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Simulators can realize novel phenomena by separating them from the complexities of a full physical
implementation. Here, we put forward a scheme that can simulate the exotic statistics of DðS3Þ non-
Abelian anyons with minimal resources. The qudit lattice representation of this planar code supports local
encoding of DðS3Þ anyons. As a proof-of-principle demonstration, we employ a classical photonic
simulator to encode a single qutrit and manipulate it to perform the fusion and braiding properties of non-
Abelian DðS3Þ anyons. The photonic technology allows us to perform the required nonunitary operations
with much higher fidelity than what can be achieved with current quantum computers. Our approach can be
directly generalized to larger systems or to different anyonic models, thus enabling advances in the
exploration of quantum error correction and fundamental physics alike.
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Introduction.—The exotic statistics of non-Abelian any-
ons make them of interest in fundamental physics [1–5]. In
addition, their resilience to local perturbations has given
rise to several schemes for topological quantum computing
and other applications [6–10]. This behavior is key for
fault-tolerant quantum computing, making non-Abelian
anyons a potential solution to error problems that limit
the scaling of quantum computers [10–12]. In the last
decade we witnessed an intense effort to identify signatures
of non-Abelian anyons in various physical platforms, such
as fractional quantum Hall liquids at ν ¼ 5=2 [13], pþ ip
topological superconductors [14,15], or quantum wires [8].
Unfortunately, the complexity of these systems allows for
an alternative interpretation of the observed signatures [16].
The conclusive characteristic of non-Abelian anyons is
their exchange statistics, which are currently too complex
to realize in the laboratory.
At the same time, several investigations have focused on

simulating non-Abelian anyons [17–22]. These efforts aim
to establish the necessary conditions for observing non-
Abelian statistics and addressing technical challenges in
scaling and accuracy. Often, such simulations suffer from
key loopholes. For example, the simulation of Majorana

fermions utilizes a nonlocal encoding of fermionlike any-
onic states in many qubits, with the help of the Jordan-
Wigner transformation. However, this nonlocal encoding
lacks the desired topological stability against local errors
inherent in anyonic systems.
Here, we propose a photonic simulation of non-Abelian

anyon statistics corresponding to the DðS3Þ planar code
[11] and implement classical photonic manipulations to
demonstrate its core features. Planar codes are both
quantum error-correcting codes and condensed matter
systems that host anyonic excitations. Although they
require many-body interactions, their local encoding on
spins makes them attractive for quantum simulations. The
simplest version of the planar code is the toric code that
supports Abelian anyons. The toric code has been already
simulated in the laboratory with Josephson junctions [23]
and photonic systems [24,25].
We introduce a novel method to minimally encode the

core manipulations of DðS3Þ non-Abelian anyons, which
enables us to demonstrate that a single qutrit is sufficient to
reveal their non-Abelian fusion and braiding properties.
The operations required to generate and manipulate anyons
are in general nonunitary matrices that have a unitary action
on the anyonic Hilbert space [26–28]. The implementation
of nonunitary operations is typically experimentally chal-
lenging with current quantum computing architecture. To
overcome this problem we develop a novel photonic
technique that allows us to accurately perform these
nonunitary operations with high fidelity, thus enabling
us to demonstrate non-Abelian statistics using a classical
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photonic simulation. This minimal anyonic simulation will
inform future pursuits that aim to probe more complex
physics, such as topological error correction and avoidance,
by optimizing the required resources and providing prac-
tical methods to realize their evolution. Our Letter can be
expanded in two directions with advancements in technol-
ogy. First, it can be scaled to larger lattice systems, allowing
for a broader range of anyonic operations. Second,
Hamiltonian interactions can be added to provide active
fault tolerance in the topologically encoded quantum
information.
The non-Abelian DðS3Þ anyonic model.—The DðS3Þ

model is based on the group transformations of a triangle,
S3 ¼ fe; c; c2; t; tc; tc2g, where e is the identity element, c
the generator of 2π=3 rotations, and t the generator of
reflections. The DðS3Þ planar code consists of a square
lattice where d ¼ 6 qudits are positioned at its links
parametrized by the group elements of S3, as shown in
Fig. 1. The Hamiltonian of the model has mutually
commuting plaquette and vertex operators [11]. The ground
state of the model is identified as the vacuum and its anyons
are manifested as localized excitations at the vertices and/or
the plaquettes.
This DðS3Þ planar code supports eight different anyonic

excitations labeled by fA;B;C;D; E; F;G;Hg [29–31].
Particle A corresponds to the vacuum that fuses trivially
with the rest of the anyons. Here, we restrict ourselves to
the fA;B;Gg subgroup that is closed under fusion,
B × B ¼ A, G × B ¼ G, and G ×G ¼ Aþ BþG.

Moreover, G has nontrivial braiding statistics. Its corre-
sponding fusion, FG

GGG, and braiding, RGG, unitary matri-
ces are given by

FG
GGG¼

1

2

0
B@

1 1
ffiffiffi
2
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1 1 −
ffiffiffi
2

p
ffiffiffi
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ffiffiffi
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0
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0
B@
ω̄ 0 0

0 ω̄ 0

0 0 ω
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CA; ð1Þ

where ω ¼ e2πi=3, which give a nontrivial braiding matrix
BGG ¼ FR2F†. The non-Abelian character of the G anyons
is manifested in the nontrivial commutation relation
between FG

GGG and ðRGGÞ2. The fA; B;Gg subgroup
should be contrasted to fA;B;Cg, which has similar fusion
rules but trivial braiding statistics, BCC ¼ 1 [30,32].
It is possible to verify fusion and braiding properties of

the planar code anyons by generating and manipulating the
corresponding anyonic excitations. Such excitations are
created from the vacuum state by applying operations on
the links of the lattice. In general, these rotations are given
in terms of ribbon operators FX

ρ , where ρ is the path along
which the rotations are applied, giving rise to two X anyons
at its endpoints. These ribbon operators, together with their
action on the ground state, encode the anyonic fusion and
braiding properties.
To define the ribbon operators we employ the oriented

lattice representation of DðS3Þ shown in Fig. 1. A dual
triangle τ has support on a link eτ and is connecting two
plaquettes p1 and p2 adjacent to the link eτ, as shown in
Fig. 1(a). A direct triangle τ0 has support on a link eτ0 and is
connecting two vertices v1 and v2 adjacent to the link eτ0 , as
shown in Fig. 1(b). We now assign a six-dimensional
Hilbert space, fjhi; h∈ S3g, to each link eτ. To every
triangle τ we define an operator Lh

τdual ¼
P

g∈ S3 jhgihgj,
with h∈ S3, acting on eτ, if eτ points toward v. Otherwise
Lh
τdual ¼

P
g∈S3 jgh−1ihgj. Similarly, we define Pg

τdir ¼ jgihgj,
with g∈ S3, if eτ is clockwise with respect to p, otherwise
Pg
τdir ¼ jg−1ihg−1j. We next define the composite operators

Fh;g
ρ ¼ Lh

τdualP
g
τdir , where ρ ¼ τdirτdual with τdir a direct and

τdual a dual triangle. Ribbon operators, FX
ρ , that give rise to

X anyons are built out of such matrix elements, Fh;g
ρ , acting

on qudits [30].
The A and B anyons are constructed from strings of

operators corresponding to direct τ’s. They give rise to
anyons positioned at vertices, i.e., they have h ¼ e with
Le ¼ 1. Similar to the toric code’s e and m anyons the A
and B anyons can be created and moved around by
applying single qudit unitary operator, FA

τ and FB
τ , to a

string of qudits [11], where

FA
τ ¼jeihejþjcihcjþjc2ihc2jþjtihtjþjtcihtcjþjtc2ihtc2j;

FB
τ ¼jeihejþjcihcjþjc2ihc2j− jtihtj− jtcihtcj− jtc2ihtc2j:

ð2Þ

(c)

(a)
(b)

(e)

(d)

FIG. 1. Ribbon operators of G anyons. (a) A dual triangle τ has
support on link eτ and creates excitations at p1 and p2 plaquettes.
(b) A direct operator τ0 has support on link eτ0 and create
excitations at v1 and v2 vertices. (c),(d) Compositions of dual and
direct triangles give rise to ribbon operators ρ. Anyonic ex-
citations of ribbon operators are dyons (dotted ovals) that are
positioned at the endpoint plaquettes and vertices. (e) We define
the elementary ribbon ρ0 where both dual and direct triangles
have support on the same link e0.
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Note that FA is the identity operator acting on the qudit
and both FA and FB are unitary matrices whose sum,
FA
τ þ FB

τ ¼ 2ðjeihej þ jcihcj þ jc2ihc2jÞ, can be described
by a single qutrit operator.
The G non-Abelian anyons are dyonic, i.e., it includes

both direct and dual triangle operators forming ribbons.
Dyons are positioned at composite plaquette and vertex at
each of the endpoints of the ribbon, as shown in Figs. 1(c)–
1(e). A simple way to create a pair of G anyons on
neighboring vertices and plaquettes is to use the ribbon
ρ ¼ τdualτdir [31], as shown in Fig. 1(c). The corresponding
ribbon operator is given by

FG
ρ ¼Fc;e

ρ þωFc;c
ρ þ ω̄Fc;c2

ρ þFc2;e
ρ þ ω̄Fc2;c

ρ þωFc2;c2
ρ ; ð3Þ

where for simplicity we omitted the overall normalization.
One can show that FG

ρ is Hermitian but not unitary.
Nevertheless, its restriction to the eigenstates of the
DðS3Þ Hamiltonian are unitary [26]. Finally, note that
larger ribbon operators, such as the ones shown in
Fig. 1(d), are created by acting simultaneously on all the
relevant qudits with highly entangling operations [27,28].
Minimal encoding of non-Abelian anyons.—To simplify

the physical requirements for the simulation of G anyons
we identify the smallest possible ribbon that can encode
the anyonic properties. It is possible to define a ribbon ρ0,
where the direct and dual triangles have support on
the same qudit, as shown in Fig. 1(e). We define the
corresponding ribbon operator as FG

ρ0 ≡ Fc;e
ρ0 þ ωFc;c

ρ0 þ
ω̄Fc;c2

ρ0 þ H:c:, where Hermiticity is explicitly imposed.
Explicitly, we have

FG
ρ0 ¼ jcihej þ ωjc2ihcj þ ω̄jeihc2j þ H:c:; ð4Þ

which acts only on three states.
With the minimal string and ribbon operators FA, FB,

and FG we can explicitly verify the fusion properties of the
fA; B;Gg subgroup of DðS3Þ by acting on a single qudit
with six levels. By direct multiplication of the operators
given in (2) and (4) we can verify their nontrivial fusion
rules. In particular, when two ribbon operators, FG

ρ0 , act on
top of each other then the G anyons at their endpoints are
fused resulting to the ribbon operator of their fusion
outcomes, i.e.,

FG
ρ0F

G
ρ0 ¼ FA

ρ0 þ FB
ρ0 þ FG

ρ0 : ð5Þ

This fusion process can be realized with a three level
system as only the states jei, jci, and jc2i are involved.
We next consider the braiding properties of G anyons. In

the case of the toric code the anyonic statistics of e and m
anyons is given in terms of the commutation relations
between their ribbon operators Fe

ρ1F
m
ρ2 ¼ RemFm

ρ2F
e
ρ1 ,

where ρ1 and ρ2 are two crossing paths of e and m anyons,

respectively [11]. Because of topological invariance with
respect to the exact shape of the path, the braiding relation
can be realized by isolating the site, ρ0, where paths ρ1
and ρ2 cross each other. As a result we can take the full
system to be site ρ0, with the anyons positioned outside
the system’s boundary. Then we have Fe

ρ1→ρ0 ¼ Zρ0 and
Fm
ρ2→ρ0 ¼ Xρ0 acting on the same qubit at ρ0, thus obtaining

the exchange statistics Rem ¼ −1 [24,25].
For the DðS3Þ model the exchange of two G ribbon

operators takes the form [11]

FG
ρ1F

G
ρ2 ¼ RGGFG

ρ2F
G
ρ1 ; ð6Þ

where RGG is given by (1). Hence, to determine RGG we
need to implement FG

ρ1F
G
ρ2 and FG

ρ2F
G
ρ1 and compare them.

Similarly to the toric code case we employ a single site, ρ0,
and the minimal ribbon operator, FG

ρ0 , given in (4), acting
on it. As the operators we want to exchange are identical
when acting on the single site system we adopt the
following prescription. We first identify FG

ρ1F
G
ρ2 with the

product of two FG
ρ0 operators as given in (5). Next, to

determine FG
ρ2F

G
ρ1 , we employ the exchange of their

building blocks Fh;g
ρ ,

Fh;g
ρ2 F

k;l
ρ1 ¼ Fk;lḡ h̄ g

ρ1 Fh;g
ρ2 ; ð7Þ

valid for ribbonsρ1 and ρ2 with one common end.We employ
these relations to compute FG

ρ2F
G
ρ1 and then identify ρ1 → ρ0

and ρ2 → ρ0 to obtain (see Supplemental Material [33])

FG
ρ2F

G
ρ1 ¼ ω̄ðFA

ρ0 þ FB
ρ0Þ þ ωFG

ρ0 : ð8Þ

Direct comparison of (5) and (8) deduces the desired braiding
matrix RGG ¼ diagðω̄; ω̄;ωÞ in the fA;B;Gg basis.
Having a minimal system facilitates the simulation of

braiding statistics with current technology. A natural first
candidate is to employ current programmable quantum
computers, such as the commercial qubit-based IBM
device, to implement the ribbon operator FG

ρ0. As FG
ρ0 is

nonunitary it cannot be straightforwardly implemented
with unitary quantum logic gates [34]. However, as for
any matrix, a unitary block encoding [35–39] can be
constructed where FG

ρ0 is embedded within a larger unitary,
UF. Through the preparation and measurement of a subset
of qubits, a quantum circuit describingUF allows for FG

ρ0 to
be applied to the labeled qutrit state. Based on the singular
value decomposition of FG

ρ0 [40], UF must act on a
minimum of three qubits (see Supplemental Material
[33]). Up to a rescaling of FG

ρ0 , the success probability p
of implementing the transformation on pure states is
bounded as 1=4 ≤ p ≤ 1. Compiling an explicit UF using
the native qiskit transpiler into the typical device gate set
(e.g., single qubit rotationsþ CNOT) gives a circuit depth
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of 74 operations with 20 CNOTs [41]. Using a simplified
model of current device noise, we simulated the circuits
applying this UF to states that maximize and minimize the
success probability of applying FG

ρ0 to the labeled qutrit
state (see Supplemental Material [33]). We observe low
fidelities between the idealized circuits and the noisy
implementations, indicating that the qubit encoding suffers
large overheads for these operations. We note that this is a
fully programmable, circuit-based system. One expects that
directly engaging the hardware could lead to better results.
For example, developing block encodings based on entan-
gling qubit-qutrit unitaries could fair better. However at
present commercially available circuit-level transpilers are
unavailable for such entangling gates. To implement such
gates would require moving toward bespoke functionality
such as pulse-level control, which is an active area of
research [42–45]. As an alternative, we resort to a photonic
platform that can both encode qutrits and perform non-
unitary operations in a straightforward way.
Experimental photonic simulation.—Here, we show how

a classical photonic simulator can accurately perform the
nonunitary operations needed to realize the fusion and
braiding properties of the G non-Abelian DðS3Þ anyons
with minimal errors. We experimentally implement the
ribbon operator FG

ρ0, that encodes two G anyons at its
endpoints, and its compositions FG

ρ1F
G
ρ2 and F

G
ρ2F

G
ρ1 given in

(4), (5), and (8), respectively. The experiment consists of
three distinct parts, as shown in Fig. 2(a). First, we generate
a qutrit state encoded in the transverse-spatial degree of
freedom of light. We then evolve the state through the
desired operations programmed on our photonic simulator.
Finally, we characterize the implemented operations via
quantum process tomography.
The qutrit is encoded in a transverse-spatial modal basis

consisting of discrete macro-pixels, as shown in Fig. 2(b).
We choose this particular basis as it can be tailored to
perform high-quality projective measurements [47,48].
Next, the qutrit state is evolved through the G ribbon
operator (4) and its compositions (5) and (8), following
which it is mapped onto spatially separated outcomes that
can be measured on a camera. These operations are by
definition nonunitary. Therefore, the task of performing an
operation and sorting the outcomes spatially can be mapped
to the problem of state discrimination between nonorthog-
onal states. There exist multiple schemes that perform this
task by compromising either efficiency or accuracy of the
discrimination [49]. As we are interested in simulating the
anyonic properties, we choose to enhance the accuracy of
the operations at the expense of efficiency through optical
losses. Herein we use the formalism of unambiguous state
discrimination [50–53], where one employs auxiliary
modes to embed a low-dimensional nonunitary operation
within a higher-dimensional unitary. The outcomes corre-
sponding to the auxiliary modes can be ignored since they
provide no information about the input state, and thus
correspond to loss.

Interestingly, the three operations we aim to implement,
T∈ fFG

ρ0 ; F
G
ρ1F

G
ρ2 ; F

G
ρ2F

G
ρ1g, are Hermitian and have symmet-

ric overlaps between different columns, i.e., jTrj ·Tri≠j
�j¼α,

∀ r where Trc corresponds to the rth row and cth column of
the given T matrix. This allows us to use a single auxiliary
mode to perform these operations [54] as was recently shown
to be experimentally viablewith optical circuits [55]. Because
of the nonunitarity, theseoperations cannot beperformedwith
unit success probability. Theoretically, themaximum average
success probabilities are 50%, 37.5%, and 75% for FG

ρ0,
FG
ρ1F

G
ρ2 , and FG

ρ2F
G
ρ1 , respectively. Using this approach, we

encode our three-dimensional Hermitian operators into four-
dimensional unitaries to proceed with this task.
These unitary operations are implemented using the

recently demonstrated “top-down” approach, where an
arbitrary optical circuit is embedded within a higher-
dimensional mode mixer sandwiched between two pro-
grammable phase planes [46]. Our circuit uses a commercial
multimode fiber (MMF) as a mode mixer that is placed
between twoprogrammable spatial lightmodulators (SLMs)

Macro-Pixel Basis

L 1

SLM1 SLM2MMF(a)

810 nm

C
C

D

L 2 L 4L 3

(b)

M0 M1 M2 M3

FIG. 2. (a) Experimental Setup. A coherent light source
(810 nm) is incident on a phase-only spatial light modulator
(SLM1) and then coupled into a 2 m-long graded-index multi-
mode fiber (MMF) with core diameter 50 μm. The output of the
MMF is incident on SLM2 followed by a CCD camera. The
combination of a high-dimensional mode mixer (MMF) sand-
wiched between two phase planes (SLM1 and SLM2) serves as a
programmable optical circuit that can encode any nonunitary
operations as shown in [46]. Additionally, SLM2 is used for
performing projective measurements required for quantum proc-
ess tomography (QPT) to check the fidelity of the implemented
transformations T∈ fFG

ρ0 ; F
G
ρ1F

G
ρ2 ; F

G
ρ2F

G
ρ1g. (b) Qutrit encoding.

Images showing three-dimensional photonic transverse-spatial
modes in the macro-pixel basis (M0) generated by SLM1. Modes
from all mutually unbiased bases (M1, M2, M3) of the three-
dimensional macro-pixel basis are also shown, which are used for
performing QPT.
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as shown in Fig. 2(a). We use an inverse design technique
known as the wavefront-matching (WFM) algorithm to
program the SLMs. The WFM algorithm calculates the
phase plane solutions by iteratively maximizing the overlap
between a set of input fields with the desired output ones.
After updating the SLMs with the phase solutions given by
the WFM algorithm, we couple a coherent light source with
a wavelength of 810 nm to characterize the implemented
operation. The statistics of a single-photon qutrit state
propagating through the system are identical to those
obtained for a coherent state, allowing us to simplify the
experiment and use a camera for detection [56].
We perform quantum process tomography to quantify

the fidelity of the implemented operations T̃ in relation to
the ideal operations T. Note that in addition to both SLMs
being used for implementing the target operation T, SLM1

is used for generating the complete set of input modes
[macro-pixel mutually unbiased bases M0–M3, Fig. 2(b)]
and SLM2 is used for performing the projective measure-
ments needed for quantum process tomography (QPT). For
each input mode, we measure the intensity at each of the
three designated output modes at the camera, ignoring the
auxiliary output. Next, SLM2 is used to sequentially project
the output into all mutually unbiased bases of the desired
output modes. This is done in a manner similar to how
projective measurements are performed with an SLM and a
single mode fiber [57], with the center region of the CCD
camera used in place of the single mode fiber. Using these
measurements, we construct a coupling matrix between the
complete set of input and output modes. This coupling
matrix is then used to recover the implemented process
via QPT, which we represent via its Choi state,
ρT̃ ¼ T̃ ⊗ 1ðρþÞ, where ρþ is the maximally entangled
state. The Choi state captures complete information about
the process and can be used to evaluate the purity and
fidelity to the target operations (see Supplemental Material
[33]) [46].
We implement ten realizations of each operation FG

ρ0 ,
FG
ρ1F

G
ρ2 , and FG

ρ2F
G
ρ1 , and reconstruct their processes using

the methods described above. Since different positions of
measurement outcomes result in different performance, we
vary the positions of measurement outcomes on the camera
in each realization in order to realize the best possible

implementation of these operators. Out of all the imple-
mentations, the best case fidelities, F , and purities, P, of
the process for each operation FG

ρ0 , F
G
ρ1F

G
ρ2 , and FG

ρ2F
G
ρ1 are

shown in Table I. To visualize the quality of these
operations, it is convenient to use the Kraus representation,
which is an alternativeway to represent these processes (see
Supplemental Material [33]). The ideal target operations
have only one nonzero Kraus operator, which we can
compare to the leading Kraus operators of the implemented
processes owing to their high purity. Figure 3 (top row)
depicts the leading Kraus operator of the implemented
processes, showing that it agrees well with the target
operations (insets). The full Choi state representation of
these high purity processes is shown in Fig. 3 (bottom row),
with the ideal state shown for comparison.
Conclusions.—Non-Abelian anyons present a fascinat-

ing and promising avenue for fault-tolerant quantum
computation. Emulating their complex braiding statistics
has so far evaded experimental realization. In this Letter,
we have demonstrated a photonic simulation of the ribbon
operators corresponding toDðS3Þ non-Abelian anyons with
fidelities and purities above 94%. Our simulation has
certified the minimal requirements and operations neces-
sary to identify the statistics of these anyons. This repre-
sents a significant step forward in the experimental study of
non-Abelian anyons and opens the door to future efforts
toward experimentally realizing more complex manipula-
tions and applications of these exotic systems. Extending
our experimental scheme to small-scale multiqudit quan-
tum systems [58–60] can potentially unlock the applica-
tions of non-Abelian anyons and the demonstration of their
fault tolerance against local perturbations. For example,
two qutrits encoded in a nine-dimensional photonic system

FIG. 3. Experimentally measured operators. We obtain the
leading Kraus operator from the tomographed process (top
row) and the Choi state representation for each operator FG

ρ0,
FG
ρ1F

G
ρ2 , and FG

ρ2F
G
ρ1 (bottom row) (see Supplemental Material

[33]). Insets show theoretically expected results in each plot. jAj
corresponds to the maximum amplitude for a given plot and
respective inset.

TABLE I. Experimental results for the best case fidelity and
purity of the processes corresponding to the FG

ρ0 , F
G
ρ1F

G
ρ2 , and

FG
ρ2F

G
ρ1 operations. The error values are reported up to 3 standard

deviations and correspond to systematic misalignment error (see
Supplemental Material [33]).

Operation (T) Fidelity ðF ðρT ; ρT̃ ÞÞ Purity PððρT̃ ÞÞ
FG
ρ0

95.23� 0.93% 96.04� 0.03%
FG
ρ1F

G
ρ2

94.44� 0.85% 97.65� 0.05%
FG
ρ2F

G
ρ1

97.59� 0.59% 94.43� 0.06%
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or in a scalable architecture with Josephson junctions or ion
traps [61] could be employed to encode distinguishable FG

ρ

ribbon operators where both the FG
GGG and RGG matrices

can be realized. Nevertheless, extending it to a fully
scalable system still remains a formidable challenge.
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