UNIVERSITY OF LEEDS

This is a repository copy of Taming singular stochastic differential equations: A numerical
method.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/222738/

Version: Accepted Version

Article:

Lé, K. orcid.org/0000-0002-7654-7139 and Ling, C. (Accepted: 2024) Taming singular
stochastic differential equations: A numerical method. Annals of Probability. ISSN 0091-
1798 (In Press)

Reuse

Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless
indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by
national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of
the full text version. This is indicated by the licence information on the White Rose Research Online record
for the item.

Takedown
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/




Submitted to the Annals of Probability

TAMING SINGULAR STOCHASTIC DIFFERENTIAL EQUATIONS: A
NUMERICAL METHOD

BY KHOA LE"* AND CHENGCHENG LING>P
1School of Mathematics, University of Leeds, Leeds, United Kingdom, ®k.le@leeds.ac.uk

2 Institut fiir Mathematik, Universitit Augsburg, Augsburg, Germany; bchengcheng. ling@uni-a.de

‘We consider a generic and explicit tamed Euler—Maruyama scheme for
multidimensional time-inhomogeneous stochastic differential equations with
multiplicative Brownian noise. The diffusive coefficient is uniformly elliptic,
Holder continuous and weakly differentiable in the spatial variables while the
drift satisfies the strict Ladyzhenskaya—Prodi—Serrin condition, as considered
by Krylov and Rockner (2005). In the discrete scheme, the drift is tamed by
replacing it by an approximation. A strong rate of convergence of the scheme
is provided in terms of the approximation error of the drift in a suitable and
possibly very weak topology. A few examples of approximating drifts are
discussed in detail. The parameters of the approximating drifts can vary and—
under suitable conditions— be fine-tuned to achieve a strong convergence rate
which is arbitrarily close to the benchmark 0.5 rate. The result is then applied
to provide numerical solutions for stochastic transport equations with singular
vector fields satisfying the aforementioned condition.
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1. Introduction. The aim of this article is to devise a numerical scheme and obtain its
strong convergence rate for stochastic differential equations (SDEs) with integrable drift
coefficients and elliptic regular diffusive coefficients. We consider the SDE

(11) dXt:b(t,Xt)dt+J(t,Xt)dBt, X[‘_):.'Eo, te [0,1],

where d > 1, b: [0,1] x R? — R? is a Borel measurable function satisfying

q

1 2 )
(1.2) / {/ |b(t, x) |pd1} dt <oco with ¢,p€[2,00) and Z + p <1,
0 L/Rre

MSC2020 subject classifications: Primary 60H35, 60H10; secondary 60H50, 60190, 35B65.
Keywords and phrases: Singular SDEs, strong approximation, tamed Euler scheme, regularization by noise,
stochastic sewing, Zvonkin’s transformation, quantitative Khasminskii’s lemma.
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and o : [0,1] x R* — R? x R? is a bounded Borel measurable function, continuous in the
spatial variables and uniformly elliptic, (B;):>0 is a d-dimensional standard Brownian motion
defined on some complete filtered probability space (€2, F, (F:):>0,P) and zg is a Fyp-random
variable. With < 1 in place of < 1, (1.2) is known in the fluid dynamics’ literature as the
Ladyzhenskaya—Prodi—Serrin condition.

In the seminal paper [41], Krylov and Rockner, building upon [74, 68], show that (1.1) has a
unique strong solution assuming that ¢ is the identity matrix and b satisfies (1.2). This result is
later extended by Zhang [71] (complemented by [69])" for variable diffusive coefficients which
are weakly differentiable, uniformly elliptic, uniformly bounded and uniformly continuous in
x locally uniformly in time.

While theoretical solutions of (1.1) are well understood since [41], numerical analysis of
(1.1) under condition (1.2) has been an open problem. At the moment of writing, we are aware
of two publications on the topic. Jourdain and Menozzi consider in [35] the case o is the
identity matrix and show that the marginal density of a tamed Euler—Maruyama scheme with
truncated drifts converges at the rate % — % — %. Gyongy and Krylov in [26] recently show
that the tamed Euler—Maruyama scheme with truncated drifts converges in probability to the
exact solution, albeit without any rate. Needless to say, a strong convergence rate is desirable

and is of independent interest. For this purpose, we consider the discrete scheme defined by
(1.3) dXy = b”(t,X,Zl(t))dt + a(t,X,?"(t))dBt, Xy =z, t€]0,1],
where x{} is a Fo-random variable and 0" is an approximation of the vector field b and
. . 1
kn(t) = 7 whenever <t< itz for some integer j > 0.
n n n
We note that (1.3) with the choice "™ = b is the usual Euler-Maruyama scheme, which,
however, is not well-behaved for a merely integrable function b even when b is replaced by
b1 (jp|<oo)- This is because the simulation for the usual Euler-Maruyama scheme may enter a
neighborhood of a singularity of b, making the scheme unstable and uncontrollable. We thus
have to tame the vector field b, replacing it by a suitable approximation ™. Henceforth, we
call (1.3) a tamed Euler—Maruyama scheme. The terminology is borrowed from [32], who
consider a specific case of (1.3) to approximate SDEs with regular but super-linear drifts. The
name “tamed Euler—Maruyama” thus should be understood in a broad sense, and in particular,
(1.3) also includes the “truncated Euler—Maruyama” scheme considered in [54].
Natural choices for 0™ are the truncated vector fields

(1.4) b () = br (2) 1 (jb, @) | <Cnx b, 20y

(1.5) by (%) = b ()1, (2)| <)

for some constants C, x > 0. Another practical choice is the regularized vector field
(1.6) by (z) = DP1/nx * by (2),

where x > 0, p¢(x) is the Gaussian density of variance ¢ and * is the spatial convolution.
Alternatively, multiresolution approximations by wavelet ([56]) or the truncated discrete
p-transform ([19]) could be used whenever desirable.

The main results of the article, Theorems 2.2 and 2.3 below, assert the strong convergence
of (1.3) to (1.1) with an explicit rate under some mild regularity conditions on ¢ and on the
approximating drifts b™. When the approximating drifts take one of the forms (1.4)-(1.6),
Corollary 2.4 expresses the convergence rates which are proportional to x. For each form

1 [71, Theorem 5.1] is non-trivial whose proof is provided in [69].
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of b", a suitable validity range of x is identified in terms of the parameters p, ¢, d. For the
approximating drifts (1.5) and Lipschitz o, the parameter x can be tuned within the interval
(0,1/2) to obtain a strong convergence rate x, which is arbitrarily close to the benchmark 0.5
rate. For the approximating drifts (1.4) and (1.6), such sharp rate can be achieved under some
restricted conditions on p, q.

We expect that Theorems 2.2 and 2.3 are useful in algorithm designs when the vector field
b is not explicitly available but rather arises from another analytic system which itself needs
to be numerically evaluated. Such situations appear in hydrodynamic-type equations due to
their fundamental connection with singular SDEs, see for instance, [12, 70, 73] where the
SDE (1.1) is coupled with another analytic constraint on b. In such scenarios, b™ does not
have an explicit form, but nevertheless, Theorems 2.2 and 2.3 could be implemented. While
we leave this problem for future investigations, herein we focus on a simpler application
to stochastic transport equations with vector fields satisfying (1.2) (see Eq. (8.1)). While
theoretical solutions for such equations have been considered in [18, 17, 60, 7], singularity of
the coefficients have prevented the study of numerical solutions by standard tools ([11, 61]).
We propose in Theorem 8.1 an explicit numerical scheme with rate for such equations, based
upon the method of characteristics.

Literatures on convergence of Euler—Maruyama schemes for SDEs is vast and expanding,
for which we provide a brief and personalized overview. When the coefficients are continuous,
convergence rates of the Euler—Maruyama scheme are well-studied. For Lipschitz continuous
coefficients and non-trivial diffusive coefficients, the optimal strong rate of convergence is 1/2,
as shown in [43, 34]. Results on the strong rate of convergence for Holder / Dini continuous
drifts are discussed in [27, 5, 55] and only settled recently by Dareiotis and Gerencsér in
[13], who obtain the Ly(2)-rate 1/2 — ¢, for any € € (0,1/2), when b is Dini continuous
and o is the identity matrix. This result is extended in [10] for the case when b is Holder
continuous and o is uniformly elliptic and twice continuously differentiable. For an in-depth
overview and more complete lists of other contributions, see [9, 38, 39, 57] and the references
therein. Results for discontinuous drifts are more sparse but are attracting attention. The case
of piecewise Lipschitz drifts are considered in [49, 50, 58]. [59] considers one-dimensional
SDEs with additive noise and bounded measurable drifts with a positive Sobolev—Slobodecki-
regularity. [6] considers bounded measurable drifts with a certain Gaussian—-Besov-regularity.
For merely bounded measurable drifts without any regularity, the recent article [14] obtains
the L,(Q)-rate 1/2 — ¢, for any p > 2 and € € (0,1/2), extending the results of [13, 10]. At
last, we mention the work [2] who consider similar tamed Euler—Maruyama schemes for one
dimensional SDEs with distributional drifts. For comparison, our approach is different, our
results are in a multidimensional setting and allow completely generic approximating drifts b".
Furthermore, we emphasize that one dimensional SDEs are more specific, often well-posed
even for distributional drifts, and usually require tailored techniques, [44, 29]. This list is
surely not exhaustive.

The article is organized as follows. In Section 2, we state our standing assumptions and
the main results. Section 3 contains auxiliary results which are collected and adapted from
previous works. Section 4 is pivotal and contains a case study of moment estimation for some
relevant functionals of Brownian motion. While some results in this section will not be used
directly to prove the main results, the section showcases our main estimates in a simpler
setting. Sections 5 and 6 extend the moment estimates in Section 4 respectively to functionals
of the solutions of (1.3) and (1.1). The two sections contain most of the technical estimates of
the paper which build up a foundation for the proofs of the main results. In Section 7, we give
the proofs of Theorems 2.2 and 2.3, using the moment estimates from the prior sections. The
application to numerical solutions for stochastic transport equations is discussed in Section 8.
The appendix contains maximal regularity estimates for parabolic equations with variable
coefficients and distributional forcing, which are needed but independent from the main text.



2. Main results. We first fix a few notation. Let p, ¢ € [1, 00] be some fixed parameters.
L,(RY) and L, () denote the Lebesgue spaces respectively on ]Rd and Q. The expectation with

respect to P is denoted by E. For each v € R, L, ,(R%) := —v/ 2(LP(RY)) is the usual
Bessel potential space on R? equipped with the norm || f H Lo, (RY) i= H( A2 L, (R4)>
where (I — A)¥/2f is defined through Fourier’s transform. LY, ,([0,1]) denotes the space

of measurable function £ : [0,1] — L, ,(R?) such that || f g, (j0,1)) is finite. Here, for each
s,t €]0,1] satisfying s < ¢, we denote

”fH]Lup [st] </ ”f Hq Rd) >q

with obvious modification when g = co. When v = 0, we simply write L} ([0, 1]) instead of
1§ ,([0,1]). In particular, IL;([0, 1]) contains Borel measurable functions f : [0, 1] x R? =R

such that fol [ Jga |t z)[Pdz] “/P it is finite. For each p € (0,1), L,(R?) denotes the space
of all measurable functions f on R? such that || f|| L@y = (fgalf (z)|Pdx)/? is finite. Note
that in this case, || - ||, (ra) is not a norm.

For each X € {IL{ ([0, 1]), L,(RY), L,(2)}, an R™-valued function f = (f1,..., f™) be-
longs to X, if all components f1,..., f™ belong to X, and we put || f|| v = max;—1__m{|| f]|x}-
Since we only deal with either scalars or R%-valued functions and random variables, we conven-
tionally drop the dimension of the range in the notation of the spaces L3, ,([0, 1]), L, (R?), L, ().

Put D, ={i/n:i= ,n}.Foreach S < T, we put A([S, T]) {(s,t) €[S, T)?:s<
t} and Ao([S, 7)) = {(s u t) [S,T)?: s <u<t}. Weabbreviate A = A([0,1]) and Ay =
As([0,1]). We say that a function w : A([S,T]) — [0,00) is a control if w(s,u) + w(u,t) <
w(s,t) for every (s,u,t) € Ay([S,T]). For a d x d-matrix P, P* denotes its transpose and
| P|| denotes its Hilbert—Schmidt norm. The following conditions are enforced throughout
unless noted otherwise.

CONDITION 2. The diffusion coefficient o is a d X d-matrix-valued measurable function
on [0,1] x R . There exists a constant &; € [1,00) such that for every s € [0,1] and = € R?

Q2.1 KT < (00%)(s,2) < K11
Furthermore, the following conditions hold.

1. There are constants v € (0, 1] and K3 € (0, 00) such that for every s € [0,1] and x,y € R4

(007)(s,2) = (007)(s,y)| < Kalz —y[*.

2. o(s,-) is weakly differentiable for a.e. s € [0,1] and there are constants py € [2,00),
qo € (2,00] and K33 € (0,00) such that

d 2
—+—<1 and [||Volljaw < Ks.
L Vol o)) < K3

CONDITION B. 1z belongs to L,(£2, Fy) and b belongs to L([0, 1]) for some p,q €
[2,00) satisfying % + % < 1. For each n, = belongs to L,(€2, Fp) and b" belongs to

LE(]0,1]) N L&, ([0,1]) with p, g as above. Furthermore, there exist finite positive constants
K4, 0 and continuous controls {x" },, such that sup,,~ ([[6" | (0,1)) + #"(0,1)) < K4 and

N =

(2.2) (1/n)> "o |0 |ua, (s S 1" (5,8)7 Vi—s<1/n.
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In the above, I denotes the identity matrix. If one replaces Holder continuity by uniform
continuity, Conditions 2(-*B are comparable to those from [71, 69], who show strong unique-
ness for (1.1). Hence, hereafter, we assume that the solution to (1.1) exists and is strongly
unique.” Next, we define an important quantity which controls the strong convergence rate.

EFINITION 2.1. Let A > 0 be a fixed number which is sufficiently large. Let U =
D 2.1. Let A > 0 be a fixed b hich is sufficiently large. Let U
(Ut,....U d) where for each h =1,...,d, U" is the solution to the following equation

23) QU+ Z (00 TQ2UN + ok vUt = AU~ UM, = 0.
1,j= 1
Let X be the solution to (1.1). For each p € [1,00), we put

wn(ﬁ): sup ’/ (1+VU)[b—0b"](r,X,)dr
t€0,1]

In the above and hereafter, we omit the dependence of U on n. Equation (2.3) arises from a
Zvonkin transformation, which we postpone to Section 7 for the details. It is known that when
A is sufficiently large, equation (2.3) has a unique solution, see Lemma 7.1 below.

THEOREM 2.2.  Assume that Conditions A-B hold. Let (X}")c|o,1) be the solution to

(1.3) and (Xt).e(0,1) be the solution to SDE (1.1). Then for any p € (1,p) N (1, d(p/\po)) and
any v € (0,1), there exists a finite constant N (K1, Ko, K3, K4, ., po, qo,p,q,d,p,) such
that

2.4)

| Sl[épu X7 = Xelllr, @ <N |llzg — zollz, @) + (1/n)% + (1/n)? log(n) +wn(ﬁ)} :
te|o,

Actually, by adding an exponential Weight moments up to order p-th can be estimated, see
Proposition 7.3 below. The condition p < = (p A po) ensures finiteness of the moments of the
exponential weight and therefore deduces (2 4) by an application of Holder inequality.

Under uniform ellipticity and Holder regularity of o, pathwise uniqueness for (1.1), p > d/«,
lim,, o™ = b in L}([0, 1]) and the following condition

2.5) 81;11)(1/”)57||bn||L‘éo([o,1]) < 00,

[26, Theorem 2.11] recently shows that the tamed Euler—Maruyama scheme (1.3) converges
in probability to the solution of (1.1). It is evident that (2.5) implies (2.2) (with the choice
,u"(s,t)% =(1 /n)%_i 16" L. ([s,47))- However, because of the interchangeability between
t — s and 1/n in (2.2), truncated vector fields with higher truncation levels, which yield better
convergence rates, satisfy (2.2) but not (2.5), see Corollary 2.4 below. Under Conditions 2(-B,
the above result provides an upper bound for the moments of sup,¢(g 1) |X;' — X¢| which
depends on n and w,,. When lim,, b = b in L7 ([0, 1]) as in the setting of [26], one can show
that lim,, z,, = 0 (cf. Corollary 2.4). However, the topology of L} does not provide any explicit
rate. There are, of course, many other topologies for lim,, b* = b so that one can actually obtain
an explicit rate. The choice of a suitable topology depends on the approximating vector fields
b". Our next main result relates w,, with the convergence of b" to b with respective to the
topologies of I3, (for some p1, 1 € [1,00]) and L2, , (for some v € [0, 1)).

2Actually the results from [71, 69] are for deterministic xq € ]Rd, however, can be easily extended to our case
by conditioning and utilizing Markov property of Brownian motion. See also Remark 2.6 below.



THEOREM 2.3. Assume that Condm()ns A-B hold.
(i) Let p1,q1 € [1,00] be such that —|— < 2. Then for every m = 1, there exists a constant
N depending on K1, Ko, K3, Ky, a Do, (JO, D1, q1, P, ¢, d, m such that

(2.6) @n(m) < N[b— 0"l (j0,1))-
(ii) Assuming furthermore that qo = oo and 5T 170 < 1. Let v € ]0,1) be such that
3 d 2
2n U= — == .
2.7 v< 2 % g

Then for every p € [1,p), there exists a constant N depending on K1, Ko, K3, K4, o, po, D, q,
d, p, v such that

(2.8) wn(p) < N|b— anLZ,,,p([o,l})-
(iii) Assuming furthermore that qy = 0o, —i— - < 1 and

d 4
2.9) —+-<1
p q

Suppose that there exists a continuous control wg on A and a constant I" > 0 such that
210) (b= 8"l (eny <Tuwols,D)s  and [|b—b"lug(a) < wols, 1)

forevery (s,t) € A. Thenfor every p € [1,p), there exists a constant N depending on K, K,
K3, K4, o, po, p, g, d, p such that

@.11) @n(p) < NT (1 + [logT|) wo(0,1) .

Using Theorems 2.2 and 2.3, we can derive explicit strong convergence rates for the scheme
(1.3) when the approximating vector field ™ take one of the forms (1.4)-(1.6).

COROLLARY 2.4. Assume that Condition 2 holds. Let b, xq, x( be as in Condition B;
and p,~y be as in Theorem 2.2.

(a) Let C >0 and x € (0,1/2 — 1/q| be constants and define b™ by (1.4). Let p € (1, p| be
a number such that p% + % < 2. Then there exists a constant N depending on K, Ko, Ks,
Ky, o, po, g0, D, g, d, P, ¥, p, X, C such that

(2.12) || sup [X{" — XilllL. (@)
t€[0,1]

< [0 — afllzyqe + (/)™ + (1/n)% + (1/n)? log(m)]
(b) Let C > 0 and x € (0,1/2) be constants and define b™ by (1.5). Then there exists a
constant N depending on Ky, Ko, K3, K4, o, po, o0, D, ¢, d, D, Y, p, X, C such that (2.12)
holds for any p € (1,p A q| satisfying p (g + %) < 2.
(c) Let x € (0 B (1 — 2) } and define b™ by (1. 6) Let v € (0,1) be any number satisfying

(2.7). Assume furthermore that gy = o0 and * » + p— < 1. Then there exists a constant N

depending on Ky, Ko, K3, K4, o, po, p, q, d, p, v, 7y, X such that
(2.13)
| SFp] X7 — Xl SN [Hwo — 2l + (/)5 + (1/n)3 + (1/n)2 log(n)| .
tefo,1
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PROOF. In view of Theorem 2.2, it suffices to estimate w, (p). (a) It is obvious that
anH]Lg([O,l}) < HbH]LZ([O,l})' From the inequality Hb;L”LOO(Rd) < CnXHbT‘HLP(Rd’)’ we see that
anHILgo([s,t]) < nXHbHLZ([s,t})- It follows that for every 0 <t — s < l/n,

(L/n)2" a6 lLa sy S (1/m)2 7« X 0llLe s, S I10lLars,)
verifying Condition B with p"(s,t) = Hb”ﬁg([s g and 6 = 1/q. Furthermore,

[br(2) = 0 (@) < 0@, ), ) < Oyl Gy o (@)
The function (r, z) — HerlL:(de)\br(x)|p belongs to ILZ/p([O, 1]) and hence,
16=0"[s, (o)) S XD 1b]] (0,17 -

It follows from (2.6) that w,, < (1/n)X(P—1) 1b/lLs([0,17)- The stated estimate is then a conse-
quence of (2.4).

(b) For the vector field b" defined by (1.5), we have ||b]!||.__ (rey S nX so that for every
0<t—s<1/n,

(1/n)2 "o 0" lia s,y S (L/n)2 7 X (t = s)s S (¢ —5)°

forany 6 > 0 such that @ < min(1/q,1/2— ). This verifies Condition 5 with u "(s,t) =t—s.
On the other hand, |b — b"| < n~X(P=1|p|? so that ||b — b”||]Lq§p( o)) ST —x(p= 1)||b||ILq 0.1])"

)~
It follows from (2.6) that o, < n~X(P—1) 181123 0.17)-

(c) We have b7 || (re < nxi br||1. (rey and hence, forevery 0 <t —s < 1/n,
) »(R9)

(1/n)= b e (o) S (1/n)7“_x2”HbHLq (s, S MblLags,)»
verifying condition (2.2) with p"(s,t) = Hb”Lg([S g and 6 =1/q. We also have

||b — an]Lq—u,,, S (1/n)Xl//2||b||Lg
Applying (2.8), we have @, (p) < (1/n)X:. -

REMARK 2.5. Similar truncated vector fields to (1.5) with the values xy = 1/2 and

=d / (2p) + 1/q were considered in [35], in which a weak rate of convergence of order
% — % — é was obtained. While Corollary 2.4(b) excludes the value x = 1/2, by choosing
p = 2, it yields the strong rate

lwo — 2|z, 0 + (1/n)X + (1/n)% + (1/n)2 log(n),

in which x can be as close as one desires to 1/2.
Similar (but different) regularized vector fields to (1.6) was considered in [2] in a different
setting.

REMARK 2.6. The proof of Theorem 2.2 actually works for any adapted solution to
(1.1), see Remark 6.5 and Section 7. Consequently, Theorem 2.2 yields an alternative proof
([71, 69]) of pathwise uniqueness for (1.1) under Conditions 2(-8B.

The restriction on the unit time interval in Theorems 2.2 and 2.3 is of course artificial and it
is straightforward to extend the above results on arbitrary finite time intervals. In such case,
the constants in our estimates also depend on the length the time interval. The logarithmic
factor in (2.4) arises from the stochastic Davie-Gronwall lemma with critical exponents (see
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[20] or Lemma 3.2 herein). The explicit estimation for square moments from [13] suggests
that the logarithmic factor in (2.4) could be improved. Because of the role of the stochastic
Davie-Gronwall lemma in the study of rough/stochastic ordinary/partial differential equations
([20, 4, 15, 16])), it is an important problem to identify the sharpness of the logarithmic factor.
However, we do not pursue this direction herein.

Let us briefly explain our general method and strategy. Starting from (1.1) and (1.3), we
decompose the difference X; — X[* into three types of differences:

« differences between functionals of b(¢, X;) and b" (¢, X}),
» differences between functionals of X; and functionals of X/,
¢ differences between functionals of X;* and functionals of X! )"

At this stage, our strategy aligns with the classical works [43, 34] for SDE’s with Lipschitz
coefficients. However, in order to utilize the regularizing effect of the noise in compensation for
the lack of regularity of the drift, our treatments for these functionals are different and follow
the recent approach of [14]. The differences of the first type can be easily estimated from
above by w,,. For the differences of the second type, we use a Zvonkin-type transformation
to show that they depend on sup;c[g 1] | X+ — X;'| in a Lipschitz sense. The differences of the
last type contain, for instance, the functional

sup

t
/ (b5, X[ ) — (s, X2)]ds|.
tefo,1] [Jo "

Because b and b™ are not continuous (uniformly in n), estimation for the above functional is a
challenging problem and one has to utilize the regularizing effect from the noise, an important
observation made by Dareiotis and Gerencsér in [13]. For these differences, we use stochastic
sewing techniques—originated from [45] and further extended in [20, 47]—to estimate them
by a constant multiple of (1/n)%/? + (1/n)'/?1og(n). From here, we obtain an integral
inequality for the moment of sup;¢(g 1) | X+ — X{*|. An application of the stochastic Gronwall
inequality yields the desired estimate in Theorem 2.2. From this analysis, one observes that
the strong rate of convergence for (1.3) is deduced from the rates of the estimations for the
differences of the first and the last types. The estimates for =, in Theorem 2.3 are obtained by
mean of Krylov estimates, Khasminskii estimates and stochastic sewing techniques, utilizing
statistical properties of the solution to (1.1).

We make a few observations comparing with previous works. Setting technicalities aside,
our proof of Theorem 2.2 follows the approach of [14]; and similar to [10], we also apply
stochastic sewing techniques to obtain moment estimates for the differences of the last type.
However, the works [10, 14] crucially rely on the fact that the drifts are either continuous or
bounded, which is not available under Conditions 2(-8. In particular, the stochastic lemmas
in [10, 14] cannot be applied under Conditions 2(-*5 because the resulting Holder exponents
are strictly below 1/2; and even if control functions were employed, one would end up with
a regularity exponent of exactly 1/2 (cf. Propositions 4.2 and 5.12). In other words, the
situations considered herein are at the border line and are critical to a certain extent. To
successfully adapt the method above to the current setting, to overcome criticality and to
remove the -loss in the obtained rate, we have benefited from the recent stochastic Davie—
Gronwall lemma with critical exponents from [20], the analysis for singular paths from [§]
and novel usage of control functions inspired by Lyon’s theory of rough paths [52]. To the
authors’ knowledge, these tools, which are developed within rough path theory, have not
been utilized previously in stochastic numerics. Lastly, in order to verify the hypotheses for

3We recall that an exponent of 1/2 + ¢ is required in these stochastic sewing lemmas.
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stochastic sewing and of independent interests, we have obtained some new and improved
analytic estimates ([37, 69, 35, 26, 48, 6]) for the probability laws of the solutions to the
discrete scheme (1.3) and to equation (1.1) (see Sections 5 and 6).

While this article was under review, progress had been made in improving our main results.
Namely, [46] removes the moment restrictions in Theorems 2.2 and 2.3 and consequently in
Corollary 2.4. This is accomplished by taking advantage of two other recent developments
(after the first appearance of the current article). One is the stability results from Galeati and
the second named author in [22]. The other is the John—Nirenberg inequality for stochastic
processes of bounded mean oscillations as discussed in [46].

Convention. Whenever convenience, we place temporal variables into subscript right after
the function, e.g. fi(x) = f(¢,x). The relation A < B means that A < C'B for some finite
constant C' > 0. The implicit constants C' may change from one inequality to another and their
values may depend on other parameters which are clear from the context. We will also make
use of Einstein’s convention of summation over repeated indices.

3. Preliminaries. In the current section, we collect and enhance some relevant results
which appear separately in previous works from various authors. These results form a useful
toolbox which is used in later sections to prove our main results.

For any one-parameter process ¢ — Y; and any two-parameter process (s,t) — Ag;, we
denote 6Y; =Y; — Yy and 6 A ¢ = Ast — Asu — Ayt forevery s <u < t. We say that Y
(resp. A) is Ly,-integrable if ||Yy|| 1, (o) (resp. [|Asl|L,, (o)) is finite for each ¢ (resp. (s, 1));
we say A is adapted if A, ; is F;-measurable whenever s < t. Let v € [0, 1] and let P|F, be
the probability measure conditioned on F,. We denote by L,(Q2|F,) the space of random
variables Z such that

HZ”LP(Q\]-‘U) = esssup[E(|Z|p|]-‘v)]1/p < 0.

The advantages of considering the conditional moment norms over the usual moment norms
are summarized in the following result, which is implicit in [14, 20].

LEMMA 3.1.  Let A= (At)ejo,1) be a continuous adapted stochastic process and let
p, N € (0,00) be some fixed constants. Assume that Ay =0 and

sup  [|0As |z, F) <N
0<s<t<1

Then the following statements hold.

(i) There exists a constant c(p) such that || A |1, ) < c(p)N for any stopping time T < 1.
(ii) For every p € (0,p), there exists a constant c(p,p) such that

| sup [AelllL, ) <c(@,p)N.
te€(0,1]

PROOF. Let 7 be a stopping time taking finitely many values {¢;} C [0, 1]. By assumption,
we have

E(6Aril?) = E S Lo E(15A 1P1F,) SES sy N7 < NP.
J J
Using the elementary inequality (a + b)? < aP + bP, we have

I A7z, SN0Am L, @) + A1l @) SN

By approximations and continuity of .A, the above inequality also holds for all stopping times
7 < 1. This shows (i). Part (ii) is a consequence of part (i) and Lenglart inequality. ]
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The next result is a variant of the stochastic Davie—-Gronwall lemma from [20] and is closely
related to the stochastic sewing lemmas from [45, 47].

LEMMA 3.2 (Stochastic sewing). Lete > 0; v,5,T,C1,C5,C5,I'1,I's > 0 be fixed
numbers such that 0 < v < S <T. Let w be a deterministic control on A([S,T]) which is
continuous. Let J be a Ly,-integrable adapted process indexed by A([S,T)) such that

(3.1) s tll L7 < Cow(s, )24, |EsJsillL F) < Cruw(s, t) e,
(3.2) 16T 5|1, 217,) < Taw(s, )7 + CsTaw(s, t)2 =

and

(3.3) B0 st (217, < Crw(s, )+

for every (s,u,t) in Ao([S,T)). Then there exists a constant N = N (e,m), in particular
independent from I'1,I'a, C1,C4, S, T, v and w, such that for every (s,t) € A([S,T])

sl 2,17,y < NTa | (14 [logTa|)w(s, t)7 + Cruw(s,t) 5 + (Co + Cs)w(s, )2+

(3.4) + NTyw(s,t)'Te.
PROOF. For each (s,t) € A([S,T]), define
w=1nf{r € [s,t] 1 w(s,r) > %w(s,t)}

and call u the w-midpoint of [s, t]. Since ¢ trivially belongs to the set defining u above, such a
point always exists and uniquely defined. If u is a w-midpoint of [s, ¢], then it follows from
continuity of w that

1 1
w(s,u) < iw(s,t) and w(u,t) < iw(s,t).

See [47] for more detail. For convenience, we denote (s|t) for the w-midpoint of [s, ¢].
Let (s,t) be in A([S,T]). Define dy(s,t) = s and d’(s,t) = t. For each integers h > 0

and i =0,...,2"", we set d"(s,t) = dh/Q(s t) if 7 is even and d"™ (s, 1) equal to the
w- mldpomt of [d(Z 1)/2(3 t), d(2+1)/2(5 t)] if 7 is odd. Set D! (s, t) = {d!(s,t)}2_, for each
h > 0. It is readily checked that for every integers h >0 and i =0,...,2" — 1, we have

(3.5) DI (s,t) c DI(s,1),
(3.6)  [d(s,t),di 1 (s, 6)] = [dy (s, 8), 51 (s, )] U [d5f (1), dif (s, 1),
(3.7) w(dl (s, t),dHl(s t) <27 Mw(s,t).

Herein, we abbreviate || - || for || - ||z, (o|7,)- The implicit constants below only depend on
€ and m. By triangle inequality, we have

||<]s,t|| < H Z Ju,v“ + HJS,t - Z Ju,vH-

[u,v]€DP (s,t) [u,v]€DF (s,t)

We estimate the first term using conditional BDG inequality ([47, Section 2]), condition (3.1)
and (3.7),

I > Jull S Y Bl + Yo ul?

[uv]€ D} (s,t) [uv]€D] (s:t) [u,v]€ DY (st)

<127 w (s, ) + Co2 M w (s, t)2 e

1/2
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For the second term, we derive from (3.6) (cf. [47, Lemma 3.6]) and conditional BDG inequal-
ity that for h > 1

h—1
||J8,t - Z Ju,’U’ = H Z Z 5Ju,(u\v),v

[u,v]€Dn (s,t) k=0 [u,v]€Dk (s,t)
h—1 h—1 1/2
S, Z Z HEu(SJu,(uhj),v” + Z Z H(S']u,(u|v),v”2
k=0 [u,v]€ Dk (s,t) k=0 \[u,v]€DE (s,t)

Applying (3.3), (3.2) and (3.7), we have
Z ||Eu5‘]u,(u|v),v|| S 2_kerlw(5’t)1+s
[u,v]€DE (s,t)

and

N

S 1wyl ST2w(s )3 + 275 CTau(s, )5+,
[u,v]€ D% (s,1)
Summing in k, we have
et = D Juw|| STaw(s, )¢ + Alyw(s, )% + CsTaw(s, 1)<
[u,v]€D2 (s,1)

Combining the previous estimates, we have shown that for every integer h > 1 and each
(s,t) € A

(3.8) s

<ghe [Clw(s, t)te + ng(s,t)%ﬁ]

+Tyw(s, £)7¢ + hlow(s, 1) + CsTaw(s, )27
If T > 1, we choose h = 1 while if 'y < 1, we choose h such that 2="¢ & T's. In both cases,
we obtain (3.4) from (3.8). ]

Some controls which are relevant for our purpose are given below.

EXAMPLE 3.3. (a) Forany ¢ € Ly([0,1]), g € [1,00), w(s,t) =||¢[|T ([s.17) 18 @ contin-

uous control on A([0,1]). (b) For any v > 0, w(s,t) = s~ ¥(t — s) is a continuous control
on A([S,T]) for any 0 < S < T. (c) For any controls w;,ws and any number 6 € [0, 1],
w = wlw%* is another control. For further examples and basic properties of controls, we
refer to [21, Chapter 5].

The following result is an excerpt from [8, Lemma 2.3].

LEMMA 3.4. Let (£,] - ||) be a normed vector space, s_1,7;,m; € [0,1], i=1,...,h be
fixed numbers and let Y : (0,1] — & be a function such that

h

3.9 |Y: — Y| <ZC’¢3‘""(1€—S)T" Vs 1<s<t<1,5#0
i=1

for some constant C1,...,Cy = 0. Assume that 7; — n; > 0 for each i. Then

h
IV = Yal| < (1 =2777) 71 Ci(t — 5)" " Vs_1 <s<t<1,s#£0.
=1
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PROOF. Observe that (3.9) implies that Y is continuous on [s_1, 1] \ {0}. We fix s_; <
s<t<1,s#0,and put s, = s+ (t — s)2~" for each integer n > 0. By continuity and
triangle inequality, we have

oo h
1Y = Y5l < HYs,L— snin || < Cisp i (sn — snt1)"
+

n=0 i=1

Note that 5,11 > (t — 3)2*"*1 and s, — 5,41 = (t — 5)27"~1. Hence, from the previous
estimate, we have

h oo
1Y = Vel < 32D Cilt =)o (Dl

i=1 n=0

Because 320 (2~ (nFD(mi=m:) (1 — 27:=7) =L for each 4, this yields the stated estimate. [

The following result is the Khasminskii’s lemma* enhanced with some quantitative esti-
mates.

LEMMA 3.5 (Quantitative Khasminskii’s lemma). Let S,T be such that 0 < S <T and
let {3(t)}1e(s,1) be a nonnegative measurable (Fy)-adapted process. Assume that for all
S<s<t<T,

(3.10) < p(s,1),

L, (Q|Fs)

where (s,t) — p(s,t) is a nonrandom function on A([S,T]) satisfying the following condi-
tions:

(i) p(t,t2) < p(ts,ta) if (t1,t2) C (£3,14),
(i) limp o SUpPg< i |t—s|<h P(8:1) = K, Kk = 0.
Then for any real A < k=1, (if k = 0, then K~ = 00), and any integer m > 1

< (m)w p(S,T).

T
Eexp ()\/ 6(1")617") <oo and
S L., (Q)

Suppose additionally that there exist v > 0 and a continuous control w on A([S,T]) such
that

(iii) p(s,t) <w(s,t)? foreach (s,t) € A([S,T)).
Then for every A > 0,

T v
Eexp ()\/ ﬂ(r)dr) L QHENTw(ST)
S

PROOF. The former statement is an excerpt from [63, pg. 1 Lemma 1.1.], which gives the
following estimate

T n
G Eexp (A / ﬁ(r)dr) < T - Aolte v, 1)
k=1

“This result goes back at least to the paper [36] of Khasminskii, although in a less general form and with a
smallness condition, then rediscovered without the smallness condition by Portenko [62], who considered (iii) with
w(s,t) =t — s. The general version here is based on [63]. For a bit of history, see [1, pg. 214].
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In the above, S =ty <t; <...<t, =T are chosen so that sup;_; _, A\p(tr—1,tx) <1.
To obtain the estimate in L,, (£2)-norm, we apply Tonelli theorem and the assumption to
see that

T m
E </S 5(7’)d7’> :m!E/S<rl<m<Tm<TB(r1)...5(rm)d7a1“_d7am

< m!p(O,T)]E/ B(r1)...B(rm—1)dry...dry—1.

S<r1<. . <rpm_1<T

Iterating the above inequality, we obtain the stated estimate for || | g B(r)dr| L, -
Under the additional condition (iii), we can choose {5 = .5 and for each k > 1,

tr =sup{t € [tg—1,T] : Mw(tx_1,t)7" <1/2}.

With this choice, we have Aw(tg_1,t,)Y =1/2fork=1,...,n—1and Aw(t,—1,t,)7 < 1/2.
By definition of controls, we have

—1
B <S> wlteey, ) <w(S,T),
(2A)~

k=1
which yields n < 1+ (2X\)7w(S, T). Hence, from (3.11), we have

T
Eexp (/\/ ﬁ(r)dr) <MK 21+(2)\)1/’Yw(S,T)’
S

completing the proof. O

REMARK 3.6. In the setting of Lemma 3.5, if for each (s,t) € A([S,T1]), p(s,t) <
w1 (s,1)7 4+ wa(s,t)7? for some continuous controls wi,wy and some constants 0 < v < 2.
Then we have

T
(3.12) Eexp <A / 6<r)dr) <IN (ST Fua(ST)2/m),
S

Indeed, the function w = wy + w;2/ 7 is a control (see [21, Excersice 1.10]) and we have

p(s,t) < 2w(s,t)”. Then Lemma 3.5(iii) implies (3.12).

REMARK 3.7. In Lemma 3.5, we can assume without loss of generality that v <
1—for otherwise, condition (3.10) implies the trivial identification 8 = 0. Furthermore,
Lemma 3.5(iii) implies that for every x > 0 and every p € (0, ﬁ), with ﬁ =oc0ify=1,
we have

Eexp <H (/STﬁ(r)dr)p> < 0.

This follows from the same argument used in Lemma 7.4 below.
The next result is a kind of stochastic Gronwall inequality, which is of independent interest.
LEMMA 3.8 (Stochastic Gronwall inequality). Let &, Vi be nonnegative nondecreasing
processes, let A, be a continuous nondecreasing Fi-adapted process with Ag = 0, and let M,

be Fy-local martingale with My = 0. Suppose that there exists a constant 6 € (0,00) such
that with probability one,

t 0
(3.13) §t<</ fsl/”dAS> + M+ Vi, Vt=0.
0
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Then for any bounded stopping time T, we have

(3.14) E272/"A¢ < 2BV, when 6<1
and
(3.15) E2724%¢, <2EV, when 6> 1.

PROOF. We put G = M + V and consider two cases.
Case 1: when 6 < 1. Define

</ §1/9dA> + Gy sothat 0<& <&

We assume first that M is a uniformly integrable martingale. For any ¢ > s > 0, we have

06s = (/Otg,}/@dA> (/ gl/%lA) + 0G4

We use the inequality a’ — b% < (a — b)? (valid for any a > b > 0) to obtain from the previous
identity that

¢ 0
(3.16) 8,1 < < / fi/(’dAr> + 060Gy

Define ¢y = 0 and for each integer j > 1, the stopping time
t; :inf{t>t]~_1 DAy _At—l 2271/9}.
Let j > 1 be fixed. For every t € [tj 1,t;], we derive from (3.16) that

Jl? ]17

which yields & < 25,5 + 25th717t. By iteration and the fact that & = Vo, we have

J
(3.17) §<OVo+ ) 276G, L yn, VEE [tio1.t).
i=1
Next, let 7 be a bounded stopping time and let N be an (random) integer such that ty > 7.
We have

N N
_o1/04 —21/9A -(G-Dg
2 fT:Z]_[tJ—lit] 2 Zl[t7 17 7 5
J=1

j=1
Using (3.17), we have

N J
—21/0 A g’r X 22 1 ti_1,t; (‘/0 + Zzll(SGtilﬂ—/\ti)
j=1 i=1
—2V0+2221 b i) (T)2176GY oat,
=1 j=1
N

=2V +2) g, 00 (126G, o,
i=1
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which is rewritten as

(3.18) 272G <AV +2) Ly, o) ()2 0Vepr et
i=1

o
+2) 1, 00) (T)2 S Mopr, it
=1

By martingale property, boundedness of 7 and uniform integrability, E|0M ns, | rat,| <
E|Mnt,_, | + E[Mrat,| < 2sup;>q E[M;| < co. Hence, by Fubini theorem and martingale
property,

E Z 1[ti,1,oo) (T)217i(5M7—/\ti7177’/\ti =E Z 1[ti71,oo) (T)217i]E((5M7—/\t17177—/\ti
i=1 =1

‘FT/\ti—l) =0.

Taking expectation in (3.18) gives

o
E272"AE <E <2V0 +2 1) (T)zl_i(svﬂtz-hﬂ“)
i=1

N

<E (QVO +2 Z 5V7'/\til,‘r/\ti> =2EV;.
i=1

In the general case when M is a local martingale, let {7,,} be a sequence of increasing stopping

times such that lim,, 7, = oo a.s. and for each n, M A. is a uniformly integrable martingale.

For a bounded stopping time 7, the previous case implies that

E2_21/9ATAT" gr/\rn < 2EVT/\Tn .

Sending n — oo yields (3.14).
Case 2: when 6 > 1. Using Holder inequality and integration by parts

</Ot§1/9dA)9< (/OtgdA> Aflz/ot/osgdA(g1)A§‘2dAs+/0tA9‘1§dA,

By monotonicity, [, £dA < £ A; so that

t s t
/ / €dA0 —1)A%2dA, < / £(0—1)A%1dA,.
0 JO 0

t 0 t t
( / 51/9dA> < / EHATTdA, = / £,dAY.
0 0 0

Together with (3.13), we have

Hence, we have

t
&</ EdA? + My +V;, Vt>0.
0
Using the result from the previous case, we obtain (3.15). U

REMARK 3.9. Stochastic Gronwall inequality is useful in applications to obtain moment
estimates for solutions to SDEs. Starting from [64], there have been several extensions, for
instance [30, 31, 53]. The setting of Lemma 3.8 is similar to that of [53], however, our
result comes with less stringent hypotheses and stronger conclusions. In particular,estimates
(3.14) and (3.15) hold for any 6 € (0, 00) and do not depend on the quadratic variation of the
martingale part.
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LEMMA 3.10. Lete >0, s€ D,, and r > s. Then
(3.19) /T(rkn(ﬂ)) 1=eqp < N¢[min(r —s,1/n)]” 5+1(T¢Dn)(rfkn(r))_5,
(3.20) /T(r — kn(0))71dl <log(n(kn(r) —s)) + 2,
(3.21) /T(r —kn(0)71EdO < N.(r — 5)°.

PROOF. If r — s < 1/n, we have

/ (r —kn(0))"172d0 = / (r—s)"17%dg = (r — 5)~°.

We now assume that r — s > 1/n. If r € D,, then
/(r—kn(e)) 2dp < (1/m)= Y 571 = N(1/m)~

s j=1
If r ¢ D, then we have r > k,,(r) and
r kn(r) r
/ (r—kn(0))"'7°d0 = / (r—kn(0))"'7°d0 + / (r—kn(0))"'°d0
s s kn(r)

N@/n)" ¢+ (r—kn(r))"c.

This shows (3.19).
When € = 0, we argue analogously. The only notable difference is the following estimate

K (1) n(kn(r)—s)
/ (r— k(@) S G < log(n(ka(r) —5) + 1.
s j=1
This shows (3.20).
Since r — k,,(0) > r — 6, estimate (3.21) is obvious. O

LEMMA 3.11 ([14, Proposition 2.7]).  Let K > 0 be a constant and let 3, Y. be symmetric
invertible matrices such that KT < YX~1 < KI. Then forall x € RY one has the bound

(3.22) [po(a) = ps(@)| < NI =7 (psjala) + psa(e)

where N is a constant depending only on d, K.

4. Regularizing properties of Brownian paths—a case study. We obtain various mo-
ment estimates for the following functionals of Brownian paths

t t
/ [f(T, Br) - f(’l”, Bkn(r))]dr and / g(?”, Br)dr

where f,g are measurable functions in L}([0,1]). In typical applications herein, we take
f=0b"and g = b— b". Hence, f usually has an additional property of being in L&, ([0, 1]). To
extract a rate from b — b", one has to measure g with respect to a norm which is weaker than
that of IL;j. For this purpose, we measure g in L2, ([0, 1]) for some v € [0, 1] or in L5, ([0, 1])
for some ¢; < ¢ and some p; < p.
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In later sections, analogous functionals of the solutions to (1.1) and (1.3) will play a central
role in the proofs of Theorems 2.2 and 2.3. While not being applied directly in proving the
main results, the analysis in the current section are relatively simpler, mostly due to the fact
that statistical properties of Brownian motion are well-understood. In addition, some of the
arguments generalizes directly when B is replaced by another stochastic process which has
similar analytic estimates. Therefore, we present these results at an early stage in the hope
of easing out the technicalities and outlining our method. Readers who are familiar with the
stochastic sewing techniques, of course, may go directly to the following sections.

Let py(z) := (2nt) =2~ 121"/ and P, ; f(x) := pr_s * f(x).

LEMMA 4.1. Letp € [1,00], § € (0,1), for 0 < s <, there exists N = N(d,p,d) >0
such that for any f € L,(R?) and 0 < s < t,

(4.1) £ (B, @) < Nt 2 |||z, ®e
and
(4.2) |Posf — Posflin, ey < NIt —sI°[s| | £l 1, ra)-

PROOF. Inequality (4.1) is taken from [14, Lemma 2.5]. We only show (4.2). First

IV?Pfllz, mey <IVZDellp, @)1 f 1L, ey S ¢ L, Re)-
Then for 6 € (0,1), we have

t t
1 Potf — PosfllL, @ </ HatPO,TfHLp(Rd)dT:/ AP f L, ®aydr

t
S [ 7 0 S 570 - 9,
S

completing the proof. O

While not being used directly, the following result is pivotal.

PROPOSITION 4.2.  Let f € L}([0,1]), with p,q € [2, 00) satisfying % + % < 1. Then for
all2/n < S <T < 1andn €N one has the bounds

T

@3 | [ (105 = 0By o)l 0

<N(1/n)2 log(n)|| fllg(say |[S~ > |T = S|? 71 + 87> = S|'

and
4.4)

T 1_1_ d
H/s (f(r,By) = f(r, By, ())drll ) < N(1/n)2 log(n)|| fllLs(s,mp|T — S[2 "« 2».

PROOF. (4.4) is a direct consequence of (4.3) and Lemma 3.4. We show (4.3) below. Let
2/n < S <T <1 be fixed. By linearity, we can assume that || f{|.z2((s,77) = 1. For S <'s <
t<T,let

t
Ay i=E, / (F(r, By) — £ (r, B ) dr-
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We treat two cases ¢ < ky(s) + 2 and t > ky(s) + 2 separately as following.
Case 1. For t € (s,k(s) + 2], by triangle mequality and (4.1) we have

t
ladllz, o < / 1 Bo)ll iy + 1 B o)l e

t d
< / ()35 £, ) ey -

Note that k,,(r) > k,,(s) > s/2, applying Holder inequality and the fact that ¢t — s < 2/n, we
have

t d _d _1
/kn(r)_z”\f(ﬁ')HLp(Rd)dTSS || fllLa s (E— 8)' 74

S (/)27 | flluage (E—5)2 o

This gives
4.5) ||Ast||L Q) (1/71)23 £ ||f||IL“ ([s,t]) (t —s)2 .
Case 2. When t € (kn(s) + 2, 1], by triangle inequality,

k‘(S)-‘r*
1Al < / IEo(£(r. By) — £(r. Beoy) e dr

t
s [ BB ~ 0By eydr =T+ o
kn(s)+2

For I, from (4.5) we know that

Qe

1 _d 2\ 2"
RS E g (o) -5+ 2)
Because ky,(s) — s+ 2 <t — s, we get

LS (1/n)2s™ % | fllugqo (t - 5)
By (4.1) and (4.2) we have for I

N =
Q=

t
IEPS / | P f (1, Bs) = Py .y f (1, Bs) || L, () dr
ka(s)+2
t _4d
S/k e 82 | Py f(r,) = Pygo () f ()| 2, maydr

¢ d 1 1
S [ R )~ 9 0 e
kn(s)
1 _d 1_1
S(/n)zs 2 || fllua sy (t —8)2 e
Combining these two cases together we obtain that for S < s <t < T,

1 1

(4.6) [ Aselln, @) S (1/n)2s % || fllLsqea (t — )2 s

Furthermore, for u € (s,t), we have E;0 A, ., + = 0. Let w be the continuous control defined
by

_d 1172 _d _1
w(s,t) = |72 || flluaea) t —5)7 7| +5 2| fllLaqsg(t —s) 7
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(See Example 3.3 for a justification that w is a control.) Denote

t
A= / (F(rBy) — f(r, By, o)), Jopi=6Aus — Auy.
0
Using similar estimates leading to (4.5), we have

1 stlln, @) S 572 | fllnasyt — )@ Swis,tb).

Furthermore, 0.J; ,t = —0As ¢+ and we derive from (4.6) that
105 u,tll L, ) S (1/n)2w(s,1)z.
It is obvious that E;.Js ; = 0 and hence E6.J; .+ = 0. Applying Lemma 3.2, we have
Wil S (1/n)F log(n) [w(s, )% + w(s, )
for every S < s <t < T'. By triangle inequality and (4.6), this implies that

18 Asllz, (@) S (1/n)F log(n) [w(s, 1) +w(s,)] .

Because || £l (s < 1flLg(syy = 1 and ¢ — s < 1, we have w(s,t) <25 (t — s)' 1.
Hence, we deduce (4.3) from the above estimate. n

In the following result, the L, (€2)-norm in (4.4) is improved to L, (€2|F,)-norm.

PROPOSITION 4.3. Ler f € L{([0,1]), with p,q € [2,00) satisfying % + % < 1. Let
v € 10,1 —2/n] be a fixed number. Then for all v+ 2/n < S < T < 1 and all n, one has the
bound

“.7
T L1 a
H/s [f(r, By) — f(r, B, (»)ldr|l L, F,) < N(1/n)2log(n)| fllLes,m|T — S|z« 2r,
where N = N (p,d) is a constant.

PROOF. We follow the argument used in Proposition 4.2, replacing the L, ({2)-norm by
the L, (£2|F,)-norm. The estimate (4.1) used therein (whose purpose is to deduce the analytic
L,(R?)-norm from the probabilistic L, (2)-norm) is replaced by the following estimate

(4.8) l9(B)llz,F) S NE—v)"2||gllr, @ Vg€ Ly(RY), >0,

with the same constant N as in (4.1). This yields the following estimate, which corresponds
to (4.3),

T
%%HLUW&%&M&WWM%mm

<N (1/n)= log(n)|| g sy | (S —v) > |T = 8|27 + (S —v)"»|T— S|' 74|
Applying Lemma 3.4, we obtain (4.7). O

An advantage of the conditional norms over the usual ones is realized the next result.
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PROPOSITION 4.4. Let f be a Borel function in L3 ([0,1]) N1LE ([0, 1]) for some p,q €
[2,00) satisfying g + % <1

We put B3,,(f) = sup,ep, If|lLe. ((rr+1/n))- Then for any p € (0,p), there exists a constant
N = N(d,p,q,p) such that

t

| sup | [ [f(r,Br) = f(r, By, )ldrlL, 0
te(0,1] JO

<N [(1/m)' 5 Balf) + (/) log ) fllgqo | -
PROOF. Put A; = f(f(f(r, By) — f(r, By, (r)))dr which has continuous sample paths by

(4.11). In view of Lemma 3.1, it suffices to show that there exists a constant N = N (d, p, q)
such that

10) 0 Asillz,pm) <N [(1/n)'758a() + (1/0)F 1og(m)]| o |

for every (s,t) € A.
Indeed, by assumption and Holder inequality, we have

t 1
@.11) 6 Al <2 / 1l e < 1l (o (= )15

for every (s,t) € A. For every (s,t) € A satisfying ¢t — s > 2/n, we obtain from (4.11) and
(4.7) that

10 As el 7)) S N0As s2/mllz, 7) + 10 Ast2/millL, 7.

S (/n)' 70| il (s,s42/n)) + (1/7)% log(m)]| fllLs (0.1)-
Note that || f||La. ([s,s+2/n)) < Bu(f). For every (s,t) € A satisfying t — s <2/n, (4.11) triv-
ially implies that
16 Atz 07) S (1/n)' 7l il qssz/m) S (/) 77 Ba(f).

Hence, in both cases, we have obtained (4.10). ]

Next, we turn to the functional | St g(r, By)dr.

LEMMA 4.5.  Let g be a function in L} ([0,1]) for some p,q € [1, 0] satisfying % + % <2.
Then for every m > 1, there exists a constant N = N (m,d, p,q) such that for every (s,t) € A,

1

t .
H/ 9(r, Br)dr |1, @) < Ngllug (s (t =)' 7277

PROOF. We can assume that g is nonnegative. Using standard estimate for the heat kernel
and Holder inequality, we have for every (s,t) € A that

t t t ,
Es/ g(r,Br)dT:/ PS,Tg(T,BS)drfJ/ (r—s)" 2|l grll 1, (maydr

1

S gllna st — ) 2 .

Applying Lemma 3.5, we obtain the stated estimate for every integer m > 1. This and the
Holder interpolation inequality implies the estimate for any real m > 1. O
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PROPOSITION 4.6. Let p € [2,00) and q € [2,00]. Let T be a positive number, wg be a
continuous control on A and g be a function in 1L([0, 1]) such that for any (s,t) € A,
lglle, s,y <Two(s,t)e  and ||glLys.m) < wols,t)e.
(a) Then for every 0 <v< ST <1

g 1
(4.12) ”/S g(r, B )dr||, oF,) < Nwo(S,T)T(1+ |log(I)|)
x [(S—U)_i(T—S)%‘i L (S—v) (T -85,

(b) If furthermore p,q satisfy % + % < 1, then for any p € (0,p), there exists a constant
N = N(d,p,q,p) such that

t
| sup | [ g(r,Bp)drll|L,@) < NL(1+ [log(I')[)wo(0, 1).
tel0,1] JO

PROOF. (a) Let v, S, T be fixed such that 0 < v < .S < T < 1. We can assume without
loss of generality that wo(.S,7") = 1. For each (s,t) € A([S,T7]), let

t t t
Asi = Es/ g(r,By)dr = / P, g(r,Bs)dr and Js;= / g(r,By)dr — Ag ;.
S S S

In the above, we can interchange the conditional expectation and the integration due to Fubini
theorem and Lemma 4.5. Define the continuous control w on A([S,T]) by

2

w(s,t) = [(s ) (- s)%*%wo(s,t)i} 4 (s—v) 3 (t— s) Thwg(s,t)h.

Applying Minkowski inequality, (4.1) and Holder inequality, we have

t t 4
I s.¢llz, 17 <2/ ||9(7"7Br)||L,,(in,)d7“§/ (r—v) 2 |lg(r, )| L, @sdr

Q=

< (s—0) ¥ |gllLoqep (t — 8)' "7 Swis,t).

Furthermore, E;J; ; = 0, showing that (3.1) is satisfied.
On the other hand, we have

t
1 Auellz i < / | Parg(r, B | gy
t _d
< / (5 — 0) 5| Purgra ) oy

t 4 )
< / (s — )5 (r — ) Hlg(r, i, @ordr

S(s=v) 2 (t—s)2"allgllLe,  (s.0)-

Combining with our assumption on g leads to [|As.l|z, ) S Tw(s,t)'/2. Since 6, =
—0As 1, this implies that J satisfies (3.2). The condition (3.3) is trivial because E;Js; = 0.
Applying Lemma 3.2, we have for every (s,t) € A([S,T)),

175,61

L7 ST(L+ | logT )w(s, )2 + Tw(s,t)
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and by triangle inequality,
t
I [ otrBu)dr |z, o ST+ [logTu(s, )} + Tw(s.t)
S

Because wp(s,t) <1 and t — s < 1, we have w(s,t) < 2(s — v)_%(t - s)l_%. Hence, we
deduce (4.12) from the above estimate by taking (s,t) =
(b) Applying Lemma 3.4 and part (a), we have

H / o(r. B,)dr| 1, iy < T(L+ [log(T) o (0, 1)

for every v < s <t < 1. In view of Lemma 4.5 and Kolmogorov continuity theorem, it is
easy to see that the process ¢ — fo B, )dr has a continuous version. Hence, the above
inequality holds for every 0 < v =35 < t < 1. Applying Lemma 3.1, we obtain the result. [

PROPOSITION 4.7. Let v € [0,1), p € [2,00) and q € [2,0], %+%+y<2. Let g

be a function in Lj([0,1]) N1LY,, ([0,1]) Then for any p € (0,p), there exists a constant

N = N(v,d,p,q,p) such that
t

| sup | [ g(r, Br)drl|L,) < Nllglle, o,1))-
te[0,1] JO

PROOF. In view of Lemma 3.1, it suffices to show that

@13 R [ ot B iy £ ol oy
s,t

The proof is similar to that of Proposition 4.6, however, the control can be chosen in a simpler

way. Let v € [0, 1] be fixed but arbitrary. For each (s,t) € A, s > v, define A and J;; as in

the proof of Proposition 4.6. As in the aforementioned proof, we have for every v < s <u < ¢,

Es6As 4t =0 and

_d _
1T tllz, @17y + 1 Asillz, @z S (s —v) 2 (t—s)'
Let w be the control on A((v, 1]) defined by

LZ, ,([s;t])-

_d _ 1/(1-v/2)
w(s,t) = [(s=v)" = (=)' gl o]

71/17

The previous estimate yields || Js ¢[[ 1, 7,) + | As.tll L, 7, S w(s, t)1=¥/2 It is evident that
EsJs+ = 0. Noting that 1 — /2 > 1/2 and applying Lemma 3.2

[Tl 7,y Swis,t) ™2

By triangle inequality and the previous estimate for || As,
A, s>,

,)» we have for every (s,t) €

t d _v_ 1
H / 9(r, By)dr |1 iz Sw(s, 5 < (s —v) 5 (t — )5 glLsou.

An application of Lemma 3.4 gives

t
l / o(r, BYdrll 1 iz < I9llso

for every (s,t) € A, s > v. In view of Lemma 4.5 and Kolmogorov continuity theorem, the
process ¢t —> fg g(r, By )dr has a continuous version. For this version, we see that the previous
estimate holds for every (s,t) € A and v = s, which shows (4.13). O
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5. Analysis of the discrete paths. We extend the results of Section 4 to functionals of
the solution to the discrete scheme (1.3).

THEOREM 5.1. Assume that Conditions A1 and B hold. Let X™ be the solution to
(1.3) and let f € 13([0,1]) NIL&([0,1]) and g € IL{ ([0, 1]) N1LE([0,1]). Define B, (f) =
supsep, || fllLe (jt,t41/n))- Then for any p € (0,p), there exists a constant N = N(d,p,q,p)
such that

t

(5.1) H sup | g(r,Xf})[f(r,X]})—f(r,X,?n(T))]dr\‘
te[0,1] JO

Ly(2)
<N [HgHLg([o,u) + \\9\\114‘;,1,([0,1])}
X [(1/n)1_5ﬁn(f) +(1/n) 7 || fllLaqo.npy + (1/n) 2 log(m)|| fllLsqo.np | -

The rest of the current section is devoted for the proof of Theorem 5.1. We follow the idea
described in Section 4. First we derive some analytic estimates on the transition operators
associated the discrete Euler—Maruyama scheme without drift. These estimates are similar
to the ones in Lemma 4.1. By means of the stochastic sewing techniques (Lemma 3.2) and
Girsanov theorem, these analytic estimates are utilized to obtain the desired moment bound.
In what follows, we carry out this program in more detail. Conditions (1 and ‘5 are enforced
throughout the current section unless indicated otherwise.

5.1. Analytic estimates. For each s € D,, and = € R?, let X"(s,z) be the solution to the
following Euler—Maruyama scheme

t
5.2) Xt”:x%—/ O'(’I’,X;;l(r))dBr, t>s.

For each ¢ > s and bounded measurable function f, we define the function Q7 f by
Qs f(x) =Ef(X]'(s,2)).
Let
t
53 722 =51 (+ [ otras, ),

and let the operator 7’ + be conjugate to T, in Lo-sense, which can be computed explicitly

(5.4) Tif@)= | F)ps, ol —addy. when s<t

and T s f(z) = f(x), where Zi{t = %fst adr, a, = o,0*. Whenever s < t, the function

Ts . f(x) is infinitely differentiable and satisfies
85T37tf(aj) = _a.’%l.’E]Tsyt[a"Lij] (x)‘

We also define for every r < t

and

HYf(2) = E [a (@)(02, 0, T f) (@ 4y () — (02, Tralald 1)+ me(2))]
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The function 7 also depends on n, however, we omit this dependence in the notation. By direct
computations (see also [25, p.153] or [26, p.11]), we have

@) = [ Ko )y
where
K;l,t<m7 y) = [af!(x) - a’f“j (y)]a’?jpzkn(r),7-($)+E7-,t(y) (y - $)

= [a/ (@) = ) W)][(Are(2,9)2) (Are(2,9)2) = AL (2,95, 0 (0) 45,000 (2)

Z=y—x

and

Ar,t(xay) = (Ekn(’/‘),r(x) + Zr,t(y))_l'

The relation between Q" and T, H™ is described in Lemma 5.4, which is a kind of Duhamel
formula. It is, however, convenient to obtain first analytic estimates for H™ and T'. We make
use of the following result, inspired by [25, Lemma 4.1].

LEMMA 5.2. Let A\, l,e >0, a € [0,1] be fixed numbers, let a1 be a symmetric d X d
matrix and let a(x),a(x) be d x d matrix-valued functions. Assume that for each x, a(z),a(x)
are symmetric, \" I < a(x) + a1,a(x) + a1 < M1, where I is the d x d unit matrix, and
sup, |la(y) — a(y)|| < e. Let g(x) be a real function such that |g(x) — g(y)| < M|z — y|* for
all z,y. Let € and 1 be independent d-dimensional Gaussian vectors with zero means. Assume
that & has distribution N'(0,I) and 1 has distribution N (0, \/a1). Define an operator T* by

the formula T f (y) = Ef(y + \/a(y)&) and let T be the conjugate for T™ in La-sense. Let
1 <4, < d be fixed and define

H(x) =E | g(2)(22,0, Tf) (@ +n) = (82,0, Tlg /1) (= +m)]

Define T*, T and H (z) analogously with a replacing a. Then for any p € [1, 00| and bounded
Borel f,
(5.5)

a_1_4d o
Suﬂgd |H(z)| < NI fll1,®aL> o, IH| 1, ®e) < NI fllL,@a)l> Y
xTe

(5.6)
|H(z) = H(@)| <N fll,@nel* "% and |H = H|, ge) < NI fll,@oel> >,

where the constant N depends only on \,d, p, .

PROOF. By direct computations (see also [25, p.153] or [26, p.11]), we have

H(z)= /R o) - 9 W)(A®)2) (Ay)2) — AY (Y)]Pa(y)+a: (2) dy,

z=y—x

where A(y) = (a(y) +a1)~!. A similar formula for H () is valid with A(y) = (a(y) +a1)~ .
By ellipticity of a(y) + a1 and Holder continuity of g, we have

@IS [l ol (2=l + ) oty — a)d

5 [26] recently corrected [25, Lemma 4.1]. Our assumptions and conclusions are different from both works.
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Setting ¢ = z% and applying Holder inequality, we get

d

[H @) S £, ey ( / |7 2y [? +z-1>qu<y>qdy) SN Fll, eyt 2
Rd

This shows the first estimate in (5.5). The second estimate in (5.5) is obtained by a similar
argument, using instead the Minkowski inequality.

It is evident that || A(y)||, | A(y)|| < ¢! uniformly in y. For two invertible matrices C, D,
we have C~! — D71 =C~1(D - C)D ! so that |[C~! — D7Y|| < |C Y |ID7LID - CY.
Thus [[A(y) — A(y)]| < lAWIIIAW)a(y) — a(y)]| < ¢?€ and similarly

1(A(y)2)" (Aly)(y — =) = (Ay)2) (Aly) (y — 2))’ || S |7,

Using our assumptions, it is straightforward to verify that K17 < (a(y) +a1)(a(y) +a1) ' <
KT and |I — (a(y) + a1)(a(y) +a1) || < K¢~ e for some constant K > 0. Hence, from
(3.22), we have

|p&(y)+a1 (Z) — Pa(y)+a: (Z)| 5 6_15 (P(a(y)+a1)/2(z) + Pa(y)+a1)/2 (2))
S epae(2),
where we have used the fact that A\='t < a(y) + a1, a(y) + a3 < At. It follows that

e) = H@I S [ 150y =2l (5 =P+ ) pacly =)y

From here, we apply Holder inequality and Minkowski inequality as previously to obtain
(5.6). O

LEMMA 5.3. Let p1,ps € [1,00] be such that py < ps and let f be a function in Ly, (R?).
For every r <t <1, we have

(5.7 Tt fllz,,@®s) < N(E—r)2r2 200 |[f]lL, (ra)
and
(5.8) 12 flL,, @) < N(E - k()2 e o 1 fllz,, &),

where the constant N depends only on d, p1,p2, K1, Ko.

PROOF. By uniform ellipticity, there exists a constant A > 0 such that for every z,y € RY,

(5.9) ALt — k() < /t ao(1)d0 + /kr( ale)dh <A~ k).

From here, we can derive (5.7) using standard Gaussian estimates.
Applying (5.5), we have

n a_q1__d
IH fll ey S (E=kn(r)2 20| fllL,, (e
and

HH;ftf”Lpl (o) S (E— kn(r))%_IHfHLpl(Rd)-

From the above estimates and the Holder interpolation inequality
1-21

1By < IEI 1B
we deduce (5.8). O
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The estimate (5.8) shows in particular that whenever r < ¢, H,", maps bounded measurable
functions to bounded measurable functions. It is evident from their definitions that Q';, T} ;
also map bounded measurable functions to bounded measurable functions.

LEMMA 5.4. Lets € D, and f be a bounded uniformly continuous function. Then, for
every t > s and x € R?

(5.10) sif(x)=Teif(x /st (o Hyp f1(@)dr

PROOF. Let X" = X"(s,z) and T € (s,t). Applying Itd formula for r — T, f(X), for
any ¢t > s, we obtain that

ETT,tf(Xf)
=T f(X2) +E T[aff(X;?,L(m)(@iijr,tf)(Xf)—(aiijr,t[a;‘ljf])(X?) dr.

S

Writing X = X ko) T (X7 ) we take conditional expectation given Fy, () O Fs. This
yields
(5.11) BT+ f(X2) =Ts o f(X2) + / EH, f(XE (y)dr.

We now take the limit 7 1 ¢ in the above formula. By uniform continuity of f and a.s. continuity
of X", limq4 Ty, f(X7) = f(X}"). From (5.8), we have

t
/ EH? F(X2 0)ldr < / (b= k()3 Ml o mordr < [ oy (£ — )5,

T

which allows one to apply the limit 7 1 ¢ to the last term in (5.11). Hence, we have

t
BIY) =Tt (X0 + [ BHEARE, )i
which deduces to (5.10). ]
THEOREM 5.5.  Assume that Condition A1 holds. Let p1,p2 € [1,00], p1 < p2, p1 < 00

and let f be a function in Ly, (R?). There exists a constant N = N(d,py,p2, o, K1, K2) such
that for every s € Dy, and t € (s, 1], we have

d

(5.12) 1Q% fllL,, ms) < N(t —s)2= HfHLpl(R)
PROOF. We put p = % - 2%[2.

Step 1. We show some rough estimates for [|Q%; f||z,, (ra) in terms of || f[|z, (ra). Assume
first that f is a bounded uniformly continuous function. From (5.10) and Lemma 5.3, we have
forevery t € [s,s +1/n]

1QE ey < [Tt ey + / VH2 |,y

t
<t —8) "I fl, @ + / (= k(1) 5|1 L, gty

S (=97l @,
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where the last inequality follows from the fact that k,,(r) = s for r € [s s+1/n). Since smooth
functions are dense in Ly, (R?), it follows that that [|Q% || Ly gy S (&= 8)PIflL,, g for
any function f in L,, (R%).

We proceed inductively. Let j > 1 be an integer. Suppose that for every ¢ € [s, s + j/n] and
every function f € L,, (R%),

(5.13) 1Q% NI, @) < Ci(t —8) "I fllL,, &

for some constant C}, independent from n, s, ¢, f.
Let f be a bounded uniformly continuous function. Then for each ¢t € (s + j/n,s + (j +
1)/n], we obtain from (5.10), Lemma 5.3 and the inductive hypothesis that

s+1n
G5.14) Qoo i) S I Tosflr, ey + / V2 oy

t
e / (kn(r) = 8)PILH S|z, ety

s+1/n

The first two terms are estimated as previously, ||Ts . f[|z, ®e) S (¢ =) ?| flz,, (re) and

s+1/n
[ o S ),
Using Lemma 5.3, we have

IH? f L, me) S (8= kn(r))%*l\lflle

Using the above estimate and the fact that k,(r) — s > 1/n for any 7 > s + 1/n and
Lemma 3.10, we have

[ o) =P e S O/ [ (=) E e

s+1/n +1/n
S (/)P fllz,, @

Observe furthermore that (1/n)™° < (j 4+ 1)(t — s)~”. Putting these estimates in (5.14), we
see that (5.13) holds for ¢ € (s + j/n,s+ (j + 1)/n] with a bounded uniformly continuous
function f and some constant Cj;1. By approximation, we can extend the inequality to all
functions f € Ly, (RY).

To show that (5.13) actually holds unlformly in 7, we proceed as follows.

Step 2. Assuming that p = 5 - — 5 - < 1, we show that there exists a constant C >0,
independent from n, such that

(5.15)
1Q% fllr,, ®s < C(t— s)%fﬁ | fI| L, (re) for every ¢ > s and function f € Ly, (RY).

In view of (5.13), it suffices to consider ¢ > s 4+ 2/n. Let A > 1 be a constant to be chosen
later. For each ¢ € [s + 2/n, 1], define

my = e M=% (t—s)" sup HQZtQHLP2 (R
9ELu, (R : gy, =1

and my = Sup,.c[s42/n,¢ Mr, Which are finite by the previous step. In particular, for every
t>s+2/nand g € Ly, (R?), we have (the case 191, (ra) = 0 is treated by (5.13))

(5.16) 1Q% 9|1, ey < mieX =t = 5) gl 1, ma)
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Let? > s+2/n and f be a bounded uniformly continuous function, || f||r, (re) = 1. From
(5.10), (5.13) and (5.16), we have that

s+2/n
A7) 1Q s, ety < I Tor 1l ety + / V7 1|5,y

t
+ mz‘/
s+2/n

5010l (1) )P LH7, 1, i
From Lemma 5.3, we have ||Ts,tf||Lp2 () S (t—s)"" and

S+2/n S+2/n o o
/ !Hlftflle(Rd)dTS/ (t = kn(r)2 ' "Pdr S (1/n)(t — s —1/n)2 7177

S (t - 8)_p>
where we have used the fact that 1/n <t —s<1landt—s—1/n > (t — s)/2. Similarly,
using Lemma 5.3, we have

t
[ O ) ) P S ey
s+2/n

t
</
s+2/n

t
<
s+1/n
s=s+1/n,

To estimate the integrals on the right-hand sides above, we split them into two regions, putting

AE =) (o (1) — 8) 7P (t — k(7)) 2 " Ldr

e/\(T_S)(r —s—1/n)"P(t—r)2"tdr

(5+t)/2 . R ) )
/ 6_)\(t_r)(7"—5)_p(t—7“)5_1drSe_g(t_s)(t_g 5—1

(s+1)/2
) / (r— 5)Pdr
and

Se 379 — 5)
t
| e
(s

+1)/2

|

M)

a_q t

e A=) (t—r)2"Ltdr
(5+t)/2

oo
<(t— s)p/ e Mz du <ATE(t—5)77.
0
In the above, all integrals are finite because « € (0, 1] and p < 1. Observe furthermore that
(t —s)/(t — 5) < 2. Thus we have

/ MEI=) (5 (7) — )Pt — (1)) 3~ Ldr S A~ 3 M) (¢ — 5)~F
s+2/n
Putting the previous estimates altogether into (5.17), we have

HQ?,tfHLpz(Rd) S(t—8)"P(1+mia 2 e/\(t—s))‘

By approximations, the above estimate also holds for any function f € L, (RY) with
1fllz,, ey = 1. It follows that m; < 1+ A"2mj for every t > s + 2/n. By choosing A
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sufficiently large, we conclude that m7 is bounded by a constant independent from 7 and thus
obtain (5.15).

Step 3. We remove the restrlctron p < 1 in the previous step

Suppose that p := % 25, < 2. Define p3 € [p1,p2] by — 2p1 + 55> so that 57— — ﬁ =
2%3 - 2%2 =0 <1l Lett>s + 4/nandu = (s+1t)/2. Then by Markov property ofthe Euler—
Maruyama scheme, we have Q¢ ; = Q) (w), th,kn (u)" It is easy to see that ¢t > &y, (u) > s so

that by (5.15), we have for every f € L,, (R?) that
Q7 Fll s ey < (¢ — () 0@ g

S (t=kn(w) "% (kn(u) —5)~% ||f||Lp1 (R)-
It is straightforward to see that t — ky, (u) > (t — s)/2 and k,,(u) — s > (t — s) /4. Hence, from

the above estimate, we deduce that [| Q7 f ||z, ey S (t—5)~ prHL (rey forany ¢ > s+4/n.
Combrnmg with (5.13) from step 1., we see that (5.15) holds for any pl, p2 € [1,00] satisfying

2?)1 — ;& < 2. We iterate the argument. After |logy(d/2)] + 1 iterations, we see that (5.15)
holds whenever p < d/2, which is trivially satisfied for any p1,p2 € [1, 00]. Hence, we have
shown (5.12). ]

REMARK 5.6. Theorem 5.5 complements previous works. It is shown in [48] that for
each s,t € Dy, s <{, the operator ()7, has a kernel density which has Gaussian upper bounds.
From here, one can deduce estimate (5.12) for discrete times s,t € D,,. Gaussian upper bounds
for the kernel density of Q’;’t, which are valid for all times ¢ > s, s € D,,, are also established
in [6, 35] under Lipschitz regularity of a. Some related estimates are also obtained in [25, 26]
under the additional condition o > d/p. We are able to remove this condition herein mainly
due to (5.8), which was known previously with the factor (¢ — r) on its right-hand side.

LEMMA 5.7. Letp; € [1 oc] and let v < ky(t). Then for every f € L, (R%),

(5.18) Tt f = T flL,, ey S NA/)(E=7) "M fll,, &
and
(5.19) I f = HYe Ny, ey S N (/) (= En ()22 f I, re

where the constant N depends only on d, p1, K1, K».

PROOF. We make use of (5.9). Observe furthermore that 1/2 < (k,(t) — kn(r))/(t —
kn(r)) < 1.1tis then straightforward to verify the hypothesis of Lemma 3.11 for ¥ = X,.;(y)
and ¥ =3, 1 1) (y). In addition

1 = SE7H S (8 — Ka () (¢ = Kn(r) ™" S (1/n)(t — k()"
From the definition of T', we apply (3.22) to get that

T f () = Ty, (0 f ()| S (1/m) (8 = 7)™ 1/ Pe(t—r) ()| f (y — x)|dy

for some universal constant c. From here, we apply Minkowski inequality to obtain (5.18).
(5.19) is obtained analogously, using (5.6). ]

COROLLARY 5.8.  Assuming Condition 1. Let f be a function in Ly, (R?), p; € [1,00).
Then for any s € Dy, and t € (s +2/n,1],

1Q%ef — Q4. iy fllL,, ®e) < N(1/n)%||fllz,, ®e(t—s)"*%,

where the constant N depends only on d, p1, K1, Ko.

M)
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PROOF. By approximation, we can assume that f is bounded and uniformly continuous.
We put u = ky,(t). From (5.10), Q¢ . f — Q% ,.f = I1 + I> + I3, where

Il = Ts,tf - Ts,ufa

u t
b= [ QUi ~ Hyfldr, Bi= [ @ o Hfldr
S u
We estimate each 7, I5, I3 below. Note that s < ¢ — 1/n implies s < &, (t). Applying (5.18),

we have || ]|, o) S (1/n)(t = 8) 7 flL, ma).
From Theorem 5.5, we have [|Q¢ .y fllz,®e) S | f1|z, ey for every r > s. It follows that

u
1ol g < / VHEf — HP f | ey dr
S

Applying (5.19) and Lemma 3.10 (noting that u — s > 1/n), we have

12l L, @) S / (1/n)(w = ka(r) 2 2dr|| ||, eay S (1/n) % | f] £, me)-

Applying Theorem 5.5 and Lemma 5.3, we have

t t
sl e < / VHP fll oy dr < / (= k()5 Lo < (1/m) 5 £l -

Combining the previous estimates, we obtain the result. O

COROLLARY 5.9. Let g be a function in Ly ,(R?) for some p € [1,00)
(5.20) 1Q%19 = 9l ey S lgllL, , eyt = 5)%.

PROOF. By approximation, we can assume ¢ is continuously differentiable and has
bounded derivatives. From (5.10), we have Qg9 — g = I1 + Iz, where I =T g — g and

L= [; Q") [Hgldr. From (5.4), we have
b= | b5, = 2)96) = b, o(w ~ 2)g()ldy
Rd

= / [Ps. .(»)(¥ —2) = Px. )y —2)|g(y)dy + / [9(y) — 9(z)|ps, () (y — 7)dy
R4 Rd

= I11 + I1o.

Using Condition 2(1, it is straightforward to verify that A\™17 < 3 ¢ (y)Xs ¢ (2) "' < AT and
11— Zs¢(2)s.t(y) 7| < Az — y|® for some finite constant A. Then, we apply Lemma 3.11
to get

1l £ [l = vl o~ Dl

Using Minkowski inequality, we obtain from the above that || 111 ||, re) S (£ — )2 ||g]| L, (RY)-
From the Hardy-Littlewood maximal inequality, there is a non-negative function h € L,, (RY)
such that ||h]|; (re) S |Vl L, (re) and

9(y) — 9(@)| < |z —yl(h(z) + h(y), ae x,yecR™
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Using ellipticity and the above estimate, we have that

Rl < [ o= 3l(h(@) + hw)ps. o)~ )

Shia)(t =5+ [ o= slhwpwm (o~ )y

Applying Minkowski inequality, we obtain that || I12|, (re) S (t — 8)1/2HhHLP(Rd) S(t—

~

$)/2||Vg||1, (). Applying Theorem 5.5 and Lemma 5.3, we have

t t
Mol o) < / VB2 gl oy dr < / (t = )5 gl odr < (¢ — 5)5 gl cxe).

Combining the estimates for /11, I12 and I2, we obtain the result. O

5.2. Moment estimates. We consider the Euler—Maruyama scheme
t
(5.21) X7 :x—l—/o O'(S,X;;l(s))st,

where g is a Fo-random variable. By Markov property, for every s € D,, and bounded
measurable f, we have E[f(X}")|Fs] = Q% . f(XT).

PROPOSITION 5.10. Let X" be the solution to (5.21).

(i) Let h be a measurable function such that ||h||1, ey is finite for some p € (0,00]. Then
foreveryr,ve[0,1], r—v>=2/n,

(5.22) IRz, 47 < NIl L, @ (r—v) "2

(ii) Let f be a function in L,(R%), g be a function in L1 »,(R?) N Lo (R?) for some p €
[1,00). Then, for every r,s,v € [0, 1] such thatr —v > 2/n, r > ky(s)+3/nand s —v > 2/n,
(5.23)

IES(FXI) = FOXR Do) < NQ/0)E ey (=) 75 ( o 2) :

n
and

(524) [Eo(g(XI)F(XP) = g(XI (X )Ly i) < N /) E[ £l ey (5 — v) %

< |l EARI 2\
g Loo (RY) r—s n g Ly ,(R4) r—Ss n .

PROOEF. (i) Put o = k,,(v) + 1/n. In the case when p < oo, applying Theorem 5.5 (with
the choice p; =1 and py = 00), we have

E[|h(X])[7|Fe] = Qn, RN (X2) S (r = 0) 7 [[1hP]|y (mey-

Noting that r — o > (r — v)/2, we obtain (5.22) for any p € (0,00) from the above. When
p = 00, (5.22) is trivial.

(ii) Put 5 = k,,(s) + 1/n. Applying (5.22) and Corollary 5.8 (noting that s — v > 2/n and
r—3§>2/n), we have

1Es(f(X7) = f(XE, D) L7 = 195, F(X5) = Qf g, (i f (X)L, 17,
S(E—v) 2 1Q%,f — Q% k. () [l L, ()

S (/)5 || £l @y (5 — )75 (kn(r) —5)75.
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We observe that s —v > s — v, kp(r) =5 >7 — s —2/n and

IEs(f(X)) = FXE o)) L) < NEs(F(XT) = F(XE )l i7)-
From here, we obtain (5.23) by combining the previous estimates.
Lastly, we show (5.24). We write

g(X X)) — g(XF(XE ()

=[(gHXD) = (@NHXE, o) + [(9(XE, () = 9(XINFXE, (1))
We observe that || fgl| 1, re) < || fll 2, re) 9]l £ (re) and apply (5.23) to see that

n
& (&) - )], orm,
is smaller than the right-hand side of (5.24). It suffices to estimate the L, (€2|F,)-norm of

A= Es[(g(XE () — 9(XINF(XE, ))]-
By conditioning on Fy, (), we have
A=Es[h(X} ()] = Qb p ()M XF), where h=(9—QF (,),9)f

Applying (5.22),

Es

IAllL,F) S (5—v)" e 1Q% k. (Pl L, ®a)-
We continue by applying Theorem 5.5 (with p; = p/2 and P2 = D),
ANz, @17) S (5 =) "2 (ka(r) = 5) 2 [|All L, , (o).
By Holder inequality
171z, . re) < NQk,(r),r9 — 9l L, )| f1l L, ()
and by (5.20),

1Qk(r).r9 = 9|, ) S (7 = kn(r)) 2 9] o, (R -
Combining the previous estimates, we see that | A| 1, (|7, ) is also smaller than the right-hand
side of (5.24), finishing the proof. O

REMARK 5.11.  Concerning Proposition 5.10(i), if v € D,,, then there exists a constant
N = N(d,p,a, K1, K>) such that for every r > v, we have

(5.25) IR X)IL, 17, < NhlL, ey (r—v) "2

Indeed, the inequality is trivial when p = co. When p < co and when v € D,,, Theorem 5.5 is
applied directly, which yields

E[|A(X7)71F) = Q2 [IAP)(XE) < (r = v) 72 1A 1, ey
From here, we deduce (5.25).

PROPOSITION 5.12. Let X" be the solution to (5 21) Let f € L}(]0,1]) and g €
L%p([O, 1]) N L([0,1]), with p,q € [2,00) satlsfylng + < 1. Let v € [0,1 —4/n] be
a fixed number, n. > 4 is an integer. Then for every v + & - S < T <1, one has the bound

T
(5.26) ||/S g(r, X f (r, X7) = £(r, X3 (o))l 1, 017,

< N[(1/n)% + (1/n)2 log(n)](lgllee sy + lglles s lLacsmy:
where N = N(d,p,q, K1, K>) is a constant.
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PROOF. Let S,T be such that v + 4/n < S < T < 1. By linearity, we can assume that

1 llLe s,y = 9l s,y + lgllue sy = 1-
For each (s,t) € Ay([S,T1]), define

t
Auai=E, [ gln XDFrXD) ~ £ K, )i
S
We treat two cases ¢ < ky(s) + 2 and t > ky(s) + = separately as following.
Case 1. For t € (s, ky(s) + 2], by triangle inequality and (5.22) (note that ky,(r) — v >
kn(s)—v>=s—v—1/n>2/n)we have

[[As.¢

t
L(QF) < HQHL;([S,T])/ 1f(r, X 2,7 + L XE o) |z, 7, dr

t d
< / (hn(r) — 0) "5 11 £, )| . ey

Note that &k, (1) — v = k,(s) — v > (s — v) /2, applying Holder inequality and the fact that
t — s < 4/n, we have

t a 4 _1
/ (hn(r) = )5 £ Wz mordr < (5 — )5 Flesoy (6 — )

S (1/n)2 (s —v) "2 || fllg (e —5)2 7.

This gives

1_1
2 q,

Ly@F) S (1/n)2 (s —v) 2 [ fllLg (s, (E = 5)
Case 2. When t € (ky,(s) + 2,1], by triangle inequality,

(5.27) [ At

[Astllr, @17) < 1 As ko s)+a/nll 17,
t
+/k ()42 Es[g(r, X (F (r X3 = f(r, X )DL, 17,y dr
nlS +:

=11+ D.
For I, from (5.27) we know that

I
Qe

1 -2 i
I S(1/n)z (s —v) 2 || fllLa () <kn(3) taT S)

Because k,(s) + 2 — s <t — s, we get

n
IS (1/n)2 (s —v) 2 || fllug (s, (E— )2 .
Applying (5.24) and Holder inequality, we have for I

a 4 t 2 7%
RSWWEe- 0 Ellzesmy [ (75 2) 10D

n(s

d

. [t 2\ "3
Hmis—o s [ (r—s—) W90 M e 17, ey dr
kn(s)Jr% n

2

<S(1/n)3(s—v) [HfHLg([s,t])(t =)' 777+ gl sy | g sy (E—5)' 72 s
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Combining these two cases together we obtain that for v +4/n <s <t <1,

(528) [ Asillz, 17 S (1/n)5 (s = 0) 5 o = )7
+ (1/n)% (s =) [ (o (¢ = )50 + gl o1 F ot =)' 75

Furthermore, for u € (s,t), we have E;0A,,; = 0. Let w be the continuous control on
A([v+4/n,1]) defined by

_d 1_172
ws,t) = (s = 0) "5 | fllLaqen (t = )27

a
2 gq

_d _1711/(1-%)
+ {5 = )75 flugqeny (- )75 ]

o _a_271/0-30)
+{(S—v) o lglue (s 1 g s (= 5)' 2 }

E

—d 1—
+ (s = v) "2 || fllLa (s, (t = 5)
Denote
t
At = / (f(rz X;L) - f(ra Xl?n(r)))drﬂ Js7t = 5A57t —A t
0
Using similar estimates leading to (5.27), we have

1

_4d 1—-1
| stllz,r) S (8 =v) 2 | fllLas(t —8) = Sw(s,t).
Furthermore, 0.J; s = —0As ¢+ and we derive from (5.28) that

16t o) S (1/m)Ew(s,0)% + (1/m) [w(s,0)7% +w(s, )75 ]

It is obvious that EgJs ; = 0 and hence E;0.J, ,,+ = 0. Applying Lemma 3.2, we have

175,

»(Q2|F)
S[/m)% + (1/m)F log(m)] [w(s, ) + w(s, )% +w(s, )75 +w(s,b)] .

By triangle inequality and (5.28), this implies that

l|0.As,

S(QIF)
< [(1/n)% +(1/n)3 log(n)] [w(s,t)% Fw(s,t) 75 +w(s,t) T + w(s,t)} .

Because | f|lLg(s,1) < I1fllLg(is7) =1, we have

w(s )< [(s—0) B (-3 73]

1_g_§}1/(1*%)

+ [(s—v)‘i(t—s) : 1—d—2}1/(1£2)

+ [(s ) () TE
(5.29) t(s—v) w(t—s)u

and hence
16

w(s, t)% +w(s, )75 Fw(s,t) 5t w(s,t) S Y (s —v) (- )",

=1
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where for each i =1,...,16; n;,7; € [0,1] are some constants such that 7; — n; > 0. The
constants 7;, 7;’s can be calculated explicitly by applying the powers 1/2, 1 —«a/2, 1 —d/(2p)
and 1 to the singularity exponents and Holder exponents in the right-hand side of (5.29),
however, their exact values are non-essential. That 7; — 7); is positive for each 7 because the
sums of the Holder exponents and the corresponding singular exponents of each factor on the
right-hand side of (5.29) are positive. Hence, we deduce from the above estimate that

T
I [ o DX = £ 5 )il i

16

N[(1/n)% + (1/n)2 log(n)] Y (S —v)™™(T - S)™,

i=1

which holds for every v +4/n < .S < T < 1. We then apply Lemma 3.4 to obtain (5.26). []

PROPOSITION 5.13.  Let X™ be the solution to (5.21). Let f € L}([0,1]) N L&([0,1])
and g € L({’p([O, 1]) NLE([0,1]), with p,q € [2, 00) satisfying g + % <1

As in Proposition 4.4, we put B,(f) = sup,ep, || flILL ((r.r+1/n))- Then for any p € (0,p),
there exists a constant N = N (d, p, q,p) such that

t

| ts%pl] | [ g(r X, X7) = £, X3 o)Al z,) < N [ll9llie o) + \\9\\11:{,,,([0,1])}
€10,

x [(1/m)' 73 Ba) 4+ (/)31 fllgqoy + (1/m)3 log(m) o] -

PROOF. This result is a consequence of Proposition 5.12 and Lemma 3.1. The proof is
analogous to that of Proposition 4.4, hence, omitted. O

LEMMA 5.14. Let X" be the solution to (5.21) and f be a function in L} ([0,1]) for
some p1,qi € [1,00] satisfying pil + q% < 2. Then

1
(5:30) Bexp ([ r X2yar) < 2exo (NI ).
0

where N depends only on d, o, p1,q1, K1, Ko.
Assume additionally that there are continuous control wg on A and positive constants
M~y such that

(5.31) (1) | fllos o < wols,t)® VO<t—s<1/n
and
[ fllLar (fo,17) + wo(0,1) < M.

Then there exists a finite constant N which depends only on M, ~o,d, o, p1,q1, K1, Ko such
that

1
(5.32) E exp < / f(r, X,?n(r))dr> < N.
0

PROOF. We can assume without loss of generality that f is nonnegative. We rely on
Lemma 3.5. For each (s,t) € A, define § = k,(s) + 1/n. For each r € (s,5), we write
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Xr=Xr+ ! U(H,Xﬁl(s))ng so that

At ~ AL
R e N e QT

Using ellipticity of X, and Gaussian estimates, we see that sup, || P, () frllr.®e) S
(r—s)~%P)| | f.||1,, (wa)- Hence, using this estimate and Holder inequality, we have

1

SAt t
Sn __d_ 1—<4 1
Es/ f(th)dTS/(r—S) w1 ([ fell,, weydr S llugy s, (E— ) 20 o

On the interval (5 A t,t), we use (5.25) and Holder inequality to see that
t t .

on o 1—d _ 1
Es f(r,X,,)dr,S/ (r=3) 2|l frlle,, @ndr S Fllug s, (E =) 2o

SAt SAt
It follows that

1——d 1
e [ 10X £ W ligy - 95
Observe that w defined by w(s, t) 2 = = || Fllwax (s, (¢ — s)l_ﬁ_i is a continuous control
on A. Applying Lemma 3.5, we obtain (5.30).
The second part is obtained in an analogous way. For each (s,t) € A, define § =k, (s) +
2/n, using Holder inequality, (5.31) and (5.22), we have

St St )
Es/ f(T7Xl?n(r))dT</ 1ol oy dr S0l s.angy (1/n) ' "o Swo(s, )

t

Es f(T, Xlzln(r))dr = /

SAt SNt

t t

Eof(r, XP ())dr S / (n(r) — 8)" 35 foll g, (rydr

SNt

t

_a 1—d 1

S [ 0= s ol mdr S W gy ot = 95
Nt

Hence, E; fst fr X7 (T))dr Swo(s, )" +w(s, t)l_i, where w is the control defined pre-

viously. Applying Lemma 3.5 and Remark 3.6, we obtain (5.32). O

REMARK 5.15. From Remark 3.6, one can compute N explicitly, however (5.32) is
sufficient for our considerations.

Proof of Theorem 5.1. For any continuous process Z, we define

= sup ’/ v, Ze) [ f(r, Zy) — f(r, Zy, ()]dr|.
t€(0,1]

Let X" be the solution to (5.21) and

! —1in L) 1 ! —1in Y 2
pi=exp <—/0 G’ )(T,an(r))dBr—2/0 ‘(0 9 )(T,an(r))’ dr).

Using the fact that o~ 1b" € L%, ([0, 1]), we see that p is a probability density. It follows from
Girsanov theorem (see e.g. [33, IV Corollary of Theorem 4.2]) and Holder inequality for
% + % =1 with v > 1 close enough to 1 such that yp < p

(5.33) EH(X™)P = E(pH(X"™)P) < [EH(X") 7P|V [Ep V7.
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From Proposition 5.13 we immediately get that

(5.34) (EH(X")7)% = [H(X") |1, 0) <N [lgluz o + lgllis, qop]

x| (1/n)' 75 B + (/)% 1 gy + (1/m)F 1og ) g o,y -

Using Cauchy—Schwarz inequality, we have

1 / 1 2
’ —11n vn i —1n L)
Ep” =Eexp <—'7'/0 (0™ )(T,an(r))dBr—Q/O ’(U b )(’”’anm)’ dT)

1
2

1 2
< [Eexp (—27’/0 (o™ "0")(r, X7 () )d B, —27’2/ ‘ 5y (r, X7 (T))‘ dr)]

[Eexp( /) ~1pm) er())‘dﬂl

In the right-hand side above, the first factor is identical to 1 by martingale properties. For the
second factor, we recall Condition ‘B and the uniform ellipticity of o, which imply that the

function f := |0 ~1b"|? belongs to LZ@([O 1)) NLL2([0, 1]) and satisfies

_2 11, 2
(/) gy < [/ ||Lgoqs,ﬂ>] Su(s ), VO<t-s<l/n.

Applying Lemma 5.14, we see that Eexp ( fo (o= (r, X! (T))|2dr) is
bounded uniformly by a finite constant. Hence, we have shown that Ep?" is bounded uniformly
in n. Combining with (5.33) and (5.34), we obtain (5.1). ]

6. Analysis of the continuum paths. To show Theorem 2.3, we need the following result,
extending the results of Section 4 to functionals of solutions to (1.1).

THEOREM 6.1. Let X be the solution to (1.1).
(i) Assuming Conditions A1 and B. Let h be a function in 1L} ([0, 1]) for some p1,q1 €
[1, 00| satisfying pil + q% < 2. Then for every m > 1, there exists a constant N = N (d, p,q,m)

such that
1
u / h(r, X, )dr|
0

(ii) Assuming Conditions 2A-B with qy = oo and 1 5+ i < 1. Let g be a function in

L% (]0,1]) and let v € [0,1) such that + S +r <2 Thenfor any p € (0,p2), there exists
a constant N = N (v,d,p,q,p2,q2,D) such that

Lo @) S NAllLs jo,1))-

t

I'sup | [ g(r, Xp)dr|l|L,@) < Nlgllue, | o)
te(0,1] JO

(iii) Assuming Conditions -8 with qy = oo and % + p% < 1. Let g be a function in
L% ([0,1]) with p% + q% < 1, I be a nonnegative number and wo be a continuous control on
A. We assume that for every (s,t) € A,

Igllue, (s STwils,t)e and |gllLe (s) < wils,t) =



38

Then for any p € (0,p2), there exists a constant N = N (v, d, p2, q2,p,q,p) such that

t 1
| sup | [ g(r, Xp)dr|l|L, @) < NT(1+ [log(I')[)wi (0,1) .
tefo,1] Jo

Similar to the methods in Sections 4 and 5, first we derive some analytic estimates on the
transition operators associated to solutions of (1.1) without drift. Using these estimates, one
can apply stochastic sewing techniques (Lemma 3.2) and Girsanov theorem to obtain the
desired moment bounds.

We begin with moment bounds on the solutions to the driftless SDEs. Let X be a solution
to SDE

(6.1) dX;=o(t,X;)dB;, Xo=zeR%

Under Condition £, it is well-known (see [66]) that the probability law of X is unique and
Markov. In fact, solutions to equation (6.1) are strongly unique under Condition 2. This follows
from the arguments in the proof of Theorem 2.2 in the following section. However, only the
law of X is relevant to our considerations herein. Let Qs+ be the transition operator associated
to X . In particular, we have E(f(X;)|Fs) = Qs f (X) for any bounded measurable function

1.

LEMMA 6.2. Assuming Condition 1. Let p1,pa € [1,00], p1 < p2. There exists a con-
stant N = N(«,d, p1,p2, K1, K2) such that for every f € L, (R?) and s <,

©6.2) 1QstfllL,, @) SN(E—s)2= 2 fl|L, @

PROOF. Let X" be the solution to the Euler—-Maruyama scheme (5.21). It suffices to show
that the laws of X™ converge to the law of X for (6.2) is then derived from Theorem 5.5.
Let P™ be the probability law of X™ on C([0,1]). Here C([0, 1]) is the space of continuous
functions w : [0, 1] — R? equipped with the topology of uniform convergence, the Borel o-
algebra and the filtration ¢ — G; = o{ws : s € [0,%]}. Let ¢ be a smooth function with bounded
derivatives. By Itd formula, we see that

MP () = d(er) — dla) — & /0 0¥ (1o, 1)) 0 (o)

2
is a martingale under P"(dw). Define
1 [t
Mi(w) = o) = o) = 5. | 098 00

Itis easy to see that | X/ — X7'{| ) < (t— 5)'/2 forany p > 2 and s < t. This implies that
the probability laws {P™},, are tight. Let P be a probability measure such that P™ converges
to P through a subsequence, which we still denote by P". Let s < ¢ be fixed and G € G,;. We
have

/5M57tlgdP = /5M57tlg(dP —dP") + /(5M57t — 5M£t)1gdPn + /5M2tlgdPn

=0+ 1+ 1.

It is evident that lim,, I; = 0. Using Holder continuity of a we have

t t
|12] ,S/ [/S |wr —wkn(r)adr] dP"(w) S/s E| X — Xgn(r)’adr

t
5/ | — kn(r)|*/2dr.
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This implies that lim,, [2 = 0. Because M™ is a martingale under P", I3 = 0. It follows that
f 0M;1cdP =0, and hence M is a martingale under P. In other words, P is a solution to
the martingale problem associated to equation (6.1), which is unique ([66]). We have shown
that {P”}n has exactly one accumulating point, which is the law of (6.1). This also means
that X" converges weakly to X. O

LEMMA 6.3. Assuming Condition A1. Let h be a measurable function on R¢ such
that ||h|| g, vy is finite for some p € (0,00]. Then there exists a finite constant N =
N(a,d, p, K1, K2) such that for every r,v € [0,1], r > v,

(6.3) 1R X )L, F,) < N(r—v) 2], &

PROOF. This is a direct consequence of (6.2). The argument is similar to that of Proposi-
tion 5.10(i), hence, is omitted. O

The next result is a special case of Theorem 6.1 when b = 0, which is an analogue of
Propositions 4.6 and 4.7.

PROPOSITION 6.4. Letp€ (1,00), q € (2,00). Let X be a solution to (6.1).

(i) Assuming Condition 1. Let h be a function in L} ([0,1]) for some p1,q1 € [1,00]
satisfying pil + q% < 2. Then for every m > 1, there exists a constant N = N(d,p1,q1,m)
such that

1
u /0 h(r, X )dr | g < Nl o)

(ii) Assuming Condition 21 with qo = oo and % + p% < 1. Let g be a function in L}([0,1])
and let v € [0, 1) such that % + % + v < 2. Then for any p € (0,p), there exists a constant
N = N(v,d,p,q,p) such that

t

| sup | [ g(r,X:)drll|L, @) < Nlgllue,  o.1)-
teo,1] Jo

(iii) Assuming Condition A with gy = oo, % + pio <1and % + % < 1. Let g be a function in
L2([0,1]), T be a nonnegative number and w be a continuous control on A. We assume that
forevery (s,t) € A,

lgllLe, (say STwi(s,t)s and ||gllLg(s9) < wils,t)e.

Then for any p € (O,p), there exists a constant N = N (v,d,p,q, p) such that

t 1
| sup \ 9(r, X )dr|| ) < NT(1 + [ log(T") w1 (0, 1)7.
tel0,1]

PROOF. (i) Using Minkowski inequality, Lemma 6.3 and Holder inequality, we have
t - t -
I [ X, 0 < [ 10X, @1z
S S

t
1——4 _
< / (r =) % e, @oydr S (6 —5) 5w ||AlLs (o).
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This implies that
a _

t
_ 1—<2 1
(6.4) Es/ |h(r, Xp)ldr S (t—s) 2 o |[AllLm ((s,)-

From here, we apply Lemma 3.5 to obtain part (i).

estimates for Brownian motion are replaced by those obtained in Theorem A.11. The condition
% + 2 + v < 2 appears when applying Lemma 3.4. We only provide proof of (iii) while the
proo? of (ii) is left to the readers.

(iii) For each (s,t) € A, put

t t
Agi = ES/ g(r, X, )dr and ot :/ g(r, X,.)dr — Ay

S S
Define the control w by

d 1 1 1 2 d 1 1

w(s,t) = [(s ) (- s)rawl(s,t)a} 4 (s—v) (¢ —s) Thwy(s,t)5.
Let u’ € L3 ([0,t]) be the solution ([51, Theorem 2.1]) to
1 .
(0s + iazjﬁfj)u +9=0, wu(t,-)=0.

Applying It6 formula for non-degenerate diffusions (see [69, Lemma 4.1]), we see that A, ; =
ul(Xs). Applying (6.3) and Theorem A.11, we have

[As il 7)) S (s = 0) "2 lugllp, ey S (s —0) "2 (t=5)2 " llgllLe, ((s.0)-

By our assumption, the previous estimate implies that |[6.Js ¢l 7,) S Tw(s, t)1/2 for
every v < s <u < t < 1.Itis evident that EyJs ; = 0 and hence E;0.J; ¢ = 0. This verifies
the conditions (3.2) and (3.3) of Lemma 3.2.

On the other hand, using Minkowski inequality, (6.3) and Holder inequality, we have

t t 4
el <2 / lg(r. X)Ly < / (r = 0)" 5 |lgo || . oy

_4d 1—1
S(r—v) 2 (t—5) lgllLasg Swist),
verifying condition (3.1). An application of Lemma 3.2 yields that ||Js ||, oF,) S T(1 +
|log ()| )w(s,t)/2 +Tw(s,t) for every v < s < u < t < 1. From here, the argument follows

analogously as in the proof of Proposition 4.6, using Lemma 3.4 to remove the singularity
near v then using Lemma 3.1 to obtain the desired estimate for the supremum. O

Proof of Theorem 6.1. Let X be a solution to (6.1). Similar to the proof of Theorem 5.1,
we use Girsanov transformation to deduce the moment estimates for X from those obtained in
Proposition 6.4. Indeed, define the measure P := pP where

2
dr) .

pi=ew (- [0z~ [ o 0%

From [69, Lemma 4.1] and Novikov criterion, we see that Ep” < oo for every r € R. By
Girsanov theorem, PP is a probability measure and the law of X under PP is the same as the
law of X under P. From here, we deduce Theorem 6.1 from Proposition 6.4, using similar
computations as in the proof of Theorem 5.1. U

REMARK 6.5. Observe that pathwise uniqueness is not necessary and only weak unique-
ness of (1.1) is used in the above proof. In addition, reasoning as in [41, Lemmas 3.2, 3.3 and
Remark 3.5], one can derive weak uniqueness for (1.1) from Proposition 6.4(i). Consequently,
Theorem 6.1 holds for any adapted solution to (1.1).



TAMING SINGULAR SDES 41

7. Proof of the main results. We present in the current section the proofs of Theorems 2.2
and 2.3. We state a maximal regularity result for parabolic equations, which is a direct
consequence of [69, Theorem 3.2].

LEMMA 7.1.  Assume Conditions A-B. Let f € L}([0,1]) and M > 0 be such that
1 g o1y + 10l o,y < M-
Then there exists \o = \o(M,a) > 1 such that that for all X > Xy, there is a unique solution u
in L3 ([0,1]) to the equation
(7.1) Oru + a”82u—|—b Vu+ f=M, u(l,-)=0.
Furthermore, for any ~ € [0,2), p1 € [p,0), q1 € [q,00) with ¢ + <2-7+ - —|— = there
is a constant C' = C(M,~,p1,q1) > 0 such that for any \ > )\g,

lo_ i_é_,
At Hunm([om+HatUHLq (o, + llullLs, 0,17y < CllfllLsao,n)-

LEMMA 7.2. Let X™ be the solution to (1.3). Then for every m = 2,

Sl[lpu X" = Xi i llz,.@) S (1/n)=.

PROOF. We have

t t
th _X]?n(t) = / bn(r, X}?ﬂ(t))dr‘i‘/ U(T, X}?_ﬂ(t))dB’l‘
En (1) kn(t)

Using BDG inequality and Holder, we have
X7 = X7 ) ) S (= n ()7 1" L oy + (8 — K ()12
Using t — k,,(t) < 1/n and Condition B,

(t = Kn ()"0 10" Lo (ke 00,y S (1/0)7

Combining these estimates, we obtain the result. O

Recall that U is the solution to the equation (2.3). Under Conditions -8B, there exists
Ao > 0 such that for every A > Ao, VU is bounded Hélder continuous on [0, 1] x RY,

(7.2)

sup [l g0,y + Ul oy | <00 and sup  sup VUt )| =ox(D),
n : n o (tx)€l0,1]xRe

where 0y (1) denotes any constant such that lim)_,, 0)(1) = 0. Indeed, existence and unique-
ness and the first estimate in (7.2) follow from Lemma 7.1. Holder continuity of VU and the
second estimate in (7.2) follow by applying [41, Lemma 10.2] and the estimate in Lemma 7.1.
Let M be the Hardy-Littlewood maximal operator defined as

Mf(x):= sup

0<r<oo ‘Br’

It is well-known that M is bounded on L, (R%). Thus we have
(7.3) IMFliLego,n) S I llao,)-

/f(x—i—y)dy, B.:={zeR%:|z|<r}, r>0.
B,



42

Define
t
(7.4) AP ::t+/ [MIV2U|(5, X,) + M|V2U|(s, X)) ds
0
t
+ / M|V (s, Xs) + M|Va|(s, X" ds.
0

PROPOSITION 7.3.  Forevery p € (1,p), there exists a finite positive constant c; such
that

| An|max(5/2,1)
e~ ol ATl sup | Xy — X'

Sllzo = 20l L, @) + @n(D)
te(0,1]

Ly(Q)

+(1/n)% + (1/n)= log(n).

PROOF. Applying It6’s formula ([69, Lemma 4.1]) for U (¢, X;), we obtain that
t t
(1.5) / b (r, X, )dr = U(0, Xo) — U(t, X;) + )\/ Ulr, X,)dr
0 0

—1—/0 VU(T,XT)[b(r,XT)—b”(T,XT)]dr+/O (VU -0)(r,X;)dB,,

and similarly,
t t
/ b (r, X\ )dr =U (0, Xy) = U(t, X{") + )\/ U(r, X")dr
0 0
t
+ [ VUG X, )~ 0 X
0 ,
t
—i—/ VQU(T,XT)[a(r,X};n(T)) —a(r,X]")|dr
0
t
(7.6) —i—/ VU(r, X )o(r, X} ())dBy.
0
From equations (1.1) and (1.3), we have
t
Xi— X' =z —x( +/ [b" (r, X,) — 0" (r, X)")|dr
0
t t
b [ B X0) =V Xl [ ) <0 X
0 0

+ /0 [o(r, X,) — o(r, X")]dB, + /0 [o(r, XP") — o(r, X} ))|dB:.

We plug (7.5) and (7.6) into the previous identity, raise to p-th power to find that

3 3
& = sup |XS—X;L|p,§|x0_$8|ﬁ+vto+zv;fi+zlti’
s€[0,1] i=1 =1
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where

VP =U(0,20) = U(0,a5)[" + sup [U(s, X;s) = U(s, XJ)I?
s€[0,¢]

t —
+)\ﬁ‘/ U (r, X,) — U, X" |dr|
0

V! = sup / [I+VU(r,X,)][b(r, X;) —b"(r, Xr)]dr‘p,
s€l0,¢] ' JO

V2= sup | [+ VUG X7~ 80 X ) |
s€f0,t] ' JO

)

V2 = sup / V23U (r, X,)[a(r, Xp () — alr, X;1)ldr !
s€(0,t] ' JO '

I = sup / [+ VU (r, X)][o(r, X,) — o(r, X™]
s€(0,t] ' JO

I? = sup / L+ VU, X2)|[o(r, X;?) —o(r, Xy ()]
s€[0,¢] 0

P = sup / VU X)) — VU (r, XM - o(r, X,)
0

Using (7.2) and Cauchy—Schwarz inequality

t 2
VO S beo =P+ o (1) sup (X, — x| e2var)
s€[0,t] 0
To estimate I, 12, I3, we will utilize a special case of the pathwise Burkholder—Davis—
Gundy (BDG) inequality of [65, Theorem 5]. Namely, there exists a constant C' = C'(p, d)
such that for any cddldg martingale M, there exists a local martingale M such that with
probability one,

sup [M,|P < C[M]} + M, V.

In the above, [M] is the quadratic variation of M. We now estimate I'. By property of maximal
function (see [28, Proposition C.1]) and continuity of o, we have for every r € [0, 1] and every
z,y € RY

lo(r, ) —o(ry)| S o —y|(M|Vo(r,z)| + M|Va(r,y))).

Using this, (7.2) and the pathwise BDG inequality, we can find a local martingale M such
that

NI

t
I'< ( 1+ VUG XDPIX, = X2 (M1 X + MV Xﬁ))er> o}
0

t z
s ([ @raar) v a
0

Similarly,
I3 < < / §2/pdA”> + M}
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for some local martingale M3. Using Lemma 7.2, (7.2), Holder continuity of o and the
pathwise BDG inequality, we have

t z )
Izs( /0 P };mr?adr) M2 (L) 4+ ME.

It follows that

t 2
& Son(1)& + </ 52/pdr4n> + Vi + M,
0

where V = |z¢g — 28|P+ V1 +V2+ V3 and M = M*' + M? + M3. By choosing ) sufficiently
large, this deduces to

t z
€t§</ 62/’7dA”) TV + M,
0

Applying stochastic Gronwall lemma, Lemma 3.8, we have

n|max(p/2,1)
1

(1.7) Ee~crl4 & <EV

for some finite positive constant cj. In view of Definition 2.1, it is evident that
IEVl1 S Wn (ﬁ)ﬁ
Using Theorem 5.1, (7.2) and Condition 5, we have

EVE S [(1/n)' 3. 07) + (1/m)5 + (1/n) log(m)] " < [(1/m)3 + (1/n) log(n)]”

Using Condition 2 and Cauchy—Schwarz inequality, we have

1
Evf”gE’/ V32U (1, X,) || X — XT. (|
0

1 1 2
<E </ \V2U (r, XT)\er> </ X — X,Z‘n(T)|2adr>
0 0

1 711/2 =11/2
E(/ ]V2U(T,XT)|2dr> E<
0

1 P
JACEE
0 n
In view of (7.2), Theorem 6.1(1) and Lemma 7.2
EVE < (1/n)P5.

‘ D

VST

<

The previous estimates for EV;’s and (7.7) yield the result. O

LEMMA 7.4. Letp€ (0, %) and r > 0 be some fixed constants. Then sup,, Ee#41”
is finite.

PROOF. We observe that

d’_

n _a_2 1_d_2
ESAL, S (t—s8)+ (t—9)' 0 7 [MIVZullFg ) + (E—5) © MVl 15.0)-

Indeed, the estimates for functionals of X™ follow from Proposition 5.10 and Girsanov theorem.
The estimates for the functionals of X follows from (6.4), Lemma 3.5 and Girsanov theorem:;
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or alternatively can be derived from those of X" and the weak convergence of X" to X. In
view of Remark 3.6, this implies that for any A > 0

EeMT < e 1o 1-— d ,
a P\ po
where ¢ is some universal positive constant. For simplicity, we write A for A} below. For
every « > (, using Chebyshev inequality, we have

P(A>z)= IP’(e)‘A > e/\x) < e MEeM < o AT+

One can optimize in A to obtain that for every x bounded away from 0,
e 11
P(A>z)<e , —t+ =1
a a

where c is another positive constant. In view of layer cake representation
o0
p P _
EerA” = /ip/ " P IP(A > x)de,
0

we see that Ee®4” is finite if p < a’, completing the proof because a’ = (p A po)/d. O

Proof of Theorem 2.2. For p € (0,22522), we obtain from Lemma 7.4 that the quantity

sup,, Eerl AT ™" is finite for any constant positive x. From here, we obtain (2.4) from

Proposition 7.3 and Holder inequality. O

Proof of Theorem 2.3. We put g = VU. From Lemma 7.1, we have
SUP(HQHLZ%Z([O,I]) + HgHLg([o,l]) + HQHL‘f,,,([O,l])) <00
n

for all py € [p,0),q2 € [¢,00) and v € [0, 1) with

d 2 d 2
(7.8) -4+ —-4rv-1<—+—.
b q b2 G2

Part (i). Let p1, g1 be as in Theorem 2.3(i). From Theorem 6.1(i), we have
@n(m) S[(L+9)(0—0")l[Le S (14 [lglle)l[b— 0"l

which shows (2.6).
Part (ii). Define g3 by q—lg = q% + %. For each v € [0, 1] and p3 € (1,00) satisfying
1 1 1 1 1
(7.9) S+,
p p3 p p2 p3 d

an application of Lemma A.3(ii) and Holder inequality shows that the pointwise multiplication
is a continuous bilinear map

L%, ([0, 1]) x L%, ([0, 1]) = L%, , ([0,1]).

—u,p —V,p3
If p3 can be chosen such that

d 2 2
(7.10) — 4 —F+—-<2—-v,
p3 Q2 q

then Theorem 6.1(ii) can be applied, which gives for every p € (0, p3),

t

| 'sup [ [ g(b—=0")(r, Xp)drlllL,) Slg(b—0")s, SN0 —0"Le,
tef0,t] JO '
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To obtain the last step, we apply the multiplication result above to see that

lg(b=0")lwes, S llglliez,, 10 =0"[lLe, S 10— 6" lLs

On the other hand, applying Theorem 6.1(ii), we have
t
I sup | [ (b= ") X el ) S 6= Dles,
tef0,1] Jo
These estimates verify (2.8).
Next, we verify that it is possible to choose ps, 2, p3 satisfying all the above conditions.
Given pa, q2, D, q, v, there exists p3 € (1, 00) satisfying (7.9) and (7.10) iff

d 2 2
-<2—-Vv—-—— -
p q2 g
d d 2 2
-t — —v<2—-Vv—-—— -
b D2 q2 g
which is deduced to
2 d 2
—<2—v————
(7.11) © b
d 2 d 2
—t —<2——— -
P2 Q2 b q

Given p, ¢, v, the existence py € [p,0), g2 € [¢,o0) satisfying (7.8) and (7.11) is equivalent to
the problem (P): given real numbers a > 0,b > 0 and ¢; < ¢2, find z € (0,a),y € (0,b) such
that c; < z+y < co. Here, we have put x = d/p2,y =2/q2,a =d/p,b=min(2/q,2 —v — (),
c1=C+v—1,¢=2—Cand ( =d/p+ 2/q. With some plotting aid, it is seen that this
problem has a solution (z,y) iff ¢; < a + b and ¢y > 0. This deduces to the condition (2.7).

Since (2.8) is valid for all p € (0, p3), it remains to identify the largest possible value for
p3, denoted by p3. From (7.9) and (7.10), we see that

1 (1 1 1 1/>
— =max| —,—+———].
P3 pp p2 d

We observe that the problem (P) with the additional constraint d/ps < v has a solution (x,y)
iff (2.7) holds. In other words, we can choose ps so that d/ps < v and hence p} = p. This
shows that (2.8) holds for every p € (0, p).

Part (iii). When v = 1, we ought to take ps = p, g2 = 2. We can also choose p3 = p and
g3 = q/2. Condition (7.9) is trivially satisfied while condition (7.10) is verified by (2.9). Define
the control w; by

2 2
wils,t) = (19187 (o) + 19N (o)) w0l5,6)12

Then by the multiplication result above, Holder inequality and (2.10), we have

lg(® = 0" lporz oy S N9llLe, ,qsapllb = 0%l sy S Twr(s,t) 7,
g0 ="M Loz (s.) S N9 llLa g, 10— 0" g (1s,) S wls, t)e
We then apply Theorem 6.1(iii) to get

t 2
I g | [0 =00 X0 )drl2, ) STO -+ 08T 0,)3
te[o,t

Q=

ST(14[logI'|)wo(0, 1)
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On the other hand, applying Theorem 6.1(iii) under condition (2.10) yields

t

| sup | [ (b—0")(r, X;)dr|[L,@ ST(1+ [logl|)wo(s,t)s.
tefo,1] Jo

Combining the previous two estimates, we obtain (2.11). O

8. Application: stochastic transport equations. Let (;) be a standard d-dimensional
Brownian motion on a filtered probability space (€2, F, (F)¢efo,1], P) and let b : [0, 1] x R? —
R? be a Borel measurable function satisfying (1.2). In this section, we propose a numerical
scheme for the following (forward) stochastic linear transport equation

(8.1) Ou~+b-Vu+VuodW; =0, u(0,z)=p(x),

where p € Ny>1 L1, (]Rd) and Vu o dW; is interpreted in Stratonovich sense. As in [17], we
say u is a weakly differentiable solution to (8.1) if

e u:Qx[0,1] x R? — R is measurable, [, u(t, )1 (z)dx is progressively measurable for
each ¢ € C§°(RY);

* P(u(t,-) € N1 LPE(RY)) = 1 fort € [0,1] and both u and Vu are in C([0, 1]; Nyp»1 L7 (R? X
0));

s for any ¢ € C§°(R?) and t € [0, 1] with probability one the following holds

/Rd u(t, )Y (x)dr+ /Ot /Rd b(s,z) - Vu(s,2)¢(z)dzds
- /ﬂ%dp($)¢(x)dx+§;/ot <Adu(s,x)6xi¢(x)dx)dwg

+;/Ot /Rd u(s,x)A(z)dxds.

It is known from [17, Theorems 10, 11] that a weakly differentiable solution w to (8.1) exists
uniquely and has the representation u(7,z) = p(¢§(x)), where ¢{(x) is the inverse of the
stochastic flow of homeomorphisms generated by the solution (X (z))¢[o,1] to the SDE

(8.2) dX:(z)=0b(r, X, (x))dr +dW,, 71€][0,1], Xo(z)=uz.

For each fixed 7 € [0, 1], consider the backward-in-time SDE
T
(8.3) Xrs(x)=2— / b(r, Xop(z))dr+ Wy —W;, 0<s<7, X;,(z)==x.
S

The inverse flow ¢f(z) is directly related to the solution to the previous SDE through the rela-
tion ¢f(x) = X;0(z). Indeed, when b is a smooth bounded function with bounded derivatives,
this relation is classical, see [42, Theorem 3.7.1]. When b belongs to L}, one can approximate
it by smooth functions. Because both ¢{(x), X;o(z) are stable under this approximation
(see [17, Lemma 3] and [22, Theorem 1.2] respectively), the relation holds true in this case.
Alternatively, another argument for this fact is recently provided in [3] utilizing path-by-path
uniqueness of (8.2).

To devise a numerical scheme for (8.1), it convenes to introduce X7 (z) := X, _4(x). By
a change of variables, we find that

(8.4) X;(x):x—/ b (r, X (x))dr + W], 0<s<T,
0
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where b7 (7, ) := b(1 —r,x) and W := W, — W,_,. for r € [0, 7]. Observe that (W} ),c(0.+]
is a (F])-Brownian motion with 7] :=o(W,_,, — W,_,,,0<r; <ro <t) fort € [0,7].
Hence, we have the representation u(7,x) = p(X7(x)). This naturally suggests the numerical
scheme

u" (1, 2) = p(XT"(x)),

where for each 7 € (0,1], (X<™),e[0,-] is the tamed Euler-Maruyama approximation for (8.4),
namely

8.5) XT(z) = g — / b X (@)dr + W, 0<s <
) ;

Here, b™"(r,x) := b"(7 — r,x) for r € [0,7] and b" is an approximation for b satisfying
Condition ‘5.

THEOREM 8.1.  Suppose that Condition *B holds. Let v € [0, 1) satisfy (2.7) and p1, q1 €
[1,00] satisfy p% + q% < 2. Then for anyl € (1,p A %p), any 7 € (1,00) satisfying % < % —
]%(1 v 4, we have

d
sup T 27
(m,2)€[0,1] xR?

(8.6) SNIVol L, e ((1/n)2 logn + min([|b — b"{|s: 0,17, 10— 0"l o.17)));
where N depends on K4, p,d,l, p1, q1 and 7.

un(Ta :B) - U(T> iL‘) ||Ll(Q)

PROOF. We put b(r,x) = 0 and b"(r,z) = 0 whenever r € R\ [0,1] so that b" (7, x)
and b™"(r, ) are well-defined functions on [0,1] x R%. Let (W;)se(o,1] be a standard (F;)-
Brownian motion which is independent from (W;);c[o,1] and define

W, —W,_, if r € [0, 7],

8.7) W= Vrer
W, +W, —W, ifre(nl],

which is a standard Brownian motion with respect to the filtration (G );c(0,1] := (Fi{p; V

ﬁtw)te[o,l]- Equations (8.4) and (8.5) (for each fixed 7 € [0, 1]) are extended uniquely over
the whole time interval [0, 1].

By property of maximal function and continuity of p (see [28, Proposition C.1]) we have
for every x,y € R,

lp(x) = p()| < |z =yl (M[Vp|(z) + M[Vp|(y)).
It follows that
8.8)  |u(r,z) —un(7,2)| S|X](2) — XT"(2) (M|Vp[(X](x)) + M|Vp|(XT"(2))).

Next, we estimate the terms on the right-hand side of the previous inequality.

In order to apply Theorem 2.2 to obtain estimates for X™*) — X T(z), we verify that
b™ and b™" fulfill Condition B for each 7. Indeed, it is evident that b” € L}([0,1]), b™" €
L5 ([0,1]) N L& ([0, 1]) and that [[6™"|La((0,1]) < [16"]ILs(j0,17) Which is bounded uniformly in
n. In addition, define u™"(s,t) = p((7 —t) V0, (7 — s) V 0), which is a continuous control
on the simplex A([0,1]). We have [[b™"||La_((s,¢)) = [[0" lLe. (((r—t)v0,(r—s)v0)) and hence by
(2.2)

(1/n)= 07 s (o) < 17" (5,1)°.
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Similarly, ||b7"
so that

lLa(ro,1)) = 110" lLg 0,7y < 110" ]lLg(jo,17) and ™™ (0,1) = p"(0,7) < p"(0,1)

Sup (157" ls o,17) + 7" (0,1)) < Ky,
nz

where K is the constant in Condition ‘B.
Hence Theorem 2.3(i-ii) yields that for p € [1, p)

@ (p) < Nmin([[b— 0" [|a1 0,17, 16 = 0" [lLe,  o.1))-

. _ 2
Theorem 2.2 yields for any v € (0,1) and p € [1,p A7),

sup || X{ (x) — X[ (x)

HLw(m
(t,z)€[0,1]x R4

(8.9) <N (072 Togn -+ min(llb = ¥ gy o,y 1 = 6", 0.1)))

The constant N depends on K4,v,p,q,p1,q1,P-

Similar to the arguments used in the proofs of Theorems 5.1 and 6.1, using Girsanov
theorem, one can deduce the estimates for X", X7 to estimates for Brownian motion, which
are obtained in Lemma 4.1. Hence, for any 7 > r > 1, we have that

IMIVRl(XT (@) . 0) S IMIVAIB)lLw@) S 772 IMIVAlll ey S 772 Vol Lo ey,
and similarly,
MV (X" ()]

Given [, as in the statement, we can choose r € (1,7), p € [1,p), v € (0,1) such that
% + % = % From (8.8), applying Holder inequality, we have

L@ ST 2 IVollL,ra)-

[[un (7, 2) = u(T,2)|| L, (0
SIXT (@) = X2 (@) Iz, ) (IMIVAl(XZ (@) L, ) + IMIVl(XT" (2))]

Combining with the estimates obtained previously, we obtain that

L(Q)

||Un(7'7{1}) - U(T7x)|’Lz(Q)

S TPl gy (07 10gm + minllb = 6 gy 0., 16— "lle, 0.1))

sP

which implies (8.6). ]

APPENDIX: PARABOLIC EQUATIONS WITH DISTRIBUTIONAL FORCING

In this section we show the well-posedness and regularity estimates for the solutions for a
class parabolic equations with distributional forcing, which are used in Section 6 and have
their own interests. Although such equations have been considered extensively in literatures,
for instance in [40], [37], [72] and [69], the available results therein are valid under different
hypotheses and are not applicable to our situations.

For each r € [1, 0], we denote its Holder conjugate by 7/, i.e. % + % = 1. For each Banach
space &£, we denote its topological dual by £*, and the dual paring between £ and £* by
(-,-)e~ £. We consider the parabolic partial differential equations (PDEs)

(A.10) (0s+ a0} ) u=f, wu(l,-)=0
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and

(A.11) O — 05 (a%v) +g=0, v(0,)=0

under the following assumptions:®

CONDITION 2.

1. ais a d x d-symmetric matrix-valued measurable function on [0, 1] x R?. There exists a
constant k; € [1,00) such that for every s € [0, 1] and x € R?

(A.12) kM <a(s,x) <kl

Furthermore, a(s, -) is weakly differentiable for a.e. s € [0,1] and k3 := ”VG||L;;3([0,1}) is
finite for some py € (d, o0).
2. fel?, ([0,1])and g € LT, ,([0,1]) for some p,q € (1, 00) satisfying % + p% <1.

DEFINITION A.2. A measurable function u : [0, 1] x R — R is a solution to (A.10) if
uelL{ ([0,1]), dsu € L, ([0,1]), u(1,-) = 0 and equation (A.10) holds in L., ([0, 1]),
i.e. for every ¢ € LT ,([0,1])

1 1
(A.13) /0((as+azjaé)un¢t>L_1,p(Rd)xL1,p,(Rd)dt:/0 (ft00) L, (Ri)xL, ,, (r2)dL.

Likewise, a measurable function v : [0, 1] x R? is a solution to (A.11) if v € L(f:p, ([0,1)),
O € L‘fl,p,([O, 1]), v(0,-) = 0 and equation (A.11) holds in L ([0,1]), i.e. for every
¢ €Li,([0,1])

(A.14)
1 1
/0 (Opvs — 3%(0”%), ¢s>L,Lp,(Rd)xL1,p(Rd)d5 + /0 (95 ¢s>L,1,p,(Rd)xLLp(Rd)d8 =0.

In the above definitions, we have implicitly understood that a'/;;u and 87 (a"/v) are well-

defined distributions in L‘fl’p, ([0,1]) and L7, ([0, 1]) respectively. To see this, we need the
following multiplication result:

LEMMA A.3. Let p,p1,p2 be real numbers in (1,00) and let v € (0, 1].
(i) Assume that p1,ps > p and that % < p% + p% < % + 5. Then the pointwise multiplication
is a continuous bilinear map

) —
(ii) Assume that p1 = p, that ps > p’l and that % <Lt 4 Loly 5. Then the pointwise

1
Do . . pr P2 P
multiplication is a continuous bilinear map

L_yp, (RY) X L, p, (R = L_,, ,(RY).

®Parabolic PDEs with distributional forcing have been considered by Kim [37]. However, his result is applicable
to (A.10) and (A.11) only when a is continuously differentiable in the spatial variables with bounded derivatives
and p < g hence Condition 2 is excluded.
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(iii) Let g be a bounded measurable function such that V g 6 LpO (R%) for some po € (d, 00).
Let f be in Ly (RY), h be in L_1 ,(R?) and assume that 1 5+ 50 <L Then fg belongs to

Ly (RY), gh belongs to L_1 ,(R?) and
(A.15) 1f9llz,, @ < U9llee@s + 1Vl @)IflL,, @),
(A.16) lghll_, & S U9llz.@s + 1V, @)L, ,@e)-

PROOF. (i-ii) are consequences of [72, Lemma 2.2]. Concerning (iii), define p3 by 1% =

p% + p%. Then by Holder inequality
IV fllr, ®e) < IVllL,, re Hf||Lp3 (Rd)-
The embedding L ;v (R?) < L,, (R?) is valid 1f 1-1g pi 1%’ which is justified by our
assumption. It follows that Vg f|| ,re) S HVgHLpo r)l|fllz, , (ra)- Itis evident that
l9flz, @y + 19V fllL, @) SNl Lo@l fllz,, &a)-
From here, we obtain (A.15). To show (A.16), we note that by duality and (A.15),
Ifghlle, ey SRlL @l fallL, @

Sl w9l @sy +1IVlL, @) flL, , we-
This implies (A.16) by duality. O

PROPOSITION A4.  Forevery u € IL{ ([0,1]) and v € L(f:p,([o, 1]), under Condition 2’
we have

a0}uel? ([0,1]) and 8%(a"v) €Ly ,([0,1]).
PROOF. Using Lemma A.3(iii), we see that
la?0FullL_, e S (0 L@y + V@ |, @) 1070l L, ,re)
S () ooy + Va7 | 1, ey lullz, ey
and
187 () |_, ey S lla L, ey S (6| Loy + 1V |1, @) 0|2, ey

These estimates imply the result. O

THEOREM A.5. Under Condition 2, there exist a unique solution u to (A.10) and a
unique solution v to (A.11). Furthermore, we have

(A.17) lulle oy + 19sullLe, oy < NI fllLe, o

(A.18) HUHL'I L ((0,1]) +||athL‘1 [01] NHgHL‘? L ([0,1])

where N is a finite positive constant dependlng ond,p,q,po, ki, kg.
Before giving the proof of the above theorem, we show several auxiliary results.

LEMMA A.6 ([72, Lemma 4.1]). Let ( be a nonzero smooth function with compact
support. Define (*(x) = ((z — z). For any v € R and p € (1,00), there exists a constant
C > 1 depending only on v, p,( such that for any f € L, ,(R%),

1/p
NS o ey < (/ TS ) <Cflb. .
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LEMMA A.7 ([37, Lemma 2.5]). Fork=1,...,n, leta": Ry — RY x R be a measur-
able function satisfying (A.12). For fixed v € R, p € (1,00), let u* € L ,([0,1]) solve the
following PDE

(0s —i—a”82 Yk = f* u(1,-)=0.
Then

1 n
i (O NZ / 1412 o TTIV2I I8,
k=1

J#k

We will make use the following:
Convention. For a parameter p > 0, we write o, and C,, for any constants whose exact values
depend on p and may change from one instance to another, but it is always enforced that
lim,, 0 0, = 0. In particular, the inequality A < D +o0,F +C,E means that A < cD +co,F +
cC,E for some constant ¢ independent from p.

LEMMA A.8. Assuming Condition . Let 1)1 be a smooth function supported in the ball
B :={xeR%: |z| < 1}. Foreachp>0andz€Rd define BB}, = {reRy: |z — 2| < p},
Vi (z) ::@bl(%) and a(2)(t, x) \Bz| fBz (t,y)dy. Then we have

(A.19) sup |[(a—a(2))¥;llL, ,, &) S 0p
(t,z)€[0,1]x R4

Here {f(x) :=1(*%), @,z € RY, p > 0.

PROOF. Observe that

I = sup, [(a —a(2)¥;l L, &) S 1Y1llL.rollalz. w18, L, &)

and

Iy := sup IVay,llL,, ®) S Y1l @sllVa-1g,, L, &
zEe

Using Poincaré inequality ([24, Theorem 3.17])

I3 := sup (@ —a(2))VY5llL,, @ S IVl @)l Va- 1,1, =
1S

Condition 2’ implies that I + I + I3 < 0,. Furthermore, because
sup [(a—a()¥5lL, ,, e S (11 + 12+ I3),
z€R4

we obtain the desired result. O

LEMMA A.9. Assuming Condition ' and additionally that q > p. Then there exists a
unique solution u to (A.10) which satisfies (A.17).

PROOF. By Marcinkiewicz interpolation theorem, it suffices to show the result when
q = np for any integer 7 > 1. Let n > 1 be a fixed integer. By the method of continuity (e.g.
see [23, Theorem 5.2]), it suffices to show that there exists positive N = N (d, p, ¢, po, k1, k3)
such that whenever u is a solution to (A.10),

(A.20) lullLze 0,17y < NIl o.1)-
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Note that if u is a solution to (A.10), then using Proposition A.4, the above estimate implies
that

10cullLrn 0.7 S IFllLe .-

Let p > 0 be a fixed constant and ¢ be a nonnegative smooth function such that ¢ is
supported in the ball B, := {z € R : |z| < p} and ||¢|| 1, rs) = 1. For each z € RY, define
a(z) as in Lemma A.8 and

o*(x) =z —z), u’(s,x):=u(s,x)p*(x), [*(s,z):=f(s,2)¢*(x).
Then v~ satisfies the relation
(A.21) 8tuz—|—aij(z)8i2juZ:FZ, u®(1,-) =0,
= f¢* +2a" 0jud;¢° + aijuﬁquSz + (a¥(2) — aij)a?juz

The proof is now divided into several steps.
Step 1. We show that for each ¢ € [0, 1],

1/p
w2 ([ FI ds) S+ Collul ey + ol

Applying Lemma A.6 (with ¢ = ¢,0;9, Z-2j¢ respectively) and Lemma A.3, noting that
Vol + [ V20|00 < Cp, we obtain that

~

g g 1/p
</Rd | fo® + 2a" O;ud;¢° + a”u(?quﬁzle_m(Rd)dz)

S, ey + 1Vllsolla?Osull, ey + [Vlloolla™ullL ., @e)
Sz, @e) + Collull L, may-

Let 1) be a smooth function on RY such that ¢ (z) = 1 if |z| < p and (x) = 0 if |2| > 2p
Define ¢*(x) = ¢(x — z). Applying Lemma A.3 (whose hypothesis is justified because
po > p’ and py > d), we have

I(a¥ (2) = a")OFul Iz, , ey S (0 (2) = )91, , @) 1050% |, (-

By Lemma A.8, we see that

sup [|(a” (2) — )%, . me) < 0p.
ZER?

Hence,

I(a”(2) = a)7® |1, (rty < Opl[U7 |1, , (ray.
It is easy to see that [y, |h¢?||%

”Lp(Rd)dZ = ||h|lr,(raey for any h € L,(RY). Hence, by
Minkowski inequality and Lemma A.6, we have

1/p 1/p 1/p
(fowte) "< ([wern,a) ™ ([ et ae)
Rd ” Rd ? Rd r
1/p 1/p 1/p
<</ ||Vu¢z|1£pdz> +</ ||uV¢Z||’£pdz> +(/ Huznlzpdz)
R4 R4 R4

(A23)  S|Vull,@s + Collullz, re):
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This shows that

iy 1/p
([ 1) = a0l =) S ol gu + Colll, oy

Hence, we have (A.22).
Step 2. We show that for every integer 1 < n < 72 and every s € [0, 1],

(A.24) lwlluee s,y S Wl sy + llullees s
Since
(A.25) lullere san = V20l sapy + el s,

it suffices to estimate HVQuH]Lgp ([s,1])- From Lemma A.6, we have

A26) [Vl (o S / ([ 192l oytz) ar+ / e 37

From Tonelli’s theorem, Lemma A.7 and (A.22),

/(/ V2| Rd)dz>ndt

n—1
/ </ IV2uill] | (maydz > (Ifell 2, ey + luell 2, mey + 0plluelr, , may)"” dt.
Applying Holder inequality, we have

1 n 1_%
/(/Rdllvr“uﬂli_w(w)dz> dt<[/ (/ 1926 12 g z) dt]

1 n
. [ [ U50ya) + Collul +op||uuL1.,,<Rd>)"”dt] |

which yields that

/(/ V22 Rd)dz>ndt

5/8 (Hf\l’i’il,p(ugd) + CpHUHK(Rd) + OpHUHZ’fm(RdQ dt.

Putting this into (A.26), we obtain that

HVzullw L([s1) N”fH]LW L([s,1]) +C HuHan (Is,1]) +0PHU‘ 7 ([s,1])"
Using interpolation inequality
(A.27) lullizr (sap S Cpllullirz s,y + opllullLye (5,1
we get
”VZUHL"P ([5,1]) <||f||]L"” L([s,1]) +C||UH]L"P [51])+0pHU||IL (Is,1])-
In view of (A.25), we have
lulliye (s S 1 F Lz gsap + Collulliez s,y + opllullLye (s,1)-

By choosing p sufficiently small, we derive derive (A.24) from the above estimate.
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Step 3. We show that

(A.28) lullLe, oy S Il o.1))-
From (A.21), we have

1 t
ug = / Py, () Ffdt, where Yg(z)=2 / a(r, z)dr.
s S

Then Minkowski inequality and [67, Theorem 5.30] yield

1
2l @ S / IF2 o,y

Applying Holder inequality, Lemma A.6, (A.22) and the interpolation inequality (A.27), we
obtain from the above that

1
”uSHIZ/*l»P(Rd) 5/ /]Rd ’|th|’§71=p(Rd)dZdt
S

1
’S/ [HftH]Z*w(Rd) el ey + ||“t\|§1,p(Rd)] dt.

Applying (A.24) (with n = 1), we have

1
oy S oy + [ el et
S

which implies (A.28) by Gronwall inequality.
Step 4. Using (A.28) in (A.24) yields

HUHJL""([O S HfHLf’f;([O,I]) + ”f”]Lﬁ 0,1]) S HfHL’”’ ([0,1])+
which implies (A.17). ]

LEMMA A.10. Assuming Condition ' and additionally that ¢ > p'. Then there exists a
unique solution v to (A.11) which satisfies (A.18).

PROOF. The proof is similar to that of Lemma A.9. The main differences are the com-
putations in step 1 of the proof of Lemma A.9, which we will explain below. Let v be
a solution to (A.11). Define ¢*,a(z) as in the proof of Lemma A.9. In addition, define
9*(t,z) = g(t,z)p*(x) and v*(t,z) = v(t,z)p*(x). Then v* satisfies the parabolic equation

Ow® — aif(z)afjvz +G*=0, ©v*(0,-)=0,
where
z z i 2.2 2 (1] z
G* = g" + a" (2)0;;v" — 0;;(a"v)¢
=g° — 8% ((a” = a" (2))v*) + 20;(a"v)d;¢° + aijv(?fjgbz.
Let 1) be a smooth function on RY such that ¢ (z) = 1 if |z| < p and (x) = 0 if |x| > 2p
Define ¢*(x) = ¢ (z — z). Applying Lemmas A.3 and A.8
1835 ((a* = a (D)) |L_, @) S (@ = @™ ()%, (o)

S @? = a ()" p, ,, @107, , @) < 0pll07I 1, (R
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and

lavdZ¢% L, wey SNa9? L, @056 L, e S 005671, (re):
Similar to (A.23), we have

([, (Rd)) < lollz, g + Colo
This yields

([ 10 = a90%) + @002tz

S Cpllvllz,, ey +opllvliL, ,, ma)-

L (R)-

Applying Lemma A.6, we have

1/p’ N
||9 +20;(a"0)0;07 |17 (R Slellz_ ., @ay +CollOi(a” V)L, (wa)
1p )

Slglz ., @ay + CollvllL,, ey
These estimates imply that

1/p
(/ G g ) <Nallo,cwoy + Collvllogo + opllvlz, . o

Using the interpolation inequality
||UHL @) < Cpllv|lz_ L (RY) +opllvlz, o (RY)s
we obtain from the previous estimate that
1/p
(L1671 n@z) " Sl e+ Cololla, s + ol o
One can now follow steps 2,3 of the proof of Lemma A.9 to obtain (A.18). O

Proof of Theorem A.5. Concerning equation (A.10), by the method of continuity it suf-
fices to show (A.17) whenever u is a solution to (A.10). The case ¢ > p has been treated in
Lemma A.9. Consider the case g < p, which is equivalent to ¢’ > p’. Foreach g € ]L_1 ” ([0,1)),
let v be the solution to (A.10), which exists uniquely by Lemma A.10. We take ¢ = v in (A.13)
and use the equation (A.11) for v to see that

1 1
/0(uw95>L1,p(Rd)xL_1,p,(Rd)dSZ/O (U, f) L, (RayxL_, ,(Ra)dE-

Applying Holder inequality and (A.18), we have

1
/0<Ut7ft>LLp/(]Rd)xL1,p(Rd)dt

< ||U||L;zfp,([o,1])Hf”Li'l,p/([le])

S HQHLQ ([0 1])HfHJL“ ([o,1])°

and hence

1
/0<U5795>L1,,,(Rd)xL1,,,,(Rd)d3

S HQHU L (0.1]) HfHIL“ »([0,1])°

Since g is arbitrary, this implies (A.17). The result for equation (A.11) follows from similar
arguments. O
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In the remaining, we consider the parabolic differential equation
1 ..
(A.29) Ost + §a”8i2ju =f, u(t,)=0

where f € L‘ilvp([O, 1]), t € (0,1] is fixed. Whenever the dependence on ¢ plays a role, we

write u’(z) for the solution to (A.29) evaluated at (s,z), s t r € R?. We quantify the
dependence on the terminal time of various quantities related to us under Condition 2. These
estimates are used in Section 6 where we particularly take (a'/) := oo™ for a o satisfying
Condition 2 with gg = co

THEOREM A.11. Assuming Condition 2. Let q € (2,00) and p € (1,00) be such that
%4— p% < 1. Then for every v € [0,1], every 0 < s <t <1land f €LY, ([0,1]), we have

(A.30) il ey S N(E— ) 570 flle s

—uv,p

LEMMA A.12. Letq€ (2,00) and p € (1,00). Let t € [0,1]. If u(r,z) =0 forr € [t, 1],
then for every s € [0, t]

N =

A31)  u(s)llr, @y S (E—s) iH(‘) u+ AuHLq ([s,]) Whenever u € IL{ ([0,1])

and

_1 1
(A.32) lu(s)lz, rey < (= $)'a || Ogu + §AuHLg([87t]) whenever u € L3 ([0, 1]).

PROOF. By approximation, we can assume that « is a smooth function on [O 1] x R? with

compact support. Put g := dsu+ 5 Au Then by Duhamel’s formula (s, z) f Py rg(r,z)dr.
Applying Minkowski inequality and [67, Theorem 5.30], we have

t t
”USHLP(Rd) < HPS,TQTHLP(W)dr S / (r—s):z ”gTHL,,l,p(Rd)dr'
S S

Using Holder inequality, we have |us||z re) S (t — 5) ||g||]Lq (Is,t))- This shows (A.31).
Inequality (A.32) is obtained in the same way. O

Proof of Theorem A.11. By interpolation, it suffices to show that
(A.33) [ubllL, ey SN(t—5)2 4| fllLe, (o) For f €Ly ([0,1]),
A3 fulll, e < NE— )75 g for £ €L4(0,1]).

From Theorem A.5, we have ||ut|\Lq () S I llLe, (s forevery 0 < s <t < 1. From
(A.29), we have dgu + 2 Au= f + 3 (A — a¥ 822]) Jt follows from Lemma A.12 that

gl ey S (= 8)2 7w (I fllue, (o) + 167 = )00 e, s.))s

where % =1 if i = j and 6% = 0 otherwise. From Lemma A.3(iii) and the hypotheses, we
have

167 — a)Fut |Le | sy S (107 [les (1) +HV@”HL& (s 05 e, (1s.0)

Sy s.0-

Combining the previous estimates, we obtain (A.33).
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Inequality (A.34) is shown analogously. Indeed, using Lemma A.12, we have

bl ray S (8= 8)' 7 (1 Flla s + 11067 — a)O%ub s (gs.a)

S =9 (I f laqs + 1070 Lagsm)-

It is known ([51, Theorem 2.1]) that ||u? g (s.4) S 1 fllLg (s, - These estimates imply (A.34).
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