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Spiking Variational Policy Gradient for Brain
Inspired Reinforcement Learning

Zhile Yang, Shangqi Guo, Ying Fang, Zhaofei Yu, Jian K. Liu

Abstract—Recent studies in reinforcement learning have explored brain-inspired function approximators and learning algorithms to

simulate brain intelligence and adapt to neuromorphic hardware. Among these approaches, reward-modulated spike-timing-dependent

plasticity (R-STDP) is biologically plausible and energy-efficient, but suffers from a gap between its local learning rules and the global

learning objectives, which limits its performance and applicability. In this paper, we design a recurrent winner-take-all network and

propose the spiking variational policy gradient (SVPG), a new R-STDP learning method derived theoretically from the global policy

gradient. Specifically, the policy inference is derived from an energy-based policy function using mean-field inference, and the policy

optimization is based on a last-step approximation of the global policy gradient. These fill the gap between the local learning rules and

the global target. In experiments including a challenging ViZDoom vision-based navigation task and two realistic robot control tasks,

SVPG successfully solves all the tasks. In addition, SVPG exhibits better inherent robustness to various kinds of input, network

parameters, and environmental perturbations than compared methods.

Index Terms—Spiking neural networks, reinforcement learning, reward-modulated spike-timing-dependent plasticity, winner-take-all

circuit, variational policy gradient.

✦

1 INTRODUCTION

R EINFORCEMENT learning (RL) based on artificial neural
networks (ANNs) has gained success in many scenarios

[1], [2], [3], [4]. However, the adaptability and robustness of
the current models are still unsatisfactory compared to hu-
man intelligence. Although many studies have made good
progress in improving these performances, they generally
require specific designs, such as task augmentation [5], [6],
[7], additional policy modules [8], [9], or task-specific policy
structures [2]. A recent branch of RL studies focuses on bio-
logically plausible learning systems that simulate biological
neurons and network structures of human brains. It has
been found that these systems can inherently improve the
performance of artificial agents [10], [11], [12] and the energy
efficiency of the learning system [13], thus reducing the need
of extra training costs and task-specific designs. This branch
of studies also contributes to the analysis of experimentally
recorded neuronal signals, providing information to explain
the capabilities of the brain in the field of computational
neuroscience [14].

One of the mainstream biologically plausible models is
spiking neural networks (SNNs). SNNs differ from con-
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ventional ANNs primarily in their spiking neurons, which
model the activities as discrete spikes, making the gradi-
ent on network parameters unavailable. SNN RL meth-
ods can be categorized into three types: ANN-to-SNN
(ANN2SNN) [15], surrogate gradient function [16], [17],
and reward-modulated spike-timing-dependent plasticity
(R-STDP) [18], [19]. The first two types require backprop-
agation of gradients during training and are not considered
biologically plausible [20], [21], [22]. In contrast, R-STDP
trains with local learning rules and thus are considered
biologically plausible [22], [23], [24]. In addition, R-STDP is
also more preferable for implementation by neuromorphic
hardware [25]. Recent R-STDP studies investigated different
forms of R-STDP, considering types of neuronal interactions,
modulation strengths, and modulation timings [18], and
have seen improvements in task performance and energy
efficiency [10], [11], [26]. However, their approaches require
task-specific designs, and it is also not clear whether and
how the local R-STDP rules optimize global RL objectives
with theoretical guarantees. Therefore, there exists a funda-
mental gap between the local learning rules and the overall
RL target.

To bridge the gap, we adopt the variational inference
method to transform the global learning target into local
learning rules. This idea has been used in previous works
on pattern generation and classification [27], [28], [29], but
not in the RL community. To our knowledge, this paper
is the first to investigate variational inference for R-STDP.
We design an RWTA network, a spiking neural network
that consists of recurrently connected winner-take-all (WTA)
circuits [28], [30]. We show that the fixed point of the RWTA
network is equal to an energy-based RL policy distribution
and that R-STDP can be specified for the RWTA network
to serve as an approximation of the policy gradient in the
REINFORCE [31] algorithm. These establish the theoretical
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equivalence between the R-STDP learning rules and the
RL objective. The resulting algorithm is named the spiking
variational policy gradient (SVPG).

We evaluate SVPG over five typical RL tasks includ-
ing reward-based MNIST classification [32], Gym Inverted-
Pendulum [33], ViZDoom HealthGathering [34], AI2THOR
robot navigation [35], [36], and robot arm manipulation [37].
Among them, the ViZDoom task, as a 3D first-person video
game, is the most challenging as it involves image input and
long decision sequences. The robot tasks use near photo-
realistic scenes [35], [37] and randomized starting/target po-
sitions, which examines the method’s applicability to real-
world tasks. To extend the capability of the SVPG algorithm,
we enhance its base RL algorithm from REINFORCE to the
more widely-used and efficient PPO-clip [38] algorithm and
transplanted the Adam optimizer [39] and the RMSprop
optimizer [40]. Empirical results show that SVPG can solve
all five tasks, and outperforms three representative methods
including ANN, ANN2SNN, and surrogate gradient-based
backpropagation in terms of optimization speed. Further-
more, SVPG exhibits inherent robustness to input noise [15],
network parameter noise [41], and environmental variation
[42].

Note that a part of this work has been presented at
the BMVC 2022 [43]. This article mainly incorporates these
extensions: 1) the SVPG algorithm is extended from RE-
INFORCE to more RL base algorithms, including PPO-
clip, 2) three more challenging tasks are included in the
experiments, and 3) more visualizations and properties of
the network are investigated.

We summarize the main contributions of this work as
follows:

• We propose SVPG, a biologically plausible learning
method for a RWTA network. SVPG establishes a
connection between the R-STDP framework and RL
policy gradient algorithms.

• We experimentally demonstrate that SVPG is capable
of solving a series of RL tasks, including two vision-
based robot navigation tasks in realistic scenarios.

• We experimentally show that SVPG produces effec-
tive policies with inherent robustness to several types
of perturbations.

2 PRELIMINARY

2.1 Spike Response Model and Winner-Take-All Circuit

We adopt the spike response model (SRM) [44] for the
neuron model. SRM is a stochastic variant of the leaky
integrate-and-fire model [45], and has been widely used in
RL studies [44], [45], [46], [47]. We also consider WTA cir-
cuits as base components in the network. Figure 1 illustrates
SRM neurons in a WTA circuit.

In SRM, the states of neurons evolve at discrete spike
time steps. At each spike time step l, each neuron evolves its
membrane potential u(l) and fires a spike at random accord-
ing to its firing probability ρ(l). All spikes are considered
to be binary, i.e., 1 for firing and 0 for resting. The firing
probability ρ(l) depends exponentially on the membrane
potential [44], as defined in the following equation:

ρ(l) = exp{u(l)− I(l)}, (1)

WTA circuit

lateral
inhibition

𝐼𝑖(𝑙)

Fig. 1. The structure of a WTA circuit.

where u(l) is the membrane potential and I(l) is an in-
hibitory term produced by a lateral inhibition neuron in the
WTA circuit. The inhibitory term is assumed to ensure that
the firing probabilities within the WTA circuit sum up to 1,
resulting in a low firing rate of the whole network and low
energy consumption. It is also assumed that one and only
one neuron in the WTA circuit fires at each time step. The
membrane potential u(l) is determined by the spike train S
from connected neurons [48]:

u(l) =
∑

j∈N(·)

wj

∫

∞

0
κ(y)Sj(l − y)dy + b, (2)

where N(·) denotes the set of presynaptic neurons of the
considered neuron, wj is the synapse weight, κ is the
excitatory postsynaptic potential, Sj is the spike train from
neuron j, and b is the intrinsic excitability of the neuron.
For κ, we consider the double exponential and the rectangle
function [48], which are respectively:

κ(l) = κ0[exp(−l/τ1)− exp(−l/τ2)]ε(l), (3)

κ(l) = κ0[ε(l)− ε(l − τ3)], (4)

where κ0 is the overall amplitude, τ1, τ2, and τ3 are hyper-
parameters, and ε(l) is the step function.

2.2 Reward-Modulated STDP

R-STDP is a framework of learning rules for synapse
weights given the local firing activities and an external
modulatory signal. It is supported by neuroscience findings
about the relationship between dopamine, acetylcholine,
and synapse plasticity [49], [50], and has been used in vari-
ous biologically plausible RL studies [45], [46], [51]. We use
wij to denote the weight of synapse between presynaptic
neuron i and postsynaptic neuron j. R-STDP takes the form
of ∆wij = R(l) ·STDP(l), where R(l) is the external reward
signal and STDP(l) is a coefficient determined by the STDP
learning rule in the following form:

STDP(l) = Sj(l)
[

Wpre +

∫

∞

0
A+W+(y)Si(l − y)dy

]

+ Si(l)
[

Wpost +

∫

∞

0
A−W−(y)Sj(l − y)dy

]

,

(5)

where Wpre and Wpost are constants about the presynap-
tic and postsynaptic activity, A+ and A− characterize the
extent to which synaptic changes depend on the current
synapse weights. W+ and W− are respectively the time win-
dows of the long-term potentiation (LTP) and the long-term
depression (LTD) processes, which satisfy

∫

∞

0 W (l)dl = 1.
Tuple ⟨Wpre,Wpost, A+(wij), A−(wij)⟩ defines a specific
STDP rule.
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Fig. 2. SVPG is implemented by an RWTA Network. The environment
represents different tasks of interest.

2.3 Markov Decision Process

We use the Markov decision process (MDP) for modeling RL
tasks and adopt the notations from [31], i.e., ⟨S,A, P,R, γ⟩.
At each time step t, the agent observes the state st ∈ S ,
makes action at ∈ A according to its policy π : S × A →
[0, 1] and receives a scalar reward rt. The environment
transfers to a new state st+1 according to the transition
function P : S × A × S → [0, 1]. The learning objective
is to find a policy π that maximizes the expected return:

J (π) = Eτ∼Pπ

[

T−1
∑

t=0

γtrt

]

, (6)

where Pπ denotes the trajectory distribution over policy π, τ
is the sampled trajectory ⟨s0, a0, r1, s1, a1, . . . , rT , sT ⟩ and T
is the total length of the episode. We assume that the action
space A consists of a finite number of actions.

Note that the spike time step l is different from the RL
step t. We design that the SNN is simulated for a fixed
number of spike time steps (e.g., 100) for each RL time step.
The simulation generates the action at and uses the reward
rt to update the network parameters. The simulation is then
reset for the next RL time step.

3 METHOD

This section first introduces the design of the RWTA net-
work, then derives the policy inference and optimization
based on the REINFORCE algorithm, and finally introduces
the extension to the PPO algorithm.

3.1 The RWTA Network

SVPG is based on the recurrent winner-take-all (recurrent
WTA, RWTA) network which is sketched in Figure 2. The
RWTA network consists of some state neurons, some hidden
WTA circuits, and one action WTA circuit. The firing proba-
bilities of each state neuron encode one element of the state
observation, while the firing states or probabilities of the
action neurons can be used to generate the action decision.
The network is fully connected, with all neurons from differ-
ent circuits connected, but certain parts of the connections

can be removed to create different network structures. The
connections are symmetric, meaning the weight is shared by
the two connected neurons. However, the connections that
start from state neurons are unidirectional since the state
neurons are not to be optimized.

The state neurons are denoted as si (i = 1, . . . , ds); the
action neurons are ai (i = 1, . . . , da); the j-th neuron in
the i-th hidden circuit is hij (i = 1, . . . , nh, j = 1, . . . , dh).
Here ds, dh, and da are the sizes of the state observation
and the WTA circuits, and nh is the number of hidden
WTA circuits. At each spike time step, each neuron has
two properties: firing probability q ∈ [0, 1] and binary firing
status v ∈ {0, 1}. We use vectors to represent the values of
groups of neurons, use hi and h to denote the i-th hidden
circuit and the entire set of hidden neurons, and use bold
symbols with no subscript to denote all the neurons. For
example, qhi

:= [qhi1 , . . . , qhidh
]T, vh := [vT

h1
, . . . ,vT

hnh
]T,

and q = [qT
h , q

T
a , q

T
s ]

T. The total number of neurons is
N = nhdh+da+ds. The learnable parameters in the network
are denoted as W ∈ R

N×N for the synapse weights and
b ∈ R

N for the self-activation parameters; the columns
and rows of W are arranged by h, a, s and b is arranged
according to h, a, s. Note that the state neurons have zero
intrinsic excitabilities, i.e., bs = 0. We use θ to refer to the
parameters of the policy, i.e., θ = ⟨W , b⟩.

3.2 Policy Inference

3.2.1 The definition of policy function

We set the RL policy to be a probability distribution over the
action space which is assumed to consist of a finite number
of actions, and define it with an energy function E(v):

π(va|s) =
∑

vh

p(va,vh|s), (7)

p(va,vh|s) :=
1

Z(s)
exp{E(v)}, (8)

E(v) := vTWv + bTv, (9)

where Z(s) =
∑

v
′

h
,v′

a
exp{E(v′)} is the normalization. As

shown in the above equations, the policy distribution is
calculated as the marginal distribution of va. Although the
energy function is linear, the normalization operation makes
the energy-based policy function capable of representing
complex distributions [52]. This formulation makes the pol-
icy function similar to the SRM model, i.e., Eq.s (1) and (2).
More importantly, as will be shown later, this formulation of
policy is equivalent to the fixed point of the RWTA network.

The policy representation Eq. (7) is computable in princi-
ple. However, when the number of hidden neurons is large,
it can be intractable in practice. To address this problem,
we use mean-field inference to derive an approximation
p̂(va,vh|s) of the probability function of action-hidden
states p(va,vh|s).

3.2.2 Validity of policy approximation

The above approximation can induce a change to the ex-
pected return. Before diving into the details of the ap-
proximation, we first analyze the relationship between the
approximation and the change. To do this, we equivalently
transform the original objective J(π) into log J(π). We use
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τ+ to denote the trajectories in which hidden states vh

are incorporated with actions. We use est to refer to the
probabilities or distributions of trajectories under the ap-
proximated policy function. Then we can get the following
lower bound of the objective when the policy approximation
is applied:

log J(π) = log[
∑

τ+

pπ(τ+)
T−1
∑

t=0

γtrt]

≥ Eest[log
T−1
∑

t=0

γtrt]−DKL[pest(τ+) ∥ pπ(τ+)].

(10)
For deterministic environments, target Eest[log

∑T−1
t=0 γtrt]

is equivalent to Eest[
∑T−1

t=0 γtrt], which is the original ex-
pected return; in stochastic environments, the equivalence
depends on the transition function P . When the equiva-
lence holds, the above Eq. (10) indicates that, by minimiz-
ing the KL divergence between the approximated function
p̂(va,vh|s) and the original function p(va,vh|s), we can
maximize the lower bound of the original expected return.

3.2.3 Policy mean-field inference

We use a variational distribution p̂(va,vh|s) to approximate
p(va,vh|s), and assume that the firing states of all circuits
are independent to each other. This leads to a decomposition
of p̂, i.e., p̂(va,vh|s) := p̂(va|s)p̂(vh1

|s) · · · p̂(vhnh
|s), where

p̂(vh1
|s) := qT

h1
vh1

, . . . , p̂(va|s) = qT
a va.

By minimizing the KL divergence between p̂ and p, i.e.,

DKL(s)
·
= DKL[p̂(va,vh|s)∥p(va,vh|s)], we get the follow-

ing mean-field inference equation [53] for each hidden or
action neuron i:

qi =
1

Z(qG(i))
exp{wT

row,iq +wT
col,iq + bi}, (11)

where i = 1, . . . , (nhdh + da), G(i) is the set of indices
of the neurons in the same circuit as neuron i, Z(qG(i)) =
∑

j∈G(i) exp{w
T
row,jq+wT

col,jq+ bj}, and wrow,i and wcol,i

are respectively the i-th row and column of matrix W (in
the shape of a column vector), which corresponds to the
synapses connected to neuron i. bi is the i-th element in
vector b.

To get the policy distribution π(va|s), which is approxi-
mated by qa, we can solve Eq. (11) to get q and then extract
its elements corresponding to qa. Eq. (11) can be seen as
an iteration process by regarding the q on the right side as a
constant vector. In practice, one numerical method to get the
solution q is to initialize q with random numbers and then
repeat updating it with Eq. (11) until numeric convergence.
Although there is no theoretical guarantee of convergence,
we demonstrate in our experiments that it converges in most
cases (see section 4.2).

3.2.4 Policy inference with RWTA network

Now we show that the fixed point of the RWTA network
equals the approximated policy inference above. That is, the
iterative method above for policy inference can be imple-
mented with the RWTA network.

We assume that the internal inhibitory neuron in the
WTA circuits makes the overall firing rates of the network

(excluding the state neurons) a constant value ρ̂ ∈ (0, 1).
With this assumption, we let the firing probabilities encode
ρi(l) = ρ̂qi. Then the policy inference function Eq. (11) is
transformed to

ρi =ρ̂ exp{wT
row,iq +wT

col,iq + bi

− log
∑

j∈G(i)

exp{wT
row,jq +wT

col,jq + bj}}. (12)

Then, consider the neuron model Eqs. (1 )and (2) in the
RWTA network, we assign wj with the synaptic weights
wij + wji, and design κ(y) such that

∫

∞

0 κ(y)dy = 1/ρ̂.
This transforms the probability values q in Eq. (12) into
membrane potential u(l), leading to the following spike-
based inference function

ρi(l) = ρ̂ exp{ui(l)− log
∑

j∈G(i)

exp(uj(l))},

ui(l) =
∑

j∈N(i)

wij

∫

∞

0
κ(y)Sij(l − y)dy + bi.

(13)

Eq. (13) shows the way the RWTA network iterates its
membrane potentials and firing probabilities. When a fixed
point is reached, the firing probabilities give the solution to
the policy inference function Eq. (11). This shows that the
RWTA network designed above can perform the approxi-
mated policy inference. Note that it is biologically plausible
as it conforms to the definition of the SRM neuron model.

3.3 Policy Optimization

The policy optimization concerns the update of network pa-
rameters θ and relies on a base RL algorithm. Here we select
REINFORCE as the base algorithm, because it is the base of
many popular algorithms like A2C and PPO, and it has a
simple policy gradient formulation which can simplify the
derivation of our method. We derive the learning method
and build its relationship to the R-STDP framework. Then
we extend the method to other base RL algorithms like PPO.

3.3.1 Policy optimization for REINFORCE

In REINFORCE, the policy gradient is calculated according
to the following equation [31]:

∇θJ(πθ) = Eτ∼πθ
[
T−1
∑

t=0

γtrt

T−1
∑

k=0

∇θ log πθ(ak|sk)], (14)

which contains ∇θ log πθ(ak|sk), differential of logarithm
of the policy function. Based on the policy approximation
p̂(va,vh|s) in previous subsection, this differential stands
for ∇θ log(qha). According to the policy inference function
Eq. (11), this differential can be calculated as shown in the
following theorem.

Theorem 1. (Precise optimization rule) The precise differential
of qha to a certain synapse weight wjk and the self-activation
parameter bj is

∂qha

∂wjk

= M
(

U jk +Ukj

)

q +M(W +WT)
∂q

∂wjk

,

∂qha

∂bj
= Mb+M(W +WT)

∂q

∂bj
,

(15)
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where M = diag(qha)[−Ghadiag(q) + Dsel], Gha is a
logical matrix with shape (nhdh + da) × N where 1 elements
indicate the two neurons (column index and row index) are in
the same WTA circuit, Dsel is a logical matrix that selects the
first (nhdh + da) elements in a vector with length N , i.e.,
Dsel =

[

I(nhdh+da) O(nhdh+da)×ds

]

, and U jk is a logical
matrix with shape N ×N where only the jk-th element is 1.

Proof. The proof can be seen in Appendix A.1.

Theorem 1 reveals that the required differential can be
obtained by solving the matrix equations Eq. (15). How-
ever, this involves the calculation of the pseudo-inverse of
M(W+WT), the shape of which is (nhdh+da)×N . There-
fore the computational complexity is over O((nhdh + da)

3)
which can be intractable in practice when the number of
hidden and action neurons is large.

Therefore we turn to obtain an approximated solution
of Eq. (11). As will be shown later, this approximation
can still get satisfying results in our experiments; it can
also be implemented in the R-STDP framework so has the
advantage of being biologically plausible. The idea for the
approximation is to regard the q on the right side of the pol-
icy inference function Eq. (11) as a constant on the network
parameters. By doing so, the differential only concerns the
last step in the inference process, where the status of each
neuron is only affected by its neighboring neurons. Thus the
differential on a certain connection or neuron only depends
on information from the connected neurons, which makes
possible the link between the local rules and the global
objective. The result is presented in the following theorem.

Theorem 2. (Approximate optimization rule) The approximate
differentials of firing rate qi with respect to W and b are:

∂ log(qi)

∂W
=(U i:diag(q) + diag(q)U :i)

− diag(q)(UG(i): +U :G(i))diag(q),

∂ log(qi)

∂b
=ui − diag(q)uG(i),

(16)

where i ∈ {1, . . . , (nhdh + da)}, U is a N ×N logical matrix
and u is a length-N logical vector, whose subscripts indicates
the positions of elements with value 1. G(i) is the set of indices
of neurons in the same circuit as neuron i; “:” means the entire
row/column.

Proof. The proof can be seen in Appendix A.2.

According to Theorem 2, at the last step of each sim-
ulation for a certain RL time step t, given the firing state
v of the RWTA network, we can obtain the corresponding
REINFORCE policy gradient

∇J(π) =
∑

t

γtrt[
nh
∑

i=1

vT
hi
∇(log qhi

) + vT
a∇(log qa)], (17)

where ∇ log qhi
and ∇ log qa are respectively the vectors of

∇ log qhij
and ∇ log qai

.

3.3.2 Policy optimization with R-STDP

Now we show how this policy gradient can be implemented
with R-STDP. Specifically, this means to design a set of
⟨Wpre,Wpost, A+(wij), A−(wij)⟩ in the R-STDP framework.
We make the following settings to the R-STDP for two
arbitrarily connected neurons i and j.

⟨Wpre,Wpost, A+(wij), A−(wij)⟩ = ⟨vi, vj ,−1/ρ̂,−1/ρ̂⟩,
(18)

In practice, when the number of spike time steps in the sim-
ulation is large enough, the frequency of spikes in a spike
train Si reflects the firing probability ρi, i.e., E[Si(l)] = ρi
and E[

∫

∞

0 A+(wij)Si(l−y)dy] = A+(wij)ρi. Then, we have
the following transformed formulation of our R-STDP rule:

E[R(l)STDP(l)] = R′[ρj(vi − ρi/ρ̂) + ρi(vj − ρj/ρ̂)], (19)

where R′ is a signal about the environment reward for
the considered simulation period. Note that, for the self-
excitation parameter b, it can be regarded as the weight of a
connection from an always-firing neuron and that the post-
synaptic part of the STDP rule is omitted. The corresponding
learning rule is ∆bi = R′[vi − ρi/ρ̂].

Then, for the policy gradient Eq. (16, 17) which is derived
from the global objective, we can reorganize them according
to the network parameters as follows:

∂J(π)

∂wij

=
∑

t

γtrt[qi(vj − qj) + qj(vi − qi)],

∂J(π)

∂bi
=
∑

t

γtrt(vi − qi).

(20)

As shown, the two equations Eq. (19) and Eq. (20) are
equivalent. By using Monte-Carlo sampling methods, we
can make R′ equal to

∑

t γ
trt. By scaling the optimization

step size with ρ̂, we can remove the difference in the overall
firing rate ρ̂. This means that the R-STDP rule defined in Eq.
(18) can represent the approximated policy gradient on the
RWTA network.

So far we derive a variational policy gradient method
where inference and optimization are implemented with the
spiking RWTA network and an R-STDP rule. We name it
spiking variational policy gradient (SVPG).

3.4 Practical Considerations

There may be two problems with SVPG in practical applica-
tion. (1) The simulation of spike trains in the RWTA network
can be computationally expensive, particularly for general
devices like GPU. (2) SVPG is derived for the REINFORCE
algorithm, which is not efficient and is not popularly used
in recent RL studies. Here we provide solutions to these two
potential problems.

3.4.1 Rate-based approximation

For the computational cost problem, we propose a rate-
based approximation of SVPG. In the approximation, the
evolution of neurons’ firing probabilities is directly calcu-
lated by the policy inference function Eq. (11), i.e., with-
out the intermediate simulation of the spike trains. In this
way, the computational cost can be reduced. However, this
approximation also removes the random noises in firing
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probabilities caused by spike trains, which could be im-
portant to the overall performance. For this deficiency, we
add Gaussian noises (with standard deviation σ = 0.02)
to the firing probability values in each iteration of the
firing probabilities. As will be shown later (section 4.2.2),
this rate-based approximation can significantly reduce the
computational cost while producing similar training and
perturbation results to the original implementation.

3.4.2 Extension to other base RL algorithms

The RL field has seen many advances in algorithms that
bring improvements to training efficiency, scalability, etc.
Extending SVPG to these RL algorithms can facilitate the
test or application to more challenging scenarios. Here we
consider the PPO-clip algorithm [38], which has been widely
used in RL studies and is generally considered faster and
better at solving complex tasks like DOOM than REIN-
FORCE. We also consider the extension to value-based RL
algorithms, which are another major branch besides policy
gradient.

For value-based algorithms like DQN, the network is
required to output a number of state-action values [54]. The
firing rates of the action neurons can be used to approximate
their firing probabilities qai

, and then transformed to the
state-action value with a mapping like Qai

= tan{qai
π −

π/2}. Suppose a loss function Loss(Qa,i) on the state-
action value is defined in the base RL algorithm, we can
decompose its differential into two parts according to the

chain rule ∂Loss(Qai
)/∂θ =

∂ log(qai
)

∂θ
·
∂Loss(Qai

)

∂ log(qai
) ; the first

part has been derived in Eq. (16); the second part can be
calculated in practice using deep learning libraries such as
PyTorch [55].

For the PPO-clip algorithm, the learning target is [38]

J(πθ) = Et [min (rt(θ)At, clip(rt(θ), 1− ϵ, 1 + ϵ)At)] ,

rt(θ) = πθ(at|st)/πθold
(at|st),

(21)
where πθ is the current policy and πθold

is an old policy with
checkpoint parameter θold; ϵ is a hyperparameter. Similar to
the value function representation, the differential of the pol-
icy distribution can be transformed into the one we derived

earlier: ∂qi
∂θ

= ∂ log(qi)
∂θ

· qi. Note that there is a difference
between conventional ANNs and the RWTA network when
dealing with θold. The differential for the RWTA network,
i.e., Eq. (20) requires the firing states of the neurons which
can be different in different simulations. Thus the check-
point θold needs to include both the network parameters
and the firing states v; when updating the network with Eq.
(20), the v values are from the checkpoint, and the q values
are from the current policy instantiation. This extension
reduces the biological plausibility of the SVPG method since
it uses information from a previous state of the network,
however, this is inevitable for most base RL algorithms that
use the target network technique [54]. A sketch of the SVPG
algorithm for PPO-clip is given in Algorithm 1.

4 EXPERIMENTS

We apply SVPG to different kinds of RL tasks and compare
it to representative methods of other types. This section
will first introduce the task settings and the compared

Algorithm 1 SVPG for PPO-clip

Parameter: Discount factor γ. Training episode number
Nepi. Inference iteration number Niter. Learning rate η. PPO
epoch number NPPO. Network shape nh, dh, da, ds.
Output: RWTA Network parameter θ.

1: Initialize θ to zero. Initialize the critic network.
2: for Episode = 1, . . . , Nepi do
3: Clear memory buffer D.
4: for Training step t = 1, . . . , T do
5: Observe and encode state st.
6: Randomly initialize qa and qh and normalize them

at circuit-level.
7: Iterate Eq. (13) for Niter spike time steps. {Inference}

8: Use va to generate at. Perform at, observe reward
rt and new state st+1.

9: Store ⟨st, at, rt, st+1, q,v⟩ into D.
10: end for
11: Get data from D. Backtrack reward R =

∑

t γ
trt.

12: Update critic network. Use critic to generate advan-
tage value A.

13: Store checkpoint θold, vold .
14: for PPO epoch num = 1, . . . , NPPO do
15: Update θ using A,D, θold, vold and Eq. (20), Eq. (21).

{Optimization}
16: end for
17: end for

methods. Next is the empirical verification of assumptions
made in the theory part. Then comes the task performances
and results of perturbation tests. The rear of this section
provides ablation tests and visualizations. The code for all
the tasks and methods can be found at https://github.com/
yzlc080733/SVPG2023.

4.1 Tasks and Compared Methods

We use five tasks in our experiments: reward-based MNIST
classification, Gym InvertedPendulum, ViZDoom Health-
Gathering [56], AI2THOR navigation [35], [36], and robot-
arm reaching (built on PyRep [57] and CoppeliaSim [37]).
In the following texts and figures, we use MNIST, GYMIP,
DOOM, AI2THOR, and ROBOTARM to refer to these tasks.

• In MNIST, the objective is to select the correct label
given the image input. The state is a vector of length
784 which is reshaped from the image; the action
space corresponds to the 10 labels; the reward is
{−1,+1} corresponding to wrong or correct predic-
tions.

• In GYMIP, the objective is to balance a pendulum for
as long as possible. The maximum episode length is
set to 200; the state is a length-4 vector of physical
variables which are mapped to the range of [0, 1]; the
action space is {−3,−1.5, 0, 1.5, 3}meaning the force
on the cart; the reward is always +1.

• In DOOM, the objective is to navigate and pickup
boxes to survive as long as possible. The maximum
episode length is set to 525; the state is a vector of
length 4800 reshaped from the 80 × 60 first-person



7

(a) (b)

Fig. 3. (a) Example observation in AI2THOR. (b) Environment overview
in ROBOTARM.

gray-scaled visual observation; the action space con-
sists of 5 actions; the reward depends on the agent’s
health value; an example state observation is shown
in Figure 8a.

• In AI2THOR, the objective is to navigate to a tele-
vision in a realistic room. The maximum episode
length is set to 200; the state is based on first-person
vision and is pre-processed in the same way as in
DOOM. The action space consists of 5 actions; the
reward depends on the target distance and whether
an action is successful. The starting point of the
robot is randomly sampled from 38 positions, among
which 30 are for training and 8 are for testing. An
example state observation is in Figure 3a.

• In ROBOTARM, the objective is to move the gripper
of a robot arm to the cube on the desk. The maximum
episode length is 60; the state is a vector of length
4096 reshaped from the 64 × 64 visual observation
obtained at the position of the gripper; the action
space consists of 4 horizontal movements and one
“move down” movement. The reward is determined
by the target distance. The position of the target ob-
ject is randomly sampled from 50 positions, among
which 45 are for training and 5 are for testing. An
example environment overview is in Figure 3b.

The MNIST task is selected because it is a single-step RL
task, making its performance less affected by the training
efficiency and exploration strategy. The GYMIP task is se-
lected because it is a standard task widely used in the liter-
ature [51], [58], [59]; also its state variables are unbounded,
providing a good example of state mapping for SVPG.
The DOOM task is selected because it involves a high-
dimensional vision input and a long episode horizon which
challenges the methods’ overall capability. The AI2THOR
and ROBOTARM are used to reflect the methods’ appli-
cability to real-world tasks. In particular, AI2THOR pro-
vides photo-realistic scenes [35] (lighting, texture, etc.) and
simulates collisions and noises in the robot’s movements.
In addition, the robot needs to generalize to new starting
points (AI2THOR) or target positions (ROBOTARM).

Note that an encoding of the state observation is nec-
essary to get the firing probabilities of the state neurons,
because the latter is constrained to range [0, 1]. In MNIST,
DOOM, AI2THOR, and ROBOTARM, the elements in state
observations have limited values so can be linearly mapped
to [0, 1]. In GYMIP, the state values are unbounded; therefore
we first train an ANN to get samples to estimate the range

and then clip and map to [0, 1]. More details about the
task settings, including state encoding, reward function, and
action space are in Appendix C.1.

We select three representative learning methods for com-
parison. The first one serves as a conventional approach in
deep RL; the other two are usual approaches in SNN-based
RL.

• BP [60] (backpropagation) on a three-layer multi-
layer perceptron with the ReLU function for the
hidden layers which is a conventional baseline ANN
model.

• ANN2SNN with the methods from [61] and code
implementation from SpikingJelly [62]. This method
is based on the training results from the BP method.

• Fast sigmoid BPTT (backpropagation through time)
from [63]. The code implementation is based on
snnTorch [64].

For these compared methods, we set the number of
hidden layers to 1. In all the comparisons, we use the
same optimizer (RMSprop or Adam), discount factor γ,
number of hidden neurons, and base RL algorithm. We
tune the learning rate and entropy ratio for each method
and report the result with the best zero-perturbation testing
performance. Other implementation details are introduced
in Appendix C.2.

We also considered two local-learning-rule-based meth-
ods. The first is a hybrid method of STDP and R-STDP [65],
implemented on SpykeTorch [66], and designed for MNIST.
We refer to it as Mozafari et al. This method enables the
training of deep networks by applying STDP to hidden
layers. For a fair comparison, we changed its network
structure to a multi-layer perceptron with the same shape
as other compared methods and removed the difference of
Gaussians filter. Other designs including latency encoding
and adaptive learning rate are kept. The second is a local
gradient-based optimization method [67], implemented for
CartPole, an environment similar to GYMIP. We refer to it as
Aenugu et al. This method uses generalized linear model as
neurons and updates connection weights based only on the
local spiking activity and the global reward information. We
reduced the size of the hidden layer to make the comparison
fair. The input encoding, sparse connection, critic model and
voting mechanism are kept.

We notice that the RWTA network in our method is
fully-connected so has more learnable parameters than other
methods under the same number of hidden neurons. There-
fore we add a variant SVPG-shrink with fewer hidden WTA
circuits, of which the number of learnable parameters is
equal to or less than the networks in other methods. We
provide the details in Appendix C.2.

4.2 Assumption Verification

In the theory part, we made two assumptions. (1) In section
3.2.3, we assume that iterating the firing probabilities with
the policy inference function Eq. (11) can reach numeric
convergence. (2) In section “practical consideration” 3.4.1,
we propose an approximated implementation of SVPG.
Here we use empirical results to verify these assumptions.
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Fig. 4. Histogram of iteration lengths on MNIST.

4.2.1 Convergence verification

The policy inference part of SVPG, either rate-based or
spike-based, relies on the iteration of the policy inference
function Eq. (11). Here we use the MNIST task to empirically
verify the convergence of the iteration process.

We monitor the firing probabilities of hidden and action
neurons and set a stopping criterion for the iteration which
is that the mean absolute changes in those probabilities
in an iteration are smaller than 0.005, or that the iteration
exceeds 50 steps. Note that this stopping criterion is also
adopted in training rate-based SVPG. We feed the RWTA
network with the testing images one by one and record
their corresponding iteration lengths. The distribution of
the iteration lengths is plotted in Figure 4. As shown, for
all the tested images the iteration converges within 30 steps;
also, most images correspond to an iteration length smaller
than 10. These empirically verify that the policy inference
function converges under most input cases.

4.2.2 Rate-based SVPG implementation

We compare the rate-based SVPG implementation with
the original spike-based implementation on MNIST and
GYMIP. The testing results with different strengths of per-
turbations to input and network parameters are shown in
Figure 5. Details of perturbations are in Section 4.4. In Figure
5, the curves are averaged across 10 independent trainings,
and the shades represent the standard deviation values. To
save space, we put the complete set of figures in Appendix
D.1.

As shown, the two implementations generate similar
results under the tested perturbations, indicating that the
rate-based implementation can be used as a replacement for
spike train simulation. In the following experiments, we use
the rate-based implementation to represent SVPG.

4.3 Task performances

We train different methods respectively on the five tasks. For
the optimizer, we use Adam on MNIST, DOOM, AI2THOR,
and ROBOTARM; we use RMSprop on GYMIP. This brings
variances to the selection of the optimizer. For the base
RL algorithm, in our previous paper [43], we used RE-
INFORCE. Here we upgrade it to PPO-clip because of its
popularity and training efficiency.

4.3.1 Zero-perturbation testing performances

The zero-perturbation testing performances are shown in
Table 1. The values for MNIST, GYMIP, and DOOM are
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Fig. 5. Rate-based SVPG v.s. spike-based SVPG. (a) Input salt noise on
MNIST. (b) Network Gaussian noise on MNIST. (c) Input uniform noise
on GYMIP. (d) Network uniform noise on GYMIP.

from 10 independent trainings; the values for AI2THOR
and ROBOTARM are from 3 independent trainings. The pre-
sented values are in the form of mean±standard deviation.
For the first three tasks, a higher performance value is better;
for the last two tasks, a lower performance value is better.

• On MNIST, the performance is measured by the
testing accuracy. SVPG performs not as well as BP,
BPTT, and ANN2SNN.

• On GYMIP, the performance is measured by the
length of testing episodes and the optimum value
is 200. SVPG achieves optimal performance.

• On DOOM, the performance is measured by the
length of testing episodes and the optimal value is
525. SVPG achieves optimal performance.

• On AI2THOR, the performance is measured by the
average number of steps the agent used to reach
the target from different starting points. The optimal
value is 24. SVPG achieves optimal performance.

• On ROBOTARM, the performance is measured by
the averaged number of steps the agent used to
reach the target from different starting points. SVPG
achieves near-optimal performance.

These results indicate that SVPG with the RWTA net-
work is able to solve image-input, long-horizon, and realis-
tic RL tasks.

4.3.2 Computational costs

The computational costs are important for the practical
applications of the methods. Here we provide results on the
time complexity, space complexity, and sample efficiency.
The Mozafari et al. R-STDP method and the Aenugu et al.
method are not measured because their implementation
[65], [67] do not support parallel processing of multiple
samples, resulting in low space complexity and high time
complexity.

(1) Time complexity. We measured the time required for
the inference and optimization steps to reflect the time
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TABLE 1
Zero-Noise Testing Performances on the 5 Tasks. △: Higher better. ▽: Lower better.

Tasks SVPG BP BPTT ANN2SNN Mozafari et al. Aenugu et al.

MNIST △ 0.929±0.001 0.979±0.001 0.975±0.001 0.978±0.002 0.587±0.010 -
GYMIP △ 200.00±0.00 200.00±0.00 198.18±3.68 200.00±0.00 - 195.11±7.30
DOOM △ 525.00±0.00 525.00±0.00 394.98±151.14 525.00±0.00 - -

AI2THOR ▽ 24.00±0.00 24.00±0.00 82.77±82.89 24.00±0.00 - -
ROBOTARM ▽ 7.43±0.26 6.93±0.19 25.40±24.47 7.20±0.16 - -

TABLE 2
Time Complexity on MNIST.

Time (ms) SVPG-rate SVPG-spike BP BPTT

Inference 3.26±0.28 677.21±13.50 0.18±0.02 8.51±0.17

Optimization 1.40±0.17 1.49±0.15 1.43±0.06 5.54±0.06

complexity. We selected the MNIST task for this test because
it has a consistent batch size and that the high-dimensional
state induces a large computational cost. Our implementa-
tion of the methods is all based on PyTorch and runs on
the same machine, with NVIDIA T600 GPU. The results
are shown in Table 2. The values are averaged across 500
inference/optimization steps.

As shown, the rate coding variant of SVPG is more than
100 times faster than the spiking variant, which supports
that using the rate approximation can reduce computation
costs. Since the inference stage of RWTA requires iterations,
the cost is higher than BP in which the MLP only needs a
forward propagation. Besides, the rate-based SVPG is faster
than the BPTT method. For the optimization stage, SVPG is
faster than all the compared methods; this is because SVPG
is a local learning method. Future work could leverage the
local learning property of SVPG and implement it with
neuromorphic hardware to improve the inference speed..

(2) Space complexity. We measured the memory costs
of each method to reflect their space complexity. Again,
we selected the MNIST task because it offers a consistent
episode length which enables fair comparison. Different
from normal training, in this test, we set the program to
only use one CPU thread and no GPU, so the memory usage
includes all the variables a method creates. We used the
psutil package for Python to get the memory usages of
the program before initialization and after training for 20
episodes, and used their difference as the memory costs. The
results are presented in Table 3. The values are the mean and
standard deviation values of results from 10 independent
runs.

As shown, the memory cost of the spiking variant of
SVPG is slightly higher than the rate-based variant. This
is mainly due to the extra spike train recording in policy
inference. Nevertheless, the memory cost of the spike-based
SVPG is only slightly higher than BP (17.4%) and much
lower than BPTT (48.2%). This indicates that SVPG may not
cause much difficulty for practical applications in terms of
space complexity.

(3) RL sample efficiency. The total training time depends
on both the time complexity (time per step) and the sam-
ple complexity (number of steps in RL training). Here

TABLE 3
Space Complexity on MNIST. (Total memory used in megabytes)

Method SVPG-rate SVPG-spike BP BPTT

Memory Cost 603.7±10.8 611.2±17.7 520.4±6.5 1180.5±27.5

500 1000 1500 2000
Training steps

0

50

100

150

200

Sc
or

e

SVPG
BP
BPTT

(a)

0 2000 4000 6000 8000
Training steps

200

150

100

50

0

Sc
or

e

SVPG
BP
BPTT

(b)

Fig. 6. Learning curves. (a) GYMIP. (b) AI2THOR.

we plot the learning curves to compare the RL sample
efficiency of the methods. The 4 tasks with sequential
decision-making are used (i.e., GYMIP, DOOM, AI2THOR,
and ROBOTARM). Figure 6 presents the results on GYMIP
and AI2THOR. The curves are the mean values of validation
performances; the shades are the standard deviations. A full
set of results and more details are in Appendix D.3.

Note that, for ease of viewing, we took the opposite
value of the curves for AI2THOR and ROBOTARM. Specif-
ically, the “score” equals (-1) times the step number. This
makes the trends of these curves the same as those of the
other three tasks. This is also done for the rest of the figures
in this paper including the Appendix.

As shown, the learning curves of SVPG are close to
BP and are higher than BPTT. This means that the sample
efficiency of SVPG is similar to BP, which is a conventional
ANN method widely used in recent RL studies. SVPG has
the potential to be applied to scenarios where the efficiency
of a traditional ANN is acceptable.

4.4 Perturbation Tests

It has been shown in many studies that SNNs (trained
with ANN2SNN and BPTT methods) can exhibit better
robustness to input and synapse weight noises [15], [41] and
adversarial attacks [68] than ANNs. Here we perform tests
on trained models to investigate whether SVPG can produce
robustness.

We test three types of perturbations, namely input noise,
network parameter noise, and environmental variation (in
GYMIP). The input noises reflect inevitable sensor noises in
the real world. The network parameter noise corresponds to
parameter inaccuracies in neuromorphic hardware [69]. The
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Fig. 7. Example input images with different strengths of Gaussian noises
on the MNIST task. Standard deviation noted above images.
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Fig. 8. Example state observation in the DOOM task. (a) Original obser-
vation. (b) Input salt noise; noise ratio noted above images.

environment variation in GYMIP represents differences in
environment dynamics between the simulation and the real
world.

• Input noise is independently added to each dimension
of state observations. For MNIST, DOOM, AI2THOR,
and ROBOTARM, Gaussian, salt, salt&pepper, and
Gaussian&salt noises are considered. For GYMIP,
Gaussian and uniform noises are considered. Some
illustrations of the MNIST and DOOM task are
shown in Figure 7, 8.

• Network parameter noise is independently added to
each learnable parameter in the policy networks.
Gaussian and uniform noises are adopted. Consid-
ering that different parts of the trained networks
may have different scales of parameters, we di-
vide the parameters into groups and normalize the
noise using the mean absolute values within groups.
For the RWTA network, the synapse weights W

are divided according to the types of neurons con-
nected, e.g., connections between state neurons and
action neurons; the intrinsic excitability b forms one
group. For the layered networks in other compared
methods, the parameters are divided by layers and
weight/bias. Note that this type of noise is re-
generated for each testing episode.

• Environmental variations in GYMIP. In the GYMIP
task, the optimal policy relies on the length and
thickness of the pendulum. In training, we set
⟨length=1.5, thickness=0.05⟩. In testing, we change
the length to be in the range of [0.5, 4.9] and thickness
of [0.02, 0.30]. Figure 9 illustrates these variations.

For each type of perturbation and each method, we select
the hyperparameter (learning rate and entropy ratio) that
generates the best zero-noise performance. When there are
multiple hyperparameters that generate the same best zero-
noise performance, we compare the performances under a
certain level of perturbation. Note that on GYMIP there can
be more than 10 hyperparameters that generate the best
score; thus we use the average of all the hyperparameters
with the best performance to better examine the robustness

(a) (b)

Fig. 9. Environmental variations in GYMIP testing. (a) Length. (b) Thick-
ness.

of the method. Details are provided in Appendix C.2. In the
following results Figure 10, 11 and 12, the curves come from
the average of 10 independent trainings for MNIST, GYMIP,
and DOOM, and 3 independent trainings for AI2THOR
and ROBOTARM; the curves of GYMIP are also averaged
across the selected hyperparameters; the shades represent
the standard deviation values.

Note that the Aenugu et al. method contains an input
encoder and a voting mechanism which are not included in
other methods. These may affect the robustness to input and
network parameter perturbations. Therefore, we only test its
robustness to environment variations in the GYMIP task.

4.4.1 Input noises

The results are partially plotted in Figure 10. The full set of
results is in Appendix D.2. In each test, we apply a range
of different strengths of noises to the state inputs and test
the agents’ performances. For MNIST, the test uses all the
samples from the testing images in the MNIST dataset. In
GYMIP, DOOM, AI2THOR, and ROBOTARM, the test score
for each training is the average value of 10 episodes. As the
strength of the noises increases, the performance decreases;
the speed of the decrease reflects the robustness of the
methods. As shown, for the tested types of input noises on
all three tasks, the performance of SVPG generally degrades
slower than other methods. Instead of being robust on one
task and sensitive on another (like BPTT which is the best
on MNIST but the worst on GYMIP), SVPG displays a more
consistent robustness across tasks. This shows that SVPG
produces better inherent robustness to the tested input
noises.

4.4.2 Network parameter noises

The results on MNIST, GYMIP, and DOOM are plotted in
Figure 11. The experiment settings are the same as the test
on input noises.

As shown, on all 5 tasks, SVPG achieves the slowest
degradation of performance as the amplitude of noises in-
creases. These indicate that SVPG generally produces better
robustness to network perturbations than the compared
methods.

Also note that in the above results on input and network
parameter noises, SVPG-shrink and SVPG exhibit similar
performances and robustness. This indicates that it is not
the larger number of learnable parameters in the RWTA
network that brings the difference in robustness.

4.4.3 Environmental variations in GYMIP

Results on variations in the pendulum’s length and thick-
ness in GYMIP are shown in Figure 12. When the shape
of the pendulum deviates from the one in training, i.e.,
⟨length=1.5, thickness=0.05⟩, the performance of all the
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Fig. 10. Input noise tests. (a) MNIST Gaussian. (b) MNIST salt. (c)
GYMIP Gaussian. (d) GYMIP uniform. (e) DOOM Gaussian & salt. (f)
DOOM salt & pepper. (g) AI2THOR salt & pepper. (h) ROBOTARM
Gaussian.

compared methods degrades. For pendulum length, the
performance of SVPG degrades slower than other methods.
For pendulum thickness, SVPG is close to the best when the
thickness is smaller than 0.15. These reveal that the policy
trained using SVPG naturally adapts to a larger range of
pendulums with different shapes.

So far we tested the robustness to input noises, net-
work parameter noises, and environmental variations. As
discussed, SVPG shows better robustness to most types of
perturbations than the compared methods. We emphasize
that in all these robustness tests the noises are only added
in testing. Our results support the idea that SNNs could
have better inherent robustness than conventional neural
network models.

4.5 Ablation Study

We perform ablation tests to understand the effects of differ-
ent parts of connections in the RWTA network. We use the
MNIST task because the classification accuracy can better
reflect the differences between performances.
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Fig. 11. Network parameter noise tests. (a) MNIST Gaussian. (b) MNIST
uniform. (c) GYMIP Gaussian. (d) GYMIP uniform. (e) DOOM Gaussian.
(f) DOOM uniform. (g) AI2THOR Gaussian. (h) ROBOTARM Gaussian.
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Fig. 12. Environmental variations in GYMIP. (a) Pendulum length. (b)
Pendulum thickness.

4.5.1 Effect of regional connection removal in training

In this test, we remove different parts of connections in the
RWTA network before training to investigate their contribu-
tions to learning. We divide the connections in the network
according to the types of neurons they connect – connections
between hidden and hidden neurons, hidden and action,
state and action, and state and hidden. For conciseness, we
use HH, HA, SA, and SH to represent these types. For exam-
ple, we use “RM-HH” to refer to removing all connections
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Fig. 13. Effects of connection removal in RWTA network in training on
MNIST. (a) Input Pepper noise. (b) Network parameter uniform noise.

between hidden WTA circuits. By “original”, we refer to the
original RWTA network. We add perturbations to the input
or network parameters during testing to better discriminate
the performances. The results are shown in Figure 13.

As shown, for the tested perturbations, the original
RWTA network produces the best performances. The set-
tings of SH and HA produce performances similar to the
original network. This indicates that SA connections play
the most important role in training; after that is the HH
connections.

We emphasize that the “RM-HHSA” setting corresponds
to a three-layer structure in the RWTA network which is the
same as [70]. As shown, the performance of this variation
is obviously worse than the original network. This indicates
that under the condition of the same number of hidden neu-
rons, extending the model from layered to fully connected
improves the training performance and robustness.

4.5.2 Effect of random connection removal in testing

In this test, we look at the effects of connection removal in
testing to check their contribution to testing performance.
We randomly remove a number of connections from a
trained RWTA network, i.e., set the weight values to 0. We
perform this test on connections in different parts of the
network, and use HH, HA, SA, and SH to represent these
types. We use ALL to refer to removing all four types of
connections at the same time. As for measuring the strength
of removal, we use the ratio of the number of removed
connections to the number of original connections in the
corresponding type.

This test is done on MNIST and GYMIP, and the results
are plotted in Figure 14. As shown, as the ratio of removed
connections increases, the testing accuracy drops in settings
ALL, HA, and SA; it does not change significantly in settings
SH and HH. This indicates that the testing performance
depends more on HA and SA connections than on SH and
HH connections. Among HA and SA connections, the effects
of removing SA connections are stronger. This indicates that
SA connections play a more important role than HA in
testing performance. Although, in the previous part, HA
connections do not contribute significantly to training, the
results here show that HA connections do have effects on
the testing performances.

4.6 Network Visualizations

Here we provide visualizations of the RWTA network for a
more intuitive understanding of its properties.
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Fig. 14. Effects of connection removal in RWTA network in testing on (a)
MNIST, (b) GYMIP. “RRM” means random removal of connections.
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Fig. 15. Visualization of spike trains in WTA circuits on MNIST. (a,
b) Action WTA circuit. (c, d) A hidden WTA circuit. (a, c) Randomly
initialized RWTA network. (b, d) Trained RWTA network.

4.6.1 Firing process visualization on MNIST

We collect the spike trains when a randomly selected image
(No. 901) in the MNIST testing dataset is fed to the RWTA
network, and plot them in Figure 15. The size of hidden and
action WTA circuits is 10. In each plot, there are 10 spike
trains each corresponding to one neuron in the WTA circuit.
The length of simulation time and spike response window
are respectively 100 and 30 spike time steps. In practice, we
start updating the firing probabilities at the 29th spike time
step, which is marked with dotted vertical lines.

As shown, in the RWTA network before training, the
spike trains of the action circuit (Figure 15a) and hidden
circuit (Figure 15c) are both noisy and evenly distributed
across the neurons, even after some iterations of the firing
probabilities. In contrast, in the trained RWTA network
(Figure 15b, 15d), the spike trains quickly gather to a few
neurons during the iteration of firing probabilities. This is
consistent with the previous conclusion that the inference
process converges quickly on MNIST.

We further calculate the entropy of the firing probability
distribution in WTA circuits to measure their selectivity (af-
ter training). We first look at how the selectivity of the action
WTA circuit and 5 randomly selected hidden WTA circuits
changes during the inference process. In Figure 16a, circuits
h1 to h5 are hidden circuits, and circuit a is the action circuit.
As shown, in the policy inference process, the entropy of
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Fig. 16. Entropy values of WTA circuits on MNIST. (a) Change of entropy
values of 5 hidden circuits and the action circuit during inference. (b)
Distribution of entropy values of a hidden circuit and the action circuit on
MNIST.

the circuits decreases sharply at the beginning and slowly
afterward. The entropy of the action circuit is lower than
the hidden circuits. We then look at the distribution of the
entropy values when the MNIST testing set is fed to the
network. As shown in Figure 16b, the distribution of the
action WTA circuit concentrates at a value close to zero,
while the distribution of the hidden circuit is smoother.
These results indicate that, although the output of the RWTA
network tends to converge to one neuron, the hidden part is
less selective.

4.6.2 Firing process visualization on GYMIP

Different from MNIST, GYMIP involves changes in the
environment states, which allows visualization of how the
network dynamics changes with the environment. Due to
the space limit, we put the visualizations on GYMIP in
Appendix D.4 (Figure 39 and Figure 40). We found that
the firing patterns of the neurons indeed change with the
environment states. Besides, sometimes the output of the
action WTA circuit changes gradually in the firing process.
This indicates that the simulation of the firing process is
meaningful.

4.6.3 Distribution of parameters in RWTA network on

MNIST

Here we visualize the distribution of weight values in the
networks and compare SVPG with BP. To make the com-
parison fair, we use the SVPG-shrink variant so the total
number of weight values are close to that in BP. We plot
the distribution of the weight values in a trained RWTA
network and an MLP in Figure 17a. We also plot different
types of weights in the RWTA network separately in Figure
17b. Note that the distribution is the stack of values across
10 independent trainings.

As shown, the ratio of zero weights in SVPG is greater
than in BP. This indicates that SVPG tends to learn a more
sparse network. In SVPG, SH and HH types of connections
exhibit a sharp spike at value 0 in their weight distributions,
indicating a more distinguished sparsity in those areas when
compared to the other two types.

5 RELATED WORKS

There have been many studies on using SNNs as function
approximators in RL. For example, the deep Q-learning
algorithm has been implemented with an SNN based on
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Fig. 17. Histograms of network weight values on MNIST. (a) Comparison
of SVPG-shrink and BP. (b) Comparison of different types of connections
in SVPG-shrink.

the surrogate gradient method, which gains the “same
performance level” as vanilla DQN in more than 10 Atari
video games [71]. An SNN with course-scale approximated
LIF neurons also uses a differentiable approximation of
the gradients in solving the classic CartPole task [17]. The
PopSAN method uses a rectangular function to approximate
the gradient in the spatiotemporal backpropagation and
solves several OpenAI Gym (mujoco) motor control tasks
[72]. The SDDPG method also trains an SNN using the
surrogate gradient method and achieves a better success
rate than conventional DDPG in a laser-based navigation
task [73]. In [15], a pre-trained DQN with ReLU activations
is converted to an SNN which achieves similar performance
as the original network in the Atari Breakout game. As
shown, most of these successful applications use the sur-
rogate gradient or ANN2SNN technique. The availability of
the gradient brings flexibility to algorithm design and better
performances. The main drawbacks are that the temporal
information in state observations is not utilized by the SNNs
and that the methods are not biologically plausible.

R-STDP methods feature biological plausibility because
the learning rules use only local information. Starting
from the original R-STDP [46], different variations of the
modulation have been proposed, including TD-STDP [45],
feedback-modulated TD-STDP [51], R-max [18], and hybrid
[19]. Based on such methods, tasks including 2D goal-
reaching [45], CartPole [45], [51], [70], LunarLander [51],
and dynamic vision sensor-based lane keeping [23] have
been solved. Nevertheless, these tasks are simpler than the
ones that surrogate gradient-based and ANN2SNN-based
methods can solve, like Atari games. One deficiency of these
R-STDP methods is that the neuron models and STDP rules
are not adapted to RL algorithms and network structures.
In fact, most listed studies use a shallow network structure
with less than three layers [23], [45], [51]. From this perspec-
tive, the EM-based learning rules in [29] and [70] are more
promising since they could be applied to learn a deeper
network with R-STDP; however, they are not derived for
RL [29] or used a deep network [70].

The robustness of SNNs has been verified in many
previous studies. A conversion from ANN to SNN has been
shown to bring better robustness to input occlusions in Atari
games [15] and noise in synaptic weights [41]. SNNs trained
with BPTT can be more resilient to adversarial attacks [68]
such as white-box attacks [74]. In reward-based MNIST
classification and CartPole, a WTA-based SNN trained using
R-STDP exhibits better robustness to input noise [70].
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6 CONCLUSION AND DISCUSSION

Conclusion. We proposed SVPG, a policy gradient method
based on R-STDP, to train an RWTA network. SVPG can
solve multiple types of RL tasks, including a challenging
DOOM task and two realistic robot control tasks. SVPG also
produces policies that improve robustness to several types
of perturbations. Ablation studies and visualizations show
that different parts of the RWTA network indeed contribute
to the final performance.

Discussion. This work focuses on the neural network
model. Our results show that a brain-inspired model and
brain-inspired learning method can solve difficult RL tasks,
as well as generate better robustness to certain perturba-
tions than compared methods. This supports the idea that
brain-inspired models could by themselves produce better
learning performances. Nevertheless, in practice, it is still
promising to go beyond the constraint of biological plausi-
bility and combine SVPG with other RL techniques, e.g.,
domain randomization and reward engineering. Besides,
the time efficiency of the spiking-based SVPG is low on
general computers. It would be promising to implement
SVPG on neuromorphic hardware to improve the time ef-
ficiency. As for the space complexity, it would be beneficial
to use sparse coding for the recording of spike trains and to
set a smaller overall firing rate ρ̂ for the RWTA network.
At this stage, the rate-based SVPG should be better for
applications as it achieves a computational efficiency similar
to the conventional BP method.

Limitations. There are some limitations of SVPG.

• Current SVPG does not support continuous action
spaces. This is because a limited number of action
neurons is used to represent actions in the RWTA net-
work. Adding further designs, e.g., Gaussian model
of the action space, may be helpful for adaptation to
continuous actions.

• SVPG is beyond the original definition of STDP [48],
in which Wpre and Wpost are constants with reference
to neuronal activities, however in SVPG they are
replaced by vi and vj . Nevertheless, SVPG only uses
local signals so is still more biologically plausible
than backpropagation-based methods.

• The PPO implementation is not fully biologically
plausible. This is because PPO requires a policy
checkpoint to constrain the size of learning steps; the
checkpoint induces information beyond local firing
signals. We would like to note that this problem is
specific to the RL base algorithms and does not exist
in the REINFORCE algorithm.

Future directions. Future directions may include theo-
retical analysis of the robustness results, more network
structures (e.g., convolutional layers), more experiments in
real-world control problems, and transplantation to neuro-
morphic hardware for real-life tasks.
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APPENDIX A

PROOF OF THEOREMS

A.1 Proof of Theorem 1

Recall that the mean-field policy inference function is

qi =
1

Z(qG(i))
exp{wT

row,iq +wT
col,iq + bi}, (22)

where Z(qG(i)) =
∑

j∈G(i) exp{w
T
row,iq +wT

col,iq + bi}, i = 1, . . . , (nhdh + da), G(i) is the set of indices of the neurons in
the same circuit as neuron i, and wrow,i and wcol,i are respectively the i-th row and column of matrix W (in the shape of
a column vector), which corresponds to the synapses connected to neuron i. bi is the i-th element in vector b.

For each wjk, There is

∂qi
∂wjk

=− Z−2(qG(i))
∂Z(qG(i))

∂wjk

exp
{

wT
row,iq +wT

col,iq + bi
}

+ Z−1(qG(i)) exp
{

wT
row,iq +wT

col,iq + bi
}

·
N
∑

m=1

[

∂(wim + wmi)

∂wjk

qm + (wim + wmi)
∂qm
∂wjk

]

=− qiZ
−1(qG(i))

∂Z(qG(i))

∂wjk

+ qi

N
∑

m=1

[

∂(wim + wmi)

∂wjk

qm + (wim + wmi)
∂qm
∂wjk

]

.

(23)

For the term
∂Z(qG(i))

∂wjk
, there is

∂Z(qG(i))

∂wjk

=
∂

∂wjk







∑

m∈G(i)

exp
{

wT
row,mq +wT

col,mq + bm
}







=
∑

m∈G(i)

{

exp
[

wT
row,mq +wT

col,mq + bm
]

·
N
∑

n=1

[∂(wmn + wnm)

∂wjk

qn + (wmn + wnm)
∂qn
∂wjk

]

}

.

(24)

So we have
∂qi
∂wjk

=− qi
∑

m∈G(i)

{

qm

N
∑

n=1

[∂(wmn + wnm)

∂wjk

qn + (wmn + wnm)
∂qn
∂wjk

]

}

+ qi

N
∑

n=1

[

∂(win + wni)

∂wjk

qn + (win + wni)
∂qn
∂wjk

]

.

(25)

Similarly, for each bj , there is

∂qi
∂bj

= −qi
∑

m∈G(i)

{

qm

[

∂bm
∂bj

+
N
∑

n=1

(wmn + wnm)
∂qn
∂bj

]}

+ qi

[

∂bi
∂bj

+
N
∑

n=1

(win + wni)
∂qn
∂bj

]

. (26)

By respectively arranging Eq. (25) and Eq. (26) for each qi into vectors, and combining the terms into matrices, we can
get the Eq. (15) in Theorem 1. □

A.2 Proof of Theorem 2

The condition is the same as that in the proof of Theorem 1. The approximate differentiation of firing rate qi with respect
to wjk and bj are:

∂ log(qi)

∂wjk

=
N
∑

m=1

[∂(wim + wmi)

∂wjk

qm
]

−
1

Z(qG(i))

∑

m∈G(i)

[

exp{wT
row,mq +wT

col,mq + bm} ·
N
∑

n=1

∂(wmn + wnm)

∂wjk

qn
]

=
N
∑

m=1

[∂(wim + wmi)

∂wjk

qm
]

−
∑

m∈G(i)

[

qm ·
N
∑

n=1

∂(wmn + wnm)

∂wjk

qn
]

,

(27)

∂ log(qi)

∂bj
=
∂bi
∂bj
−

1

Z(qG(i))
·

∑

m∈G(i)

[∂bm
∂bj
· exp{wT

row,mq +wT
col,mq + bm}

]

=
∂bi
∂bj
−

∑

m∈G(i)

[

qm
∂bm
∂bj

]

.

(28)

Similar to the proof of Theorem 1, by respectively arranging Eq. (27) and Eq. (28) for each qi into vectors, and combining
the terms on the right side into matrices, we can get the Eq. (16) in Theorem 2. □
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APPENDIX B

SVPG ALGORITHM DETAILS

In the main text, we provide the workflow of SVPG for the PPO base algorithm (see Algorithm 1). The workflow for
the REINFORCE algorithm is presented in Algorithm 2. For conciseness, these algorithms do not cover the spike-based
implementation, i.e., they are for the rate-based implementations.

The spike-based implementations can be achieved by replacing Eq.(11) with Eq.(13). For the simulation of the spiking
process, we use the rectangle function Eq. (4) for the excitatory postsynaptic potential κ. In MNIST, we set the total length
to 100, and set the length τ3 of the window to 30. In GYMIP, we set them to 200 and 90. Due to the high computation cost
in simulation and the complexity in the DOOM task, the spike-based SVPG is not tested in DOOM.

For the implementation of the critic network in Algorithm 1, we use an MLP to estimate the state values. For the MNIST
and DOOM tasks, the MLP has three hidden layers with sizes ⟨2048, 1024, 1024⟩, and the output is the state value (with
size 1). For the GYMIP task, the MLP has two hidden layers with sizes ⟨64, 64⟩ and the output is the state-action values
(with size 5).

Algorithm 2 SVPG with REINFORCE

Input: Discount factor γ. Training episode number Nepi. Inference iteration number Niter. Learning rate η.
Parameter: Network shape nh, dh, da, ds.
Output: RWTA Network parameter θ.

1: Initialize θ to zero.
2: for Episode = 1, . . . , Nepi do
3: Clear memory buffer D.
4: for Training step t = 1, . . . , T do
5: Observe and encode state st.
6: Random initialize qa and qh.
7: Iterate Eq.(11) until convergence. {Inference}
8: Sample action at using qa.
9: Perform at, observe reward rt and new state st+1.

10: Store ⟨st, at, rt, st+1, q,v⟩ into D.
11: end for
12: Get data from D.
13: Calculate gradient using Eq.(14), Eq.(17), Eq.(16). {Optimization}
14: Update θ ← θ + η∇θ .
15: end for

APPENDIX C

EXPERIMENT DETAILS

C.1 Task Details

MNIST. In this task, each episode contains only one time step. The agent’s observation is randomly selected from the
MNIST dataset. The action space contains 10 actions, each corresponding to the 10 classes. The input images are of size
28 × 28 and are in grayscale. The range of values is converted to [0, 1] by dividing 255. For all the algorithms compared,
the input images are stretched to vectors (so have length 784). A reward of +1 is given when the action is correct and −1
the opposite. The maximum length of training is set to 20k steps and each step samples a batch of 100 images.

GYMIP. Each episode has a maximum of 200 time steps, with a reward of +1 for each step. The episodes end early if the
pendulum falls. The observation is a 4-dimensional vector with no predefined ranges. To normalize the observations to the
range of [0, 1], we use a random policy to sample from the environment and use the samples’ range to determine a linear
mapping to the range of [0, 1]. In our experiments, the sampled ranges are [−0.4, 0.4], [−0.2, 0.2], [−1.7, 1.7], [−1.25, 1.25].
The action space consists of 5 discrete actions, evenly extracted from the range [−3, 3]. The maximum length of training is
set to 2k episodes.

DOOM. In this task, the game lasts a maximum of 2100 screen frames. We adopt the frame-skipping technique, i.e.,
repeat an action for a fixed number of frames. In our setting, we choose to repeat each action for 4 frames, resulting in a
maximum number of 525 time steps in each episode. The rewards are determined by the player states, i.e.,−50 when dead,
+10 when picking up a health kit, and +1 otherwise. The game screen has a resolution of 320× 240, which is transformed
into grayscale, resized to 80 × 60, and reshaped to a vector with length 4800 to serve as the state observation. The action
space contains 5 actions corresponding to the keyboard actions in the game: “move forward”, “turn left”, “turn right”,
“turn left while moving forward”, and “turn right while moving forward”. The maximum length of training is set to 2k
episodes for SVPG and BP, and 10k episodes for BPTT since it exhibits slower learning.

AI2THOR. In this task, each episode contains a maximum of 200 steps. The target is to find a television in the room.
The agent needs to be within 1.5m distance from the television and the television needs to be in the agent’s view to mark
a successful navigation. The episode ends early if the target object is found. The room map is FloorPlan_Train7_5



19

from the AI2THOR (specifically, RoboTHOR) platform [36]. The starting points are randomly selected from 38 randomly
generated points (30 for training, 8 for validation/testing). The state observation is a 80 × 60 RGB image obtained from
the agent’s viewpoint. The parameters of the camera, e.g., angle of view, are the default ones provided by the AI2THOR
platform. We convert the observed image to grayscale and reshape it to a 4800-length vector. Figure 18 presents an example
of the original RGB image and the state observation after pre-processing. The action space consists of 5 actions: forward,
turn left, turn right, move left, and move right. These actions are implemented by a list of operations provided by the
AI2THOR platform. For example, turning left is achieved by RotateLeft and MoveAhead; moving left is achieved by
RotateLeft, MoveAhead, and then RotateRight. The step sizes are 0.15m for movements and 90 degrees for rotations.
The reward is defined to be: +50 for target-reaching, -5 for failure in action (e.g., collision), +1 for target-approaching, and
-1 for target-deviation. The maximum length of training is set to 8k episodes.

(a) (b)

Fig. 18. Example state observations in the AI2THOR task. (a) An original state observation. (b) A pre-processed state observation.

ROBOTARM. In this task, the robot arm is tasked to reach a cude on the table. The simulation environment is built
upon the example panda control scene from PyRep [57]. We added a vision sensor and a cube, and configured the initial
pose of the robot arm. The scene is included in the code repository https://github.com/yzlc080733/SVPG2023/tree/main/
ROBOTARM/env data. Each episode contains a maximum of 60 steps. The episode ends early if the target is reached. The
state is a 64 × 64 RGB image obtained from a vision sensor attached at the end point of the arm. For pre-processing, we
first convert the image to grayscale, then clipped the pixel values to the range of [0.4, 0.9] and finally linearly map it to
the range of [0, 1]. Figure 19 presents an overview of the environment and an example of the original RGB image and
the image after pre-processing. The input to the networks is a length-4096 vector reshaped from the processed image. The
action space consists of 5 actions: move in 4 ways horizontally with a step size of 0.03m, and move upward/downward
with a step size of 0.05m. The end-effector of the arm is limited to move in a 0.2m × 0.3m × 0.22m rectangular space.
The target object is a cube with a side length of 0.05m, and its position is randomly selected from 50 randomly generated
positions (among which 45 for training and 5 for validation/testing). The reward is defined to be: +10 for target-reaching,
+1 for target-approaching, and 0 otherwise. The maximum length of training is set to 10k episodes.

(a) (b) (c)

Fig. 19. Example images in the ROBOTARM task. (a) An overview of the environment. The blue cuboid close to the gripper is the vision sensor. (b)
An example state observation. (c) A pre-processed state observation.

C.2 Implementation Details

RL hyper-parameters. For all the tasks in our experiments, we set the discount factor γ to be 0.97. This makes the
discounted return reflect the length of the episodes in GYMIP and DOOM, so that the agent learns to complete the task. In
MNIST, DOOM, AI2THOR, and ROBOTARM, we use Monte-Carlo sampling to learn the critic; in GYMIP, we use temporal
difference to learn the critic and adopt a memory buffer with size 1000. We set the epoch number in PPO to 5, and set the
clipping parameter to 0.2. Due to the instability in training BPTT on DOOM, we specially set the epoch number to 10 for
BPTT on DOOM. To encourage the agent to explore different actions, we use a weighted sum of the policy gradient and
the entropy of the agents’ policy distribution to train the agent. This introduces a hyper-parameter of the entropy ratio.



20

In practice, we find that the learning rate and the entropy ratio have a large impact on the zero-noise test
results. Therefore, we tune these two hyper-parameters for each method and report the one with the best testing
performance. On MNIST and GYMIP, we compare entropy ratio with values {0, 0.1, 0.2, 0.5, 1, 2, 5, 10} and learning rate
with values {0.01, 0.001, 0.0001}. On DOOM, we compare entropy ratio with values {0.02, 0.2, 2, 5} and learning rates
{0.001, 0.0001}. On AI2THOR, we compare the entropy ratio with values {0.02, 0.05, 0.1, 0.2, 0.5, 1, 2, 5} and learning rates
{0.0001, 0.00001}. On ROBOTHOR, we compare the entropy ratio with values {0.01, 0.02, 0.05, 0.1, 0.2, 0.5, 1, 2, 5, 10} and
learning rates {0.0001, 0.00001}. For each setting of the hyper-parameters, we perform 10 independent trainings for GYMIP
and DOOM, and 3 independent trainings for MNIST, AI2THOR, and ROBOTARM. We provide the tuning results in Figure
20, 21, and 22. The values are the mean values of the zero-perturbation testing performances and the bold values indicate
the settings that are used in robustness comparisons.

As mentioned in the main text, we select the best hyper-parameter for each method on each task to compare their
robustness. On MNIST, DOOM, and ROBOTARM, this is done by comparing their mean zero-noise performances; when
the performances are the same, the performance at a level of perturbation is considered. For input perturbations, the level
value is set to 0.2; for network parameter perturbations, the level value is 2.0. On GYMIP, we consider the average of all
hyper-parameters that generate the best zero-noise performance; to tolerate noises in the zero-noise performance, we adopt
the hyper-parameters with zero-noise performance greater than or equal to 99% the best performance. On AI2THOR, BP
and ANN2SNN generate multiple best zero-noise results; all the corresponding hyper-parameters are considered.

SVPG
Entropy Ratio

0 0.1 0.2 0.5 1 2 5 10

Learning

Rate

0.01 0.7448 0.8056 0.8042 0.8914 0.8605 0.8894 0.4123 0.3054

0.001 0.9284 0.9270 0.9292 0.9271 0.9270 0.9262 0.8467 0.7938

0.0001 0.9233 0.9236 0.9232 0.9230 0.9235 0.9231 0.9088 0.8997

(a)

SVPG-shrink
Entropy Ratio

0 0.1 0.2 0.5 1 2 5 10

Learning

Rate

0.01 0.8053 0.8344 0.8960 0.9211 0.8598 0.9139 0.4226 0.3295

0.001 0.9267 0.9281 0.9282 0.9269 0.9261 0.9242 0.8491 0.8018

0.0001 0.9235 0.9246 0.9237 0.9243 0.9252 0.9232 0.9157 0.9036

(b)

BP
Entropy Ratio

0 0.1 0.2 0.5 1 2 5 10

Learning

Rate

0.01 0.5871 0.9339 0.9357 0.8858 0.5548 0.2746 0.1121 0.1093

0.001 0.9781 0.9763 0.9691 0.9565 0.9512 0.9276 0.9069 0.8924

0.0001 0.9760 0.9761 0.9774 0.9779 0.9792 0.9739 0.9639 0.9578

(c)

BPTT
Entropy Ratio

0 0.1 0.2 0.5 1 2 5 10

Learning

Rate

0.01 0.4356 0.4257 0.5191 0.1884 0.1032 0.1032 0.1695 0.1370

0.001 0.7783 0.8371 0.8580 0.9001 0.9252 0.4060 0.2116 0.1638

0.0001 0.9729 0.9735 0.9744 0.9748 0.9745 0.9624 0.9434 0.9211

(d)

ANN2SNN
Entropy Ratio

0 0.1 0.2 0.5 1 2 5 10

Learning

Rate

0.01 0.5866 0.9349 0.9292 0.8805 0.5477 0.2680 0.1121 0.1093

0.001 0.9788 0.9764 0.9660 0.9525 0.9490 0.9253 0.9040 0.8899

0.0001 0.9765 0.9766 0.9779 0.9782 0.9784 0.9727 0.9618 0.9550

(e)

Fig. 20. Hyper-parameter tuning on MNIST.

During training, a checkpoint of the network parameters is saved every 100 episodes. The checkpoints are validated
using the validation environment and the best one is used in testing. The validation environment in the MNIST task is
created by randomly dividing the training set according to a ratio of 9:1; the latter part is used as the validation set. The
validation environments in GYMIP and DOOM are the same as the training environments. For AI2THOR, the validation
environment uses the same scene as in training, but the starting points are randomly sampled from a list of positions
different from training. For ROBOTARM, in the validation environment, the initial position of the target cube is randomly
sampled from a list different from training.
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Fig. 21. Hyper-parameter tuning on GYMIP.
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Fig. 22. Hyper-parameter tuning on DOOM.

Network Sizes.

• For the MNIST task, SVPG uses an RWTA network with 784 input neurons, 50 hidden WTA circuits each with 10
neurons, and 10 output neurons (527850 learnable parameters). BP, BPTT, and ANN2SNN use layered networks with
784 input neurons, 1 hidden layer with 500 neurons, and 10 output neurons (397510 learnable hyperparameters).
SVPG-shrink uses a smaller RWTA network where the number of hidden WTA circuits is changed to 39 so that the
total number of learnable parameters is close to other methods (392000 learnable parameters).

• For the GYMIP task, SVPG uses an RWTA network with 4 input neurons, 8 hidden WTA circuits each with 8
neurons, and 5 output neurons. BP, BPTT, and ANN2SNN use layered networks with 4 input neurons, 1 hidden
layer with 64 hidden neurons, and 5 output neurons.

• For the DOOM and the AI2THOR task, SVPG uses an RWTA network with 4800 input neurons, 50 hidden WTA
circuits each with 10 neurons, and 5 output neurons. BP, BPTT, and ANN2SNN use layered networks with 4800
input neurons, 1 hidden layer with 500 hidden neurons, and 5 output neurons.

• For the ROBOTARM task, SVPG uses an RWTA network with 4096 input neurons, 50 hidden WTA circuits each
with 10 neurons, and 5 output neurons. BP, BPTT, and ANN2SNN use layered networks with 4096 input neurons,
1 hidden layer with 500 hidden neurons, and 5 output neurons.

Optimizer. For the MNIST, DOOM, AI2THOR, and ROBOTARM task, we use the Adam optimizer with hyper-
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Fig. 23. Hyper-parameter tuning on AI2THOR.
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Fig. 24. Hyper-parameter tuning on ROBOTARM.

parameters set as ϵ = 1 × 10−8, β1 = 0.9, β2 = 0.999. For the GYMIP task, we use the RMSprop optimizer with
ϵ = 1× 10−8, α = 0.99. For the critic network in all three tasks, we use the Adam optimizer with ϵ = 1× 10−8, β1 = 0.9,
β2 = 0.999.

APPENDIX D

ADDITIONAL EXPERIMENT RESULTS

D.1 Additional Comparison of Rate-Based SVPG and Spike-Based SVPG

In the main text, we present a part of the results of the comparison of the spike-based and rate-based SVPG implementa-
tions. The complete set of comparison results is presented in Figure 25 and Figure 26, including more types of perturbations
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of input and network parameters. These results further support the analysis in the main text that the two implementations
generate similar performances.
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Fig. 25. Additional comparison of spike-based and rate-based SVPG implementations on MNIST. (a) Input Gaussian noise. (b) Input salt noise. (c)
Input pepper noise. (d) Network Gaussian noise. (e) Network uniform noise.
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Fig. 26. Additional comparison of spike-based and rate-based SVPG implementations on GYMIP. (a) Input Gaussian noise. (b) Input uniform noise.
(c) Network Gaussian noise. (d) Network uniform noise.

D.2 Additional Robustness Results

A representative part of the results of robustness tests are presented in the main text. Here is the complete set of results.
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Fig. 27. MNIST. Input noises. (a) Gaussian. (b) Salt. (c) Gaussian&Salt. (d) Salt&Pepper.
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Fig. 28. MNIST. Network parameter noises. (a) Gaussian. (b) Uniform.
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Fig. 29. GYMIP. Input noises. (a) Gaussian. (b) Uniform.
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Fig. 30. GYMIP. Network parameter noises. (a) Gaussian. (b) Uniform.
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Fig. 31. GYMIP. Environmental variations. (a) Pendulum length. (b) Pendulum thickness.

0.0 0.1 0.2 0.3 0.4
Noise standard deviation

0

100

200

300

400

500

Sc
or

e

SVPG
BP
BPTT
ANN2SNN

(a)

0.000 0.025 0.050 0.075 0.100 0.125
Noise amplitude

100

200

300

400

500
Sc

or
e

SVPG
BP
BPTT
ANN2SNN

(b)

0.00 0.05 0.10 0.15
Noise amplitude

0

100

200

300

400

500

Sc
or

e

SVPG
BP
BPTT
ANN2SNN

(c)

0.0 0.1 0.2 0.3
Noise amplitude

0

100

200

300

400

500

Sc
or

e

SVPG
BP
BPTT
ANN2SNN

(d)

Fig. 32. DOOM. Input noises. (a) Gaussian. (b) Salt. (c) Gaussian & salt. (d) Salt & pepper.
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Fig. 33. DOOM. Network parameter noises. (a) Gaussian. (b) Uniform.
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Fig. 34. AI2THOR. Input noises. (a) Gaussian. (b) Salt. (c) Gaussian & salt. (d) Salt & pepper.
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Fig. 35. AI2THOR. Network parameter noises. (a) Gaussian. (b) Uniform.
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Fig. 36. ROBOTARM. Input noises. (a) Gaussian. (b) Salt. (c) Gaussian & salt. (d) Salt & pepper.
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Fig. 37. ROBOTARM. Network parameter noises. (a) Gaussian. (b) Uniform.

D.3 Learning Curves

To show the sample efficiency of the methods, we draw the learning curves in each task. For each method and each task,
a hyper-parameter (entropy ratio and learning rate) that produces the best testing performance is chosen. The results are
presented in Figure 38. The horizontal axis is the training step number. The vertical axis is the validation score/performance
(higher is better), which is measured during training in periods of 100 training steps. The curves are smoothed using
exponential smoothing with smoothing factor α = 0.4 (0 < α < 1; a smaller α means stronger smoothing). For MNIST,
GYMIP, and DOOM, the curves are the average of 10 independent trainings. For AI2THOR and ROBOTARM, the curves
are the average of 3 independent trainings. The shades present the standard deviation values.
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Fig. 38. Learning curves. (a) GYMIP. (b) DOOM. (c) AI2THOR. (d) ROBOTARM.

As shown, the curves of SVPG are generally close to those of BP. Both SVPG and BP learn steadily and faster than BPTT.
This indicates that the sample efficiency of SVPG is similar to BP. SVPG has the potential to be applied to scenarios where
the efficiency of a traditional ANN is acceptable.

D.4 Additional Visualizations

In the main text, we provide visualizations of the entropy values and the spike trains of WTA circuits on the MNIST task.
Here we provide the results on the GYMIP task. Since GYMIP involves a sequence of decisions, it enables an investigation
of the network dynamics in an updating environment.

We consider an untrained network and a trained network. For each network, we perform one test episode and record
the network dynamics at each step. The results are presented respectively in Figure 39 and Figure 40. In the figures, the
first column is the step number in the test episode. The second column is a visualization of the environment state. The third
column presents the entropy values of the action WTA circuit and some hidden WTA circuits during the firing process.
The last two columns respectively present the actual spike trains generated by neurons in a hidden WTA circuit and the
action WTA circuit.

As shown, there is a significant difference between a random network and a trained network. In a trained network, the
entropy values of WTA circuits quickly decrease in the firing process. Besides, the firing patterns of the presented hidden
and action neurons change when the environment state changes. We also notice that the action WTA circuit does not always
converge to output one action quickly; instead, it may gradually change its output to the final action, as shown in step 9
and step 50 in Figure 40. This indicates that the firing process is useful for the generation of the final decision output.
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Fig. 39. Visualization of network dynamics of SVPG on GYMIP. Before training.
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Fig. 40. Visualization of network dynamics of SVPG on GYMIP. After training.
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