When ν = 1, we ought to take p2 = p, q2 = 2. We can also choose p3 = p and
q3 = q/2. Condition (7.9) is trivially satisfied while condition (7.10) is verified by (2.9). Define
the control w1 by

w1(s, t) =
(
∥g∥q/2

L
q
−1,p([s,t])

+ ∥g∥q/2
L

q
∞([s,t])

)
w0(s, t)

1/2

Then by the multiplication result above, Hölder inequality and (2.10), we have

∥g(b− bn)∥
L

q/2
−1,p([s,t])

≲ ∥g∥Lq
−1,p([s,t])

∥b− bn∥Lq
−1,p([s,t])

≲ Γw1(s, t)
2

q ,

∥g(b− bn)∥
L

q/2
p ([s,t]) ≲ ∥g∥Lq

∞([s,t])∥b− bn∥Lq
p([s,t]) ≲w1(s, t)

2

q .

We then apply Theorem 6.1(iii) to get

∥ sup
t∈[0,t]

|
∫ t

0
g(b− bn)(r,Xr)dr|∥Lp̄(Ω) ≲ Γ(1 + | logΓ|)w1(0,1)

2

q

≲ Γ(1 + | logΓ|)w0(0,1)
1

q .
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On the other hand, applying Theorem 6.1(iii) under condition (2.10) yields

∥ sup
t∈[0,1]

|
∫ t

0
(b− bn)(r,Xr)dr|∥Lp̄(Ω) ≲ Γ(1 + | logΓ|)w0(s, t)

1

q .

Combining the previous two estimates, we obtain (2.11).

8. Application: stochastic transport equations. Let (Wt) be a standard d-dimensional
Brownian motion on a filtered probability space (Ω,F , (Ft)t∈[0,1],P) and let b : [0,1]×R

d →
R
d be a Borel measurable function satisfying (1.2). In this section, we propose a numerical

scheme for the following (forward) stochastic linear transport equation

∂tu+ b · ∇u+∇u ◦ dWt = 0, u(0, x) = ρ(x),(8.1)

where ρ ∈ ∩r⩾1L1,r(R
d) and ∇u ◦ dWt is interpreted in Stratonovich sense. As in [17], we

say u is a weakly differentiable solution to (8.1) if

• u : Ω× [0,1]×R
d →R is measurable,

∫
Rd u(t, x)ψ(x)dx is progressively measurable for

each ψ ∈C∞
0 (Rd);

• P(u(t, ·) ∈ ∩r⩾1L
loc
1,r(R

d)) = 1 for t ∈ [0,1] and both u and ∇u are inC([0,1];∩r⩾1L
r(Rd×

Ω));
• for any ψ ∈C∞

0 (Rd) and t ∈ [0,1] with probability one the following holds
∫

Rd

u(t, x)ψ(x)dx+

∫ t

0

∫

Rd

b(s,x) · ∇u(s,x)ψ(x)dxds

=

∫

Rd

ρ(x)ψ(x)dx+

d∑

i=1

∫ t

0

(∫

Rd

u(s,x)∂xi
ψ(x)dx

)
dW i

s

+
1

2

∫ t

0

∫

Rd

u(s,x)∆ψ(x)dxds.

It is known from [17, Theorems 10, 11] that a weakly differentiable solution u to (8.1) exists
uniquely and has the representation u(τ,x) = ρ(ϕτ0(x)), where ϕτ0(x) is the inverse of the
stochastic flow of homeomorphisms generated by the solution (Xτ (x))τ∈[0,1] to the SDE

dXτ (x) = b(τ,Xτ (x))dτ + dWτ , τ ∈ [0,1], X0(x) = x.(8.2)

For each fixed τ ∈ [0,1], consider the backward-in-time SDE

Xτ,s(x) = x−
∫ τ

s
b(r,Xτ,r(x))dr+Ws −Wτ , 0⩽ s⩽ τ, Xτ,τ (x) = x.(8.3)

The inverse flow ϕτ0(x) is directly related to the solution to the previous SDE through the rela-
tion ϕτ0(x) =Xτ,0(x). Indeed, when b is a smooth bounded function with bounded derivatives,
this relation is classical, see [42, Theorem 3.7.1]. When b belongs to L

q
p, one can approximate

it by smooth functions. Because both ϕτ0(x),Xτ,0(x) are stable under this approximation
(see [17, Lemma 3] and [22, Theorem 1.2] respectively), the relation holds true in this case.
Alternatively, another argument for this fact is recently provided in [3] utilizing path-by-path

uniqueness of (8.2).
To devise a numerical scheme for (8.1), it convenes to introduce Xτ

s (x) :=Xτ,τ−s(x). By
a change of variables, we find that

Xτ
s (x) = x−

∫ s

0
bτ (r,Xτ

r (x))dr+W τ
s , 0⩽ s⩽ τ,(8.4)
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where bτ (r,x) := b(τ − r,x) and W τ
r :=Wτ −Wτ−r for r ∈ [0, τ ]. Observe that (W τ

t )t∈[0,τ ]
is a (Fτ

t )-Brownian motion with Fτ
t := σ(Wτ−r1 −Wτ−r2 ,0 ⩽ r1 ⩽ r2 ⩽ t) for t ∈ [0, τ ].

Hence, we have the representation u(τ,x) = ρ(Xτ
τ (x)). This naturally suggests the numerical

scheme

un(τ,x) = ρ(Xτ,n
τ (x)),

where for each τ ∈ (0,1], (Xτ,n
s )s∈[0,τ ] is the tamed Euler–Maruyama approximation for (8.4),

namely

Xτ,n
s (x) = x−

∫ s

0
bτ,n(r,Xτ,n

kn(r)
(x))dr+W τ

s , 0⩽ s⩽ τ.(8.5)

Here, bτ,n(r,x) := bn(τ − r,x) for r ∈ [0, τ ] and bn is an approximation for b satisfying
Condition B.

THEOR EM 8.1. Suppose that Condition B holds. Let ν ∈ [0,1) satisfy (2.7) and p1, q1 ∈
[1,∞] satisfy d

p1
+ 2

q1
< 2. Then for any l ∈ (1, p ∧ 2p

d ), any r̄ ∈ (1,∞) satisfying 1
r̄ <

1
l −

1
p(1∨ d

2), we have

sup
(τ,x)∈[0,1]×Rd

τ
d

2r̄ ∥un(τ, x)− u(τ, x)∥Ll(Ω)

⩽N∥∇ρ∥Lr̄(Rd)((1/n)
1

2 logn+min(∥b− bn∥Lq1
p1 ([0,1])

,∥b− bn∥Lq
−ν,p([0,1])

)),(8.6)

where N depends on K4, p, d, l, p1, q1 and r̄.

PRO OF . We put b(r,x) = 0 and bn(r,x) = 0 whenever r ∈ R \ [0,1] so that bτ (r,x)
and bτ,n(r,x) are well-defined functions on [0,1]×R

d. Let (Ŵt)t∈[0,1] be a standard (F̂t)-
Brownian motion which is independent from (Wt)t∈[0,1] and define

W τ
r :=

{
Wτ −Wτ−r if r ∈ [0, τ ],

Wτ + Ŵr − Ŵτ if r ∈ (τ,1],
(8.7)

which is a standard Brownian motion with respect to the filtration (Gτ
t )t∈[0,1] := (Fτ

t∧τ ∨
F̂t∨τ )t∈[0,1]. Equations (8.4) and (8.5) (for each fixed τ ∈ [0,1]) are extended uniquely over
the whole time interval [0,1].

By property of maximal function and continuity of ρ (see [28, Proposition C.1]) we have
for every x, y ∈R

d,

|ρ(x)− ρ(y)|≲ |x− y|(M|∇ρ|(x) +M|∇ρ|(y)).
It follows that

|u(τ,x)− un(τ,x)|≲ |Xτ
τ (x)−Xτ,n

τ (x)|(M|∇ρ|(Xτ
τ (x)) +M|∇ρ|(Xτ,n

τ (x))).(8.8)

Next, we estimate the terms on the right-hand side of the previous inequality.
In order to apply Theorem 2.2 to obtain estimates for Xτ(x) −Xτ,n(x), we verify that

bτ and bτ,n fulfill Condition B for each τ . Indeed, it is evident that bτ ∈ L
q
p([0,1]), bτ,n ∈

L
q
p([0,1])∩L

q
∞([0,1]) and that ∥bτ,n∥Lq

p([0,1]) ⩽ ∥bn∥Lq
p([0,1]) which is bounded uniformly in

n. In addition, define µτ,n(s, t) = µn((τ − t)∨ 0, (τ − s)∨ 0), which is a continuous control
on the simplex ∆([0,1]). We have ∥bτ,n∥Lq

∞([s,t]) = ∥bn∥Lq
∞([(τ−t)∨0,(τ−s)∨0]) and hence by

(2.2)

(1/n)
1

2
− 1

q ∥bτ,n∥Lq
∞([s,t]) ⩽ µτ,n(s, t)θ.
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Similarly, ∥bτ,n∥Lq
p([0,1]) = ∥bn∥Lq

p([0,τ ]) ⩽ ∥bn∥Lq
p([0,1]) and µτ,n(0,1) = µn(0, τ)⩽ µn(0,1)

so that

sup
n⩾1

(
∥bτ,n∥Lq

p([0,1]) + µτ,n(0,1)
)
⩽K4,

where K4 is the constant in Condition B.
Hence Theorem 2.3(i-ii) yields that for p̄ ∈ [1, p)

ϖn(p̄)⩽Nmin(∥b− bn∥Lq1
p1 ([0,1])

,∥b− bn∥Lq
−ν,p([0,1])

).

Theorem 2.2 yields for any γ ∈ (0,1) and p̄ ∈ [1, p∧ 2p
d ),

sup
(t,x)∈[0,1]×Rd

∥Xτ
t (x)−Xτ,n

t (x)∥Lγp̄(Ω)

⩽N
(
n−1/2 logn+min(∥b− bn∥Lq1

p1 ([0,1])
,∥b− bn∥Lq

−ν,p([0,1])
)
)
.(8.9)

The constant N depends on K4, ν, p, q, p1, q1, p̄.
Similar to the arguments used in the proofs of Theorems 5.1 and 6.1, using Girsanov

theorem, one can deduce the estimates for Xτ,n,Xτ to estimates for Brownian motion, which
are obtained in Lemma 4.1. Hence, for any r̄ > r > 1, we have that

∥M|∇ρ|(Xτ
τ (x))∥Lr(Ω) ≲ ∥M|∇ρ|(Bτ )∥Lr̄(Ω) ≲ τ−

d

2r̄ ∥M|∇ρ|∥Lr̄(Rd) ≲ τ−
d

2r̄ ∥∇ρ∥Lr̄(Rd),

and similarly,

∥M|∇ρ|(Xτ,n
τ (x))∥Lr(Ω) ≲ τ−

d

2r̄ ∥∇ρ∥Lr̄(Rd).

Given l, r̄ as in the statement, we can choose r ∈ (1, r̄), p̄ ∈ [1, p), γ ∈ (0,1) such that
1
r +

1
γp̄ =

1
l . From (8.8), applying Hölder inequality, we have

∥un(τ,x)− u(τ,x)∥Ll(Ω)

≲ ∥Xτ
τ (x)−Xτ,n

τ (x)∥Lγp̄(Ω)(∥M|∇ρ|(Xτ
τ (x))∥Lr(Ω) + ∥M|∇ρ|(Xτ,n

τ (x))∥Lr(Ω)).

Combining with the estimates obtained previously, we obtain that

∥un(τ,x)− u(τ,x)∥Ll(Ω)

≲ τ−
d

2r̄ ∥∇ρ∥Lr̄(Rd)

(
n−1/2 logn+min(∥b− bn∥Lq1

p1 ([0,1])
,∥b− bn∥Lq

−ν,p([0,1])
)
)
,

which implies (8.6).

APPENDIX: PARABOLIC EQUATIONS WITH DISTRIBUTIONAL FORCING

In this section we show the well-posedness and regularity estimates for the solutions for a
class parabolic equations with distributional forcing, which are used in Section 6 and have
their own interests. Although such equations have been considered extensively in literatures,
for instance in [40], [37], [72] and [69], the available results therein are valid under different
hypotheses and are not applicable to our situations.

For each r ∈ [1,∞], we denote its Hölder conjugate by r′, i.e. 1
r +

1
r′ = 1. For each Banach

space E , we denote its topological dual by E∗, and the dual paring between E and E∗ by
⟨·, ·⟩E∗,E . We consider the parabolic partial differential equations (PDEs)

(∂s + aij∂2ij)u= f, u(1, ·) = 0(A.10)



50

and

∂tv− ∂2ij(a
ijv) + g = 0, v(0, ·) = 0(A.11)

under the following assumptions:6

COND ITION A′ .

1. a is a d× d-symmetric matrix-valued measurable function on [0,1]×R
d. There exists a

constant k1 ∈ [1,∞) such that for every s ∈ [0,1] and x ∈R
d

k−1
1 I ⩽ a(s,x)⩽ k1I.(A.12)

Furthermore, a(s, ·) is weakly differentiable for a.e. s ∈ [0,1] and k3 := ∥∇a∥L∞

p0
([0,1]) is

finite for some p0 ∈ (d,∞).
2. f ∈ L

q
−1,p([0,1]) and g ∈ L

q′

−1,p′([0,1]) for some p, q ∈ (1,∞) satisfying 1
p +

1
p0
< 1.

DEFI NITI ON A.2. A measurable function u : [0,1]×R
d →R is a solution to (A.10) if

u ∈ L
q
1,p([0,1]), ∂su ∈ L

q
−1,p([0,1]), u(1, ·) = 0 and equation (A.10) holds in L

q′

−1,p′([0,1]),

i.e. for every ϕ ∈ L
q′

1,p′([0,1])

∫ 1

0
⟨(∂s + aij∂2ij)ut, ϕt⟩L−1,p(Rd)×L1,p′ (Rd)dt=

∫ 1

0
⟨ft, ϕt⟩L−1,p(Rd)×L1,p′ (Rd)dt.(A.13)

Likewise, a measurable function v : [0,1]×R
d is a solution to (A.11) if v ∈ L

q′

1,p′([0,1]),

∂tv ∈ L
q′

−1,p′([0,1]), v(0, ·) = 0 and equation (A.11) holds in L
q
−1,p([0,1]), i.e. for every

ϕ ∈ L
q
1,p([0,1])

∫ 1

0
⟨∂tvs − ∂2ij(a

ijvs), ϕs⟩L−1,p′ (Rd)×L1,p(Rd)ds+

∫ 1

0
⟨gs, ϕs⟩L−1,p′ (Rd)×L1,p(Rd)ds= 0.

(A.14)

In the above definitions, we have implicitly understood that aij∂2iju and ∂2ij(a
ijv) are well-

defined distributions in L
q′

−1,p′([0,1]) and L
q
−1,p([0,1]) respectively. To see this, we need the

following multiplication result:

LEMMA A.3. Let p, p1, p2 be real numbers in (1,∞) and let ν ∈ (0,1].
(i) Assume that p1, p2 ⩾ p and that 1

p ⩽
1
p1

+ 1
p2
< 1

p +
ν
d . Then the pointwise multiplication

is a continuous bilinear map

Lν,p1
(Rd)×Lν,p2

(Rd)→ Lν,p(R
d).

(ii) Assume that p1 ⩾ p, that p2 ⩾ p′1 and that 1
p ⩽ 1

p1
+ 1

p2
< 1

p +
ν
d . Then the pointwise

multiplication is a continuous bilinear map

L−ν,p1
(Rd)×Lν,p2

(Rd)→ L−ν,p(R
d).

6Parabolic PDEs with distributional forcing have been considered by Kim [37]. However, his result is applicable
to (A.10) and (A.11) only when a is continuously differentiable in the spatial variables with bounded derivatives
and p⩽ q hence Condition A

′ is excluded.
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(iii) Let g be a bounded measurable function such that ∇g ∈ Lp0
(Rd) for some p0 ∈ (d,∞).

Let f be in L1,p′(Rd), h be in L−1,p(R
d) and assume that 1

p +
1
p0
< 1. Then fg belongs to

L1,p′(Rd), gh belongs to L−1,p(R
d) and

∥fg∥L1,p′ (Rd) ≲ (∥g∥L∞(Rd) + ∥∇g∥Lp0 (R
d))∥f∥L1,p′ (Rd),(A.15)

∥gh∥L−1,p(Rd) ≲ (∥g∥L∞(Rd) + ∥∇g∥Lp0
(Rd))∥h∥L−1,p(Rd).(A.16)

PRO OF . (i-ii) are consequences of [72, Lemma 2.2]. Concerning (iii), define p3 by 1
p′ =

1
p0

+ 1
p3

. Then by Hölder inequality

∥∇gf∥Lp′ (Rd) ⩽ ∥∇g∥Lp0
(Rd)∥f∥Lp3

(Rd).

The embedding L1,p′(Rd) →֒ Lp3
(Rd) is valid if 1

p′ − 1
d ⩽

1
p3

⩽ 1
p′ , which is justified by our

assumption. It follows that ∥∇gf∥Lp′ (Rd) ≲ ∥∇g∥Lp0
(Rd)∥f∥L1,p′ (Rd). It is evident that

∥gf∥Lp′ (Rd) + ∥g∇f∥Lp′ (Rd) ≲ ∥g∥L∞(Rd)∥f∥L1,p′ (Rd).

From here, we obtain (A.15). To show (A.16), we note that by duality and (A.15),

∥fgh∥L1(Rd) ≲ ∥h∥L−1,p(Rd)∥fg∥L1,p′ (Rd)

≲ ∥h∥L−1,p(Rd)(∥g∥L∞(Rd) + ∥∇g∥Lp0 (R
d))∥f∥L1,p′ (Rd).

This implies (A.16) by duality.

PRO POSITI ON A.4. For every u ∈ L
q
1,p([0,1]) and v ∈ L

q′

1,p′([0,1]), under Condition A′

we have

aij∂2iju ∈ L
q
−1,p([0,1]) and ∂2ij(a

ijv) ∈ L
q′

−1,p′([0,1]).

PRO OF . Using Lemma A.3(iii), we see that

∥aij∂2iju∥L−1,p(Rd) ≲ (∥aij∥L∞(Rd) + ∥∇aij∥Lp0 (R
d))∥∂2iju∥L−1,p(Rd)

≲ (∥aij∥L∞(Rd) + ∥∇aij∥Lp0 (R
d))∥u∥L1,p(Rd)

and

∥∂2ij(aijv)∥L−1,p′ (Rd) ≲ ∥aijv∥L1,p′ (Rd) ≲ (∥aij∥L∞(Rd) + ∥∇aij∥Lp0
(Rd))∥v∥L1,p′ (Rd).

These estimates imply the result.

THEOREM A.5. Under Condition A′, there exist a unique solution u to (A.10) and a

unique solution v to (A.11). Furthermore, we have

∥u∥Lq
1,p([0,1])

+ ∥∂su∥Lq
−1,p([0,1])

⩽N∥f∥Lq
−1,p([0,1])

,(A.17)

∥v∥
L

q′

1,p′
([0,1])

+ ∥∂tv∥Lq′

−1,p′
([0,1])

⩽N∥g∥
L

q′

−1,p′
([0,1])

,(A.18)

where N is a finite positive constant depending on d, p, q, p0, k1, k3.

Before giving the proof of the above theorem, we show several auxiliary results.

LEMMA A.6 ([72, Lemma 4.1]). Let ζ be a nonzero smooth function with compact

support. Define ζz(x) = ζ(x − z). For any ν ∈ R and p ∈ (1,∞), there exists a constant

C ⩾ 1 depending only on ν, p, ζ such that for any f ∈ Lν,p(R
d),

C−1∥f∥Lν,p(Rd) ⩽

(∫

Rd

∥fζz∥pLν,p(Rd)dz

)1/p

⩽C∥f∥Lν,p(Rd).
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LEMMA A.7 ([37, Lemma 2.5]). For k = 1, . . . , n, let ak :R+ →R
d ×R

d be a measur-

able function satisfying (A.12). For fixed ν ∈ R, p ∈ (1,∞), let uk ∈ L
q
ν,p([0,1]) solve the

following PDE

(∂s + aijk ∂
2
ij)u

k = fk, u(1, ·) = 0.

Then
∫ 1

0

n∏

k=1

∥∇2uk(t)∥pLν,p(Rd)dt⩽N

n∑

k=1

∫ 1

0
∥fk∥pLν,p(Rd)

∏

j ̸=k

∥∇2uj(t)∥pLν,p(Rd)dt.

We will make use the following:
Convention. For a parameter ρ > 0, we write oρ and Cρ for any constants whose exact values
depend on ρ and may change from one instance to another, but it is always enforced that
limρ→0 oρ = 0. In particular, the inequalityA≲D+oρF +CρE means thatA⩽ cD+coρF +
cCρE for some constant c independent from ρ.

LEMMA A.8. Assuming Condition A′. Let ψ1 be a smooth function supported in the ball

B1 := {x ∈ R
d : |x|⩽ 1}. For each ρ > 0 and z ∈ R

d, define Bz
ρ := {x ∈ R

d : |x− z|⩽ ρ},

ψz
ρ(x) := ψ1(

x−z
ρ ) and a(z)(t, x) = 1

|Bz
ρ |

∫
Bz

ρ
a(t, y)dy. Then we have

sup
(t,z)∈[0,1]×Rd

∥(a− a(z))ψz
ρ∥L1,p0

(Rd) ≲ oρ(A.19)

Here ψz
ρ(x) := ψ1(

x−z
ρ ), x, z ∈R

d, ρ > 0.

PRO OF . Observe that

I1 := sup
z∈Rd

∥(a− a(z))ψz
ρ∥Lp0

(Rd) ≲ ∥ψ1∥L∞(Rd)∥a∥L∞(Rd)∥1B2ρ
∥Lp0

(Rd)

and

I2 := sup
z∈Rd

∥∇aψz
ρ∥Lp0

(Rd) ≲ ∥ψ1∥L∞(Rd)∥∇a · 1B2ρ
∥Lp0

(Rd).

Using Poincaré inequality ([24, Theorem 3.17])

I3 := sup
z∈Rd

∥(a− a(z))∇ψz
ρ∥Lp0 (R

d) ≲ ∥∇ψ1∥L∞(Rd)∥∇a · 1B2ρ
∥Lp0 (R

d).

Condition A′ implies that I1 + I2 + I3 ⩽ oρ. Furthermore, because

sup
z∈Rd

∥(a− a(z))ψz
ρ∥L1,p0

(Rd) ≲ (I1 + I2 + I3),

we obtain the desired result.

LEMMA A.9. Assuming Condition A′ and additionally that q ⩾ p. Then there exists a

unique solution u to (A.10) which satisfies (A.17).

PRO OF . By Marcinkiewicz interpolation theorem, it suffices to show the result when
q = n̄p for any integer n̄⩾ 1. Let n̄⩾ 1 be a fixed integer. By the method of continuity (e.g.
see [23, Theorem 5.2]), it suffices to show that there exists positive N =N(d, p, q, p0, k1, k3)
such that whenever u is a solution to (A.10),

∥u∥
L

n̄p
1,p([0,1])

⩽N∥f∥
L

n̄p
−1,p([0,1])

.(A.20)
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Note that if u is a solution to (A.10), then using Proposition A.4, the above estimate implies
that

∥∂tu∥Ln̄p
−1,p([0,1])

≲ ∥f∥
L

n̄p
−1,p([0,1])

.

Let ρ > 0 be a fixed constant and ϕ be a nonnegative smooth function such that ϕ is
supported in the ball Bρ := {x ∈ R

d : |x|⩽ ρ} and ∥ϕ∥Lp(Rd) = 1. For each z ∈ R
d, define

a(z) as in Lemma A.8 and

ϕz(x) := ϕ(x− z), uz(s,x) := u(s,x)ϕz(x), f z(s,x) := f(s,x)ϕz(x).

Then uz satisfies the relation

∂tu
z + aij(z)∂2iju

z = F z, uz(1, ·) = 0,(A.21)

F z := fϕz + 2aij∂iu∂jϕ
z + aiju∂2ijϕ

z + (aij(z)− aij)∂2iju
z.

The proof is now divided into several steps.
Step 1. We show that for each t ∈ [0,1],

(∫

Rd

∥F z
t ∥pL−1,p(Rd)dz

)1/p

≲ ∥ft∥L−1,p(Rd) +Cρ∥ut∥Lp(Rd) + oρ∥ut∥L1,p(Rd).(A.22)

Applying Lemma A.6 (with ζ = ϕ,∂jϕ,∂
2
ijϕ respectively) and Lemma A.3, noting that

∥∇ϕ∥∞ + ∥∇2ϕ∥∞ ≲Cρ, we obtain that

(∫

Rd

∥fϕz + 2aij∂iu∂jϕ
z + aiju∂2ijϕ

z∥pL−1,p(Rd)dz

)1/p

≲ ∥f∥L−1,p(Rd) + ∥∇ϕ∥∞∥aij∂iu∥L−1,p(Rd) + |∇2ϕ∥∞∥aiju∥L−1,p(Rd)

≲ ∥f∥L−1,p(Rd) +Cρ∥u∥Lp(Rd).

Let ψ be a smooth function on R
d such that ψ(x) = 1 if |x| ⩽ ρ and ψ(x) = 0 if |x| ⩾ 2ρ.

Define ψz(x) = ψ(x − z). Applying Lemma A.3 (whose hypothesis is justified because
p0 > p′ and p0 > d), we have

∥(aij(z)− aij)∂2iju
z∥L−1,p0 (R

d) ≲ ∥(aij(z)− aij)ψz∥L1,p0 (R
d)∥∂2ijuz∥L−1,p(Rd).

By Lemma A.8, we see that

sup
z∈Rd

∥(aij(z)− aij)ψz∥L1,p0
(Rd) ⩽ oρ.

Hence,

∥(aij(z)− aij)∂2iju
z∥L−1,p0

(Rd) ⩽ oρ∥uz∥L1,p(Rd).

It is easy to see that
∫
Rd ∥hϕz∥pLp(Rd)dz = ∥h∥Lp(Rd) for any h ∈ Lp(R

d). Hence, by
Minkowski inequality and Lemma A.6, we have

(∫

Rd

∥uz∥pL1,p
dz

)1/p

⩽

(∫

Rd

∥∇uz∥pLp
dz

)1/p

+

(∫

Rd

∥uz∥pLp
dz

)1/p

⩽

(∫

Rd

∥∇uϕz∥pLp
dz

)1/p

+

(∫

Rd

∥u∇ϕz∥pLp
dz

)1/p

+

(∫

Rd

∥uz∥pLp
dz

)1/p

≲ ∥∇u∥Lp(Rd) +Cρ∥u∥Lp(Rd).(A.23)
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This shows that
(∫

Rd

∥(aij(z)− aij)∂2iju
z∥pL−1,p(Rd)dz

)1/p

≲ oρ∥u∥L1,p(Rd) +Cρ∥u∥Lp(Rd).

Hence, we have (A.22).
Step 2. We show that for every integer 1⩽ n⩽ n̄ and every s ∈ [0,1],

∥u∥Lnp
1,p([s,1])

≲ ∥f∥Lnp
−1,p([s,1])

+ ∥u∥Lnp
−1,p([s,1])

.(A.24)

Since

∥u∥Lnp
1,p([s,1])

≈ ∥∇2u∥Lnp
−1,p([s,1])

+ ∥u∥Lnp
−1,p([s,1])

,(A.25)

it suffices to estimate ∥∇2u∥Lnp
−1,p([s,1])

. From Lemma A.6, we have

∥∇2u∥np
L

np
−1,p([s,1])

≲

∫ 1

s

(∫

Rd

∥∇2uzt ∥pL−1,p(Rd)dz

)n

dt+

∫ 1

s
∥ut∥npLp(Rd)dt.(A.26)

From Tonelli’s theorem, Lemma A.7 and (A.22),

∫ 1

s

(∫

Rd

∥∇2uzt ∥pL−1,p(Rd)dz

)n

dt

≲

∫ 1

s

(∫

Rd

∥∇2uzt ∥pL−1,p(Rd)dz

)n−1 (
∥ft∥L−1,p(Rd) + ∥ut∥Lp(Rd) + oρ∥ut∥L1,p(Rd)

)p
dt.

Applying Hölder inequality, we have

∫ 1

s

(∫

Rd

∥∇2uzt ∥pL−1,p(Rd)dz

)n

dt≲

[∫ 1

s

(∫

Rd

∥∇2uzt ∥pL−1,p(Rd)dz

)n

dt

]1− 1

n

×
[∫ 1

s

(
∥f∥L−1,p(Rd) +Cρ∥u∥Lp(Rd) + oρ∥u∥L1,p(Rd)

)np
dt

] 1

n

,

which yields that
∫ 1

s

(∫

Rd

∥∇2uzt ∥pL−1,p(Rd)dz

)n

dt

≲

∫ 1

s

(
∥f∥npL−1,p(Rd) +Cρ∥u∥npLp(Rd) + oρ∥u∥npL1,p(Rd)

)
dt.

Putting this into (A.26), we obtain that

∥∇2u∥np
L

np
−1,p([s,1])

≲ ∥f∥np
L

np
−1,p([s,1])

+Cρ∥u∥npLnp
p ([s,1]) + oρ∥u∥npLnp

1,p([s,1])
.

Using interpolation inequality

∥u∥Lnp
p ([s,1]) ≲Cρ∥u∥Lnp

−1,p([s,1])
+ oρ∥u∥Lnp

1,p([s,1])
,(A.27)

we get

∥∇2u∥Lnp
−1,p([s,1])

≲ ∥f∥Lnp
−1,p([s,1])

+Cρ∥u∥Lnp
−1,p([s,1])

+ oρ∥u∥Lnp
1,p([s,1])

.

In view of (A.25), we have

∥u∥Lnp
1,p([s,1])

≲ ∥f∥Lnp
−1,p([s,1])

+Cρ∥u∥Lnp
−1,p([s,1])

+ oρ∥u∥Lnp
1,p([s,1])

.

By choosing ρ sufficiently small, we derive derive (A.24) from the above estimate.
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Step 3. We show that

∥u∥L∞

−1,p([0,1])
≲ ∥f∥Lp

−1,p([0,1])
.(A.28)

From (A.21), we have

uzs =

∫ 1

s
PΣs,t(z)F

z
t dt, where Σs,t(z) = 2

∫ t

s
a(r, z)dr.

Then Minkowski inequality and [67, Theorem 5.30] yield

∥uzs∥L−1,p(Rd) ≲

∫ 1

s
∥F z

t ∥L−1,p(Rd)dt.

Applying Hölder inequality, Lemma A.6, (A.22) and the interpolation inequality (A.27), we
obtain from the above that

∥us∥pL−1,p(Rd) ≲

∫ 1

s

∫

Rd

∥F z
t ∥pL−1,p(Rd)dzdt

≲

∫ 1

s

[
∥ft∥pL−1,p(Rd) + ∥ut∥pL−1,p(Rd) + ∥ut∥pL1,p(Rd)

]
dt.

Applying (A.24) (with n= 1), we have

∥us∥pL−1,p(Rd) ≲ ∥f∥p
L

p
1,p([0,1])

+

∫ 1

s
∥ut∥pL−1,p(Rd)dt,

which implies (A.28) by Grönwall inequality.
Step 4. Using (A.28) in (A.24) yields

∥u∥Lnp
1,p([0,1])

≲ ∥f∥Lnp
1,p([0,1])

+ ∥f∥Lp
1,p([0,1])

≲ ∥f∥Lnp
1,p([0,1])

,

which implies (A.17).

LEM M A A.10. Assuming Condition A′ and additionally that q′ ⩾ p′. Then there exists a

unique solution v to (A.11) which satisfies (A.18).

PRO OF . The proof is similar to that of Lemma A.9. The main differences are the com-
putations in step 1 of the proof of Lemma A.9, which we will explain below. Let v be
a solution to (A.11). Define ϕz, a(z) as in the proof of Lemma A.9. In addition, define
gz(t, z) = g(t, x)ϕz(x) and vz(t, x) = v(t, x)ϕz(x). Then vz satisfies the parabolic equation

∂tv
z − aij(z)∂2ijv

z +Gz = 0, vz(0, ·) = 0,

where

Gz = gz + aij(z)∂2ijv
z − ∂2ij(a

ijv)ϕz

= gz − ∂2ij
(
(aij − aij(z))vz

)
+ 2∂i(a

ijv)∂jϕ
z + aijv∂2ijϕ

z.

Let ψ be a smooth function on R
d such that ψ(x) = 1 if |x| ⩽ ρ and ψ(x) = 0 if |x| ⩾ 2ρ.

Define ψz(x) = ψ(x− z). Applying Lemmas A.3 and A.8

∥∂ij((aij − aij(z))vz)∥L−1,p′ (Rd) ≲ ∥(aij − aij(z))vz∥L1,p′ (Rd)

≲ ∥(aij − aij(z))ψz∥L1,p0
(Rd)∥vz∥L1,p′ (Rd) ⩽ oρ∥vz∥L1,p′ (Rd)
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and

∥aijv∂2ijϕz∥L−1,p′ (Rd) ≲ ∥aijψz∥L1,p0
(Rd)∥v∂2ijϕz∥L−1,p′ (Rd) ≲ ∥v∂2ijϕz∥L−1,p′ (Rd).

Similar to (A.23), we have
(∫

Rd

∥vz∥p′

L1,p(Rd)

)1/p′

⩽ ∥v∥L1,p′ (Rd) +Cρ∥v∥L′

p(R
d).

This yields

(∫

Rd

∥∂ij((aij − aij(z))vz) + aijv∂2ijϕ
z∥p′

L−1,p′ (Rd)dz

)1/p′

≲Cρ∥v∥Lp′ (Rd) + oρ∥v∥L1,p′ (Rd).

Applying Lemma A.6, we have
(∫

Rd

∥gz + 2∂i(a
ijv)∂jϕ

z∥p′

L−1,p′ (Rd)dz

)1/p′

≲ ∥g∥L−1,p′ (Rd) +Cρ∥∂i(aijv)∥L−1,p′ (Rd)

≲ ∥g∥L−1,p′ (Rd) +Cρ∥v∥Lp′ (Rd).

These estimates imply that
(∫

Rd

∥Gz∥p′

L−1,p′ (Rd)dz

)1/p′

≲ ∥g∥L−1,p′ (Rd) +Cρ∥v∥Lp′ (Rd) + oρ∥v∥L1,p′ (Rd).

Using the interpolation inequality

∥v∥Lp′ (Rd) ⩽Cρ∥v∥L−1,p′ (Rd) + oρ∥v∥L1,p′ (Rd),

we obtain from the previous estimate that
(∫

Rd

∥Gz∥p′

L−1,p′ (Rd)dz

)1/p′

≲ ∥g∥L−1,p′ (Rd) +Cρ∥v∥L−1,p′ (Rd) + oρ∥v∥L1,p′ (Rd).

One can now follow steps 2,3 of the proof of Lemma A.9 to obtain (A.18).

Proof of Theorem A.5. Concerning equation (A.10), by the method of continuity it suf-
fices to show (A.17) whenever u is a solution to (A.10). The case q ⩾ p has been treated in
Lemma A.9. Consider the case q < p, which is equivalent to q′ > p′. For each g ∈ L

q′

−1,p′([0,1]),
let v be the solution to (A.10), which exists uniquely by Lemma A.10. We take ϕ= v in (A.13)
and use the equation (A.11) for v to see that

∫ 1

0
⟨us, gs⟩L1,p(Rd)×L−1,p′ (Rd)ds=

∫ 1

0
⟨vt, ft⟩L1,p′ (Rd)×L−1,p(Rd)dt.

Applying Hölder inequality and (A.18), we have
∣∣∣∣
∫ 1

0
⟨vt, ft⟩L1,p′ (Rd)×L−1,p(Rd)dt

∣∣∣∣⩽ ∥v∥
L

q′

1,p′
([0,1])

∥f∥
L

q′

−1,p′
([0,1])

≲ ∥g∥
L

q′

−1,p′
([0,1])

∥f∥
L

q′

−1,p′
([0,1])

,

and hence ∣∣∣∣
∫ 1

0
⟨us, gs⟩L1,p(Rd)×L−1,p′ (Rd)ds

∣∣∣∣≲ ∥g∥
L

q′

−1,p′
([0,1])

∥f∥
L

q′

−1,p′
([0,1])

.

Since g is arbitrary, this implies (A.17). The result for equation (A.11) follows from similar
arguments.
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In the remaining, we consider the parabolic differential equation

∂su+
1

2
aij∂2iju= f, u(t, ·) = 0(A.29)

where f ∈ L
q
−1,p([0,1]), t ∈ (0,1] is fixed. Whenever the dependence on t plays a role, we

write uts(x) for the solution to (A.29) evaluated at (s,x), s ⩽ t, x ∈ R
d. We quantify the

dependence on the terminal time of various quantities related to uts under Condition A′. These
estimates are used in Section 6 where we particularly take (aij) := σσ∗ for a σ satisfying
Condition A with q0 =∞.

THEOREM A.11. Assuming Condition A′. Let q ∈ (2,∞) and p ∈ (1,∞) be such that
1
p +

1
p0
< 1. Then for every ν ∈ [0,1], every 0⩽ s⩽ t⩽ 1 and f ∈ L

q
−ν,p([0,1]), we have

∥uts∥Lp(Rd) ⩽N(t− s)1−
ν

2
− 1

q ∥f∥Lq
−ν,p([s,t])

.(A.30)

LEM M A A.12. Let q ∈ (2,∞) and p ∈ (1,∞). Let t ∈ [0,1]. If u(r,x) = 0 for r ∈ [t,1],
then for every s ∈ [0, t]

∥u(s)∥Lp(Rd) ≲ (t− s)
1

2
− 1

q ∥∂su+
1

2
∆u∥Lq

−1,p([s,t])
whenever u ∈ L

q
1,p([0,1])(A.31)

and

∥u(s)∥Lp(Rd) ≲ (t− s)1−
1

q ∥∂su+
1

2
∆u∥Lq

p([s,t]) whenever u ∈ L
q
2,p([0,1]).(A.32)

PRO OF . By approximation, we can assume that u is a smooth function on [0,1]×R
d with

compact support. Put g := ∂su+
1
2∆u. Then by Duhamel’s formula u(s,x) =

∫ t
s Ps,rg(r,x)dr.

Applying Minkowski inequality and [67, Theorem 5.30], we have

∥us∥Lp(Rd) ⩽

∫ t

s
∥Ps,rgr∥Lp(Rd)dr ≲

∫ t

s
(r− s)−

1

2 ∥gr∥L−,1,p(Rd)dr.

Using Hölder inequality, we have ∥us∥Lp(Rd) ≲ (t− s)
1

2
− 1

q ∥g∥Lq
−1,p([s,t])

. This shows (A.31).
Inequality (A.32) is obtained in the same way.

Proof of Theorem A.11. By interpolation, it suffices to show that

∥uts∥Lp(Rd) ⩽N(t− s)
1

2
− 1

q ∥f∥Lq
−1,p([s,t])

for f ∈ L
q
−1,p([0,1]),(A.33)

∥uts∥Lp(Rd) ⩽N(t− s)1−
1

q ∥f∥Lq
p([s,t]) for f ∈ L

q
p([0,1]).(A.34)

From Theorem A.5, we have ∥ut∥Lq
1,p([s,t])

≲ ∥f∥Lq
−1,p([s,t])

for every 0⩽ s⩽ t⩽ 1. From

(A.29), we have ∂su+ 1
2∆u= f + 1

2(∆− aij∂2ij)u. It follows from Lemma A.12 that

∥uts∥Lp(Rd) ≲ (t− s)
1

2
− 1

q (∥f∥Lq
−1,p([s,t])

+ ∥(δij − aij)∂2iju
t∥Lq

−1,p([s,t])
),

where δij = 1 if i= j and δij = 0 otherwise. From Lemma A.3(iii) and the hypotheses, we
have

∥(δij − aij)∂2iju
t∥Lq

−1,p([s,t])
≲ (∥aij∥L∞

∞
([s,t]) + ∥∇aij∥L∞

p0
([s,t]))∥∂2ijut∥Lq

−1,p([s,t])

≲ ∥ut∥Lq
1,p([s,t])

.

Combining the previous estimates, we obtain (A.33).
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Inequality (A.34) is shown analogously. Indeed, using Lemma A.12, we have

∥uts∥Lp(Rd) ≲ (t− s)1−
1

q (∥f∥Lq
p([s,t]) + ∥(δij − aij)∂2iju

t∥Lq
p([s,t]))

≲ (t− s)1−
1

q (∥f∥Lq
p([s,t]) + ∥∂2ijut∥Lq

p([s,t])).

It is known ([51, Theorem 2.1]) that ∥ut∥Lq
2,p([s,t])

≲ ∥f∥Lq
p([s,t]). These estimates imply (A.34).
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