
This is a repository copy of AutoLfD: Closing the Loop for Learning from Demonstrations.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/id/eprint/222706/

Version: Accepted Version

Article:

Wu, S. orcid.org/0009-0001-9266-0799, Wang, Y. and Huang, Y. orcid.org/0000-0002-
5395-5076 (2025) AutoLfD: Closing the Loop for Learning from Demonstrations. IEEE
Transactions on Automation Science and Engineering. ISSN 1545-5955

https://doi.org/10.1109/tase.2025.3532820

This is an author produced version of an article published in IEEE Transactions on
Automation Science and Engineering, made available under the terms of the Creative
Commons Attribution License (CC BY), which permits unrestricted use, distribution and
reproduction in any medium, provided the original work is properly cited.

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse

This article is distributed under the terms of the Creative Commons Attribution (CC BY) licence. This licence
allows you to distribute, remix, tweak, and build upon the work, even commercially, as long as you credit the
authors for the original work. More information and the full terms of the licence here:
https://creativecommons.org/licenses/

Takedown

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

mailto:eprints@whiterose.ac.uk
https://doi.org/10.1109/tase.2025.3532820
https://eprints.whiterose.ac.uk/id/eprint/222706/
https://eprints.whiterose.ac.uk/

1

AutoLfD: Closing the Loop for Learning from

Demonstrations
Shaokang Wu, Yijin Wang, and Yanlong Huang∗

AbstractÐOver the past few years, there have been numerous
works towards advancing the generalization capability of robots,
among which learning from demonstrations (LfD) has drawn
much attention by virtue of its user-friendly and data-efficient
nature. While many LfD solutions have been reported, a key
question has not been properly addressed: how can we evaluate
the generalization performance of LfD? For instance, when a
robot draws a letter that needs to pass through new desired
points, how does it ensure the new trajectory maintains a
similar shape to the demonstration? This question becomes
more relevant when a new task is significantly far from
the demonstrated region. To tackle this issue, a user often
resorts to manual tuning of the hyperparameters of an LfD
approach until a satisfactory trajectory is attained. In this
paper, we aim to provide closed-loop evaluative feedback for
LfD and optimize LfD in an automatic fashion. Specifically, we
consider dynamical movement primitives (DMP) and kernelized
movement primitives (KMP) as examples and develop a generic
optimization framework capable of measuring the generalization
performance of DMP and KMP and auto-optimizing their
hyperparameters. Evaluations including peg-in-hole, block-
stacking and pushing tasks on a real robot evidence the
applicability of our framework.

Note to Practitioners—The paper is motivated by the demand
to transfer human skills to robots. While the problems of ‘what to
learn’ and ‘how to learn’ have been long-standing research topics,
the solutions for evaluating the quality of such skill transfer
remain largely open. We introduce a novel closed-loop framework
towards transferring human skills to robots in an automatic
manner. Specifically, we collect a training dataset that reflects
user preference for trajectory adaptation and train a trajectory
encoder network using the dataset. With the encoder network,
we design a robust metric to measure the skill transfer quality
and subsequently employ the metric to guide imitation learning
of human skills. By using our framework, unseen robotic tasks
can be tackled by adapting the demonstrations straightforwardly,
where relevant hyperparameters involved in skill transfer are
optimized automatically.

Index TermsÐLearning from demonstrations, generalization
metric, trajectory encoder network, dynamical movement prim-
itives, kernelized movement primitives.

I. INTRODUCTION

Learning from demonstrations (LfD), as a long-standing

research topic in the scope of robot learning, aims to endow

robots with the capability of mimicking human behaviours

from a single or a few pre-provided demonstrations [1]±[3].

Notably, additional policy updates via interaction with the

All authors are with the School of Computer Science, University
of Leeds, Leeds LS29JT, UK. (scswu@leeds.ac.uk;
ml20y3w@leeds.ac.uk; y.l.huang@leeds.ac.uk).
∗ Corresponding author

DMP: J
MSE

= 14748.98 DMP: J
MSE

= 6312.36 DMP: J
MSE

= 4481.96

DMP: J
MSE

= 29288.88 DMP: J
MSE

= 10292.66 DMP: J
MSE

= 3374.88

21 3

4 5 6

x [cm]
y
 [

cm
]

y
 [

cm
]

x [cm] x [cm]

Fig. 1: The writing of 2-D letters using DMP, where DMP is employed to
imitate the demonstration and generate a new trajectory starting from a new
starting point towards a new target point. The forcing term in DMP is learned
by GP. Each new trajectory (i.e., adaptation) for letters ‘A’ and ‘G’ corresponds
to a different set of hyperparameters for DMP. JMSE is defined as the MSE
loss between the adapted trajectory and the demonstration.

environment or human users can be incorporated into a LfD

paradigm.

There is a large body of literature in LfD that has been

dedicated to addressing two key problems: (i) what to learn

and (ii) how to learn. For the first problem, various works (e.g.,

[4]±[10]) studied the learning of different forms of demonstra-

tions depending on task requirements, e.g., Cartesian position

and velocity, orientation and angular velocity, joint position

and velocity, stiffness and damping matrices, manipulability,

interaction forces, as well as various combinations of these

profiles. For the second problem, many LfD solutions have

been proposed under different assumptions about the learning

model. For instance, by encoding a demonstration as a spring-

damper model with an additional forcing term modulating the

acceleration profile, dynamical movement primitives (DMP)

were developed [11]. Task-parameterized Gaussian mixture

model (TP-GMM) was proposed in [12], where consistent fea-

tures underlying demonstrations within each task frame were

modelled by GMM and later these features, together with new

task frames, were utilized to deal with task generalization. In

[13], a demonstration was assumed to be the weighted sum of a

series of basis functions and multivariate Gaussian distribution

was used to model the distribution of multiple demonstrations,

leading to a probabilistic LfD framework, i.e., probabilistic

movement primitives (ProMP). In contrast to ProMP which

maximizes the likelihood of demonstrations, we considered the

posterior instead and introduced a non-parametric LfD solution

2

[14], i.e., kernelized movement primitives (KMP), where the

explicit definition of basis functions was mitigated.

While the community witnesses remarkable progress in LfD

in terms of algorithms and applications, one crucial question

seems to be overlooked: how to evaluate the generalization

performance of LfD? Indeed, in supervised learning and re-

inforcement learning settings, the evaluation of generalization

is straightforward, e.g., using mean squared error (MSE) for

regression, cross-entropy loss (CEL) for classification, and

reward for reinforcement learning. However, the design of a

sensible metric for LfD is nontrivial.

Considering the task of writing a 2-D letter (see Fig. 1)

and assuming that only a single demonstration of this letter

is available, if we use DMP to write it from a new start-

point towards a new end-point, how can we ensure the new

trajectory is smooth enough and meanwhile maintains the

shape of the demonstration? Note that the adapted trajectory

must be different from the demonstration as a consequence of

the new start-point and end-point demands. In this case, the

traditional treatment of using MSE or maximum a posterior

(MAP) [14] as a generalization metric could become prob-

lematic, especially when the adapted trajectory is far from the

demonstration, see Fig. 1 where the best adaptation has the

largest MSE loss.

Similar limitations of MSE apply to other distance-aware

metrics as well, including FrÂechet distance [15] and dynamic

time warping (DTW) [16]. Often, we rely on manual tuning of

the hyperparameters of DMP until a proper trajectory meeting

our requirements is obtained. The tuning process heavily relies

on our experience and usually involves many trials, which

restrains the deployment of DMP in dynamic environments

since such tuning is required whenever a new task requirement

arises. A similar issue of tuning hyperparameters is also

encountered in other LfD solutions, including ProMP and

KMP.

In this paper, we propose an automatic optimization frame-

work for LfD (i.e., autoLfD) to free users from the laborious

tuning of hyperparameters, where a novel metric capable

of measuring the generalization performance of any LfD

approach is designed. Such a metric is built on a trajectory en-

coder network that is trained on a dataset comprising manually

labelled positive and negative adaptation samples. Specifically,

we take DMP and KMP as examples and use this metric to

guide the optimization of their hyperparameters. We begin

with preliminaries on DMP and KMP in Section II. After that,

we discuss the limitations of MSE and MAP acting as general-

ization metrics for LfD (Section III). In Section IV, we present

a novel metric for evaluating the generalization performance

of LfD and explain hyperparameters optimization for DMP

and KMP using the metric, where both gradient descent (GD)

and Bayesian optimization (BO) are exploited. We test the

autoLfD framework (Section V) in several scenarios including

simulated writing tasks, as well as peg-in-hole, block-stacking,

and pushing tasks implemented in a real robot. We discuss

relevant work in Section VI and the limitations of autoLfD in

Section VII. We conclude this work in Section VIII.

II. PRELIMINARIES

In this section, we briefly review the basic rationale of DMP

(Section II-A) and KMP (Section II-B), which will be later

optimized using the proposed autoLfD framework.

A. DMP

DMP, consisting of a first-order canonical system and a

second-order transformation system, can learn and generalize

the motion pattern underlying a single demonstration. For-

mally, DMP encodes trajectories as [11]

τ ṡ = −αs,

τ2ξ̈ = Kp(g − ξ)− τKvξ̇ + s(g − ξ0)⊙ fw(s),
(1)

where Kp and Kv are stiffness and damping matrices. τ , α,

and s denote motion duration, decay factor, and phase variable,

respectively. ξ ∈ R
O represents O-dimensional position while

ξ̇ and ξ̈ respectively denote the corresponding velocity and

acceleration. ξ0 is the starting point and g is the target. ⊙
stands for the element-wise product. fw(s) ∈ R

O represents

the forcing term driven by s, where the parameter vector w

is learned from the demonstration.

In contrast to the classical representation of approximating

the forcing term f(s) as a linear combination of a set of pre-

defined basis functions, Gaussian process (GP) was suggested

in [17] to model f(s) from a nonparametric perspective, where

the explicit definition of basis functions is mitigated and fewer

open parameters are demanded.

Suppose we have access to a demonstration of time-length

N , i.e., {tn, ξn, ξ̇n, ξ̈n}
N
n=1, we can substitute the demonstra-

tion into (1) and extract a new training dataset {sn, f(sn)}
N
n=1.

The new dataset can be learned by GP to predict the corre-

sponding forcing term f(s) for an arbitrary s ∈ (0, 1]. Given

an inquiry s∗, we have [18]

fi(s
∗) = k∗(K+ λI)−1Ui, (2)

with
k∗ = [k(s∗, s1) k(s

∗, s2) · · · k(s∗, sN)],

Ki,j = k(si, sj),

Ui = [fi(s1) fi(s2) · · · fi(sN)]⊤,

where k(·, ·) denotes a kernel function, e.g., the definition of a

commonly used squared exponential (SE) kernel is k(si, sj) =
exp(−kh(si − sj)

2) with a hyperparameter kh > 0. k∗ ∈
R

1×N , Ui ∈ R
N , Ki,j denotes the element at the i-th row and

the j-th column of the matrix K ∈ R
N×N . fi(·) corresponds

to the i-th element of f(·). λ > 0 is a scalar, and I is an

identity matrix.

B. KMP

Unlike DMP which learns a single demonstration, KMP

learns the probabilistic distribution of multiple demonstra-

tions. Given H demonstrations {{tn,h, ξn,h, ξ̇n,h}
N
n=1}

H
h=1

with ξn,h being the trajectory point at the n-th time step from

the h-th demonstration, their distribution can be modelled by

GMM and Gaussian mixture regression (GMR) [12], [19],

3

leading to a probabilistic reference trajectory that encapsu-

lates the distribution of demonstrations, i.e., {tn, µ̂n, Σ̂n}
N
n=1,

where P
(

[

ξn
ξ̇n

]

|tn
)

= N (µ̂n, Σ̂n).

Let us denote µ̂ = [µ̂⊤

1 µ̂
⊤

2 · · · µ̂
⊤

N]⊤ and Σ̂ =
blockdiag(Σ̂1, Σ̂2, . . . , Σ̂N). For a query input t∗, KMP pre-

dicts its corresponding output as [14]

µ(t∗) =

[

ξ(t∗)

ξ̇(t∗)

]

= k∗(K+ λΣ̂)−1µ̂, (3)

where

k∗ = [k(t∗, t1) k(t
∗, t2) · · · k(t∗, tN)] ,

Ki,j = k(ti, tj).

Both k∗ and K depend on the extended kernel matrix k(·, ·)
whose elements are k(·, ·) and the associated first-order and

second-order derivatives, see [14] for more details. λ > 0 is

used to mitigate the overfitting issue.

Note that the predictions in (2) and (3) have a nonparametric

form, and proper hyperparameter tuning is needed, including

the kernel parameter kh involved in the kernel function k(·, ·)
and the regularization factor λ. Throughout the paper, we will

use the notation Θ = [kh λ]⊤ to represent the collection of

hyperparameters to be optimized.

III. MOTIVATION

Why do we need a novel metric to measure the generaliza-

tion performance of LfD? In order to answer this question, we

first formulate the generalization (i.e., adaptation) problem in

LfD (Section III-A), and subsequently present some examples

to evidence the issues arising from the distance-aware metrics

MSE and MAP (Section III-B). Here, we take MSE and MAP

as motivation examples, more evaluations on FrÂechet distance

and DTW are reported in Section V.

A. Problem formulation

For the sake of brevity, we rewrite the demonstration of

DMP as µ̂ = [µ̂⊤

1 µ̂
⊤

2 · · · µ̂
⊤

N]⊤, where µ̂n = [ξ⊤n ξ̇
⊤

n]
⊤.

Note that the same notation µ̂n is also used to denote the

mean of the reference trajectory in KMP, which should be

straightforwardly distinguished from the context. Given a

demonstration {tn, µ̂n}
N
n=1 for DMP or a probabilistic refer-

ence trajectory {tn, µ̂n, Σ̂n}
N
n=1 for KMP, as well as adaption

constraints c (e.g., desired positions of new start-point, via-

point, and end-point), we can generate an adapted trajectory

as µ∗ = [µ∗⊤
1 µ∗⊤

2 · · · µ∗⊤
N]

⊤

via DMP or KMP, where each

predicted datapoint µ∗
n = [ξ∗⊤n ξ̇

∗⊤

n]⊤ ∈ R
2O comprises both

position and velocity.

Our goal is to build an automatic optimization framework

(which is referred to as autoLfD) for DMP and KMP to

guide the optimization of their hyperparameters Θ. To do

so, a metric J(µ̂,µ∗) that measures the discrepancy between

the demonstration µ̂ and the adapted trajectory µ∗ will be

required. Moreover, such a metric should take trajectory

smoothness into account. Suppose we have such a metric

J(·, ·) at hand, we can view trajectory adaptation as a function

KMP: J
MAP

= 33.52 KMP: J
MAP

= 31.99 KMP: J
MAP

= 30.91

KMP: J
MAP

= 41.48 KMP: J
MAP

= 24.56 KMP: J
MAP

= 22.52

21 3

4 5 6

x [cm]

y
 [

cm
]

y
 [

cm
]

x [cm] x [cm]

Fig. 2: Assessment of the generalization performance of KMP using the MAP
metric. In 1⃝± 3⃝, KMP is used to adapt the 2-D demonstration ‘A’ towards a
new start-point, via-point, and end-point, where each adaptation corresponds
to a different set of hyperparameters of KMP; similar applications of KMP
in writing the letter ‘G’ are showcased in 4⃝± 6⃝.

x [cm]

y
 [

cm
]

x [cm]

Fig. 3: Extracting the probabilistic reference trajectory from multiple demon-
strations using GMR, where the yellow dotted curves denote demonstrations.
The yellow solid curves and the shaded areas depict the means and covariances
of the probabilistic reference trajectories, respectively.

µ∗ = GΘ(µ̂, c) and formulate the hyperparameter optimiza-

tion for LfD as minimizing J(µ̂,µ∗) = J(µ̂,GΘ(µ̂, c)). Here,

constraints c represent O-dimensional target point for DMP

and 2O-dimensional desired start-/via-/end-point (comprising

both position and velocity) for KMP.

B. Limitations of MSE and MAP

We use MSE as the generalization metric for DMP, since

DMP learns a single demonstration. The MSE metric is

JMSE(µ̂,µ
∗) =

1

N

N
∑

n=1

(µ∗
n − µ̂n)

⊤(µ∗
n − µ̂n). (4)

As KMP essentially maximizes the posterior conditioned on

the demonstrations, we use MAP as the generalization metric

for KMP. As discussed in [14], the MAP metric for KMP

constitutes part of the Kullback-Leibler (KL) divergence loss.

Formally, we have the MAP metric as
∏N

n=1 P(µ∗
n|µ̂n, Σ̂n).

With the definition of multivariate Gaussian distribution, the

MAP metric amounts to the minimization of

JMAP =
1

N

N
∑

n=1

(µ∗
n − µ̂n)

⊤Σ̂
−1

n (µ∗
n − µ̂n). (5)

In the following discussion, we refer to (5) as a MAP cost.

The writing examples using DMP under different hyper-

paramters are provided in Fig. 1. In plots 1 ± 3 , the adapted

trajectories (shown as red curves) for the letter ‘A’ become

distorted when the MSE cost decreases, showing that the MSE

4

Demonstration Encoder

̂μ

c

μ*

Embedding

𝒮(μ*)

Desired

points

LfD Loss

̂μ

𝒮(̂μ)

GD or BO

Fig. 4: An overview of the autoLfD framework, where the hyperparameters
of an LfD approach are constantly optimized towards reducing the distance
between the feature vectors S(µ̂) and S(µ∗). Here, µ̂ and µ

∗ represent the
demonstration and the adapted trajectory generated by LfD, respectively.

cost fails to indicate the shape maintenance. Similarly, MSE

is unable to measure the adaptation performance of DMP in

writing the letter ‘G’ (see plots 4 ± 6), where the adapted

trajectory that resembles the shape of the demonstration and

reaches the new target precisely, however, has the largest MSE

cost (see 4).

Similarly, we evaluate the MAP costs on the trajectories

generated by KMP in Fig. 2, where a desired via-point is

imposed for either letter in addition to the desired new start-

point and end-point. The probabilistic reference trajectories

for ‘A’ and ‘G’ are extracted from their corresponding five

demonstrations via GMR [12], [14], as shown in Fig. 3. As

with the observations in Fig. 2, the best adaptations (plotted

by red curves) have the largest MAP costs (see 1 for ‘A’

and 4 for ‘G’), while the adapted trajectories with significant

distortions have smaller MAP costs, see 3 and 6 .

From the above examples, we can conclude that optimizing

the hyperparameters of DMP with the MSE metric and KMP

with the MAP metric could be problematic, since both metrics

focus on the ‘reproduction’ of the demonstration or the refer-

ence trajectory (i.e., staying close to the demonstration or the

reference trajectory in terms of Euclidean distance) without

considering the motion shape and smoothness requirements,

thus failing to provide a reliable indicator of the generalization

performance of LfD methods.

IV. AUTOLFD

We have discussed the issues of using MSE and MAP

as adaptation metrics, now we propose a novel framework

autoLfD that allows for optimizing the hyperparameters of

DMP and KMP automatically, where an encoder network that

transforms trajectories into a latent feature space is designed

(Section IV-A). With the encoder network, the generalization

metric can be designed naturally (Section IV-B1). After that,

we discuss two routes to hyperparameter optimization, includ-

ing GD (Section IV-B2) and BO (Section IV-B3). An overview

of the proposed autoLfD framework is provided in Fig. 4.

A. Trajectory encoder network

The encoder network takes an entire trajectory (i.e., concate-

nation of all trajectory points) as input, rather than a single

point. Given a demonstration µ̂ and an LfD approach G, we

randomly sample desired points c and LfD hyperparameters

Algorithm 1: Trajectory encoder network

1 repeat

2 Sample a batch of triplets from the dataset;

3 Calculate the triplet loss with (6);

4 Update the encoder via backpropagation;

5 until encoder parameters converge;

Θ, and subsequently obtain the adapted trajectory µ∗ =
GΘ(µ̂, c). If the adaptation is smooth enough and meanwhile

maintains the shape of the demonstration, we will label it as

a positive training sample p; otherwise, it will be labeled as

a negative sample n. By repeating such a procedure, we can

collect a training dataset to encapsulate various demonstrations

and associated adaptations under different hyperparameters for

the LfD method.

We train the encoder network using triplets in the form

of < µ̂,p,n >, where p and n respectively represent

satisfactory (i.e., ‘positive’ samples) and unsatisfactory (i.e.,

‘negative’ samples) adaptation in comparison with the learned

demonstration µ̂. Learning both positive and negative samples

differs from previous LfD methods that focus on learning

positive trajectories ± this treatment helps to capture user

preference for generalization similarity better. Formally, given

a batch comprising M triplets, we minimize the triplet loss

[20]

M
∑

m=1

max
(

0, γ+ ||S(µ̂m)−S(pm)||2−||S(µ̂m)−S(nm)||2
)

,

(6)

where S(·) : R2ON → R
h corresponds to the encoding of a

trajectory into an h-dimensional feature vector, ∥·∥2 represents

ℓ2 norm. The constant margin γ > 0 ensures that the positive

and negative samples can be more easily distinguished. The

triplet loss shares the same spirit as the Siamese networks [21],

[22], which have been proven effective in many applications,

e.g., face recognition and signature verification. The procedure

of training the encoder network is summarized in Algorithm 1.

B. An automatic optimization framework for LfD

1) Generalization metric : Following the spirit of the loss

function in (6) ± ‘positive’ trajectories should stay close to the

demonstration while ‘negative’ trajectories should stay away

from the demonstration, we can define a metric to measure the

distance (i.e., dissimilarity) between a demonstration µ̂ and an

adapted trajectory µ∗ under condition c, i.e.,

LΘ = ||S(µ̂)− S(µ∗)||2 = ||S(µ̂)− S(GΘ(µ̂, c))||2. (7)

With the optimal hyperparameters Θ that minimizes LΘ, both

DMP and KMP are able to generate adapted trajectories that

mostly resemble the demonstration. Note that the metric in (7)

operates at the level of trajectories, which can be combined

with many other LfD methods beyond DMP and KMP.

2) Gradient descent : To search for the optimal Θ min-

imizing LΘ in (7), a common optimization technique is a

gradient-based method, i.e., GD. Specifically, GD iteratively

updates Θ via Θ := Θ−η∇ΘLΘ, where η > 0 is the learning

5

Algorithm 2: AutoLfD

1 Initialization:

2 Given a demonstration (or reference trajectory) µ̂, desired points c ▷ e.g., start-point/via-point/end-point;

3 Select an LfD approach G ▷ e.g., DMP and KMP;

4 Train the trajectory encoder network with Algorithm 1;

5 Update LfD hyperparamters:

6 Initialize the hyperparameters Θ of DMP/KMP;

7 Generate an adapted trajectory µ∗ = GΘ(µ̂, c) using DMP/KMP with the current hyperparameters Θ;

8 Calculate the dissimilarity between µ∗ and µ̂ via (7) ▷ Replacing (7) with other metrics leads to baselines;

9 Update Θ using GD or BO;

10 Repeat line 7±9 until Θ converges.

rate. ∇ΘLΘ stands for the gradient of (7) with respect to Θ

and is computed by chain rule, i.e.,

∇ΘLΘ = ∇S(µ∗)L
(

S(µ̂),S(µ∗)
)

∇µ∗S(µ∗)∇ΘGΘ(µ̂, c),
(8)

where

∇S(µ∗)L(S(µ̂),S(µ
∗)) =

S(µ∗)− S(µ̂)

∥S(µ̂)− S(µ∗)∥2
,

µ∗ = [µ∗
1
⊤

. . . µ∗
N

⊤]
⊤

= GΘ(µ̂, c).

We minimize the loss function LΘ using PyTorch, a modern

deep learning framework that automatically computes the

gradients ∇ΘGΘ(µ̂, c) and ∇µ∗S(µ∗) via backpropagation.

3) Bayesian optimization : In contrast to GD which relies

on explicit calculation of gradient and could converge to a

local minimum, BO is a gradient-free, global optimization

method. BO resorts to an acquisition function to decide the

query points for evaluations towards finding the optimal input

point with a minimal number of searching steps, where the

core idea is to balance the exploitation and exploration when

sampling queries.

We take one of the most popular acquisition func-

tions expected improvement (EI) [23], [24] as an exam-

ple. Suppose we have evaluated a set of hyperparameters

{Θ1,Θ2, . . . ,Θn} and obtained their corresponding metric

costs {LΘ1
,LΘ2

, . . . ,LΘn
} via (7), the next query point

Θn+1 is determined by

Θn+1 = argmax
Θ

ELΘ
max

(

L∗ − LΘ, 0
)

= argmax
Θ

{

φ(
L∗ − µL|D

KL|D
)KL|D

+ (L∗ − µL|D)Φ(
L∗ − µL|D

KL|D
)

}

.

(9)

Here, the expectation is estimated over the distribution LΘ ∼
GP(µL|D,KL|D), which is predicted by GP at the input Θ

given observations D = {Θi,LΘi
}ni=1. L∗ is the smallest one

among {LΘi
}ni=1. φ(·) and Φ(·) represent the multivariate nor-

mal distribution and its cumulative distribution, respectively.

Once the new query point Θn+1 is known and evaluated using

(7), a new pair {Θn+1,LΘn+1
} will be added to the existing

observations D, and subsequently the search strategy in (9)

will be employed again to decide the following query point

Θn+2. By repeating the above procedure, the optimal Θ∗

associated with the minimal metric loss LΘ∗ will be found.

TABLE I: Training Hyperparameters of the Trajectory Encoder
Network in Writing Tasks

Hyperparameters Values

Learning rate 10−7

Batch size 200
Epoch 30000
Margin 0.5
Dataset size 3026

Given a demonstration (or a reference trajectory) µ̂, adap-

tation constraints c, and hyperparameters Θ, we can use DMP

or KMP to generate an adapted trajectory µ∗ that addresses the

imitation of the demonstration and the adaptation constraints

(i.e., desired points). Subsequently, we can measure the dissim-

ilarity between the demonstration and the adapted trajectory

by comparing their feature vectors S(µ̂) and S(µ∗) (encoded

by the trajectory encoder network) using the metric in (7). The

hyperparameters of DMP or KMP can be optimized via GD

or BO towards reducing the loss (7). Once the optimization

converges, the adapted trajectory from DMP or KMP using the

optimal hyperparameters Θ∗ will be a proper generalization

(in terms of shape maintenance and trajectory smoothness)

from the demonstration µ̂ under the constraints c.

The entire autoLfD optimization framework is summarized

in Algorithm 2. Note that the trajectory encoder is trained with

the triplet loss (6) beforehand and its parameters are kept fixed

when using autoLfD. If we replace the metric (7) in Algorithm

2 with MSE, MAP, FrÂechet distance or DTW metric, we can

obtain the baselines utilized in our experiments.

V. EVALUATIONS

In this section, we report the evaluations of autoLfD in sim-

ulated letter-writing tasks (Section V-A), including a compre-

hensive comparison with several baselines (i.e., MSE, MAP,

FrÂechet distance, DTW). We also assess autoLfD in three real

robotic tasks: peg-in-hole, block-stacking, and pushing tasks

(Section V-B). Specifically, we answer the following questions

in the evaluations:

(i) Is the metric in (7) a proper indicator of the generalization

performance?

(ii) How does our metric perform against other metrics (i.e.

MSE, MAP, FrÂechet distance, and DTW)?

(iii) Which optimization algorithm between GD and BO can

achieve superior performance?

6

ℒΘ = 24.83 ℒΘ = 19.20 ℒΘ = 4.88 ℒΘ = 4.95

ℒΘ = 34.33 ℒΘ = 30.31 ℒΘ = 4.97 ℒΘ = 4.42

ℒΘ = 36.90 ℒΘ = 20.87 ℒΘ = 9.10 ℒΘ = 9.37

ℒΘ = 33.65 ℒΘ = 18.62 ℒΘ = 8.37 ℒΘ = 8.21

DMP: GD DMP: BO

相⽐Page 5

减⼩了loss

的字体⼤⼩

x [cm]

y
 [

cm
]

x [cm] x [cm] x [cm]

y
 [

cm
]

y
 [

cm
]

y
 [

cm
]

Fig. 5: Evaluations of autoDMP in letter-writing tasks. The first, second and
third columns correspond to the updated hyperparameters of DMP via GD,
where the adapted trajectories (with the grey arrows denoting the update
process of GD) are gradually improved in terms of reaching the desired end-
point and resembling the shape of the demonstration. The fourth column shows
the adapted trajectories with the optimal hyperparameters found by BO. It is
worth noting that, the desired points in the first and second rows are set
differently. The third and fourth rows also have different desired points.

A. Letter-writing tasks

Since the demonstrations and corresponding adaptations

have the same length, we train a unified encoder for evalu-

ating adaptations, irrespective of the LfD approach and the

demonstration letter to be learned. Table I lists the relevant

hyperparameters involved in training the trajectory encoder

network. We employ GD and BO to optimize the hyperpa-

rameters of DMP and KMP towards reducing the metric cost

in (7), respectively.

1) Optimizing the hyperparameters of DMP : We test the

writing of letters ‘A’ and ‘G’ using our framework and DMP

(i.e., autoDMP), where the letters are obtained from [25]. The

adapted trajectories for both letters are plotted in Fig. 5. Take

the first row as an example, the adapted trajectory (depicted

by the red curve in the first plot) generated by DMP with an

initial setting of hyperparameters fails to reach the desired end-

point and maintain the shape of the demonstration (plotted by

the yellow curve). After updating the hyperparameters Θ of

DMP via GD a few times, the adapted trajectory is improved

in terms of the trajectory shape (see the second plot), but it

is still unable to reach the desired target precisely. After 30

updates, the final trajectory (see the third figure) reaches the

desired target while resembling the shape of the demonstration.

Note that careful initialization of hyperparameters for GD is

demanded in all evaluations in Fig. 5 since GD could be

trapped into an inappropriate local minimum.

In Fig. 5, the desired points (i.e., start-point and end-point)

in the first row are the same as the ones in 1 ± 3 in Fig. 1,

and the desired points in the third row are the same as the ones

in 4 ± 6 in Fig. 1. However, differing from the MSE metric,

ℒΘ = 8.88 ℒΘ = 5.70 ℒΘ = 1.58 ℒΘ = 1.58

ℒΘ = 13.00 ℒΘ = 5.55 ℒΘ = 1.90 ℒΘ = 1.79

ℒΘ = 12.17 ℒΘ = 5.92 ℒΘ = 2.59 ℒΘ = 2.56

ℒΘ = 11.26 ℒΘ = 8.22 ℒΘ = 5.05 ℒΘ = 5.00

KMP: GD KMP: BO

x [cm]

y
 [

cm
]

x [cm] x [cm] x [cm]

y
 [

cm
]

y
 [

cm
]

y
 [

cm
]

Fig. 6: Evaluations of autoKMP on letter-writing tasks, where both GD and
BO are implemented. The grey arrows illustrate the update process of GD.
The probabilistic reference trajectory for either letter is extracted from five
demonstrations using GMM and GMR. For either letter, two groups of desired
points are used.

ℒΘ = 12.82 ℒΘ = 9.37 ℒΘ = 4.72

KMP: GD

ℒΘ = 10.21 ℒΘ = 9.34 ℒΘ = 8.32

x [cm]

y
 [

cm
]

x [cm] x [cm]

y
 [

cm
]

Fig. 7: Evaluations of autoKMP with GD optimization, where the hyperpa-
rameters of KMP are initialized with inappropriate values. The top and bottom
rows correspond to different settings of desired points.

the proposed metric loss LΘ in (7) indeed decreases when

the adapted trajectory becomes better. Similarly, in the second

and fourth rows, the smaller the metric loss is, the better the

adaptation is.

The adapted trajectories under the optimized hyperparame-

ters via BO are plotted in Fig. 5, showing that BO can achieve

satisfactory trajectories for different letters and adaptation

conditions. Here, proper initialization is not required for BO

since BO is essentially a sampling-based method that uses the

acquisition function to direct the sampling process.

2) Optimizing the hyperparameters of KMP : In addition

to the evaluations on DMP, we assess the performance of

autoLfD on KMP (i.e., autoKMP) as well, see Fig. 6. Note

7

DMP: BO
MSE Fréchet Distance DTW

TP-GMM

x [cm]

y
 [

cm
]

x [cm] x [cm] x [cm]

y
 [

cm
]

y
 [

cm
]

y
 [

cm
]

Our Metric

x [cm]

Fig. 8: Evaluations of MSE, FrÂechet distance, DTW, and our metric on DMP,
as well as TP-GMM. In each row, the same desired points are imposed.

that the first and third rows of Fig. 6 have the same desired

points as 1 ± 3 and 4 ± 6 in Fig. 2, respectively. Unlike MAP,

our metric can indicate the adaptation performance properly,

i.e., the generalization using KMP improves as the metric

loss decreases. Moreover, by using either GD or BO, our

framework can optimize the hyperparameters of KMP towards

better generalization (i.e., in terms of shape and smoothness)

under different adaptation conditions.

3) Comparison between GD and BO : While GD and BO

yield similar performances in Fig. 5 and Fig. 6, there is an

essential difference between them. In fact, GD is sensitive to

the initial values of the hyperparameters. Given inappropriate

initialization, GD could lead to undesired convergence, see

examples of utilizing autoKMP in Fig. 7. Although the first

row and the second row of Fig. 7 have the same desired

points as the third and fourth rows of Fig. 6, the adapted

trajectories in Fig. 7 either reach the desired end-point with an

abrupt change or exhibit certain distortion. Compared with GD

which may lead to undesired local minimum, BO is a global

optimization technique that provides a more stable solution for

the autoLfD framework. Therefore, we only adopt BO for the

following evaluations.

Note that in the first and third rows of Fig. 5, the metric costs

LΘ from BO (i.e., 4.95 for ‘A’ and 9.37 for ‘G’) are larger

than the optimal costs from GD (i.e., 4.88 for ‘A’ and 9.10 for

‘G’) by neglectable margins, given that the margins only take

a tiny proportion of the initial costs (i.e., 24.83 and 36.90). In

fact, if we sample more samples in BO (100 iterations are used

in Fig. 5), BO can lead to smaller costs, but the improvement

of trajectories will be hardly observed for both letters.

4) Comparison with baselines : We now consider the same

setup in Fig. 5 and compare our metric (defined in (7))

with MSE, FrÂechet distance, and DTW metrics, where BO is

utilized to optimize hyperparameters of DMP. For our metric,

we use 100 iterations for BO. For each of the other metrics,

we use 200 iterations. Considering that TP-GMM is designed

to handle adaptations that take place in a region away from the

demonstration region [12], [26], we implemented TP-GMM as

a baseline as well.

The first three columns of Fig. 8 depict adaptations using

KMP: BO

MAP Fréchet Distance DTW

x [cm]

y
 [

cm
]

x [cm] x [cm]

y
 [

cm
]

y
 [

cm
]

y
 [

cm
]

Our Metric

x [cm]

Fig. 9: Evaluations of MAP, FrÂechet distance, DTW, and our metric on KMP.
The same desired points are set in each row.

TABLE II: Planning errors and trajectory smoothness costs of DMP

Metric Target point error (cm) Smoothness cost (cm/s2) Shape Maintenance

MSE 4.19 4.55 × 10
2 No

FrÂechet distance 3.21 1.15× 103 No

DTW 3.06 7.16× 102 No

Our metric 0.35 1.96× 103 Yes

MSE, FrÂechet distance, and DTW metrics, respectively. The

fifth column corresponds to TP-GMM, where five demon-

strations are learned. We can see that all adaptations in

these columns show certain distortions, and in some cases,

the adaptation fails to reach the desired target, which is

highly undesired. Note that the desired points in Fig. 8 force

the adapted trajectories to stay far from the corresponding

demonstrations. In this case, MSE, FrÂechet distance and DTW

become inappropriate because they are essentially distance-

aware metrics and cannot gauge shape similarity between two

trajectories. In the last column, the trajectory generated by

TP-GMM has a significant change around the middle of the

curve. The reason is that the new start-point and end-point in

TP-GMM deviate from the demonstrations towards different

directions with disproportionate offsets. In contrast, our metric

ensures that DMP generates satisfactory generalization in

different cases, see the fourth column of Fig. 8.

We calculate the planning errors (w.r.t. the desired target

point) and smoothness costs of the optimized DMP trajectories

under different metrics in Table II, where the smoothness cost

is determined by 1
N

∑N

n=1 ||ξ̈n||2. In terms of the planning

error, our metric achieves the smallest error, resulting in a

reduction of target error by 91.65%, 89.10%, and 88.56%

compared to the MSE, FrÂechet distance, and DTW metrics,

respectively. The large planning errors for such metrics imply

that they may fail to accomplish tasks relying on precise

operations, e.g., picking an object at a specified location. Note

that MSE, FrÂechet distance and DTW metrics have smaller

smoothness costs than our metric, whereas their correspond-

8

TABLE III: Planning errors and trajectory smoothness costs of KMP

Metric Start-point error (cm) Via-point error (cm) End-point error (cm) Smoothness cost (cm/s2) Shape Maintenance

MAP 1.53 × 10
−4

7.30 × 10
−5

3.84 × 10
−4 7.35× 102 No

FrÂechet Distance 2.11× 10−4 1.23× 10−4 4.45× 10−4 5.78× 102 No

DTW 1.57× 10−4 8.36× 10−5 4.13× 10−4 6.91× 102 No

Our metric 2.68× 10−4 1.94× 10−4 4.24× 10−4
5.46 × 10

2 Yes

ing trajectories can not maintain the demonstration’s shape,

therefore violating the primary goal of ªimitationº learning.

Furthermore, we test MAP, FrÂechet distance, and DTW

metrics on KMP using the same setup in Fig. 6. Evaluations

of these metrics are presented in Fig. 9, where our metric

uses 100 iterations for BO and each of the other metrics uses

200 iterations. Here, TP-GMM is not evaluated as it can not

deal with the via-point adaptation requirement. By observing

Fig. 9, we can conclude that our metric exhibits more reliable

performance across the writing tasks. The planning errors

(w.r.t. various desired points) and the smoothness costs are

reported in Table III. Using our metric, the smoothness cost is

reduced by 25.71%, 5.54%, and 20.98% compared to the MAP,

FrÂechet distance, and DTW metrics, respectively. These results

demonstrate that our metric achieves the best performance

in terms of trajectory smoothness. Note that all metrics in

fact have trivial planning errors at the magnitudes of 10−4

or 10−5cm ± the impact of such errors can be ignored in

real robotic tasks. In addition, our metric is the only one that

can maintain the shape of demonstrations, in contrast to other

metrics.

The writing task was also studied in [27], where a sigmoidal

decay phase variable was employed in DMP. The evaluations

of [27] are given in the first three columns in Fig. 10, where

the first, second, and third columns correspond to adaptations

using 15, 30 and 50 basis functions to approximate the forcing

term in DMP, respectively. While the first and second columns

show certain distortions and(or) fail to reach the desired end-

points, the third column shows proper accomplishment of

different writing tasks. However, the satisfactory adaptations

in the third column are obtained at the cost of time-consuming,

repetitive, manual tuning of relevant parameters, including

centres and bandwidths of basis functions, and parameters

in the sigmoidal function. Indeed, building a training dataset

for the trajectory encoder network before implementing au-

toDMP is also time-consuming. However, labelling positive

and negative samples in 2-D writing tasks as per the user’s

preference could be trivial for a non-expert since only two

classes are considered. Once the training dataset is obtained,

the trajectory encoder network can be trained. After that,

autoDMP can be deployed straightforwardly in similar but new

tasks, enabling automatic optimization of relevant parameters

for DMP (see the last column in Fig. 10). In contrast, tuning

DMP parameters in [27] largely relies on the user’s experience

and it can be a challenging task for a non-expert. Moreover,

whenever a new task is given, a new cycle of manually tuning

parameters for DMP is required.

At the end of this section, we evaluate a hyperparameter

optimization method in [28], where BO is used as the op-

timization tool and 1000 iterations are run. The trajectories

generated by [28] are provided in the fourth column of

Fig. 10. We can see that none of the optimized trajectories

x [cm]

y
 [

cm
]

x [cm] x [cm]

y
 [

cm
]

y
 [

cm
]

y
 [

cm
]

x [cm]

Evaluations of [27] Evaluations of [28]

x [cm]

Evaluations of
our metric

Fig. 10: Evaluations of a variant of DMP [27] and a parameter optimization
method [28], as well as autoDMP. The first three columns correspond to
different numbers of Gaussian basis functions. The last two columns show
trajectories generated by [28] and autoDMP, respectively.

TABLE IV: Training Hyperparameters of the Trajectory Encoder
Network in Real Robotic Tasks

Hyperparameters Peg-in-Hole Task Pushing Task Block-Stacking Task

Learning rate 10−5 10−5 10−5

Batch size 100 50 100
Epoch 20000 20000 15000
Margin 0.5 0.5 5
Dataset size 431 301 1416

maintains the shape of the corresponding demonstration. The

main reason is that the objective function to be minimized in

[28] only takes the reproduction error into account and ignores

the shape maintenance requirement in letter-writing tasks.

B. Real robot experiments

So far, we have reported the performance of autoLfD in

writing 2-D letters under various constraints of desired points,

we now carry out real-world experiments using a seven-

degree-of-freedom robot. Specifically, we assess the effective-

ness of the autoLfD framework by performing a peg-in-hole

task and a block-stacking task using DMP, and a pushing task

using KMP. The relevant training hyperparameters are outlined

in Table IV.

1) Peg-in-hole task : The goal of the peg-in-hole task is to

insert a peg into a desired hole. An illustration of collecting

a demonstration in such a task is shown in the first row of

Fig. 11. Given that the diameter of the hole is slightly larger

than that of the peg, it is crucial that the robot inserts the peg

into the hole from a vertically downward direction when the

peg is approaching the hole. Any deviation from a vertical

insertion motion could result in misalignment between the

peg and the hole, ultimately leading to unsuccessful tasks.

Since this task demands a start-point (i.e., the initial position

of the peg) and an end-point (i.e., the location of the hole), we

employ autoDMP to generalize the demonstration to unseen

new tasks.

We collect a single demonstration for the peg-in-hole task,

as depicted by the grey curve in Fig. 12. To verify the

effectiveness of autoDMP, we consider two settings: (i) a new

9

Fig. 11: Snapshots of the peg-in-hole task. First row shows the kinesthetic teaching of the peg-in-hole task. Second and third rows correspond to the adapted
robot trajectories that are optimized using our metric in (7) and the MSE metric.

x [m]

y [m]

z [m]

Collide with

the hole’s rim

Fig. 12: The demonstration and adapted real robotic trajectories in the peg-in-
hole task, where two adaptation settings are considered and in either setting
our metric (i.e., autoDMP) and the MSE metric are implemented, respectively.

x [m]

y [m]

z [m]

x [m]

y [m]

z [m]

(a) (b)

Collide with

the hole’s rim

Fig. 13: Evaluations of autoDMP and a variant of DMP [29], where 5, 20,
and 120 Gaussian basis functions are separately employed for [29].

start-point (see the purple dot in Fig. 12) that is away from the

initial point of the demonstration and an end-point that is the

same as that of the demonstration; (ii) a new start-point that

is the same as the one used in (i) and a new end-point that

is far from the target of the demonstration. As a comparison,

we also implement hyperparameter updates for DMP using the

MSE metric and BO in both settings. The number of iterations

used in BO is set to 200 for autoDMP and MSE, respectively.

Fig. 14: The planned velocities via autoDMP and a variant of DMP [29].

TABLE V: Planning errors, trajectory smoothness costs and task
completion status of DMP in peg-in-hole task

Metric Target point error (m) Smoothness cost (m/s2) Status Shape Maintenance

Basis function: 5 [29] 4.16× 10−3
1.14 × 10

−2 Fail No

Basis function: 20 [29] 1.12× 10−3 1.67× 10−2 Success Yes

Basis function: 120 [29] 9.28 × 10
−5 4.76× 10−2 Fail No

Our method 4.30× 10−4 1.47× 10−2 Success Yes

The real robotic trajectories in both evaluation settings

are plotted in Fig. 12, where we can see that the adapted

trajectories with our metric exhibit vertical insertion motion

near the desired end-points while the trajectories with the

MSE metric approach the end-points from oblique directions.

Snapshots of the experiments in the second evaluation setting

are provided in Fig. 11, where the robot using the MSE metric

indeed fails to insert the peg into the desired hole (see the third

row of Fig. 11) as a consequence of the collision between

the peg and the rim of the hole. In contrast, the robot can

accomplish the peg-in-hole task successfully using autoDMP

(see the second row of Fig. 11).

The peg-in-hole task was also investigated in [29], where

10

Fig. 15: Snapshot of the block-stacking task. The first and second rows show human demonstrations of the placing and picking tasks, respectively. The third

until seventh rows show five subtasks and each subtask corresponds to either placing or picking a block.

DMP with frame relative goals was leveraged to tackle the

task. We consider a new setting (iii) that is very different from

previous settings (i) and (ii) to evaluate [29]. Specifically, the

starting point in setting (iii) is away from the demonstration’s

initial point by 15cm. We have three evaluation groups with

5, 20 and 120 basis functions for [29], respectively. Note that

[29] lacks a formal metric for assessing the generalization

capability of DMP, we resort to manual tuning of relevant

parameters for each group of evaluation.

By observing the real robotic trajectories plotted in Fig. 13,

we can see that the adaptations associated with 5 and 120 basis

functions fail to accomplish the peg-in-hole task due to the

collision with the desired hole’s rim. The planned velocities

using [29] (see the first three rows of Fig. 14) demonstrate

that, as the number of basis functions increases, the velocity

curves transition from under-fitting (i.e., the first row) to over-

fitting (see oscillations in the third row). Both under-fitting

and over-fitting adaptations are unable to accomplish the task.

A summary of [29] and our method is given in Table V.

While using 20 basis functions for [29] succeeds, our method

achieves smaller planning error (w.r.t. the target) and smaller

smoothness cost (also see the last row of Fig. 14). Specifically,

our method leads to 61.61% reduction in terms of target error

and 11.98% reduction in terms of smoothness cost.

2) Block-stacking task: To further showcase the general-

ization capability of our approach, we consider a challenging

long-horizon task ± stacking blocks. The objective of this task

is to repeatedly pick a block from a stack and place it on top of

11

x [m]

y [m]

z [m]

P
3

P
2

P
1

P
6

P
5

P
4

Fig. 16: The demonstrations for placing and picking tasks as well as
real robotic trajectories throughout moving three blocks. The arrows depict
movement directions.

Gripper open Gripper close Gripper open Gripper close Gripper open

Fig. 17: The real robotic trajectories against time in the block-stacking task,
where the shaded areas highlight the status of the gripper attached to the
robot’s end-effector.

another stack until all blocks are moved. Specifically, the task

consists of five sub-tasks: placing block 3 → picking block

2 → placing block 2 → picking block 1 → placing block

1 . Note that appropriate and precise placement of each block

onto the center of another stack is required to avoid falling

over and mitigate accumulated errors through the multi-step

task.

We first collect one demonstration for the placing (see the

first row of Fig. 15) and picking tasks (see the second row of

Fig. 15), respectively. The trajectories of demonstrations are

plotted in Fig. 16. After that, we solve such a long-horizon

task by sequencing multiple autoDMPs, where each subtask

corresponds to an autoDMP with varied starting and ending

points. For each autoDMP, BO performs 300 iterations. Specif-

ically, we consider the following desired points as illustrated

in Fig. 16: (i) place reproduction, moving the block 3 from

the start-point P1 to the end-point P6; (ii) pick reproduction,

reaching the block 2 located at the end-point P2; (iii) place

adaptation, moving the block 2 from the new start-point P2 to

the new end-point P5; (iv) pick adaptation, reaching the block

1 at the new target point P3; (v) place adaptation, moving

the block 1 from P3 to the new target point P4. Note that

the subtasks in (iii)-(v) are unseen in the placing and picking

demonstrations.The experimental snapshots are provided in the

third±seventh rows of Fig. 15 with each row representing a

subtask from (i) until (v).

The real robotic trajectories for the block-stacking task are

plotted in Fig. 16, where the picking movement resembles

the demonstrated picking task and the placing movement

resembles the demonstrated placing task ± evidencing our

method’s generalization capability in new tasks. We also show

the curves of t− x, t− y and t− z in Fig. 17 to display the

gripper’s status during the block-stacking task.

3) Pushing task: The pushing task involves two subtasks:

reaching the small block at a desired location and pushing it

towards a desired target. We can solve such a task by setting

three desired points: a start-point describing the initial state of

the robot’s gripper, a via-point specifying the location of the

block, and an end-point defining the target. In contrast to DMP,

KMP provides a straightforward way to incorporate a desired

via-point, so we implement KMP within our framework (i.e.,

autoKMP) to accomplish the pushing task.

The procedure of collecting a demonstration is illustrated

in the first row of Fig. 18. We collect five demonstrations

for the pushing task and subsequently use GMM and GMR to

extract a probabilistic reference trajectory, depicted by the grey

curve in Fig. 19(a). We consider two settings for adaptation

evaluations and both require new start-, via-, and end-points

that are away from the reference trajectory. In addition to

autoKMP, we study the performance of the MAP metric

as a baseline, where both autoKMP and MAP involve 200

iterations of BO. The adapted robotic trajectories are plotted

in Fig. 19(a), where the trajectories (plotted by the yellow and

green curves) optimized with the MAP metric pass through

different desired points precisely, whereas the trajectory shapes

have significant distortions around the desired via-points. In

contrast, the trajectories (plotted by the red and blue curves)

generated by autoKMP go through the desired points while

keeping the shape of the reference trajectory.

The experimental snapshots, corresponding to the second

evaluation scenario in Fig. 19(a), are given in Fig. 18. In the

second row of Fig. 18, the robot equipped with autoKMP can

push the block from a new desired via-point to a new desired

end-point successfully. In the third row of Fig. 18, using the

MAP metric the robot can first reach the block but soon lose

physical contact when the robot bypasses the block (see the

distortions in Fig. 19(a) as well), thus failing to push the block

towards the target. For more experimental details of the peg-

in-hole, block-stacking, and pushing tasks, please refer to the

video1.

We emphasize that the pushing segment of the second

adaptation (i.e., the blue curve in Fig. 19(b)) lies beyond the

region covered by the dataset used for training the trajectory

encoder network. For the sake of clear observation, we plot

some representative training samples in Fig. 19(b), while the

remaining samples are confined within the space spanned

by these samples. Thus, autoKMP shows an extrapolation

capability, allowing for reliable generalization outside the

region of the training dataset for the encoder.

VI. DISCUSSION

Given a training dataset for learning the trajectory encoder

network, autoLfD can generate proper trajectories straightfor-

1Video: https://youtu.be/ciGUtwVe-QA

https://youtu.be/ciGUtwVe-QA

12

Fig. 18: Snapshots of the pushing task. First row illustrates the process of collecting a demonstration. Second and third rows show the robot executing the
adapted trajectories obtained from our metric and the MAP metric, respectively.

x [m]

y [m]

z [m]

x [m]

y [m]

z [m]

(a) (b)

Pushing

segment

Fig. 19: The evaluations of autoKMP and the MAP metric in the pushing task. (a) shows two groups of evaluations and in either group both our metric (i.e.,
autoKMP) and the MAP metric are employed in hyperparameter optimization, respectively; (b) plots some representative samples for training the trajectory
encoder network, while the remaining samples stay within the space formed by these samples.

wardly for unseen tasks without interacting with the envi-

ronment or learning from further human guidance. In some

previous works, e.g., [30]±[33], the (hyper-)parameters of an

LfD method are refined using reinforcement learning, where

the interaction with the environment is required and an explicit

definition of reward function is also needed. Considering the

2-D writing task illustrated in Fig. 1, it is nontrivial to define a

proper reward function to measure the similarity between the

adapted trajectory and the demonstration, given that the typical

distance-aware metrics (including MSE, DTW and FrÂechet

distance) are unable to provide a reliable indicator of such gen-

eralization (see Fig. 8 and Fig. 9). To take the peg-in-hole task

as another example, [34] manually designed a reward function

to account for errors during hole search and peg insertion and

utilized RL to optimize the parameters of DMP through plenty

of interactions between the peg and the hole. [35] integrated

DMP with a residual policy to enhance its overall performance

in the peg-in-hole task, where many training episodes were

also needed. In contrast to the aforementioned works that

improve DMP via learning from trial and error (i.e., the core

principle of RL), autoLfD employs a different paradigm: the

optimal trajectories are obtained without any interaction with

the environment and can be directly and successfully deployed

in real-world tasks (see the peg-in-hole task in Section V-B1).

In addition to RL, there are other attempts to optimize

the hyperparameter of LfD. However, a suitable metric or

objective function to indicate the performance of hyperparam-

eter choices is always required, regardless of the optimiza-

tion techniques employed (e.g., gradient descent, Bayesian

optimization, and grid search) [36]±[38]. In [28], the hy-

perparameters of DMP were optimized using a metric that

combines the root mean squared error and the end-point error.

[39] optimized the hyperparameters of KMP by maximiz-

ing the reproduction probability of demonstrations. However,

13

these works usually ignore the shape maintenance requirement

in imitation learning, although the adapted trajectories are

expected to be semantically similar to the demonstrations.

We also showed the limitations of various distance-aware

metrics, such as MSE, DTW, and FrÂechet distance [40], [41]

in Section V-A. Unlike these metrics, our metric demonstrates

superior performance in evaluating the generalization capabil-

ity of LfD (not only limited to DMP) and can effectively guide

the auto-optimization of LfD across different tasks, including

writing, peg-in-hole, block-stacking, and pushing tasks ± all

are evidenced in Section V.

In Fig. 5, autoDMP shows reliable performance in terms

of adapting the demonstration outside of the demonstrated

region, which is well-known as an extrapolation problem. TP-

GMM and its variants were developed to deal with the extrap-

olation issue [12], [26], [42]. However, TP-GMM maintains

a trajectory shape within each task frame. When the final

trajectory is retrieved by calculating the Gaussian product of

trajectory distributions from different task frames, the shape

of the ultimate trajectory may become distorted, as depicted

in Fig. 8. A recent work targeting extrapolation and shape

maintenance is equation learner network (EQLN) [43], where

a set of activation functions were used to approximate the

analytic function that underlies demonstrations, ensuring that

the shape of the demonstration is maintained. In contrast to

[43], we provide a generic metric to evaluate the generalization

performance and the metric can be combined with various

LfD approaches to inherit their merits. For example, in Fig. 6,

we can generate an adapted trajectory going through a new

via-point in addition to new starting and ending points, while

maintaining the shape of the demonstration. The capability to

pass through unseen via-points is a key feature provided by

KMP. Note that the proposed closed-loop framework can be

extended to many other LfD approaches in a complementary

way, e.g., ProMP, TP-GMM (i.e., optimizing the parameters

of task frames, see [26]), and EQLN [43]. Another work built

on deep learning is conditional neural movement primitives,

whereas it is unable to handle the extrapolation problem, as

pointed out in [43].

The idea of projecting demonstrations into latent space has

been exploited in previous works. For instance, in [44], [45],

demonstrations were projected into a latent space and later a

policy conditioned on latent features was learned. [46] studied

continual multitask learning accounting for incomplete demon-

strations, where the latent features of complete and incomplete

demonstrations for the same task were enforced to stay close

while the latent features of demonstrations from different tasks

stayed away from each other. In autoLfD, we study the latent

representation of demonstrations for the purpose of measuring

the generalization performance of LfD methods. Namely, in

the latent space, desired adaptations should stay close to

demonstrations while undesired adaptations should stay away

from demonstrations.

While we only focus on trajectory adaptation associated

with time input in Euclidean space, further extensions of this

work could address more settings to endow robots with more

skills, including learning of force/torque demonstrations [7],

constrained skill learning [47], [48], null-space learning [49],

obstacle avoidance [50], human-robot collaboration [47], [51],

long-horizon skills [52], and geometry-aware skills (such as

orientation [4] and stiffness matrix [5]).

VII. LIMITATIONS

There are several limitations that may restrict the appli-

cation of our method. To take the letter-writing tasks in

Section V-A as an example, the trained encoder network can

effectively measure the similarity between 2-D English letters.

However, the encoder network will become inappropriate in

new writing tasks that involve very different trajectories (e.g.,

writing Chinese characters). In general, new tasks that deviate

significantly from the training data used for the trajectory en-

coder network correspond to the out-of-distribution problem.

Addressing such tasks requires a new dataset that adequately

covers the space of these new tasks.

In our experiments, we labelled samples in 2-D and 3-D

spaces, which is intuitive and straightforward. However, for

high-dimensional trajectories (e.g., 7 degrees of freedom joint

trajectory), the labelling process could be challenging and the

time cost of labelling samples will increase dramatically with

the dimension of the trajectory. Moreover, it is nontrivial to

determine the number of positive and negative samples for

the training dataset. In practice, we collect more samples if

the trajectory network does not act satisfactorily.

VIII. CONCLUSIONS

In this paper, we have introduced a closed-loop framework

autoLfD allowing for optimizing the hyperparameters of LfD

in an automatic manner, where a novel metric that measures

the generalization performance of LfD is developed. Unlike the

widely used MSE, MAP, FrÂechet distance and DTW metrics,

our metric acts as a reliable indicator when evaluating task

adaptations. The performance of autoLfD has been verified on

DMP and KMP through various tasks, including the writing,

peg-in-hole, block-stacking, and pushing tasks.

REFERENCES

[1] C. G. Atkeson and S. Schaal, ªRobot learning from demonstration,º in
Proc. International Conference on Machine Learning, 1997, pp. 12±20.

[2] M. Saveriano, F. J. Abu-Dakka, A. Kramberger, and L. Peternel,
ªDynamic movement primitives in robotics: A tutorial survey,º The

International Journal of Robotics Research, vol. 42, no. 13, pp. 1133±
1184, 2023.

[3] J. Zhu, M. Gienger, and J. Kober, ªLearning task-parameterized skills
from few demonstrations,º IEEE Robotics and Automation Letters,
vol. 7, no. 2, pp. 4063±4070, 2022.

[4] M. J. Zeestraten, I. Havoutis, J. SilvÂerio, S. Calinon, and D. G. Caldwell,
ªAn approach for imitation learning on riemannian manifolds,º IEEE

Robotics and Automation Letters, vol. 2, no. 3, pp. 1240±1247, 2017.
[5] F. J. Abu-Dakka, Y. Huang, J. SilvÂerio, and V. Kyrki, ªA probabilis-

tic framework for learning geometry-based robot manipulation skills,º
Robotics and Autonomous Systems, vol. 141, p. 103761, 2021.

[6] M. Saveriano, F. J. Abu-Dakka, and V. Kyrki, ªLearning stable robotic
skills on riemannian manifolds,º Robotics and Autonomous Systems, vol.
169, 2023.

[7] A. Kramberger, A. Gams, B. Nemec, D. Chrysostomou, O. Madsen,
and A. Ude, ªGeneralization of orientation trajectories and force-
torque profiles for robotic assembly,º Robotics and autonomous systems,
vol. 98, pp. 333±346, 2017.

[8] C. Yang, C. Zeng, C. Fang, W. He, and Z. Li, ªA dmps-based framework
for robot learning and generalization of humanlike variable impedance
skills,º IEEE/ASME Transactions on Mechatronics, vol. 23, no. 3, pp.
1193±1203, 2018.

14

[9] C. Yang, J. Luo, C. Liu, M. Li, and S.-L. Dai, ªHaptics electromyo-
graphy perception and learning enhanced intelligence for teleoperated
robot,º IEEE Transactions on Automation Science and Engineering,
vol. 16, no. 4, pp. 1512±1521, 2018.

[10] H. Kim, C. Oh, I. Jang, S. Park, H. Seo, and H. J. Kim, ªLearning and
generalizing cooperative manipulation skills using parametric dynamic
movement primitives,º IEEE Transactions on Automation Science and

Engineering, vol. 19, no. 4, pp. 3968±3979, 2022.
[11] A. J. Ijspeert, J. Nakanishi, H. Hoffmann, P. Pastor, and S. Schaal,

ªDynamical movement primitives: learning attractor models for motor
behaviors,º Neural computation, vol. 25, no. 2, pp. 328±373, 2013.

[12] S. Calinon, ªA tutorial on task-parameterized movement learning and
retrieval,º Intelligent Service Robotics, vol. 9, pp. 1±29, 2016.

[13] A. Paraschos, C. Daniel, J. R. Peters, and G. Neumann, ªProbabilistic
movement primitives,º in Proc. Advances in Neural Information Pro-

cessing Systems, 2013, pp. 2616±2624.
[14] Y. Huang, L. Rozo, J. SilvÂerio, and D. G. Caldwell, ªKernelized

movement primitives,º The International Journal of Robotics Research,
vol. 38, no. 7, pp. 833±852, 2019.

[15] H. Alt and M. Godau, ªComputing the frÂechet distance between two
polygonal curves,º International Journal of Computational Geometry &

Applications, vol. 5, no. 01n02, pp. 75±91, 1995.
[16] K. Wang and T. Gasser, ªAlignment of curves by dynamic time warping,º

The annals of Statistics, vol. 25, no. 3, pp. 1251±1276, 1997.
[17] Y. Fanger, J. Umlauft, and S. Hirche, ªGaussian processes for dynamic

movement primitives with application in knowledge-based cooperation,º
in Proc. IEEE/RSJ International Conference on Intelligent Robots and

Systems, 2016, pp. 3913±3919.
[18] C. E. Rasmussen and C. K. Williams, Gaussian Processes for Machine

Learning. MIT press, 2006.
[19] D. A. Cohn, Z. Ghahramani, and M. I. Jordan, ªActive learning with

statistical models,º Journal of Artificial Intelligence Research, vol. 4,
pp. 129±145, 1996.

[20] F. Schroff, D. Kalenichenko, and J. Philbin, ªFacenet: A unified embed-
ding for face recognition and clustering,º in Proc. IEEE Conference on

Computer Vision and Pattern Recognition, 2015, pp. 815±823.
[21] J. Bromley, I. Guyon, Y. LeCun, E. SÈackinger, and R. Shah, ªSignature

verification using a ªsiameseº time delay neural network,º in Proc.

Advances in Neural Information Processing Systems, 1993.
[22] S. Chopra, R. Hadsell, and Y. LeCun, ªLearning a similarity metric

discriminatively, with application to face verification,º in Proc. Interna-

tional Conference on Computer Vision and Pattern Recognition, 2005,
pp. 539±546.

[23] P. I. Frazier, ªA tutorial on bayesian optimization,º arXiv preprint

arXiv:1807.02811, 2018.
[24] D. R. Jones, M. Schonlau, and W. J. Welch, ªEfficient global optimiza-

tion of expensive black-box functions,º Journal of Global optimization,
vol. 13, pp. 455±492, 1998.

[25] S. Calinon and D. Lee, ªLearning control,º in Humanoid robotics: A

reference. Springer, 2017.
[26] Y. Huang, J. SilvÂerio, L. Rozo, and D. G. Caldwell, ªGeneralized task-

parameterized skill learning,º in 2018 IEEE international conference on

robotics and automation (ICRA). IEEE, 2018, pp. 5667±5474.
[27] T. Kulvicius, K. Ning, M. Tamosiunaite, and F. WorgÈotter, ªJoin-

ing movement sequences: Modified dynamic movement primitives for
robotics applications exemplified on handwriting,º IEEE Transactions

on Robotics, vol. 28, no. 1, pp. 145±157, 2011.
[28] L. Panchetti, J. Zheng, M. Bouri, and M. Mielle, ªTeam: a parameter-

free algorithm to teach collaborative robots motions from user demon-
strations,º arXiv preprint arXiv:2209.06940, 2022.

[29] S. Niekum, S. Osentoski, G. Konidaris, S. Chitta, B. Marthi, and A. G.
Barto, ªLearning grounded finite-state representations from unstruc-
tured demonstrations,º The International Journal of Robotics Research,
vol. 34, no. 2, pp. 131±157, 2015.

[30] J. Kober, E. Oztop, and J. Peters, ªReinforcement learning to adjust
robot movements to new situations,º Robotics: Science and Systems,

MIT Press Journal, vol. 6, pp. 33±40, 2011.
[31] F. Guenter, M. Hersch, S. Calinon, and A. Billard, ªReinforcement learn-

ing for imitating constrained reaching movements,º Advanced Robotics,
vol. 21, no. 13, pp. 1521±1544, 2007.

[32] F. Stulp and O. Sigaud, ªRobot skill learning: From reinforcement learn-
ing to evolution strategies,º Paladyn, Journal of Behavioral Robotics,
vol. 4, no. 1, pp. 49±61, 2013.

[33] X. Sun, J. Li, A. V. Kovalenko, W. Feng, and Y. Ou, ªIntegrating
reinforcement learning and learning from demonstrations to learn non-
prehensile manipulation,º IEEE Transactions on Automation Science and

Engineering, 2022.

[34] N. J. Cho, S. H. Lee, J. B. Kim, and I. H. Suh, ªLearning, improving,
and generalizing motor skills for the peg-in-hole tasks based on imitation
learning and self-learning,º Applied Sciences, vol. 10, no. 8, p. 2719,
2020.

[35] T. Davchev, K. S. Luck, M. Burke, F. Meier, S. Schaal, and S. Ra-
mamoorthy, ªResidual learning from demonstration: Adapting dmps
for contact-rich manipulation,º IEEE Robotics and Automation Letters,
vol. 7, no. 2, pp. 4488±4495, 2022.

[36] L. Yang and A. Shami, ªOn hyperparameter optimization of machine
learning algorithms: Theory and practice,º Neurocomputing, vol. 415,
pp. 295±316, 2020 .

[37] M. Moll, C. Chamzas, Z. Kingston, and L. E. Kavraki, ªHyperplan:
A framework for motion planning algorithm selection and parameter
optimization,º in 2021 IEEE/RSJ International Conference on Intelligent

Robots and Systems (IROS). IEEE, 2021, pp. 2511±2518.
[38] L. Hussenot, M. Andrychowicz, D. Vincent, R. Dadashi, A. Raichuk,

S. Ramos, N. Momchev, S. Girgin, R. Marinier, L. Stafiniak et al.,
ªHyperparameter selection for imitation learning,º in International Con-

ference on Machine Learning. PMLR, 2021, pp. 4511±4522.
[39] A. Liu, S. Zhan, Z. Jin, and W.-a. Zhang, ªA variable impedance skill

learning algorithm based on kernelized movement primitives,º IEEE

Transactions on Industrial Electronics, 2023.
[40] Z. Zhang, K. Huang, and T. Tan, ªComparison of similarity measures

for trajectory clustering in outdoor surveillance scenes,º in 18th Inter-

national Conference on Pattern Recognition (ICPR’06), vol. 3. IEEE,
2006, pp. 1135±1138.

[41] B. Hertel and S. R. Ahmadzadeh, ªSimilarity-aware skill reproduction
based on multi-representational learning from demonstration,º in Proc.

International Conference on Advanced Robotics, 2021, pp. 652±657 .
[42] S. Calinon, D. Bruno, and D. G. Caldwell, ªA task-parameterized

probabilistic model with minimal intervention control,º in 2014 IEEE

International Conference on Robotics and Automation (ICRA). IEEE,
2014, pp. 3339±3344.

[43] H. Perez-Villeda, J. Piater, and M. Saveriano, ªLearning and extrapo-
lation of robotic skills using task-parameterized equation learner net-
works,º Robotics and Autonomous Systems, vol. 160, p. 104309, 2023.

[44] C. Lynch, M. Khansari, T. Xiao, V. Kumar, J. Tompson, S. Levine, and
P. Sermanet, ªLearning latent plans from play,º in Conference on robot

learning. PMLR, 2020, pp. 1113±1132.
[45] E. Jang, A. Irpan, M. Khansari, D. Kappler, F. Ebert, C. Lynch,

S. Levine, and C. Finn, ªBc-z: Zero-shot task generalization with robotic
imitation learning,º in Conference on Robot Learning. PMLR, 2022,
pp. 991±1002.

[46] M. B. Hafez and S. Wermter, ªContinual robot learning using self-
supervised task inference,º IEEE Transactions on Cognitive and De-

velopmental Systems, 2023.
[47] R. Huang, H. Cheng, J. Qiu, and J. Zhang, ªLearning physical human±

robot interaction with coupled cooperative primitives for a lower ex-
oskeleton,º IEEE Transactions on Automation Science and Engineering,
vol. 16, no. 4, pp. 1566±1574, 2019.

[48] M. Saveriano and D. Lee, ªLearning barrier functions for constrained
motion planning with dynamical systems,º in 2019 IEEE/RSJ Interna-

tional Conference on Intelligent Robots and Systems (IROS). IEEE,
2019, pp. 112±119.

[49] J. SilvÂerio and Y. Huang, ªA non-parametric skill representation with soft
null space projectors for fast generalization,º in 2023 IEEE International

Conference on Robotics and Automation (ICRA). IEEE, 2023, pp.
2988±2994.

[50] S. Xiao, X. Chen, Y. Lu, J. Ye, and H. Wu, ªA kmp-based interactive
learning approach for robot trajectory adaptation with obstacle avoid-
ance,º Industrial Robot: the international journal of robotics research

and application, 2024.
[51] Y. Cui, J. Poon, J. V. Miro, K. Yamazaki, K. Sugimoto, and T. Matsubara,

ªEnvironment-adaptive interaction primitives through visual context for
human±robot motor skill learning,º Autonomous Robots, vol. 43, pp.
1225±1240, 2019.

[52] H. Wu, W. Yan, Z. Xu, T. Cheng, and X. Zhou, ªA framework of robot
skill learning from complex and long-horizon tasks,º IEEE Transactions

on Automation Science and Engineering, vol. 19, no. 4, pp. 3628±3638,
2021.

	Introduction
	Preliminaries
	DMP
	KMP

	Motivation
	Problem formulation
	Limitations of MSE and MAP

	AutoLfD
	Trajectory encoder network
	An automatic optimization framework for LfD
	Generalization metric
	Gradient descent
	Bayesian optimization

	Evaluations
	Letter-writing tasks
	Optimizing the hyperparameters of DMP
	Optimizing the hyperparameters of KMP
	Comparison between GD and BO
	Comparison with baselines

	Real robot experiments
	Peg-in-hole task
	Block-stacking task
	Pushing task

	Discussion
	Limitations
	Conclusions
	References
	Biographies
	Shaokang Wu
	Yijin Wang
	Yanlong Huang

