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This paper is a contribution to the meta-theory of systems featuring syntax with bindings, such as 𝜆-calculi

and logics. It provides a general criterion that targets inductively defined rule-based systems, enabling for them

inductive proofs that leverage Barendregt’s variable convention of keeping the bound and free variables disjoint.

It improves on the state of the art by (1) achieving high generality in the style of KnasterśTarski fixed point

definitions (as opposed to imposing syntactic formats), (2) capturing systems of interest without modifications,

and (3) accommodating infinitary syntax and non-equivariant predicates.
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1 Introduction

Inductive definitions and proofs are a cornerstone of mathematics and theoretical computer science,
and therefore solid and flexible foundations for induction are crucial in the development of these
subjectsÐespecially when it comes to the rigorous formulations and proofs of the results, using tools
such as proof assistants. This paper is concerned with the formal foundations of induction for rule-
based systems. Consider the basic example predicate describing whether a natural number is even:

even 0 (Base)
even 𝑛

even (𝑛 + 2)
(Ind)

The definition is inductive: a base case states that 0 is even, and an inductive case states that 𝑛 + 2
is even if 𝑛 is even. The intention is that all even numbers, and only those, are obtained by repeated
application of the two rules; or equivalently, even is the smallest predicate closed under these rules.

One can take a syntactic-format approach to making sense of this and similar definitions, by prov-
ing a theorem such as: łFor any specification consisting of rules where the conclusion and the hy-
potheses say that the to-be-defined inductive predicate applied to some arguments holds true, there
exists the smallest predicate that satisfies the specification.ž Various relaxations and enhancements
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of such a format are possible, e.g., allowing non-recursive assumptions, side-conditions, and specify-
ing a grammar for the arguments to which the to-be-defined predicate is applied. But no matter how
far we go with format enhancements, we are likely to encounter situations where they are still not
enough. Particularly difficult aspects to capture via formats are nested quantifiers and higher-order
operators. For example, consider the set Tree of finite trees whose leaves Leaf are labelled by natural
numbers and such that every tree 𝑡 ∈ Tree has a finite (possible empty) set Desc 𝑡 ∈ Pfin (Tree) of im-
mediate descendants. We can define inductively the following parity simulation relation ⪯ on trees:

𝑡 = Leaf 𝑛 𝑡 ′ = Leaf (2 ∗ 𝑛)

𝑡 ⪯ 𝑡 ′
(Base)

isDesc 𝑡 isDesc 𝑡 ′ RelSet (⪯) (Desc 𝑡) (Desc 𝑡 ′)

𝑡 ⪯ 𝑡 ′
(Ind)

where isDesc 𝑡 states that 𝑡 is not a leaf and, for any binary relation 𝑅 on a set𝐴, RelSet 𝑅 denotes its
Hoare-style extension to a relation on Pfin (𝐴) defined by RelSet 𝑅 𝐵 𝐵′

= (∀𝑎 ∈ 𝐵. ∃𝑎′ ∈ 𝐵′ . 𝑅 𝑎 𝑎′).
For making sense of rule-based inductive definitions, an approach that is more general and

principled (and conceptually simpler!) than the syntactic-format approach is possible, by noticing
that the existence of a smallest predicate satisfying a specification is guaranteed regardless of its

format, provided it can be expressed using a monotonic operator on predicates. The operators
underlying the definitions of even and ⪯ are 𝐺even and 𝐺⪯ are defined as follows:
𝐺even 𝑃 𝑚 = (𝑚 = 0 ∨ ∃𝑛. 𝑚 = 𝑛 + 2 ∧ 𝑃 𝑛)

𝐺⪯ 𝑅 𝑡 𝑡 ′ = ((∃𝑛. 𝑡 = Leaf 𝑛∧𝑡 ′ = Leaf (2∗𝑛))∨(isDesc 𝑡∧isDesc 𝑡 ′∧RelSet 𝑅 (Desc 𝑡) (Desc 𝑡 ′)))
For any monotonic operator on a complete lattice (such as the lattice of predicates), as is easily seen
to be the case with𝐺even and𝐺⪯ , the KnasterśTarski theorem [Tarski 1955] guarantees the existence
of a least fixed point. So even and ⪯ both exist as the least fixed points of 𝐺even and 𝐺⪯ , and have
the desired properties, including induction principles for reasoning about them, merely by virtue of
these operators being monotonic. The precise format of the predicate does not matter. In particular,
for ⪯ the definition of RelSet is irrelevant, other than it is monotonic. This monotonicity-based
approach was a major breakthrough, since it covers both existing and future syntactic formats that
one would be interested in. It was implemented as part of the induction facilities of several proof
assistants, notably the ones based on higher-order logic including HOL4 [Gordon and Melham
1993], HOL Light [Harrison 2024] and Isabelle/HOL [Nipkow et al. 2002].

Here we will be concerned with inductive definitions involving syntax with bindingsÐpervasive
in the theory of logics and programming languages, where variables are being bound in terms and
formulas via quantifiers, 𝜆-abstractions, etc. When working with these systems, researchers want
to avoid the overlap between bound and free variables, lest their proofs become significantly harder
or fail altogether. This means applying Barendregt’s famous variable convention [Barendregt 1985,
p. 26]: łIf [the terms]𝑀1, . . . , 𝑀𝑛 occur in a certain mathematical context (e.g. definition, proof),
then in these terms all bound variables are chosen to be different from the free variables.ž

This informal principle has been made rigorous by subsequent research, notably in the context
of Nominal Logic [Gabbay and Pitts 1999, 2002] and related formalisms (e.g., [Aydemir et al. 2008]).
Specifically for inductive rule-based systems involving binders, Urban et al. [2007] identified a rule
format and some assumptions that are sufficient for allowing Barendregt’s variable convention
to be soundly used in proofs, leading to a strong induction principle criterion guaranteeing the
disjointness between bound and free variables. Subsequently, this criterion has been implemented
as part of the Nominal Isabelle package [Urban 2008; Urban and Kaliszyk 2012].

A natural question to ask is whether (1) a more general, monotonicity-based approach (that does
not require a syntactic format) can be pursued here. Besides the limitations stemming from the
syntactic format, another limitation of the state of the art is that (2) it fails to directly capture ex-
isting mainstream systems such as the 𝜆-calculus reduction and 𝜋-calculus transition relations, but
requires the modification of these systems’ standard presentations by adding more side-conditions.
In other words, there is a gap between the standard definitions of these systems from textbooks and
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the formal requirements for enabling the variable convention. Finally, the state of the art, deeply
rooted in Nominal Logic and its finite support and equivariance conditions (the latter expressing a
form of uniform behavior of functions and predicates) [Gabbay and Pitts 2002; Pitts 2006], (3) does
not cover infinitary syntax with bindings such as infinitary extensions of the 𝜆-calculus [Barendregt
and Klop 2009; Mazza 2012] and first-order logic [Hanf 1964; Makkai 1969].

This paper makes contributions along all the above three axes. It introduces general criteria for
when inductive systems are variable-convention observing, leveraging monotonicity and Knasterś
Tarski. Our criteria also fill the aforementioned formality gap as they apply to the systems without
modifications, and moreover cope with infinitary syntax and the lack of equivariance.

Overview.We start with revisiting standard examples coming from the 𝜆-calculus (ğ2), highlighting
the limitations of the state of the art. Then, after recalling the necessary background concepts
pertaining to nominal sets and induction (ğ3), we prove the initial version of our main result, a
format-free general criterion for strong rule induction (ğ4). This initial version will be further
improved and generalized throughout the rest of the paper by challenging it with inductive systems
whose syntactic structures or binding dynamics are increasingly sophisticated. We first deploy
our criterion to tackle the motivating examples (ğ5), which leads us to a deployment heuristic (ğ6).
We compare our criterion with the state of the art criterion of Urban et al. [2007] with respect to
the addition of side-conditions (ğ7). More examples are discussed (ğ8), including the 𝜋-calculus
and subtyping for System F<:, the latter suggesting a strengthening of our criterion with inductive
information. Further examples take us into the realm of infinitary structures with bindings (ğ9),
such as extensions of first-order logic that allow infinitary cardinal-bounded conjunctions and
quantifications in formulas (ğ9.1). To extend our criterion for coping with predicates defined over
infinitary structures, we introduce what we call loosely-supported nominal sets (ğ9.2), a variation of
nominal sets equipped with a łloosež (not necessarily minimal) supporting set operator that relax
the finite-support assumption to a small-support one, where łsmallž is understood with respect
to a given infinite cardinal. The last example we consider involves the meta-theory of an affine
infinitary 𝜆-calculus (ğ9.3), and leads to a further generalization of our criterion to handle non-
equivariant predicates (ğ9.4). We describe a tool that we have implemented in Isabelle to support our
formalization of the general theory and the examples, as well as case studies based on these examples
(ğ10), and conclude with more related work (ğ11). Our technical report [van Brügge et al. 2025b]
gives more details about this paper’s constructions and results, and our Isabelle mechanization.

2 Motivating Example: 𝜆-Calculus

In this section, Var , the set of variables, will be a countably infinite set. We consider the syntax of
the (untyped) 𝜆-calculus, defining the set LTerm of 𝜆-terms, ranged over by 𝑡, 𝑠 etc., via the grammar:

𝑡 ::= Vr 𝑥 | Ap 𝑡1 𝑡2 | Lm 𝑥 𝑡

Thus, a 𝜆-term is either (the injection of) a variable, or an application, or a 𝜆-abstraction of a variable
in a term. We also assume that, in a term of the form Lm 𝑥 𝑡 , the variable 𝑥 is bound in 𝑡 ; and terms
are equated modulo the induced notion of alpha-equivalence, e.g., Lm 𝑥 (Vr 𝑥) = Lm 𝑦 (Vr 𝑦). For
any 𝜆-term 𝑡 , we write FV 𝑡 for its set of free variables. A variable 𝑥 is fresh for 𝑡 when 𝑥 ∉ FV 𝑡 .
We write 𝑡 [𝑠/𝑥] for the (capture-avoiding) substitution of the term 𝑠 for the variable 𝑥 in the term 𝑡 .

A fundamental relation on this syntax is 𝛽-reduction, the binary relation ⇒ between 𝜆-terms
defined in Fig. 1. If we ignore binding information, the standard proof principle associated to this
definition is the following rule induction principle:

Prop 1. Let 𝜑 : LTerm → LTerm → Bool and assume that:

- LBetaM: ∀𝑥, 𝑡1, 𝑡2. 𝜑 (Ap (Lm 𝑥 𝑡1) 𝑡2) (𝑡1 [𝑡2/𝑥])
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Ap (Lm 𝑥 𝑡1) 𝑡2 ⇒ 𝑡1 [𝑡2/𝑥] (Beta)
𝑡 ⇒ 𝑡 ′

Lm 𝑥 𝑡 ⇒ Lm 𝑥 𝑡 ′
(Xi)

𝑡1 ⇒ 𝑡 ′1
Ap 𝑡1 𝑡2 ⇒ Ap 𝑡 ′1 𝑡2

(ApL)
𝑡2 ⇒ 𝑡 ′2

Ap 𝑡1 𝑡2 ⇒ Ap 𝑡1 𝑡
′
2

(ApR)

Fig. 1. 𝜆-calculus 𝛽-reduction

- LXiM: ∀𝑥, 𝑡, 𝑡 ′ . ((𝑡 ⇒ 𝑡 ′) ∧ 𝜑 𝑡 𝑡 ′) −→ 𝜑 (Lm 𝑥 𝑡) (Lm 𝑥 𝑡 ′)
- LApLM: ∀𝑡1, 𝑡

′
1, 𝑡2.

(

(𝑡1 ⇒ 𝑡 ′1) ∧ 𝜑 𝑡1 𝑡
′
1

)

−→ 𝜑 (Ap 𝑡1 𝑡2) (Ap 𝑡 ′1 𝑡2)

- LApRM: ∀𝑡1, 𝑡2, 𝑡
′
2.
(

(𝑡2 ⇒ 𝑡 ′2) ∧ 𝜑 𝑡2 𝑡
′
2

)

−→ 𝜑 (Ap 𝑡1 𝑡2) (Ap 𝑡1 𝑡
′
2)

Then ∀𝑡, 𝑡 ′ . (𝑡 ⇒ 𝑡 ′) −→ 𝜑 𝑡 𝑡 ′.

Thus, standard induction allows us to infer that⇒ is included in a relation 𝜑 provided 𝜑 is closed
under the rules defining ⇒, i.e., uses that ⇒ is the smallest relation closed under these rules.
However, due to the presence of bindings, it is desirable to have a stronger induction proof

principleÐfeaturing an enhancement that formalizes Barendregt’s variable convention. For example,
say we want to prove that 𝛽-reduction is closed under substitution, i.e, (𝑡 ⇒ 𝑡 ′) −→ (𝑡 [𝑠/𝑦] ⇒
𝑡 ′ [𝑠/𝑦]). The proof would go by rule induction, taking 𝜑 𝑡 𝑡 ′ to be ∀𝑠,𝑦. 𝑡 [𝑠/𝑦] ⇒ 𝑡 ′ [𝑠/𝑦]. In the
LBetaM case we must prove 𝜑 (Ap (Lm 𝑥 𝑡1) 𝑡2) (𝑡1 [𝑡2/𝑥]), i.e., for all 𝑠,𝑦,

(i) (Ap (Lm 𝑥 𝑡1) 𝑡2) [𝑠/𝑦] ⇒ 𝑡1 [𝑡2/𝑥] [𝑠/𝑦]

To continue, we wish to move the _[𝑠/𝑦] substitution inside the constructors Ap and Lm on the
left, and also inside the 𝑡1 [𝑡2/𝑥] substitution on the right, thus reducing the above to

(ii) Ap (Lm𝑥 (𝑡1 [𝑠/𝑦])) (𝑡2 [𝑠/𝑦]) ⇒ (𝑡1 [𝑠/𝑦]) [(𝑡2 [𝑠/𝑦])/𝑥]

the last being provable as an instance of the (Beta) rule, taking 𝑡1 and 𝑡2 from the rule to be 𝑡1 [𝑠/𝑦]
and 𝑡2 [𝑠/𝑦]. (Without being able to perform the above łmovesž, the proof would become quite
complicated, as the goal would need to be generalized to work inductively.)
However, while substitution can soundly be moved inside applications (since by definition it

commutes with applications), it is not always sound tomove it inside 𝜆-abstractions or other substitu-
tions, unless certain side-conditions hold. In this case, we would need that 𝑥 is fresh for the parameters,
i.e., 𝑥 is fresh for 𝑠 and is different from 𝑦, which would ensure (Lm 𝑥 𝑡1) [𝑠/𝑦] = Lm 𝑥 (𝑡1 [𝑠/𝑦])
and 𝑡1 [𝑡2/𝑥] [𝑠/𝑦] = (𝑡1 [𝑠/𝑦]) [(𝑡2 [𝑠/𝑦])/𝑥], making (i) reducible to (ii) as desired for finishing the
proof in the LBetaM case. Barendregt’s insight, expressed in his variable convention and deployed
systematically in proofs all throughout his 𝜆-calculus monograph [Barendregt 1985], was that such
freshness assumptions are usually safe, in that they do not lose generality (hence do not lead to
incorrect reasoning).
Yet, Barendregt did not indicate exactly when, or why, such assumptions are safe. A rigorous

answer to these questions was provided by Urban et al. [2007] (having prior roots in McKinna and
Pollack [1999]; Pitts [2003]) who formalized the variable convention used in proof contexts like
the above as a strong rule induction that allows assuming the rules’ bound variables (e.g., 𝑥 in (Beta)
and (Xi)) to be fresh for given parameters (e.g., 𝑠 and 𝑦). Here is the desired strong rule induction
for 𝛽-reduction, where Pfin (Var) is the set of finite sets of variables:

Prop 2. Let P be a set of items called parameters and Psupp : P → Pfin (Var). Let 𝜑 : P → LTerm →
LTerm → Bool and assume that:

- LBetaM: ∀𝑝, 𝑥, 𝑡1, 𝑡2. 𝑥 ∉ Psupp 𝑝 −→ 𝜑 𝑝 (Ap (Lm 𝑥 𝑡1) 𝑡2) (𝑡1 [𝑡2/𝑥])

- LXiM: ∀𝑝, 𝑥, 𝑡, 𝑡 ′ . 𝑥 ∉ Psupp 𝑝 ∧ (𝑡 ⇒ 𝑡 ′) ∧ (∀𝑞. 𝜑 𝑞 𝑡 𝑡 ′) −→ 𝜑 𝑝 (Lm 𝑥 𝑡) (Lm 𝑥 𝑡 ′)

- LApLM: ∀𝑝, 𝑡1, 𝑡
′
1, 𝑡2. (𝑡1 ⇒ 𝑡 ′1) ∧ (∀𝑞. 𝜑 𝑞 𝑡1 𝑡

′
1) −→ 𝜑 𝑝 (Ap 𝑡1 𝑡2) (Ap 𝑡 ′1 𝑡2)

- LApRM: ∀𝑝, 𝑡1, 𝑡2, 𝑡
′
2 . (𝑡2 ⇒ 𝑡 ′2) ∧ (∀𝑞. 𝜑 𝑞 𝑡2 𝑡

′
2) −→ 𝜑 𝑝 (Ap 𝑡1 𝑡2) (Ap 𝑡1 𝑡

′
2)
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Then ∀𝑝, 𝑡, 𝑡 ′ . (𝑡 ⇒ 𝑡 ′) −→ 𝜑 𝑝 𝑡 𝑡 ′.

The predicate to be proved is now quantified universally over parameters, whose role is to provide
the variables that one would like to avoid within inductive proofsÐwhat Barendregt’s convention,
cited in the introduction, calls łthe free variablesž in a łcertain mathematical contextž. To use this
principle in the proof discussed above, we take P to be LTerm×Var and Psupp(𝑠,𝑦) to be FV 𝑠 ∪ {𝑦}.
(Note that a weaker form of this principle would fix a parameters 𝑝 rather than quantifying uni-
versally over parameters, so that 𝜑 would not have a parameter argument and, for example, the
hypothesis LXiM would become ∀𝑥, 𝑡, 𝑡 ′ . 𝑥 ∉ Psupp 𝑝 ∧ (𝑡 ⇒ 𝑡 ′) ∧ 𝜑 𝑡 𝑡 ′ −→ 𝜑 (Lm 𝑥 𝑡) (Lm 𝑥 𝑡 ′)
and LApLM and LApLM would become the usual inductive conditions from the standard rule induc-
tion expressed by Prop. 1. While often the fixed-parameter version is good enough, as is the case
with the proof discussed above which works for fixed 𝑠 and 𝑦, sometimes the extra flexibility of
quantifying universally over parameters is importantÐLemma 107 from App. F of our technical
report [van Brügge et al. 2025b] (reflexivity of the System F<: typing from POPLmark 1A [Aydemir
et al. 2005]) gives an example for structural induction which is a particular case of rule induction.)
Importantly, Urban et al. [2007] have also noted that Barendregt’s variable convention is not

sound for all inductively defined relations on 𝜆-terms, and have provided a syntactic criterion
for when it is sound. Unfortunately, their criterion does not cover the above (standard) definition
of 𝛽-reduction (shown in Fig. 1) but only a modification of it obtained by adding a freshness
side-condition to the (Beta) rule:

Ap (Lm 𝑥 𝑡1) 𝑡2 ⇒ 𝑡1 [𝑡2/𝑥]
(Beta’)
[𝑥 ∉ FV 𝑡2]

With this modification, strong induction for 𝛽-reduction, i.e., Prop. 2, becomes an instance of
their syntactic criterion. This variant of 𝛽-reduction, with (Beta’) instead of (Beta), can be proved
equivalent to the standard one, but this is far from immediate.
The need for adding side-conditions arises quite pervasively when instantiating Urban et al.’s

result to examples. In fact, the authors themselves show such an example in their paper: a parallel
𝛽-reduction [Lévy 1975; Takahashi 1995], where they must change the łParallel Betaž rule

𝑡1 =⇒ 𝑡 ′1 𝑡2 =⇒ 𝑡 ′2
Ap (Lm 𝑥 𝑡1) 𝑡2 =⇒ 𝑡 ′1 [𝑡

′
2/𝑥]

(ParBeta)

into the weaker rule
𝑡1 =⇒ 𝑡 ′1 𝑡2 =⇒ 𝑡 ′2

Ap (Lm 𝑥 𝑡1) 𝑡2 =⇒ 𝑡 ′1 [𝑡
′
2/𝑥]

(ParBeta’)
[𝑥 ∉ FV 𝑡2 ∪ FV 𝑡 ′2]

Quoting from Urban et al.: łThis is annoying because both versions can be shown to define the
same relation, but we have no general, and automatable, method for determining this.ž
Another limitation of their criterion (again acknowledged by the authors themselves) is its

syntactic-format nature, requiring rules the form

𝜑 𝑝1 ®𝑠1 . . . 𝜑 𝑝𝑛 ®𝑠𝑛

𝜑 𝑝 ®𝑡
[side-conditions]

which is quite rigid. In particular this forbids, in the rules’ assumptions, the occurrence of the
defined relation under universal or existential quantifiers, or under other higher-order operators.
Our results will lift both of the above limitations.

3 Preliminaries on Nominal Sets and KnasterśTarski Fixpoints

Next we recall some background on nominal sets [Gabbay and Pitts 2002; Pitts 2013] and induction
based on KnasterśTarski fixpoints [Knaster 1928; Tarski 1955].
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Nominal Sets. Let Var be a fixed countable sets of items called variables, or atoms. Given any
function 𝑓 : Var → Var , the core of 𝑓 is defined as the set of all variables that are changed by 𝑓 :
Core 𝑓 = {𝑥 | 𝑓 𝑥 ≠ 𝑥}. (What we call łcorež is usually called the łsupportž of 𝑓 , which is consistent
with the more general notion of support we discuss next. But we prefer to name it differently
because of its bootstrapping role towards the general notion.) Let Perm, ranged over by 𝜎 , denote
the set of (finite) permutations, i.e., bijections on Var of finite core.
Note that (Perm, ◦, 1Var ) forms a group, where 1Var is the identity permutation and ◦ is compo-

sition. A pre-nominal set is a set equipped with a Perm-action, i.e., a pair A = (𝐴, _[_]A) where
𝐴 is a set and _[_]A : 𝐴 → Perm → 𝐴 is an action of the monoid Perm on 𝐴, in that it is idle for
identity (𝑎[1Var ]

A
= 𝑎 for all 𝑎 ∈ 𝐴) and compositional (𝑎[𝜎 ◦ 𝜏]A = 𝑎[𝜏]A [𝜎]A ). Given 𝜎 ∈ Perm,

we sometimes write _[𝜎] for the function in 𝐴 → 𝐴 (which is actually a bijection) that applies this
fixed permutation. We let Im 𝜎 be the operator in P(Var) → P(Var) that takes any 𝑋 ⊆ Var to the
image of 𝑋 through 𝜎 , namely Im 𝜎 𝑋 = {𝜎 𝑥 | 𝑥 ∈ 𝑋 }. We write 𝑥↔𝑦 for the permutation that
takes 𝑥 to 𝑦, 𝑦 to 𝑥 and all other variables to themselves; applying these permutations (to elements
of a nominal set) will be called swapping.

Given a pre-nominal set A = (𝐴, _[_]A), an 𝑎 ∈ 𝐴 and a set 𝑋 ⊆ Var , we say that 𝑎 is supported

by 𝑋 , or 𝑋 supports 𝑎, if 𝑎[𝑥↔𝑦]A = 𝑎 holds for all 𝑥,𝑦 ∈ Var ∖ 𝑋 , or equivalently, if 𝑎[𝜎]A = 𝑎

holds for all 𝜎 ∈ Perm such that ∀𝑥 ∈ 𝑋 . 𝜎 𝑥 = 𝑥 . An element 𝑎 ∈ 𝐴 is called finitely supported if
there exists a finite set 𝑋 that supports 𝑎. A nominal set is a pre-nominal set where every element is
finitely supported. IfA = (𝐴, _[_]A) is a nominal set and 𝑎 ∈ 𝐴, then the smallest set that supports
𝑎 can be shown to existÐit is denoted by SuppA 𝑎 and called the support of 𝑎.

Given two pre-nominal sets A = (𝐴, _[_]A) and B = (𝐵, _[_]B), the set 𝐹 = (𝐴 → 𝐵) of
functions from 𝐴 to 𝐵 naturally forms a pre-nominal set F = (𝐹, _[_]F) by defining 𝑓 [𝜎] to be the
function that sends each 𝑎 ∈ 𝐴 to 𝑓 (𝑎[𝜎−1]) [𝜎]. (So in particular we can talk about the notion of a
set of variables supporting such a function.) F is not a nominal set, because not all functions are
finitely supported, but we obtain a nominal set if we restrict it to the finitely supported functions.
In addition to the above function-space construction, nominal set structures can also be naturally
defined on the products, sums, container-type extensions (such as lists or trees) and quotients of
the carrier sets, overall enjoying good category-theoretic properties, in particular forming a topos
equivalent to the Schanuel topos [Pitts 2013].

The set of 𝜆-terms with their standard Perm-action, (LTerm, _[_]), forms a nominal set, where the
support of a term 𝑡 consists of its free variables. Note that set FV 𝑡 of free variables of a 𝜆-term 𝑡 is tra-
ditionally defined recursively on the structure of 𝑡 and not from permutation like the support is. How-
ever, writing Supp for the support operator of the nominal set (LTerm, _[_]), it can be checked that (1)
𝑡 is supported by FV 𝑡 in that 𝑡 [𝑥↔𝑦] = 𝑡 holds whenever 𝑥,𝑦 ∉ FV 𝑡 , by an easy induction on 𝑡 ; and
that (2) for any𝑥 , assuming𝑥 ∈ FV 𝑡∖Supp 𝑡 yields a contradiction by taking some𝑦 ∉ FV 𝑡 ∪ Supp 𝑡

and noting that 𝑡 [𝑥↔𝑦] ≠ 𝑡 (which again follows by easy induction from 𝑥 ∈ FV 𝑡 and 𝑦 ∉ FV 𝑡 )
contradicts the fact that 𝑥,𝑦 ∉ Supp 𝑡 . Points (1) and (2) make FV 𝑡 coincide with Supp 𝑡 . It is known
(and can be established by an argument similar to the one sketched above) that this coincidence
between the free-variable operator and support holds for all syntaxes with statically scoped bindings
[Pitts 2006], so any such syntax forms a nominal set where the support is given by the free variables.
Although the concept of nominal set abstracts away from, and goes beyond syntactic objects

(covering for example restricted spaces of functions, of semantic entities etc. [Pitts 2013]), it is often
useful to think of the elements 𝑎 of a nominal set as łterm-likež entities; in this spirit, we will refer
to the elements of SuppA 𝑎 as the free-variables of 𝑎.

Nominal sets underpin the semantics of nominal logic [Gabbay and Pitts 1999, 2002], a successful
foundation tailored for reasoning about syntax with bindings. But nominal sets and nominal logic
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techniques can also be used from within general-purpose foundations such as higher-order logic
[Pitts 2006; Urban and Tasson 2005]Ðin this paper we subscribe to this approach.
Central in nominal logic, and in our own developments as well, is the notion of equivariance,

which for a function, predicate or assertion means commutation with permutation actions. With
roots in classical algebra [Pitts 2013, ğ1.1], equivariance has the following intuition in the context
of syntax with bindings, as explained in the seminal nominal logic paper [Gabbay and Pitts 1999,
ğ2]: łProperties of syntax should be sensitive only to distinctions between variable names, rather
than to the particular names themselves." Here is the formal definition:

Def 3. Given two pre-nominal sets A = (𝐴, _[_]A) and B = (𝐵, _[_]B), a function 𝐹 : 𝐴 → 𝐵

between their carrier sets is called equivariant when it commutes with the permutation actions:
𝐹 (𝑎[𝜎]A) = (𝐹 𝑎) [𝜎]B for all 𝑎 ∈ 𝐴 and 𝜎 ∈ Perm.

Since the two-element set of Booleans (like any set) can be trivially equipped with identity
permutation action to become a (pre-)nominal set, we can speak of the equivariance of predicates,
𝜑 : 𝐴 → Bool where A = (𝐴, _[_]A) is a pre-nominal set. Here, equivariance can be equivalently
expressed using implication: 𝜑 𝑎 −→ 𝜑 (𝑎[𝜎]A) for all 𝑎 ∈ 𝐴 and 𝜎 ∈ Perm.

The KnasterśTarski Fixpoint Theorem. This celebrated result offers a simple yet powerful foun-
dation for induction, with applications in areas such as semantics, verification and static analysis.

Thm 4. [Tarski 1955] Let (𝐿, ≤) be a complete lattice and 𝐺 : 𝐿 → 𝐿 a monotonic operator. Then
there exists a (unique) least fixpoint 𝐼𝐺 for 𝐺 , in that: 𝐺 𝐼𝐺 = 𝐼𝐺 and ∀𝑘 ∈ 𝐺. 𝐺 𝑘 = 𝑘 −→ 𝐼𝐺 ≤ 𝑘 .
And 𝐼𝐺 is the least pre-fixpoint as well, in that ∀𝑘 ∈ 𝐿. 𝐺 𝑘 ≤ 𝑘 −→ 𝐼𝐺 ≤ 𝑘 ; finally, a practically use-
ful variation of this also holds, where ∧ is binary infimum in 𝐿: ∀𝑘 ∈ 𝐿. 𝐺 (𝐼𝐺 ∧ 𝑘) ≤ 𝑘 −→ 𝐼𝐺 ≤ 𝑘 .

It is the łpre-fixpointž part of this theorem that enables inductive reasoning: To prove that 𝐼𝐺 ≤ 𝑘 ,
it suffices to prove that 𝐺 (𝐼𝐺 ∧ 𝑘) ≤ 𝑘 . While the theorem works in general for complete lattices,
we will only use it for the particular lattices of predicates (equivalently, lattices of subsets), as
initially formulated by Knaster [1928]. Given a set 𝐴 and two predicates 𝜑,𝜓 : 𝐴 → Bool on it, we
define 𝜑 ≤ 𝜓 to be component-wise implication, namely ∀𝑎 ∈ 𝐴. 𝜑 𝑎 −→ 𝜓 𝑎. And indeed, ≤ is a
complete-lattice order on the set 𝐴 → Bool of predicates. This applies to 𝑛-ary predicates as well if
we take𝐴 to be a product𝐴1 × . . .×𝐴𝑛 . Often the operator𝐺 on predicates is given by a set of rules,
and for this reason the emerging induction principle associated to 𝐼𝐺 is referred to as rule induction.

4 Strong Rule Induction Criterion

Our main result, which we present next (Thm. 7 below), is an extension of KnasterśTarski based rule
induction to strong (variable-convention observing) induction, leveraging nominal-set structure.
We start with a monotonic operator 𝐺 : (T → Bool) → (Pfin (Var) → T → Bool), where

monotonicity again refers to the standard predicate orderings (component-wise implication). We

iterate 𝐺 to define the predicate 𝐼𝐺 : T → Bool inductively as follows:
𝐺 𝐼𝐺 𝐵 𝑡

𝐼𝐺 𝑡
We think of the above as the inductive specification of a rule-based system 𝐼𝐺 . But differently from

the usual KnasterśTarski setting for such specifications, here we have made explicit an additional
łbound variable setž argument 𝐵 ∈ Pfin (Var) for the predicate returned by 𝐺 . Our strong rule
induction criterion will make assumptions on, and draw conclusions from, how 𝐺 operates 𝐵.
But first let us make sense of the above specification of 𝐼𝐺 without treating 𝐵 specially. That

𝐼𝐺 was obtained by łiteratingž 𝐺 means that 𝐼𝐺 is the least (pre-)fixpoint of the operator 𝜆 𝜑. 𝜆 𝑡 ∈
T . ∃𝐵 ∈ Pfin (Var). 𝐺 𝜑 𝐵 𝑡 . Its existence is guaranteed by Thm. 4, taking 𝐼𝐺 to be the least fixpoint
of the operator on (T → Bool) → (T → Bool) that acts like𝐺 but applies existential quantification
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over 𝐵, i.e., sends any predicate 𝜑 : T → Bool to 𝜆𝑡 . ∃𝐵 ∈ Pfin (Var). 𝐺 𝜑 𝐵 𝑡 . The standard rule
induction principle stemming from 𝐼𝐺 ’s definition (via Thm. 4) is the following:

Thm 5. Assume 𝐺 is monotonic. If 𝜑 : T → Bool is such that ∀𝑡 ∈ T . (∃𝐵 ∈ Pfin (Var).
𝐺 (𝜆𝑡 ′ . 𝐼𝐺 𝑡 ′ ∧ 𝜑 𝑡 ′) 𝐵 𝑡) −→ 𝜑 𝑡 , then 𝐼𝐺 ≤ 𝜑 , i.e., ∀𝑡 ∈ T . 𝐼𝐺 𝑡 −→ 𝜑 𝑡 .

(The assumption of Thm. 5 is equivalent to ∀𝑡 ∈ T ,∀𝐵 ∈ Pfin (Var). 𝐺 (𝜆𝑡 ′ . 𝐼𝐺 𝑡 ′∧𝜑 𝑡 ′) 𝐵 𝑡 −→ 𝜑 𝑡 .)

Now let us make our move towards strong rule induction. To formulate such a principle without
knowing how𝐺 looks like, we think of𝐺 as the rules defining our predicate 𝐼𝐺 ; and of its argument
𝐵 as the bound variables appearing in the conclusions of these rulesÐfor this interpretation to
make sense, we assume that 𝐼𝐺 operates on łterm-likež entities, i.e., elements of a nominal set T.
Our key observation is that Barendregt’s variable convention rests on the bound variables being
łrefreshablež in the rules, in that (roughly speaking) we can always rename them to become fresh
for a rule’s entire conclusion (and not just the location where they are bound) without invalidating
its hypotheses. To model this, we introduce the concept of T-refreshability; and also introduce
T-freshness, which goes further to say that the bound variables are already fresh.

Def 6. Given a nominal set T = (T , _[_]T), an operator 𝐺 : (T → Bool) → (Pfin (Var) → T →
Bool) is said to be:
- T-refreshable when, for all 𝜑 : T → Bool, 𝐵 ∈ Pfin (Var) and 𝑡 ∈ T , if 𝜑 is equivariant and𝐺 𝜑 𝐵 𝑡

then there exists 𝐵′ ∈ Pfin (Var) such that 𝐵′ ∩ SuppT𝑡 = ∅ and 𝐺 𝜑 𝐵′ 𝑡 ;

- T-fresh when, for all 𝜑 : T → Bool, 𝐵 ∈ Pfin (Var) and 𝑡 ∈ T , if 𝐺 𝜑 𝐵 𝑡 then 𝐵 ∩ SuppT𝑡 = ∅.

(Note that T-freshness implies T-refreshability, taking 𝐵′
= 𝐵.)

And indeed, we can prove that T-refreshability in conjunction with equivariance (which essen-
tially ensures robustness of the rules in the refreshing process) is sufficient for enabling strong rule
induction. In what follows, a pair (P, Psupp) where P is a set and Psupp : P → Pfin (Var) will be
called parameter structure. (These are not required to be nominal sets.)

Thm 7. Let T= (T , _[_]T) be a nominal set and 𝐺 : (T → Bool) → (Pfin (Var) → T → Bool) a
monotonic, equivariant and T-refreshable operator. Let (P, Psupp) be a parameter structure and
𝜑 : P → T → Bool a predicate. Assume that:

∀𝑝 ∈ P, 𝑡 ∈ T , 𝐵 ∈ Pfin (Var).

(

𝐵 ∩ (Psupp 𝑝 ∪ SuppT𝑡) = ∅ ∧
𝐺 (𝜆𝑡 ′ . 𝐼𝐺 𝑡 ′ ∧ ∀𝑝′ ∈ P . 𝜑 𝑝′ 𝑡 ′) 𝐵 𝑡

)

−→ 𝜑 𝑝 𝑡

Then ∀𝑝 ∈ P . 𝐼𝐺 ≤ 𝜑 𝑝 , i.e., ∀𝑝 ∈ P, 𝑡 ∈ 𝑇 . 𝐼𝐺 𝑡 −→ 𝜑 𝑝 𝑡 .

Highlighted above is the łstrengthž of the stated strong induction principle for 𝐼𝐺 : When per-
forming induction, we are allowed to assume the variables of the parameter 𝑝 , and also the free
variables of the nominal-set (i.e., the term-like entity) argument 𝑡 , to be distinct from the variables
in 𝐵 (the bound variables). In short, the bound variables can be avoided.

We show a detailed proof of this result, partly becausewewill later do a bit of proof mining for gen-
eralizing it. Themain idea is that, usingT-refreshability, we are able to łclean upž the inductive defini-
tion of 𝐼𝐺 to assume freshness of the bound-variables 𝐵 for the rules’ conclusions 𝑡 (i.e., 𝐵∩SuppT𝑡 =
∅), and then use 𝐺 ’s equivariance to prove that freshness for the parameters can also be assumed.

Proof. We will write _[_] instead of _[_]Tand Supp instead of SuppT.
We first define an inductive predicate 𝐼 ′𝐺 which is a variation of 𝐼𝐺 that factors in łhalfž of the

intended freshness assumption, namely 𝐵 ∩ Supp 𝑡 = ∅:
𝐺 𝐼 ′𝐺 𝐵 𝑡 𝐵 ∩ Supp 𝑡 = ∅

𝐼 ′
𝐺
𝑡
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Since the defining rule for 𝐼 ′𝐺 is weaker (has more hypotheses), 𝐼 ′𝐺 is stronger than 𝐼𝐺 , we have:
(1) ∀𝑡 . 𝐼 ′𝐺 𝑡 −→ 𝐼𝐺 𝑡 . Crucially, we will be able to also prove the converse of (1). But first we need:
(2) 𝐼 ′𝐺 is equivariant, i.e., ∀𝜎 ∈ Perm, 𝑡 ∈ T . 𝐼 ′𝐺 𝑡 −→ 𝐼 ′𝐺 (𝑡 [𝜎]).

The proof of (2) goes by rule induction on the definition of 𝐼 ′𝐺 , for an (arbitrary but) fixed 𝜎 ∈ Perm:
We fix 𝐵 ∈ Pfin (Var) and 𝑡 ∈ T and assume (i)𝐺 (𝐼 ′𝐺 ◦ (_[𝜎])) 𝐵 𝑡 and (ii) 𝐵 ∩ Supp 𝑡 = ∅. We must
show that 𝐼 ′𝐺 (𝑡 [𝜎]). Using the introduction rule associated to the definition of 𝐼 ′𝐺 , it suffices to show
(i’)𝐺 𝐼 ′𝐺 (Im 𝜎 𝐵) (𝑡 [𝜎]) and (ii’) Im 𝜎 𝐵 ∩ Supp (𝑡 [𝜎]) = ∅. From (i) and the equivariance of𝐺 , we

obtain𝐺 (𝐼 ′𝐺 ◦ (_[𝜎]) ◦ (_[𝜎−1]) (Im 𝜎 𝐵) (𝑡 [𝜎]), hence, by the fact that 𝜎 ◦𝜎−1
= 1Var and the func-

toriality of _[_], we obtain (i’), as desired. Moreover, (ii’) follows from (ii) and the properties of Supp.

(Note that so far we used 𝐺 ’s equivariance and monotonicity, but not yet its T-refreshability.)
Now we prove (3) ∀𝑡 . 𝐼𝐺 𝑡 −→ 𝐼 ′𝐺 𝑡 , by rule induction on the definition of 𝐼𝐺 : We fix 𝐵 ∈ Pfin (Var)

and 𝑡 ∈ T and assume (iii)𝐺 𝐼 ′𝐺 𝐵 𝑡 . We must show 𝐼 ′𝐺 𝑡 . From (2), (iii) and T-refreshability, we obtain
𝐵′ ∈ Pfin (Var) such that 𝐵

′∩Supp 𝑡 = ∅ and𝐺 𝐼 ′𝐺 𝐵′ 𝑡 . Hence, 𝐼 ′𝐺 𝑡 follows by 𝐼 ′𝐺 ’s introduction rule.
From (1) and (3), we have (4) 𝐼𝐺 = 𝐼 ′𝐺 . Now we are ready to tackle the theorem’s statement, in

which, using (4), we will freely replace 𝐼𝐺 with 𝐼 ′𝐺 . Thus, we assume

(5) ∀𝑝 ∈ P, 𝑡 ∈ T , 𝐵 ∈ Pfin (Var).

(

𝐵 ∩ (Psupp 𝑝 ∪ Supp 𝑡) = ∅ ∧
𝐺 (𝜆𝑡 ′ . 𝐼 ′𝐺 𝑡 ′ ∧ ∀𝑝′ ∈ P . 𝜑 𝑝′ 𝑡 ′) 𝐵 𝑡

)

−→ 𝜑 𝑝 𝑡

We must prove ∀𝑝 ∈ P, 𝑡 ∈ 𝑇 . 𝐼 ′𝐺 𝑡 −→ 𝜑 𝑝 𝑡 , i.e., ∀𝑡 ∈ 𝑇 . 𝐼 ′𝐺 𝑡 −→ (∀𝑝 ∈ P . 𝜑 𝑝 𝑡).
We will prove something more general, namely that 𝐼 ′𝐺 implies the equivariant envelope of 𝜑 :
∀𝑡 ∈ 𝑇 . 𝐼 ′𝐺 𝑡 −→ (∀𝜎 ∈ Perm. ∀𝑝 ∈ P . 𝜑 𝑝 (𝑡 [𝜎])).
We again proceed by rule induction on the definition of 𝐼 ′𝐺 : We fix 𝐵 ∈ Pfin (Var), 𝑡 ∈ T , 𝜎 ∈ Perm

and 𝑝 ∈ P and assume (iv) 𝐺 (𝜆𝑡 ′ . 𝐼 ′𝐺 𝑡 ′ ∧ (∀𝜎 ′ ∈ Perm, 𝑝′ ∈ P . 𝜑 𝑝′ (𝑡 ′ [𝜎 ′]))) 𝐵 𝑡 and
(v) 𝐵 ∩ Supp 𝑡 = ∅. We must show 𝜑 𝑝 (𝑡 [𝜎]).

Let 𝐵′
= Im 𝜎 𝐵. Note that 𝐵′ is finite because 𝐵 is. From (v) and the properties of Supp, we have

(v’) 𝐵′ ∩ Supp (𝑡 [𝜎]) = ∅.
Note that Psupp 𝑝 ∪ Supp (𝑡 [𝜎]) is finite because both Psupp 𝑝 and Supp (𝑡 [𝜎]) are finite. With

the finiteness of 𝐵′ and (v’), we obtain the existence of 𝜏 ∈ Perm such that
(vi) Im 𝜏 𝐵′ ∩ (Psupp 𝑝 ∪ Supp (𝑡 [𝜎])) = ∅ and (vii) ∀𝑥 ∈ Supp (𝑡 [𝜎]). 𝜏 𝑥 = 𝑥 .

Let 𝛿 = 𝜏 ◦ 𝜎 . By the functoriality of _[_], we have 𝑡 [𝛿] = 𝑡 [𝜎] [𝜏]. Also, from (vii) and the
properties of Supp, we have 𝑡 [𝜎] [𝜏] = 𝑡 [𝜎]. Hence (viii) 𝑡 [𝛿] = 𝑡 [𝜎]. Note also that, by the defi-

nitions of 𝛿 and 𝐵′ we have (ix) Im 𝛿 𝐵 = Im 𝜏 𝐵′.
From (iv) and the monotonicity of 𝐺 , we have 𝐺 (𝜆𝑡 ′ . 𝐼 ′𝐺 𝑡 ′ ∧ (∀𝑝′ ∈ P . 𝜑 𝑝′ (𝑡 ′ [𝛿]))) 𝐵 𝑡 .

Hence, by𝐺 ’s monotonicity and 𝐼 ′𝐺 ’s equivariance,𝐺 (𝜆𝑡 ′ . 𝐼 ′𝐺 (𝑡 ′ [𝛿]) ∧ (∀𝑝′ ∈ P . 𝜑 𝑝′ (𝑡 ′ [𝛿]))) 𝐵 𝑡 .

Hence, by𝐺 ’s equivariance,𝐺 (𝜆𝑡 ′ . 𝐼 ′𝐺 (𝑡 ′ [𝛿−1] [𝛿])∧(∀𝑝′ ∈ P . 𝜑 𝑝′ (𝑡 ′ [𝛿−1] [𝛿]))) (Im 𝛿 𝐵) (𝑡 [𝛿]).

Hence, by _[_]’s functoriality and 𝛿 ◦𝛿−1 = 1Var ,𝐺 (𝜆𝑡 ′ . 𝐼 ′𝐺 𝑡 ′∧ (∀𝑝′ ∈ P . 𝜑 𝑝′ 𝑡 ′)) (Im 𝛿 𝐵) (𝑡 [𝛿]) .
Hence, using (viii) and (ix), 𝐺 (𝜆𝑡 ′ . 𝐼 ′𝐺 𝑡 ′ ∧ (∀𝑝′ ∈ P . 𝜑 𝑝′ 𝑡 ′)) (Im 𝜏 𝐵′) (𝑡 [𝜎]) .
From this, (vi) and (5), we get 𝜑 𝑝 (𝑡 [𝜎]), as desired. □

5 The Motivating Example Revisited

Thm. 7 generalizes Prop. 2, and is in relation to Thm. 5 what Prop. 2 is in relation to Prop. 1, where
𝛽-reduction is generalized to an arbitrary inductively defined predicate 𝐼𝐺 on a nominal set. Indeed,
we obtain Prop. 2 by instantiating, in Thm. 7, T to the canonical nominal-set structure on LTerm2

and 𝐺 : (LTerm2 → Bool) → (Pfin (Var) → LTerm2 → Bool) to the operator described in Fig. 2.

Remark 8. In fact, instantiating Thm. 7 to the 𝛽-reduction relation does not give exactly Prop. 2
but a slight improvement of it, which in the LBetaM case also assumes 𝑥 ∉ FV 𝑡2. Indeed, the
assumption 𝐵 ∩ (Psupp 𝑝 ∪ SuppT𝑡) = ∅ from Thm. 7 gives in the LBetaM case the assumption
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𝐺 𝜑 𝐵 (𝑠, 𝑠′) ⇐⇒

(1) (∃𝑥, 𝑡1, 𝑡2 . 𝐵 = {𝑥} ∧ 𝑠 = Lm 𝑥 𝑡1 ∧ 𝑠′ = 𝑡1 [𝑡2/𝑥]) ∨

(2) (∃𝑥, 𝑡, 𝑡 ′ . 𝜑 (𝑡, 𝑡 ′) ∧ 𝐵 = {𝑥} ∧ 𝑠 = Lm 𝑥 𝑡 ∧ 𝑠′ = Lm 𝑥 𝑡 ′) ∨

(3) (∃𝑡1, 𝑡2, 𝑡
′
1 . 𝜑 (𝑡1, 𝑡

′
1) ∧ 𝐵 = ∅ ∧ 𝑠 = Ap 𝑡1 𝑡2 ∧ 𝑠′ = Ap 𝑡 ′1 𝑡2) ∨

(4) (∃𝑡1, 𝑡2, 𝑡
′
2 . 𝜑 (𝑡2, 𝑡

′
2) ∧ 𝐵 = ∅ ∧ 𝑠 = Ap 𝑡1 𝑡2 ∧ 𝑠′ = Ap 𝑡1 𝑡

′
2)

Fig. 2. The operator associated to 𝜆-calculus 𝛽-reduction

𝑥 ∉ Psupp 𝑝 ∪ FV (Ap (Lm 𝑥 𝑡1) 𝑡2)) ∪ FV (𝑡1 [𝑡2/𝑥]), i.e., 𝑥 ∉ Psupp 𝑝 and 𝑥 ∉ FV 𝑡2. Thus,

we obtain as an extra hypothesis in the induction proof rule (making induction easier) exactly
what Urban et al. must add as an extra hypothesis in the underlying introduction rule (making
introduction harder).
Note that, for any inductive predicate (regardless of bindings) there is ałtensionž between

the introduction rules and the induction principle, namely by strengthening or weakening the
hypotheses in the defining rules one becomes harder and the other easier to apply. From an abstract
standpoint, what a strong induction principle achieves by taking advantage of the binding structure
is to have the cake and eat it to, i.e., make induction easier to apply without affecting the introduction
rules. This seems connected with the some/any principle from Nominal Logic [Gabbay and Pitts
2002, Prop. 3.4] [Pitts 2003, Prop. 4], which states that existential and universal quantification over
fresh variables are equivalent (and forms the basis for the freshness quantifier [Gabbay and Pitts
2002]). Indeed, pushing this principle through the inductive definition while turning any (implicitly)
existentially quantified fresh variables into universally quantified ones, under suitable assumptions
about the definition could lead to an alternative proof of strong rule induction.

While the choice ofT is straightforward, the choice of𝐺 requires some explanation. First note that,
in Fig. 2’s definition of𝐺 , everything but the treatment of the 𝐵 ∈ Pfin (Var) argument is completely
determined by the original definition of the 𝛽-reduction predicate ⇒ : LTerm → LTerm → Bool

from Fig. 1. Indeed, if we ignore the treatment of 𝐵 (the highlighted bits), we obtain the definition
of a monotonic operator from (LTerm2 → Bool) → (LTerm2 → Bool) that, modulo currying, is
exactly the operator underlying the definition of⇒ (as its least fixpoint, via KnasterśTarski), where
the four disjuncts from Fig. 2 correspond to the four rules from Fig. 1.
As for the 𝐵 argument, its value is also completely determined by virtue of its role: to store the

bound variables that might occur in the conclusions of the rules. In this case, we have at most one
variable, so 𝐵 will be either a singleton or the empty set. In general, variables may be bound within
complex binding structures, e.g., nested record patterns as in the POPLmark Challenge 2B [Aydemir
et al. 2005]. We are not interested in the exact form of these structures, but (at least for now) only
in the set of variables that they contain.

Remark 9. Above, we argued that 𝐵 is uniquely determined when we think of it as storing all
the bound variables from a rule’s conclusion. However, as one of the anonymous reviewers noted,
an arbitrary 𝐵 ∈ Pfin (Var) above that minimal value would also work. In other words, we can
loosen 𝐵 upwards, i.e., in the definition of 𝐺 from Fig. 2 replace the condition 𝐵 = {𝑥} with 𝑥 ∈ 𝐵

in disjuncts (1) and (2) and remove the condition 𝐵 = ∅ form disjuncts (3) and (4) (since ∅ ⊆ 𝐵

would be vacuous). All the needed checks, including T-refreshability and equivariance, would also
succeed for this looser definition of 𝐺 .

Let us check that these choices of T and 𝐺 satisfy the hypotheses of Thm. 7. 𝐺 is obviously
monotonic (as all logical connectives appearing in it are in the positive fragment of first-order
logic). And 𝐺 is equivariant because all operators appearing in it are equivariant.
It remains to check that 𝐺 is T-refreshable. To this end, let 𝜑 : T → Bool be an equivariant

predicate, let 𝐵 ∈ Pfin (Var) and (𝑠, 𝑠′) ∈ T = LTerm2, and assume 𝐺 𝜑 𝐵 (𝑠, 𝑠′). We must find
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𝐵′ ∈ Pfin (Var) such that 𝐵′ ∩ SuppT(𝑠, 𝑠′) = ∅, i.e., (i) 𝐵′ ∩ (FV 𝑠 ∪ FV 𝑠′) = ∅, and (ii)𝐺 𝜑 𝐵′ (𝑠, 𝑠′).
We distinguish four cases, depending on which disjunct from 𝐺 ’s definition applies to (ii):

(1) Assume 𝐵 = {𝑥}, 𝑠 = Lm 𝑥 𝑡1 and 𝑠
′
= 𝑡1 [𝑡2/𝑥] for some 𝑥, 𝑡1, 𝑡2. We choose 𝑥 ′ to be completely

fresh (i.e., fresh for 𝑥 , 𝑡1 and 𝑡2) and take 𝐵′
= {𝑥 ′}. Now, (i) holds by the choice of 𝑥 ′. Moreover, (ii)

holds by virtue of the same disjunct (the first one) in the definition of𝐺 holding, with the existential
witnesses 𝑥 ′, 𝑡1 [𝑥

′↔𝑥], 𝑡2. Indeed:
- 𝐵′

= {𝑥 ′} holds by definition;

- 𝑠 = Lm 𝑥 𝑡1 = Lm 𝑥 ′ (𝑡1 [𝑥
′↔𝑥]) from properties of abstraction;

- 𝑠′ = 𝑡1 [𝑡2/𝑥] = 𝑡1 [𝑥
′↔𝑥] [𝑡2/𝑥

′] from properties of substitution.

(2) Assume 𝜑 (𝑡, 𝑡 ′), 𝐵 = {𝑥}, 𝑠 = Lm 𝑥 𝑡 and 𝑠′ = Lm 𝑥 𝑡 ′ for some 𝑥, 𝑡, 𝑡 ′. Like before, we choose
𝑥 ′ to be completely fresh and take 𝐵′

= {𝑥 ′}. Again, (i) holds by the choice of 𝑥 ′, and (ii) holds by
virtue of the same disjunct (the second one) in the definition of 𝐺 , with the existential witnesses
𝑥 ′, 𝑡 [𝑥 ′↔𝑥], 𝑡 ′ [𝑥 ′↔𝑥]:
- 𝜑 (𝑡 [𝑥 ′↔𝑥], 𝑡 ′ [𝑥 ′↔𝑥]) because 𝜑 (𝑡, 𝑡 ′) and 𝜑 is equivariant;

- 𝐵′
= {𝑥 ′} holds by definition;

- 𝑠 = Lm 𝑥 𝑡 = Lm 𝑥 ′ (𝑡 [𝑥 ′↔𝑥]) from properties of abstraction;

- 𝑠′ = Lm 𝑥 𝑡 ′ = Lm 𝑥 ′ (𝑡 ′ [𝑥 ′↔𝑥]) from properties of abstraction.

(3) Assume 𝜑 (𝑡1, 𝑡
′
1), 𝐵 = ∅, 𝑠 = Ap 𝑡1 𝑡2 and 𝑠

′
= Ap 𝑡 ′1 𝑡2 for some 𝑡1, 𝑡2, 𝑡

′
1. Then (i) and (ii) hold

trivially, taking 𝐵′
= ∅ and, in (ii), using the same disjunct (the third one) with 𝑡1, 𝑡2, 𝑡

′
1 as witnesses.

(4) Similar to (3).

6 On Instantiating Our Theorem

As our examples suggest, our criterion is widely applicable. But in addition to the scope question,
we are also interested in the formal engineering question on how difficult it is to instantiate this
criterion. Fortunately, the instantiation follows well-understood patterns, facilitating automation.
Next, we will extrapolate from our ğ5 discussion about 𝛽-reduction, emphasizing the wider

generality of the ideas presented there. The hypothetical scenario we consider is starting with a
predicate over syntax with bindings specified inductively via rules, and wishing to deploy our Thm. 7
to obtain a strong rule induction principle for itÐwhich in the case of 𝛽-reduction would be Prop. 2.
The operator 𝐺 associated to our given predicate can be determined from its rules: 𝐺 is a dis-

junction consisting of one disjunct for each rule; and each disjunct is an existential, quantifying
over all component items (variables, terms, etc.) in the corresponding rule. This process, of extract-
ing from a rule-based specification the underlying operator that ends up capturing the specified
predicate as its least fixed point, is well-understood, and has been automated in several theorem
provers, including the HOL-based provers HOL4 [HOL 2024; Gordon and Melham 1993], HOL Light
[Harrison 2024] and Isabelle/HOL [Nipkow et al. 2002]. In addition, here we need to plug in the
value of the set-of-bound-variables argument 𝐵, which in each disjunct of 𝐺 is the set of variables
bound (or substituted) in the conclusion of the corresponding rule. This requires knowing the
involved binding structures, and can be facilitated by tools that track bindings at datatype-definition
timeÐwhich include Nominal Isabelle [Urban 2008; Urban and Kaliszyk 2012] (and our own tool
we describe in our technical report [van Brügge et al. 2025b, App. G]).

Checking𝐺 ’s monotonicity and equivariance tends to be routine. Most HOL-based provers track
monotonicity as part of their inductive definition facilities. Nominal Isabelle tracks equivariance
based on its compositionality [Pitts 2013], and Isabelle’s Lifting&Transfer tool [Huffman and Kunčar
2013] tracks the related notion of parametricity [Reynolds 1983; Wadler 1989].
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The only check that could be non-trivial is that of the T-refreshability of𝐺 , which means: We start
with an equivariant 𝜑 : T → Bool, a 𝐵 and a 𝑡 ∈ T such that 𝐺 𝜑 𝐵 𝑡 holds; and must produce a 𝐵′

such that 𝐵′∩SuppT𝑡 = ∅ and𝐺 𝜑 𝐵′ 𝑡 . As hinted in ğ5, this can proceed via the following heuristic:

Step 1: Because 𝐺 𝜑 𝐵 𝑡 holds and is expressed as a disjunction of existentials, we obtain some
items, usually terms or variables, that satisfy one of the disjuncts, which we will refer to as the
łoriginalž items (e.g., 𝑥, 𝑡, 𝑡 ′ in the second disjunct of 𝐺 𝜑 𝐵 𝑡 in Fig. 2).

Step 2: We pick some completely fresh variables to replace the variables in 𝐵, i.e., for each variable
𝑥 in 𝐵 we pick a fresh variable 𝑥 ′, and take 𝐵′ to be the corresponding disjoint copy of 𝐵 (consisting
of the łprimedž variables). This ensures that 𝐵′ ∩ SuppT𝑡 = ∅ holds.

Step 3: To prove𝐺 𝜑 𝐵′ 𝑡 , which again is a disjunction of existentials, we prove the same disjunct
as the one known to hold for 𝐺 𝜑 𝐵 𝑡 (e.g., the second disjunct of 𝐺 𝜑 𝐵′ 𝑡 if it is the second
disjunct of 𝐺 𝜑 𝐵 𝑡 that happened to hold), and as witnesses for this disjunct’s existentials we plug
in the original items (that witnessed the corresponding disjunct of 𝐺 𝜑 𝐵 𝑡 ) in which we swap the

original variables 𝑥 with their fresh counterparts 𝑥 ′ as appropriate. Here, łas appropriatež means that
swapping only takes place if the variable 𝑥 is either equal to the considered original item, or that
item is in the scope of its binding. Thus, for example, for Fig. 2’s first disjunct we replace 𝑥 with 𝑥 ′

and 𝑡1 with 𝑡1 [𝑥↔𝑥 ′], but 𝑡2 stays as it is (because the latter is not in the scope of the bound variable
𝑥). It remains to verify the disjunct of 𝐺 𝜑 𝐵′ 𝑡 whose existentials have been instantiated with
these witnesses. For example, in the case of Fig. 2’s second disjunct, knowing that 𝜑 (𝑡, 𝑡 ′), 𝐵 = {𝑥},
𝑠 = Lm 𝑥 𝑡 and 𝑠 = Lm 𝑥 ′ 𝑡 ′ hold, we want to verify that 𝜑 (𝑡 [𝑥 ↔ 𝑥 ′], 𝑡 ′ [𝑥 ↔ 𝑥 ′]), 𝐵′

= {𝑥 ′},
𝑠 = Lm 𝑥 ′ (𝑡 [𝑥↔𝑥 ′]) and 𝑠 = Lm 𝑥 ′ (𝑡 ′ [𝑥↔𝑥 ′]) also hold. Among these goals to be proved:
- those involving 𝐵′ follow from the prior knowledge about 𝐵 and the construction of 𝐵′ (e.g.,
𝐵′

= {𝑥 ′} follows from 𝐵 = {𝑥});

- those involving the occurrences of the predicate, e.g., 𝜑 (𝑡 [𝑥↔𝑥 ′], 𝑡 ′ [𝑥↔𝑥 ′]), follow from the
corresponding fact in the original disjunct, e.g., 𝜑 (𝑡, 𝑡 ′), and the assumed equivariance of 𝜑 .
As for the other goals, such as 𝑠 = Lm 𝑥 𝑡 implying 𝑠 = Lm 𝑥 ′ (𝑡 [𝑥↔𝑥 ′]), which amounts to

Lm 𝑥 𝑡 = Lm 𝑥 ′ (𝑡 [𝑥↔𝑥 ′]), they say that the original items can be replaced in certain contexts by
the łrefreshedž (swapped) items. For these, we have no general recipe but an empirical observation
validated on many examples: These goals tend to be reducible to standard properties of the syntactic
operators (constructors, swapping, substitution, etc.).

Remark 10. A crucial part of the above heuristic for checking T-refreshability is assuming that the
predicate argument 𝜑 of𝐺 is equivariant and holds for some łoriginalž items, and wanting to prove
that it holds formodifications of these itemswhere the variables from𝐵 are swapped łas appropriatež,
i.e., swapped or not depending on their being in the scope of bindings in the rules’ conclusions. (Note
that 𝜑 intuitively stands for the inductively defined predicate during iteration through𝐺 .) Favorable
situations that work out of the box arewhen, in the hypotheses of each defining rule, each occurrence
of the inductively defined predicate is: (A) either applied to items that are all not in the scope of bound
variables in the conclusion, yielding trivial goals such as ł𝜑 (𝑡, 𝑡 ′) implies 𝜑 (𝑡, 𝑡 ′)ž, or (B) applied to
items that are all in the scope of bound variables in the conclusion, yielding goals such as ł𝜑 (𝑡, 𝑡 ′)
implies 𝜑 (𝑡 [𝑥↔𝑥 ′], 𝑡 ′ [𝑥↔𝑥 ′])ž which follow from 𝜑’s equivariance. Otherwise, we encounter
a hybrid situation, i.e., an in-hypotheses occurrence of the inductively defined predicate that is
(C) applied to some items in, and to some items not in the scope of bound variables in the conclusion.
Then, we end up with hybrid goals such as ł𝜑 (𝑡, 𝑡 ′) implies 𝜑 (𝑡 [𝑥↔𝑥 ′], 𝑡 ′)ž. In these cases, the only
way forward is if the given rule guarantees, perhaps via a side-condition, the freshness of the original
variables for the offending original terms (i.e., those subjected to swapping), e.g., the freshness of 𝑥
for 𝑡Ðbecause, 𝑥 ′ being fresh as well, we would have 𝑡 [𝑥↔𝑥 ′] = 𝑡 so we could fall back on case (A).
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Remark 11. Let us see what problems we would incur with our 𝛽-reduction example if we tried
to check that 𝐺 satisfies not T-refreshability but the stronger condition that we called T-freshness
(in Def. 6). The latter requires that𝐺 𝜑 𝐵 𝑡 implies 𝐵 ∩ SuppT𝑡 = ∅, i.e., that 𝐵 ∩ SuppT𝑡 = ∅ follows
from each disjunct in the definition of𝐺 𝜑 𝐵 𝑡 , corresponding to a rule in the inductive definition of
𝛽-reduction. So we want all the variables in 𝐵, i.e., those appearing bound in the rule’s conclusion,
to be prevented from (also) appearing free in the rule’s conclusion. This works for all the rules
except the first one in Fig. 1 (corresponding to the first disjunct in Fig. 2), where 𝑥 which appears
bound in the conclusion is not prevented from also appearing free in the conclusion, e.g., within
𝑡2. Thus, a fix to get T-freshness would be adding the side-condition that 𝑥 be fresh for 𝑡2, as seen
in the rule (Beta’) from ğ2; and a similar situation occurs with the łParallel Betaž rule (ParBeta)
from ğ2, which to validate T-freshness must become (ParBeta’). In fact, as detailed in our technical
report [van Brügge et al. 2025b, App. A], our T-freshness generalizes Urban et al. [2007]’s criterion.
The next section further explores the difference between the two criteria.

7 More on the Comparison with the Urban et al. Criterion

As stated at the end ğ2, our Thm. 7 improves on Urban et al. [2007]’s result in two ways: (1) not
necessitating the addition of side-conditions to capture concrete systems and (2) going beyond
syntactic format for the rules. In this section, taking advantage of the availability of more concepts
and notation, we will further illustrate what improvement (1) amounts to by going into finer details.

We consider again the standard 𝛽-reduction relation described in Fig. 1. So our theorem applies
to this relations’ definition as is, whereas in order to apply Urban et al.’s criterion (Theorem 1
from [Urban et al. 2007]) one requires a modification of the definition, namely the addition of the
side-condition 𝑥 ∉ FV 𝑡2 to the (Beta) rule, i.e., the replacement of (Beta) with the rule (Beta’)
shown below:

Ap (Lm 𝑥 𝑡1) 𝑡2 ⇒ 𝑡1 [𝑡2/𝑥]
(Beta’)
[𝑥 ∉ FV 𝑡2]

It turns out that the modified system can be proved equivalent with (equal to) the original oneÐand
Urban et al. noted that this tends to be the case in concrete examples, but they left open the problem
of proving that in a general setting (such as the setting, based on a format for schematic rules).
Let us see how to prove that the above two concrete systems, the original one and the one

modified by having (Beta’) replacing (Beta), are equivalent. Clearly the original one is at least as
strong as the modified one. Conversely, to prove that the modified one is at least as strong as the
original one, we essentially need to prove that (Beta) can be łsimulatedž by (Beta’). And indeed, this
intuitively seems to be the case because the bound variable 𝑥 in (Beta) can in principle be renamed
to something fresh for 𝑡2, and this renaming should be immaterial (since terms are quotiented to
𝛼-equivalence). However, we cannot simply invoke such a renaming without further argumentation.
This is because, in (Beta) and (Beta’), the term 𝑡1 appears not only inside the scope of a 𝜆-bound 𝑥
(within Lm 𝑥 𝑡1) by also outside this scope (within 𝑡1 [22/𝑥])Ðso while the first occurrence of 𝑡1 has
𝑥 bound, the second occurrence "exposes" the name 𝑥 . We must take this into account when doing
the inference of (Beta) from (Beta’), which goes as follows: We assume (Beta’) holds. To prove (Beta),
let 𝑥 be a variable and 𝑡1, 𝑡2 be terms; we need to show Ap (Lm 𝑥 𝑡1) 𝑡2 ⇒ 𝑡1 [𝑡2/𝑥]. To this end, we
pick a completely fresh variable, say 𝑥 ′, and define 𝑡 ′1 by swapping (or alternatively substituting)
𝑥 with 𝑥 ′ in 𝑡1, namely 𝑡 ′1 = 𝑡1 [𝑥↔𝑥 ′]. Then using the properties of swapping and substitution
and the fact that 𝑥 ′ is fresh for 𝑡1, we obtain that 𝑡 ′1 [𝑡2/𝑥

′] = 𝑡1 [𝑡2/𝑥]; and using the properties of
𝜆-abstraction (stemming from 𝛼-equivalence), we obtain that Lm 𝑥 ′ 𝑡 ′1 = Lm 𝑥 𝑡1. This allows us to
infer the desired instance of (Beta), namely (Lm 𝑥 𝑡1) 𝑡2 ⇒ 𝑡1 [𝑡2/𝑥], from an instance of (Beta’),
namely (Lm 𝑥 ′ 𝑡 ′1) 𝑡2 ⇒ 𝑡 ′1 [𝑡2/𝑥

′]; the latter is indeed an instance of (Beta’) since 𝑥 ′ is fresh for 𝑡2.
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𝑡 =⇒ 𝑡 (Refl)
𝑡 =⇒ 𝑡 ′

Lm 𝑥 𝑡 =⇒ Lm 𝑥 𝑡 ′
(Xi)

𝑡1 =⇒ 𝑡 ′1 𝑡2 =⇒ 𝑡 ′2
Ap 𝑡1 𝑡2 =⇒ Ap 𝑡 ′

1
𝑡 ′
2

(Ap)
𝑡1 =⇒ 𝑡 ′1 𝑡2 =⇒ 𝑡 ′2

Ap (Lm 𝑥 𝑡1) 𝑡2 =⇒ 𝑡 ′
1
[𝑡 ′
2
/𝑥]

(ParBeta)

Fig. 3. 𝜆-calculus parallel 𝛽-reduction

In the case of (Beta) versus (Beta’), the technicalities were relatively simple thanks to dealing
with an axiom (i.e., a rule with no hypotheses), but when dealing with proper rules (as is more
often the case) inference is more difficult. We illustrate this with the parallel 𝛽-reduction relation
briefly mentioned in ğ2, which was Urban et al.’s initial motivating example. Its definition is shown
in Fig. 3. Again, our theorem applies to this definition as is, whereas Urban et al.’s theorem requires
the addition of the side-condition 𝑥 ∉ FV 𝑡2 ∪ FV 𝑡 ′2] to the (ParBeta) rule, i.e., the replacement of
(ParBeta) with the rule (ParBeta’) shown below:

𝑡1 =⇒ 𝑡 ′1 𝑡2 =⇒ 𝑡 ′2
Ap (Lm 𝑥 𝑡1) 𝑡2 =⇒ 𝑡 ′1 [𝑡

′
2/𝑥]

(ParBeta’)
[𝑥 ∉ FV 𝑡2 ∪ FV 𝑡 ′2]

Now, it is not even true that, in isolation (that is, regardless of what the other rules of the system
are) the rule (ParBeta) is inferable from the rule (ParBeta’). What is inferable from (ParBeta’),
applying an argument similar to the one sketched above for (Beta) versus (Beta’) (that is, picking a
fresh 𝑥 ′ and using properties of substitution, swapping and constructors), is only a modification
of (ParBeta) that replaces the hypotheses 𝑡1 =⇒ 𝑡 ′1 and 𝑡2 =⇒ 𝑡 ′2 with 𝑡1 [𝑥 ↔𝑥 ′] =⇒ 𝑡 ′1 [𝑥 ↔𝑥 ′]
and 𝑡2 [𝑥↔𝑥 ′] =⇒ 𝑡 ′2 [𝑥↔𝑥 ′] for some fresh 𝑥 ′. Then, after we prove equivariance for the entire
system featuring (ParBeta’) and the other rules (so depending on the well-behavedness of the other
rules as well), we can replace the modified hypotheses with the original hypotheses of (ParBeta)Ð
concluding the proof that the two versions are equivalent (since the opposite direction, i.e., moving
from (ParBeta) to (ParBeta’), is again trivial).

Note that the above arguments for getting rid of certain side-conditions involved an equivariance
proof, and also some specific properties of the operators participating in the rules, such as substitu-
tion. Our strong rule induction criterion, Thm. 7, can be regarded as providing a generalization of
such arguments baked into the argument for the soundness of strong rule induction.

A final note about the above rule (ParBeta’): The 𝑥 ∉ FV 𝑡 ′2 part of the added side-condition is
seen to be redundant also because parallel 𝛽-reduction can be proved to not any new free variables
(when moving from left to right), so 𝑥 ∉ FV 𝑡 ′2 follows from 𝑥 ∉ FV 𝑡2. But general-purpose criteria
such as Urban et al.’s and ours are not addressing such specific semantic properties though (nor
do they assume, of course, that the defined predicate takes the form of a transition relation). In
particular, while our criterion does not require the addition of side-conditions, it does not provide
a mechanism for detecting redundant side-conditions when already part of the original rules.

Overview of the Next Two Sections. In what follows, we validate, challenge and refine the meta-
theory through examples that exhibit more complexity than the 𝜆-calculus along several directions:
scope extrusion and complex side-conditions (𝜋-calculus, ğ8.1), environments (System F<:, ğ8.2), and
terms with infinitely many variables (infinitary FOL ğ9.1 and 𝜆-calculus ğ9.3). While the 𝜋-calculus
example showcases the improvements of our criterion over the state of the art, we chose to present
the other examples because they have challenged this criterion, inspiring further improvements and
generalizations: making inductive information available for refreshability (ğ8.3), allowing infinitary
structures (ğ9.2), and considering binders explicitly while loosening equivariance (ğ9.4).
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8 More Examples and Refinements

For the syntaxes in this section, we will implicitly use standard notions such as permutation and
free variables. They all form nominal sets similarly to how the 𝜆-calculus syntax does.

8.1 Example: 𝜋-Calculus

In this subsection, variables will sometimes be called łnamesž or łchannelsž. We also let 𝑎, 𝑏 (in
addition to 𝑥,𝑦, 𝑧) range over variables. The set Proc, of 𝜋-calculus processes [Milner 1999; Milner
et al. 1992], ranged over by 𝑃,𝑄, 𝑅 etc., is described by a grammar of the following form (where we
omit the constructors that will play no role in our discussion):

𝑃 ::= . . . | 𝑃 || 𝑄 | !𝑃 | 𝑎 𝑥. 𝑃 | 𝑎(𝑥). 𝑃 | 𝜈 (𝑥). 𝑃

We assume that 𝑥 is bound in 𝑃 within processes of the form 𝑎(𝑥). 𝑃 and 𝜈 (𝑥). 𝑃 ; and processes
are equated modulo the induced alpha-equivalence. The shown constructors are, in order: parallel
composition, replication, output (of name 𝑥 on the channel 𝑎), input (of a generic name 𝑥 on channel
𝑎), and restriction/hiding (of the name 𝑥 ).

The set Act of actions, ranged over by 𝛼 , is given by the grammar:

𝛼 ::= 𝜏 | 𝑎 𝑥 | 𝑎 𝑥 | 𝑎(𝑥) | 𝑎(𝑥)

The above are, in order: the silent action, the input of a (free) name 𝑥 on channel 𝑎, the output
of a (free) name 𝑥 on channel 𝑎, the symbolic input of a (bound) name 𝑥 on channel 𝑎, and the
output of a bound name 𝑥 on channel 𝑎. The first three types will be called free actions; we let fra 𝛼
express the fact that 𝛼 is a free action.
We let ns 𝛼 , the set of names of an action 𝛼 , consist of all the names appearing in that action

(so ns 𝛼 is empty if 𝛼 = 𝜏 and otherwise it has at most two elements). We also let bns 𝛼 , the set
of bound names of 𝛼 , be {𝑥} if 𝛼 has the form 𝑎(𝑥) or 𝑎(𝑥), and ∅ otherwise. And fns 𝛼 , the set of
free names of 𝛼 , be {𝑎} if 𝛼 has the form 𝑎(𝑥) or 𝑎(𝑥), and ns 𝛼 otherwise. In particular, we have
ns 𝛼 = bns 𝛼 ∪ fns 𝛼 , though bns 𝛼 and fns 𝛼 may not be disjoint.

A process can take an action by consuming one of its communicating prefixes (𝑎 𝑥. or 𝑎(𝑥).) and
transitioning to a remainder process. This is described by an inductively defined transition relation,
using rules including ones shown in Fig. 4.

There are two main variants of operational semantics for the 𝜋-calculusÐearly-instantiation and
late-instantiationÐdepending onwhether input instantiation is exhibited łearlyž for single processes
or łlatež during communication. Fig. 4 shows the binding-interesting rules for both variants. (For
conciseness, we used a notion of action that is broad enough to accommodate both variants.)

A binding behavior characteristic to the 𝜋-calculus is scope extrusion: Via the rule (Open), a pro-
cess, say 𝜈 (𝑥). 𝑄 , łopensž the scope of a previously bound variable 𝑥 ; then, via the rule (CloseLeftE)
or (CloseLeftL) (or their symmetrics), the scope is łclosedž after another process 𝑃 receives this
bound name. At the end of this scope opening and closing session, a name 𝑥 that was previously
known to the process 𝑄 alone has now been shared with 𝑃Ðbecoming a shared secret between
the remainder processes 𝑃 ′ and 𝑄 ′.

Remark 12. In a naive formalization of the transition relation, namely as a ternary relation, a rule
such as (Open) is known to be problematic for formal reasoning, essentially because it is resistant to
strong induction [Bengtson 2010]. In fact, we can explain this problem in terms of our ğ6 heuristic
for proving T-refreshability. We would get stuck along the lines sketched in Remark 10: attempting
to prove, for an equivariant predicate 𝜑 : Proc ×Act × Proc → Bool and a fresh 𝑥 ′, the hopeless goal
ł𝜑 (𝑃, 𝑎 𝑥, 𝑃 ′) implies 𝜑 (𝑃 [𝑥↔𝑥 ′], 𝑎 𝑥 ′, 𝑃 ′)ž while knowing that 𝑎 ≠ 𝑥 but not that 𝑥 is fresh for 𝑃 .
(And while the łfixž of adding to (Open) the side-condition that 𝑥 be fresh for 𝑃 would indeed enable
strong induction, it would also destroy the intended semantics by preventing 𝑃 from sending any of
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𝑎(𝑥) . 𝑃
𝑎 𝑦
−→ 𝑃 [𝑦/𝑥] (InpE)

𝑃
𝑎 𝑥
−→ 𝑃 ′ 𝑄

𝑎 𝑥
−→ 𝑄 ′

𝑃 || 𝑄
𝜏

−→ 𝑃 ′ || 𝑄 ′
(ComLeftE)

𝑃
𝑎 𝑥
−→ 𝑃 ′ 𝑄

𝑎 (𝑥 )
−→ 𝑄 ′

𝑃 || 𝑄
𝜏

−→ 𝜈 (𝑥) . (𝑃 ′ || 𝑄 ′)

(CloseLeftE)

[𝑥 ∉ {𝑎}∪FV 𝑃]

Rules specific to the early-instantiation semantics

𝑎(𝑥) . 𝑃
𝑎 (𝑥 )
−→ 𝑃 (InpL)

𝑃
𝑎 (𝑥 )
−→ 𝑃 ′ 𝑄

𝑎 𝑦
−→ 𝑄 ′

𝑃 || 𝑄
𝜏

−→ 𝑃 ′ [𝑦/𝑥] || 𝑄 ′
(ComLeftL)

𝑃
𝑎 (𝑥 )
−→ 𝑃 ′ 𝑄

𝑎 (𝑥 )
−→ 𝑄 ′

𝑃 || 𝑄
𝜏

−→ 𝜈 (𝑥). (𝑃 ′ || 𝑄 ′)
(CloseLeftL)

Rules specific to the late-instantiation semantics

𝑃
𝑎 𝑥
−→ 𝑃 ′

𝜈 (𝑥). 𝑃
𝑎 (𝑥 )
−→ 𝑃 ′

(Open)

[𝑎 ≠ 𝑥]

𝑃
𝛼
−→ 𝑃 ′

𝜈 (𝑥) . 𝑃
𝛼
−→ 𝜈 (𝑥) . 𝑃 ′

(ScopeFree)

[fra 𝛼, 𝑥 ∉ ns 𝛼]

𝑃
𝑎 (𝑥 )
−→ 𝑃 ′

𝜈 (𝑦) . 𝑃
𝑎 (𝑥 )
−→ 𝜈 (𝑦). 𝑃 ′

(ScopeBound)

[𝑦 ∉ {𝑎, 𝑥}, 𝑥 ∉ FV 𝑃 ∪ {𝑎}]

𝑃
𝛼
−→ 𝑃 ′

𝑃 || 𝑄
𝛼
−→ 𝑃 ′ || 𝑄

(ParLeft)

[bns 𝛼 ∩ FV (𝑃,𝑄) = ∅]

Rules common to both styles of semantics

Fig. 4. 𝜋-calculus transition relation

𝑎(𝑥) . 𝑃
𝑎 𝑦
−→ 𝑃 [𝑦/𝑥]

(InpE’)

[𝑥 ∉ {𝑎,𝑦}]

𝑃
𝑎 𝑥
−→ 𝑃 ′ 𝑄

𝑎 (𝑥 )
−→ 𝑄 ′

𝑃 || 𝑄
𝜏

−→ 𝜈 (𝑥).(𝑃 ′ || 𝑄 ′)

(CloseLeftE’)

[𝑥 ∉ {𝑎}∪FV (𝑃,𝑄)

𝑃
𝑎 (𝑥 )
−→ 𝑃 ′ 𝑄

𝑎 𝑦
−→ 𝑄 ′

𝑃 || 𝑄
𝜏

−→ 𝑃 ′ [𝑦/𝑥] || 𝑄 ′

(ComLeftL’)

[𝑥 ∉FV (𝑃,𝑄,𝑄 ′)]

𝑃
𝑎 (𝑥 )
−→ 𝑃 ′ 𝑄

𝑎 (𝑥 )
−→ 𝑄 ′

𝑃 || 𝑄
𝜏

−→ 𝜈 (𝑥) . (𝑃 ′ || 𝑄 ′)

(CloseLeftL’)

[𝑥 ∉ FV (𝑃,𝑄)]

𝑃
𝛼
−→ 𝑃 ′

𝑃 || 𝑄
𝛼
−→ 𝑃 ′ || 𝑄

(ParLeft’)

[bns 𝛼 ∩ FV (𝑃,𝑄) = ∅, bns 𝛼 ∩ fns 𝛼 = ∅]

Fig. 5. 𝜋-calculus transitions augmented to accommodate prior state-of-the-art strong rule induction

its known (i.e., free) names.) This is not a problem with our criterion, but a situation where applying
Barendregt’s convention would be unsound; a similar example is given Urban et al. [2007, p.38].

An elegant solution to the above problem comes from noting the following about the intended
semantics: that any name which is bound in the action labeling the transition, e.g., a name 𝑥

sent via an 𝑎(𝑥) action, has its identity łhiddenž; in particular, until further extruding actions, is
unavailable to any other process besides the one that sends it and the one that receives it. This
is best modeled syntactically by assuming that such a name 𝑥 gets bound from within the action into

the remainder process. Thus, in the conclusion 𝜈 (𝑥). 𝑃
𝑎 (𝑥 )
−→ 𝑃 ′ of (Open), we think of the occurrence

of 𝑥 in 𝑎(𝑥) as binding any (free) occurrence of 𝑥 in 𝑃 ′. This solution was pursued in his thesis by
Bengtson [Bengtson 2010], who (crediting Milner et al. for the idea [Milner 1993; Milner et al. 1992])
formalizes the 𝜋-calculus transition relation not as a ternary relation between a source process, an
action and a target process, but as a binary relation between a source process and a commitment,
the latter being a pair (action, remainder process) up to alpha-equivalence.
Following Bengtson, we thus define the set Com of commitments to consist of pairs 𝐶 = (𝛼, 𝑃)

up to alpha-equivalence. That is, commitments are generated by the (nonrecursive) grammar

𝐶 ::= (𝜏, 𝑃) | (𝑎 𝑥, 𝑃) | (𝑎 𝑥, 𝑃) | (𝑎(𝑥), 𝑃) | (𝑎(𝑥), 𝑃)
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(having one production for each action type) with the assumption that, in a commitment of the form
(𝑎(𝑥), 𝑃) or (𝑎(𝑥), 𝑃), 𝑥 is bound in 𝑃 ; and commitments are identified modulo alpha-equivalence.

Under this commitment-based view, Fig. 4 stays the same, but now we read 𝑃
𝛼

−→ 𝑃 ′ as notation
for tran 𝑃 (𝛼, 𝑃 ′), where tran : Proc → Com → Bool is a (binary) relation between Proc and Com.
Thus, the rules in Fig. 4 give an inductive definition of tran. In this setting, the problem with (Open)
from Remark 12 vanishes, because now both occurrences of 𝑥 from its conclusion are bound: one
binding in 𝑃 and one in 𝑃 ′. Hence our heuristic for T-refreshability succeeds, as it just needs to
check ł𝜑 𝑃 (𝑎 𝑥) 𝑃 ′ implies 𝜑 (𝑃 [𝑥↔𝑥 ′]) (𝑎 𝑥 ′) (𝑃 ′ [𝑥↔𝑥 ′])ž, an instance of 𝜑 ’s equivariance.

And indeed, applying Thm. 7 to the inductive rules from Fig. 4, we obtain the desired strong rule
induction, where in the inductive hypotheses we can assume that all the bound variables referenced
in these rules are fresh for the parameters. For example, here is the strong rule induction we obtain
if we consider that the transition relation is defined by a particular selection of the Fig. 4 rules,
namely (InpE), (CloseLeftE) and (ComLeftL), (CloseLeftL) and (ParLeft):

Prop 13. Let (P, Psupp : P → Pfin (Var)) be a parameter structure. Let 𝜑 : P → Proc → Com →
Bool and assume the following hold:

- LInpE): ∀𝑝, 𝑎, 𝑥,𝑦, 𝑃,𝑄. 𝑥 ∉ Psupp 𝑝 ∧ 𝑥 ∉ {𝑎,𝑦} −→ 𝜑 𝑝 (𝑎(𝑥). 𝑃) (𝑎𝑦, 𝑃 [𝑦/𝑥])

- LCloseLeftEM: ∀𝑝, 𝑎, 𝑥, 𝑃, 𝑃 ′, 𝑄,𝑄 ′ . 𝑥 ∉ Psupp 𝑝 ∧ 𝑥 ∉ FV 𝑄 ∧ 𝑥 ≠ 𝑎 ∧ 𝑥 ∉ FV 𝑃 ∧

(𝑃
𝑎 𝑥
−→ 𝑃 ′) ∧ (∀𝑞. 𝜑 𝑞 𝑃 (𝑎 𝑥, 𝑃 ′)) ∧ (𝑄

𝑎 (𝑥 )
−→ 𝑄 ′) ∧ (∀𝑞. 𝜑 𝑞 𝑄 (𝑎(𝑥), 𝑄 ′)) −→

𝜑 𝑝 (𝑃 || 𝑄) (𝜏, 𝑃 ′ || 𝑄 ′)
- LComLeftLM: ∀𝑝, 𝑎, 𝑥,𝑦, 𝑃, 𝑃 ′, 𝑄,𝑄 ′ . 𝑥 ∉ Psupp 𝑝 ∧ 𝑥 ∉ FV (𝑃,𝑄,𝑄 ′) ∧

(𝑃
𝑎 (𝑥 )
−→ 𝑃 ′) ∧ (∀𝑞. 𝜑 𝑞 𝑃 (𝑎(𝑥), 𝑃 ′)) ∧ (𝑄

𝑎 𝑦
−→ 𝑄 ′) ∧ (∀𝑞. 𝜑 𝑞 𝑄 (𝑎𝑦,𝑄 ′)) −→

𝜑 𝑝 (𝑃 || 𝑄) (𝜏, 𝑃 ′ [𝑦/𝑥] || 𝑄 ′)
- LCloseLeftLM: ∀𝑝, 𝑎, 𝑥, 𝑃, 𝑃 ′, 𝑄,𝑄 ′ . 𝑥 ∉ Psupp 𝑝 ∧ 𝑥 ∉ FV (𝑃,𝑄) ∧

(𝑃
𝑎 (𝑥 )
−→ 𝑃 ′) ∧ (∀𝑞. 𝜑 𝑞 𝑃 (𝑎(𝑥), 𝑃 ′)) ∧ (𝑄

𝑎 (𝑥 )
−→ 𝑄 ′) ∧ (∀𝑞. 𝜑 𝑞 𝑄 (𝑎(𝑥), 𝑄 ′)) −→

𝜑 𝑝 (𝑃 || 𝑄) (𝜏, 𝑃 ′ || 𝑄 ′)
- LParLeftM: ∀𝑝, 𝛼, 𝑃, 𝑃 ′, 𝑄. bns 𝛼 ∩ Psupp 𝑝 = ∅ ∧ bns 𝛼 ∩ fns 𝛼 = ∅ ∧ bns 𝛼 ∩ FV (𝑃,𝑄) = ∅ ∧

(𝑃
𝛼

−→ 𝑃 ′) ∧ (∀𝑞. 𝜑 𝑞 𝑃 (𝛼, 𝑃 ′)) −→ 𝜑 𝑝 (𝑃 || 𝑄) (𝛼, 𝑃 ′ || 𝑄)

Then ∀𝑝, 𝑃, 𝛼, 𝑃 ′ . (𝑃
𝛼

−→ 𝑃 ′) −→ 𝜑 𝑝 𝑃 (𝛼, 𝑃 ′).

On the other hand, using the state of the art [Urban et al. 2007] as implemented in Nominal
Isabelle (which Bengtson used in his formalization [Bengtson 2012]), to get the same result one
needs to augment the rules with side-conditions as highlighted in Fig. 5. These would ensure that the
system satisfies not only T-refreshability, but also T-freshness. Indeed, as we discussed in Remark 11,
T-freshness in concrete examples amounts to the variables appearing bound in the conclusion of
a rule being prevented from also appearing free in that conclusion. For example, T-freshness does
not hold for the rule (CloseLeftL) from Fig. 4 because 𝑥 , which appears bound in the conclusion,
can also appear free there, namely within 𝑃 and 𝑄Ðso to make T-freshness hold one must add the
side-condition highlighted in (CloseLeftL’) from Fig. 5. Unlike in the situation from Remark 12, and
like in those from Remark 11, here these fixes (required for T-freshness but not for T-refreshability)
do not destroy the intended meaning of the definitions, but introduce unnecessary clutter.
Some versions of 𝜋-calculus [Sangiorgi and Walker 2001] distinguish between structural and

operational rulesÐthey too admit strong rule induction (as we illustrate on an example in our
technical report [van Brügge et al. 2025b, App. B]).
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wf Γ FV 𝑆 ⊆ dom Γ

Γ ⊢ 𝑆 <:Top
(Top)

wf Γ 𝑋 ∈ dom Γ

Γ ⊢ (TVr 𝑋 )<: (TVr 𝑋 )
(Refl-TV)

𝑋 <:𝑆 ∈ Γ Γ ⊢ 𝑆 <:𝑇

Γ ⊢ 𝑆 <:𝑇
(Trans-TV)

Γ ⊢ 𝑇1<:𝑆1 Γ ⊢ 𝑆2<:𝑇2
Γ ⊢ (𝑆1 → 𝑆2) <: (𝑇1 → 𝑇2)

(Arrow)
Γ ⊢ 𝑇1<:𝑆1 Γ, 𝑋 <:𝑇1 ⊢ 𝑆2<:𝑇2
Γ ⊢ (∀𝑋 <:𝑆1 . 𝑆2) <: (∀𝑋 <:𝑇1 .𝑇2)

(All)

Fig. 6. System F<: subtyping

𝐺 𝜑 𝐵 (Γ, 𝑆′,𝑇 ′) ⇐⇒

(∃𝑆. 𝐵 = ∅ ∧ 𝑆 ′ = 𝑆 ∧𝑇 ′
= Top) ∨ (∃𝑋 . 𝐵 = ∅ ∧ 𝑆 ′ = TVr 𝑋 ∧𝑇 ′

= TVr 𝑋 ) ∨

(∃𝑋,𝑌,𝑇 . 𝑋 <:𝑌 ∈ Γ ∧ 𝜑 (Γ, TVr 𝑌,𝑇 ) ∧ 𝐵 = ∅ ∧ 𝑆 ′ = TVr 𝑋 ∧𝑇 ′
= 𝑇 ) ∨

(∃𝑆1, 𝑆2,𝑇1,𝑇2 . 𝜑 (Γ,𝑇1, 𝑆1) ∧ 𝜑 (Γ,𝑇2, 𝑆2) ∧ 𝐵 = ∅ ∧ 𝑆 ′ = (𝑆1 → 𝑆2) ∧𝑇 ′
= (𝑇1 → 𝑇2)) ∨

(∃𝑋, 𝑆1, 𝑆2,𝑇1,𝑇2 . 𝜑 (Γ,𝑇1, 𝑆1) ∧ 𝜑 ((Γ, 𝑋 <:𝑇1), 𝑆2,𝑇2) ∧ 𝐵 = {𝑋 } ∧ 𝑆 ′ = (∀𝑋 <:𝑆1 . 𝑆2) ∧𝑇 ′
= (∀𝑋 <:𝑇1 .𝑇2))

Fig. 7. The operator associated to System F<: subtyping

8.2 Example: System F<: Subtyping

Next we look at the subtyping relation for System F<: [Aydemir et al. 2005; Cardelli et al. 1994;
Curien and Ghelli 1992], an example combining type bindings with environment bindings.
In this subsection, the variables in Var will stand for type variables, and 𝑋,𝑌, 𝑍 etc. will range

over them. The set Type of types, ranged over by 𝑆,𝑇 etc., is generated by the following grammar:

𝑇 ::= TVr 𝑋 | Top | 𝑇 → 𝑆 | ∀𝑋 <:𝑇 . 𝑆

So a type is either a (type) variable, or the maximum type Top, or a function type, or a universal
type. We assume that, in a universal type ∀𝑋 <:𝑇 . 𝑆 , the variable 𝑋 is bound in 𝑆 (but not in 𝑇 );
and types are equated modulo the induced notion of alpha-equivalence.
A (typing) environment Γ is a list of pairs variable-type, (𝑋,𝑇 ), written 𝑋 <:𝑇 . Env denotes the

set of environments. The domain dom Γ of an environment consists of all the variables 𝑋 for which
some 𝑋 <:𝑇 is in Γ. An environment is said to be well-formed, written wf Γ, if whenever Γ has the
form Γ

′, 𝑋 <:𝑇, Γ′′, we have that 𝑋 ∉ dom Γ
′ and FV 𝑇 ⊆ dom Γ

′Ði.e., thinking of the environment
as growing left-to-right with pairs, any new pair 𝑋 <:𝑇 must be such that 𝑋 is fresh and 𝑇 does
not bring new (free) variables. Subtyping is a ternary relation between environments, types and
types, written Γ ⊢ 𝑆 <:𝑇 , defined inductively in Fig. 6. On the way to instantiating Thm. 7 to this
system, we obtain the operator𝐺 shown in Fig. 7. Thm. 7’s conclusion would give us the following
induction principle, avoiding parameter variables in the LAllM case:

Prop 14. Let (P, Psupp : P → Pfin (Var)) be a parameter structure. Let 𝜑 : P → Env → Type →
Type → Bool and assume that:

- [cases different from LAllM omitted, as they don’t involve binders]
- LAllM: ∀𝑝,𝑋, 𝑆1, 𝑆2,𝑇1,𝑇2. 𝑋 ∉ Psupp 𝑝 ∧ 𝑋 ∉ FV (Γ, 𝑆1,𝑇1) ∧

Γ ⊢ 𝑇1<:𝑆1 ∧ (∀𝑞. 𝜑 𝑞 Γ 𝑇1 𝑆1) ∧ Γ, 𝑋 <:𝑇1 ⊢ 𝑆2<:𝑇2 ∧ (∀𝑞. 𝜑 𝑞 (Γ, 𝑋 <:𝑇1) 𝑆2 𝑇2) −→
𝜑 𝑝 Γ (∀𝑋 <:𝑆1. 𝑆2) (∀𝑋 <:𝑇1.𝑇2)

Then ∀𝑝, Γ, 𝑆,𝑇 . Γ ⊢ 𝑆 <:𝑇 −→ 𝜑 𝑝 Γ 𝑆 𝑇 .

However, when attempting to check Thm. 7’s hypotheses, we get stuck at T-refreshability.
Namely, when deploying the heuristic sketched in ğ6, we encounter a problem with Fig. 6’s (All)
rule, i.e., with the fifth disjunct in Fig. 7’s definition of 𝐺 . While focusing on the second hypothesis
of the (All) rule, for an equivariant 𝜑 : Env × Type × Type → Bool, we know that (i) 𝑋 ′ is fresh and
(ii) 𝜑 ((Γ, 𝑋 <:𝑇1), 𝑆2, 𝑇2), and want to prove (iii) 𝜑 ((Γ, 𝑋 ′

<:𝑇1), 𝑆2 [𝑋↔𝑋 ′], 𝑇2 [𝑋↔𝑋 ′]). (Note
that, in (iii), Γ and 𝑇1 are not subject to swapping, because in (All)’s conclusion they are not in the
scope of 𝑋 ’s binding.) However, 𝜑 ’s equivariance and (ii) only ensure

(iii’) 𝜑 ((Γ [𝑋↔𝑋 ′], 𝑋 ′
<:𝑇1 [𝑋↔𝑋 ′]), 𝑆2 [𝑋↔𝑋 ′],𝑇2 [𝑋↔𝑋 ′]),

i.e., the variation of (iii) where swapping is applied to Γ and 𝑇1. In short, we fall under one of
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those łhybridž situations (case (C)) discussed in Remark 10. Since 𝑋 ′ is fresh, we would have
Γ [𝑋 ↔𝑋 ′] = Γ and 𝑇1 [𝑋 ↔𝑋 ′] = 𝑇1, hence (iii) would follow from (iii’) and the problem would
be solved, but only provided that: (iv) 𝑋 is also fresh for Γ and 𝑇1.

But currently there is no way to prove (iv)Ðwhich is a shame, because we can prove that Γ, 𝑋 <:

𝑇1 ⊢ 𝑆2<:𝑇2 implies (iv), namely as follows: First, we prove by standard induction that, for all Γ′, 𝑆,𝑇 ,
Γ
′ ⊢ 𝑆 <:𝑇 implies wf Γ

′. So Γ, 𝑋 <:𝑇1 ⊢ 𝑆2<:𝑇2 implies wf (Γ, 𝑋 <:𝑇1), which by the definition of
wf implies that 𝑋 is fresh for Γ and FV 𝑇 ⊆ FV Γ, ultimately implying that 𝑋 is fresh for 𝑇 as well.

8.3 An Inductively Strengthened Criterion

Thus, we would solve the problem if we could take advantage of properties of the inductively
defined predicate when checking the conclusion of the T-refreshability condition. Stepping back
into ğ4’s general setting, we are led to a weakening of T-refreshability (highlighting the difference
from our original definition, part of Def. 6):

Def 15. Given a nominal set T= (𝑇, _[]T) and an operator 𝐺 : (𝑇 → Bool) → (Pfin (Var) → 𝑇 →
Bool), we say that𝐺 isweaklyT-refreshablewhen, for all𝜑 : 𝑇 → Bool such that ∀𝑡 ∈ 𝑇 . 𝜑 𝑡 −→ 𝐼𝐺 𝑡 ,
for all 𝐵 ∈ Pfin (Var) and 𝑡 ∈ 𝑇 , if 𝜑 is equivariant and 𝐺 𝜑 𝐵 𝑡 then there exists 𝐵′ ∈ Pfin (Var)
such that 𝐵′ ∩ SuppT𝑡 = ∅ and 𝐺 𝜑 𝐵′ 𝑡 .

Since in the statement of T-refreshability, 𝜑 morally stands for the inductively defined predicate
𝐼𝐺 , adding the hypothesis that 𝜑 actually implies 𝐼𝐺 makes sense. And indeed, with a bit of proof
mining we can strengthen Thm. 7 to use this weaker notion:

Thm 7 strengthened. Let T= (𝑇, _[]T) be a nominal set and 𝐺 : (T → Bool) → (Pfin (Var) →
𝑇 → Bool) be monotonic, T-equivariant and weakly T-refreshable. Then Thm. 7’s conclusion holds.

Proof. The only place in the proof of Thm. 7 where we use T-refreshability is when proving
(3) ∀𝑡 . 𝐼𝐺 𝑡 −→ 𝐼 ′𝐺 𝑡 , at a time when we have already proved the converse (1) ∀𝑡 . 𝐼 ′𝐺 𝑡 −→ 𝐼𝐺 𝑡 , and
have also proved that (2) 𝐼 ′𝐺 is equivariant. As part of the inductive proof of (3), fixing 𝐵 and 𝑡 and as-

suming (iii)𝐺 𝐼 ′𝐺 𝐵 𝑡 , we appliedT-refreshability to (2) and (iii) to obtain𝐵′ such that𝐵′∩SuppT𝑡 = ∅
and𝐺 𝜑 𝐵′ 𝑡 . But we can instead apply weakT-refreshability to (2), (iii) and (1) to the same effect. □

In conclusion, the strengthened version of Thm. 7 assumes weak T-refreshability instead of
T-refreshability, which allows one to take advantage of inductive information when instantiating
the theorem. And indeed, the System F<: typing example is now covered, in that Prop. 14 is a conse-
quence of the strengthened Thm. 7: Going back to the discussion at the end of ğ8.2, there the extra hy-
pothesis ∀𝑡 ∈ 𝑇 . 𝜑 𝑡 −→ 𝐼𝐺 𝑡 means that (ii) implies Γ, 𝑋 <:𝑇1 ⊢ 𝑆2<:𝑇2, which fills the pointed gap.

9 Strong Rule Induction for Infinitary Structures with Bindings

While our strong induction criterion discussed so far covers the vast majority of the cases of interest,
it is restricted to finitary structuresmodeled as nominal sets. However, infinitary structures featuring
bindings have also been studied, and they too are subjected to inductive definitions and proofs
that must cope with these bindings. Examples include infinitary extensions of first-order logic
(FOL) [Dickmann 1985; Keisler 1971; Marker 2016] (ğ9.1), a standard variant of Milner’s Calculus of
Communicating Systems (CCS) [Milner 1989] featuring infinitary choice (sum) and bindings of input
variables, versions of Hennessy-Milner logic featuring infinitary conjunctions and bindings for
recursion and/or quantification [Hennessy and Stirling 1985], and infinitary higher-order rewriting
and proof theory [Joachimski 2001]. Considering such infinitary logics and systems will lead to an
extension of our result that employs an an infinitary variation of nominal sets (ğ9.2). Finally, we will
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𝑓 ∈ Δ

Δ ⊢ 𝑓
(Hyp)

∀𝑓 ∈ 𝐹 . Δ ⊢ 𝑓

Δ ⊢ Conj 𝐹
(Conj-I)

Δ ⊢ Conj 𝐹 𝑓 ∈ 𝐹

Δ ⊢ 𝑓
(Conj-E)

Δ, 𝑓 ⊢ ⊥

Δ ⊢ Neg 𝑓
(Neg-I)

Δ ⊢ Neg 𝑓 Δ ⊢ 𝑓

Δ ⊢ ⊥
(Neg-E)

Δ ⊢ 𝑓

Δ ⊢ All 𝑉 𝑓

(All-I)

[𝑉 ∩
⋃

(Im FV Δ) = ∅]

Δ ⊢ All 𝑉 𝑓

Δ ⊢ 𝑓 [[𝜌]]

(All-E)

[Core 𝜌 ⊆ 𝑉 ]

Fig. 8. Natural deduction system for L𝜅1,𝜅2 . Equality rules omittedÐthey are the same as for standard FOL.

also look at situations that violate equivariance (ğ9.3), and show that such situations can still benefit
from strong induction with the price of being explicit about the involved binding structures (ğ9.4).

9.1 Example: Infinitary First-Order Logic

Given two infinite cardinals 𝜅1 and 𝜅2, the (𝜅1, 𝜅2)-infinitary FOL logic L𝜅1,𝜅2 [Dickmann 1985;
Keisler 1971; Marker 2016] is an extension of FOL which allows conjunctions / disjunctions of sets
of formulas of any cardinality < 𝜅1, and quantifications over sets of variables of any cardinality < 𝜅2.
(Lℵ1,ℵ0

is the best known version due to its importance for categorical logic [Makkai and Paré 1989].)
We let Var be an infinite set of cardinality 𝜅 = max (𝜅1, 𝜅2). The set Fmla = Fmla𝜅1,𝜅2 of L𝜅1,𝜅2-

formulas, ranged over by 𝑓 , is given by the grammar 𝑓 ::= Eq 𝑥 𝑦 | Neg 𝑓 | Conj 𝐹 | All 𝑉 𝑓

where 𝐹 ranges (recursively) over P<𝜅1 (Fmla) (i.e., over sets of formulas of cardinality < 𝜅1) and 𝑉
over P<𝜅2 (Var). Thus, a formula is either an equality, or a negation, or a conjunction over a set of
formulas 𝐹 , or a (simultaneous) quantification over a set of variables𝑉 . Again, formulas are identified
modulo alpha-equivalence, e.g., All {𝑥,𝑦} (Eq 𝑥 𝑦) and All {𝑥,𝑦} (Eq 𝑦 𝑥) are the same formula.

Fig. 8 shows a straightforward generalization to L𝜅1,𝜅2 of the standard natural deduction rules for
FOL, where Δ ranges over sets of formulas of cardinality < 𝜅 and 𝜌 over functions in Var → Var . ⊥
denotes the łfalsež formula, defined as Neg (Conj ∅). Recall that Core 𝜌 denotes the core (support) of
𝜌 , i.e., the set {𝑥 ∈ Var | 𝜌 𝑥 ≠ 𝑥}. Moreover, FV 𝑓 denotes the set of free variables of 𝑓 , and 𝑓 [[𝜌]]
denotes the (capture-free) parallel substitution of all free variables 𝑥 in 𝑓 with their 𝜌-image 𝜌 𝑥 . The
rules are standard except for accounting for the universal quantification of an entire set of variables
𝑉 . Thus, the introduction rule (All-I) assumes freshness of all the variables in 𝑉 for the hypotheses
in Δ, and the elimination rule (All-E) makes sure that only variables in 𝑉 are being instantiated.

By analogy with the finitary situations, we can hope to infer the following strong rule induction
principle, which allows łavoidingž the bound variables 𝑉 :

Prop 16. Let (P, Psupp : P → P<𝜅 (Var)) be a parameter structure. Let 𝜑 : P → P<𝜅 Fmla →
Fmla → Bool and assume that:

- [cases different from LAll-IM and LAll-EM omitted, as they don’t involve binders]
- LAll-IM: ∀𝑝,Δ, 𝑓 .

𝑉 ∩ Psupp 𝑝 = ∅ ∧ 𝑉 ∩
⋃

(Im FV Δ) = ∅ ∧ Δ ⊢ 𝑓 ∧ (∀𝑞. 𝜑 𝑞 Δ 𝑓 ) −→ 𝜑 𝑝 Δ (All 𝑉 𝑓 )

- LAll-EM: ∀𝑝,Δ, 𝑓 .
𝑉 ∩ Psupp 𝑝 = ∅ ∧ Core 𝜌 ⊆ 𝑉 ∧ Δ ⊢ (All 𝑉 𝑓 ) ∧ (∀𝑞. 𝜑 𝑞 Δ (All 𝑉 𝑓 )) −→ 𝜑 𝑝 Δ 𝑓

Then ∀𝑝,Δ, 𝑓 . Δ ⊢ 𝑓 −→ 𝜑 𝑝 Δ 𝑓 .

9.2 An Infinitary Generalization of the Criterion

So how do we go about obtaining Prop. 16 from the inductive definition of deduction in Fig. 8?
Everything seems to follow our usual pattern, except that Fmla is no longer a nominal set but only
a łnominal-set-likež structure, where sets are not finite but bounded by a cardinal 𝜅 . We say that a
set is 𝜅-small if its cardinality is < 𝜅; so P<𝜅 (𝑋 ) is the set of its 𝜅-small subsets of a set 𝑋 . Let us call
𝜅-permutation a bijection 𝜎 : Var → Var whose core is 𝜅-small, and let Perm𝜅 denote the set of 𝜅-
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permutations. For formulas, the 𝜅-permutation operator is here an action _[_] : Fmla → Perm𝜅 →
Fmla of Perm𝜅 on Fmla; and the set of free variables FV 𝜑 is no longer finite but only 𝜅-small.
We therefore seek structures generalizing nominal sets in order to reach the following goals:

(G1) Infinitary syntaxes with static bindings and their permutation and free-variable operators,
such as (Fmla, _[_] : Fmla → Perm𝜅 → Perm𝜅 , FV : Fmla → P<𝜅 (Var)) above, should form
such structuresÐi.e., the support operator should give exactly the free variables.

(G2) Our strong rule induction criterion should carry over to these structures.
(G3) Ideally, these structures should be closed under relevant constructions (such as sums, products,

container type extensions)Ðsimilarly to standard nominal sets.

However, the naive generalization of nominal sets to higher cardinalities 𝜅 , replacing łfinitež with
ł𝜅-smallnessž, does not work. We sketch it below, in preparation for something that will actually
work. Let us call 𝜅-pre-nominal set any pair A = (𝐴, _[_]A) where _[_]A : 𝐴 → Perm𝜅 → 𝐴 is an
action on𝐴 of the monoid (Perm𝜅 , 1Var , ◦). Given a 𝜅-pre-nominal setA = (𝐴, _[_]A), an 𝑎 ∈ 𝐴 and
a set𝑋 ⊆ Var , we define the notion of𝑋 supports 𝑎 by adapting that from nominal sets: as 𝑎[𝜎]A = 𝑎

holding for all 𝜎 ∈ Perm𝜅 such that∀𝑎 ∈ 𝑋 . 𝜎 𝑥 = 𝑥 (i.e.,𝑋 ⊆ Core 𝜎). Finally, we define a𝜅-nominal

set to be a 𝜅-pre-nominal set where every element has a 𝜅-small supporting set. Now, the problem is
that a fundamental property of nominal sets does not carry over to 𝜅-nominal sets A = (𝐴, _[_]A)
thus defined: Given 𝑎 ∈ 𝐴, the least supporting set of 𝑎, which for nominal sets gave us the support
SuppA 𝑎, is no longer guaranteed to exist. Here is a counterexample, which works for any 𝜅 > ℵ0:

Counterexample 17. Let Var∞ be the set of streams of variables. Given xs ∈ Var∞ and 𝑖 ∈ N, we
write xs𝑖 for the 𝑖’th variable in the stream. We say that two streams and ys are equivalent, written
xs ≡ ys, if they are equal almost everywhere, i.e., there exists 𝑛 ∈ N such that xs𝑖 = ys𝑖 for all 𝑖 ≥ 𝑛.
We let 𝐸 be Var∞/≡, the set of ≡-equivalence classes. Given xs ∈ Var∞, we let xs/≡ ∈ 𝐸 denote its
equivalence class. Since the standard permutation action on streams given by stream-map (so that
(xs[𝜎])𝑖 = 𝜎 xs𝑖 for each 𝑖) preserves≡, we can lift it to an operator on equivalence classes. This gives
the 𝜅-nominal set E = (𝐸, _[_]E) with _[_]E : 𝐸 → Perm → 𝐸 defined as (xs/≡) [𝜎]

E
= (xs[𝜎])/≡.

Now let xs ∈ Var∞ be any nonrepetitive stream. Each of the sets {𝑥𝑖 | 𝑖 ≥ 𝑛} supports xs/≡, but their
intersection

⋂

𝑖∈N{𝑥𝑖 | 𝑖 ≥ 𝑛}, which is empty, does not. So there is no least supporting set for xs/≡.

Thus, if we switch from finite-core to 𝜅-small-core permutations, we can no longer define the
support as the least supporting set. But with goal (G2) in mind, we can ask whether our Thm. 7
really needs these least supporting sets or it can work with any supporting sets subject to weaker
requirements. We discover these requirements looking back at Thm. 7’s proofÐwhere we have
underlined the invocations of properties of the support operator Supp = SuppTfor the considered

nominal set T= (𝑇, _[_]T). Fortunately, the minimality of Supp is not needed in any of these. Rather:
• the last invocation of łproperties of Suppž refers to the fact that Supp returns supporting sets;

• the other invocations only require the property of the support being semi-natural w.r.t. permu-
tation, in that Supp (𝑡 [𝜎]) ⊆ Im 𝜎 (Supp 𝑡) for all 𝑡 ∈ 𝑇 and 𝜎 ∈ Perm.

Thus, in the proof, we can replace the support operator with any operator satisfying the above two
properties, which we will still call łsupportž (and denote by Supp). These more flexible assumptions
allow a graceful transition from finiteness to 𝜅-smallness. Indeed, our proof of Thm. 7 is resilient
to this generalization as well: It only uses that finiteness is closed under permutation images and
finite unions, which is also true about 𝜅-smallness. This achieves goal (G2).

Remark 18. On the cardinality synchronization between support and permutations: For lifting the
proof of Thm. 7 from finiteness to𝜅-smallness, it is essential that, in our generalization, permutations
are allowed to łkeep upž in cardinality with the support, in that the permutations now have 𝜅-small
cores (rather than just finite cores), matching the𝜅-smallness of the support. Indeed, the permutation
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𝜏 that we use in the proof to łrefreshž the set 𝐵′ for avoiding Psupp 𝑝 and Supp (𝑡 [𝜎]) (fact (vi)) must
have its core’s cardinality equal to that of 𝐵′, which in the generalized version can be anything < 𝜅 .

Concerning goal (G1), it is easy to see that for the syntax of L𝜅1,𝜅2 (and any infinitary syntax for
that matter), the free-variable operator FV satisfies the above desirable properties, in that FV 𝑡 is a
supporting set for 𝑡 and FV (𝑡 [𝜎]) ⊆ Im 𝜎 (Supp 𝑡). We are therefore led to the following definition,
in the context of a fixed infinite cardinal 𝜅 and a fixed set of variables Var such that |Var | = 𝜅.

Def 19. A 𝜅-loosely-supported-nominal set (𝜅-LS-nominal set for short) is a triple A = (𝐴, _[_]A ,

SuppA) where _[_]A : 𝐴 → Perm𝜅 → 𝐴 and SuppA : 𝐴 → P<𝜅 (Var) are such that:
- (𝐴, _[_]A) is a 𝜅-pre-nominal set i.e., _[_]A is an action of the monoid (Perm𝜅 , ◦, 1𝐴) on 𝐴;

- SuppA returns supporting sets, i.e., (∀𝑥 ∈ SuppA . 𝜎 𝑥 = 𝑥) implies 𝑎[𝜎]A for all 𝑎 and 𝜎 ;

- SuppA is semi-natural, i.e., SuppA (𝑎[𝜎]) ⊆ Im 𝜎 (SuppA 𝑎) for all 𝑎 and 𝜎 .

The łlooselyž qualifier refers to the support operator SuppA no longer being łtiedž to give a
specific supporting set (the least one). Note that, thanks to the 𝜅-pre-nominal set axioms, semi-
naturality is actually equivalent to naturality: SuppA (𝑎[𝜎]) = Im 𝜎 (SuppA 𝑎) for all 𝑎 and 𝜎 .

So Thm. 7 generalizes to𝜅-LS-nominal sets.Weworkwith𝜅-LS-nominal setsT= (T , _[_]T, SuppT)
instead of nominal sets T= (T , _[_]T), and the bound-variable argument 𝐵 of the operator 𝐺 is
now in P<𝜅 (Var) rather than Pfin (Var). All the relevant notions, including equivariance and T-
refreshability, are defined like for nominal sets but replacing finiteness with 𝜅-smallness.

Thm 20. Thm. 7 (also in its ğ8.3 strengthened form) still holds true if in its statement we replace:
- the nominal setT= (T , _[_]T) and its support SuppTwith a𝜅-LS-nominal setT= (T , _[_]T, SuppT);

- 𝐺 : (T → Bool) → (Pfin (Var) → T → Bool) with 𝐺 : (T → Bool) → (P<𝜅 (Var) → T → Bool);

- the parameter structure (P, Psupp : P → Pfin (Var)) with (P, Psupp : P → P<𝜅 (Var)).

So Thm. 20 (re)becomes Thm. 7 when 𝜅 = ℵ0, and the 𝜅-LS-nominal set T= (T , _[_]T, SuppT)
is a nominal set T= (T , _[_]T) with its defined support operator. Moreover, when instantiating
Thm. 20’s operator𝐺 to that underlying the deduction system ofL𝜅1,𝜅2 , we obtain Prop. 16, as desired.
Verifying the necessary hypotheses proceeds similarly to the finitary cases, via the ğ6 heuristic.

We have not yet addressed (G3), which bears upon the criterion’s smooth instantiation, as it would
allow constructing the required LS-nominal sets compositionally. It turns out that LS-nominal sets
enjoy many of the closure properties of nominal sets [Pitts 2006; Urban 2008]. They are closed under
the usual covariant set-theoretic (type-theoretic) constructions such as sums, products, and lifting
via container types: both finitary ones such as lists, finite sets and bags, and infinitary ones such
as streams, infinite trees, etc. (Our technical report [van Brügge et al. 2025b, App. C] gives details.)

In conclusion, we have extended our strong rule induction criterion to handle rule-based systems
over infinitary structures with bindings, employing a mild extension of the nominal set axiomatiza-
tion that still caters for concepts such as equivariance and refreshability. This should cover most of
the infinitary situations of interest (including the ones cited at the beginning of ğ9). Our final stop
in this paper is a case study where equivariance itself fails.

9.3 Example: Infinitary Affine 𝜆-Calculus

In this subsection, Var will have cardinality ℵ1, the first uncountable cardinal (so 𝜅 = ℵ1). Recall
that,𝐴∞ denotes the set of streams of elements in a set𝐴, i.e. functions fromN to𝐴; we also let𝐴∞,≠

denote the subset of 𝐴∞ consisting of the nonrepetitive streams, i.e., injective functions. Given as ∈
𝐴∞, we write as𝑖 for the 𝑖’th item in the stream, and set as for the set of its elements {as𝑖 | 𝑖 ∈ N} (its
image as a function). We let xs, ys etc. range over the set Var∞,≠ of nonrepetitive streams of variables.

Following Mazza [2012], we define the syntax of infinitary 𝜆-calculus by the following grammar,
where 𝑡 ranges over infinitary 𝜆-terms (𝜆-iterms), i.e., elements of the syntax that is being introduced,
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affine (iVr 𝑥) (iVr)
affine 𝑡

affine (iLm 𝑥𝑠 𝑡)
(iLm)

affine 𝑡

lift (𝜆𝑡 ′ . affine 𝑡 ′ ∧ FV 𝑡 ′ ∩ FV 𝑡 = ∅) ts

∀𝑖, 𝑗 . 𝑖 ≠ 𝑗 −→ FV ts𝑖 ∩ FV ts 𝑗 = ∅

affine (iAp 𝑡 ts)
(iAp)

Fig. 9. The affine predicate

and ts over streams of 𝜆-iterms: 𝑡 ::= iVr 𝑥 | iAp 𝑡 ts | iLm xs 𝑡 . We assume that, in iLm xs 𝑡 ,
the variables from the stream xs are bound in 𝑡 ; and 𝜆-iterms are equated modulo the induced
notion of alpha-equivalence. ILTerm denotes the set of 𝜆-iterms. Given 𝑡 ∈ ILTerm, xs ∈ Var∞,≠ and
ts ∈ ILTerm∞, we write 𝑡 [ts/xs] for the 𝜆-iterm obtained by the simultaneous (capture-avoiding)
substitution of the free occurrences in 𝑡 of the variables xs𝑖 with the corresponding 𝜆-iterms ts𝑖 .
Central in Mazza’s development is the notion of a 𝜆-iterm being affine, i.e., having no repeated

occurrences of any free variable in it, or in any of its subterms (including subterms located under
binders). This is expressed by the inductive predicate affine : ILTerm → Bool from Fig. 9, to which
our Thm. 20 instantiates seamlessly, yielding the following strong induction principle. (Since 𝜅 = ℵ1,
P<𝜅 (Var) is Pcountable (Var), the set of countable subsets of Var .)

Prop 21. Let (P, Psupp : P → Pcountable (Var)) and 𝜑 : P → ILTerm → Bool, and assume that:

- [cases different from LiLmM omitted, as they don’t involve binders]
- LiLmM: ∀𝑝, xs, 𝑡 . set 𝑥𝑠 ∩ Psupp 𝑝 = ∅ ∧ affine 𝑡 ∧ (∀𝑞. 𝜑 𝑞 𝑡) −→ 𝜑 𝑝 (iLm xs 𝑡)

Then ∀𝑝, 𝑡 . affine 𝑡 −→ 𝜑 𝑝 𝑡 .

Since in our criterion the rules’ hypotheses are not required to fit any syntactic format, higher-
order operators and quantifiers such as Fig. 9’s lift (which lifts a predicate from elements to streams,
i.e., is defined by lift 𝜑 as = (∀𝑖 ∈ N. 𝜑 as𝑖 )) can be used freely.

Mazza [2012]’s goal is to establish an isomorphic translation between (finitary) 𝜆-calculus and
a suitably uniform version of affine infinitary 𝜆-calculus. This maps an application 𝜆-term Ap 𝑠 𝑡 to
an application 𝜆-iterm iAp 𝑠′ ts′, where 𝑠′ is (recursively) an infinitary counterpart of 𝑠 and ts′ is a
stream of copies of infinitary counterparts of 𝑡 , with the copies having disjoint variables but other-
wise having the same structure; and maps an abstraction 𝜆-term Lm 𝑥 𝑡 to an abstraction 𝜆-iterm
Lm xs′ 𝑡 ′, where 𝑡 ′ is an infinitary counterpart of 𝑡 and xs′ is a nonrepetitive stream of copies of 𝑥 .

To describe the image of this translation, Mazza fixes a countable subset Super ⊆ Var∞,≠ of non-
repetitive streams of variables called supervariables, having the property that any two are mutually
disjoint: ∀xs, ys ∈ Super . set xs ∩ set ys = ∅. The intention is restricting the 𝜆-iterms to only use
these as bindings. Namely, supervariables induce the notion of renaming equivalence expressed as
the relation ≈ : ILTerm → ILTerm → Bool which relates two 𝜆-iterms 𝑡 and 𝑡 ′ just in case they (1)

have the same (iVr, iLm, iAp)-structure (as trees), (2) only use supervariables in binders, (3) at the
leaves have variables appearing in the same supervariable, and (4) for both 𝑡 and 𝑡 ′ all the subterms
that form the righthand side of an application are mutually renaming equivalent. The≈ relation is de-
fined inductively in Fig. 10, via rules having a logical relation flavor. (Then uniformity of an 𝜆-iterm,
which together with affineness characterizes the translation’s image, is defined as that 𝜆-iterm being
renaming-equivalent to itself. Our technical report [van Brügge et al. 2025b, App. E] gives details.)

Note that the set Super is not guaranteed to be closed under permutation. Even worse, it actually
cannot be chosen so that it is closed, due to the disjointness assumption: If we permute some
variables in a supervariable xs we obtain a stream of variables that is distinct but not disjoint from
xs, which therefore cannot be a supervariable. For this reason, the monotonic operator underlying
the definition of ≈, and the relation ≈ itself, are hopelessly non-equivariant, which renders strong
induction impossible via current nominal criteria, including our own LS-nominal one. However,
intuition tells us that when inducting over ≈ we should still be able to avoid the bound variables
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xs ∈ Super {𝑥, 𝑥 ′} ⊆ set xs

iVr 𝑥 ≈ iVr 𝑥 ′
(iVr)

xs ∈ Super 𝑡 ≈ 𝑡 ′

iLm 𝑥𝑠 𝑡 ≈ iLm 𝑥𝑠 𝑡 ′
(iLm)

𝑡 ≈ 𝑡 ′

∀𝑡1, 𝑡2 . {𝑡1, 𝑡2} ⊆ set ts ∪ set ts′

−→ 𝑡1 ≈ 𝑡2

iAp 𝑡 ts ≈ iAp 𝑡 ′ ts′
(iAp)

Fig. 10. Mazza’s renaming equivalence relation

𝐺 𝜑 𝑏 (𝑠, 𝑠′) ⇐⇒

(1) (∃xs, 𝑥, 𝑥 ′ . 𝑏 = ⊥ ∧ 𝑠 = iVr 𝑥 ∧ 𝑠′ = iVr 𝑥 ′ ∧ xs ∈ Super ∧ {𝑥, 𝑥 ′} ⊆ set xs) ∨

(2) (∃xs, 𝑡, 𝑡 ′ . 𝜑 (𝑡, 𝑡 ′) ∧ 𝑏 = xs ∧ 𝑠 = iLm xs 𝑡 ∧ 𝑠′ = iLm xs 𝑡 ′ ∧ xs ∈ Super) ∨

(3) (∃𝑡, ts, 𝑡 ′, ts′ . 𝜑 (𝑡, 𝑡 ′) ∧ (∀𝑡1, 𝑡2 . {𝑡1, 𝑡2} ⊆ set ts ∪ set ts′

−→ 𝜑 (𝑡1, 𝑡2)) ∧ 𝑏 = ⊥ ∧ 𝑠 = iAp 𝑡 ts ∧ 𝑠′ = iAp 𝑡 ′ ts′)

Fig. 11. The operator associated to renaming equivalence

xs, similarly to how we did for affine, provided the parameters do not stretch too wide w.r.t.
supervariables. And a reasonable notion of not stretching too wide is touching only finitely many

supervariables. Thus, we can hope for the following strong induction principle for ≈, where the
first highlighted part formalizes this condition regarding supervariables:

Prop 22. Let (P, Psupp : P → Pcountable (Var)) be such that, for any 𝑝 ∈ P , {xs ∈ Super | set xs ∩

Psupp 𝑝 ≠ ∅} is finite. Let 𝜑 : P → ILTerm → ILTerm → Bool and assume the following:

- [cases different from LiLmM omitted, as they don’t involve binders]
- LiLmM: ∀𝑝, xs, 𝑡, 𝑡 ′ . set xs ∩ Psupp 𝑝 = ∅ ∧ xs ∈ Super ∧ 𝑡 ≈ 𝑡 ′ ∧ (∀𝑞. 𝜑 𝑞 𝑡 𝑡 ′) −→

𝜑 𝑝 (iLm xs 𝑡) (iLm xs 𝑡 ′)

Then ∀𝑝, 𝑡, 𝑡 ′ . 𝑡 ≈ 𝑡 ′ −→ 𝜑 𝑝 𝑡 𝑡 ′.

9.4 A Criterion with Explicit Binders

The more general question we are led to is: Can we still obtain strong induction in situations where

equivariance fails, namely in the presence of non-equivariant restrictions on binders (such as the above

supervariable restriction)? To answer this, our Thm. 20’s (and Thm. 7’s) blurred view of binders
needs to be sharpened. Indeed, the theorem refers to an inductive predicate’s underlying operator𝐺
that acts not on binders directly, but on sets 𝐵 of variables that are typically obtained by collecting
the variables bound in the rules’ conclusions; e.g., for the (iLm) rule for affine in Fig. 9, 𝐵 is set xs.
However, the set of variables in a binder can be oblivious to restrictions on binders, as is the case
with supervariables in the ≈ example: two streams, one in and one not in Super , can have the same
set of variables. Thus, when dealing with non-equivariant restrictions on binders, we must consider
binders as first-class citizens. And LS-nominal sets again come handy for modeling this.
In addition to the 𝜅-LS-nominal set of term-like items T = (T , _[_]T, SuppT) (as before), we

consider another 𝜅-LS-nominal set B = (B, _[_]B, SuppB) of items that we will call łbindersž, and
an operator 𝐺 : (T → Bool) → (B → T → Bool). Provided 𝐺 is monotonic, we again iterate it

to define the predicate 𝐼𝐺 : T → Bool inductively by the rule 𝐺 𝐼𝐺 𝑏 𝑡
𝐼𝐺 𝑡

. To tackle the problem with

non-equivariance, the key is to identify a suitable notion of relative equivariance, subject to sanity
conditions w.r.t. freshness. We fix a predicate bnd : B → Bool that singles out certain binders that
are well-formed w.r.t. our considered inductive definition, and define Perm𝜅,bnd to be the set of
𝜅-permutations 𝜎 : Var → Var that, applied via _[_]B , preserve well-formedness of binders, in
that ∀𝑏 ∈ B. bnd 𝑏 −→ bnd (𝑏 [𝜎]B). And we define bnd-equivariance by restricting equivariance
to the bijections in Perm𝜅,bnd . For example, a predicate 𝜑 : T → Bool is bnd-equivariant when 𝜑 𝑡

implies 𝜑 (𝑡 [𝜎]T) for all 𝑡 ∈ T and 𝜎 ∈ Perm𝜅,bnd .
We correspondingly generalize weak T-refreshability:𝐺 is called is weakly (T,B, bnd)-refreshable

when, for all 𝜑 : T → Bool, 𝑏 ∈ B and 𝑡 ∈ T , if ∀𝑡 ∈ 𝑇 . 𝜑 𝑡 −→ 𝐼𝐺 𝑡 , 𝜑 is bnd-equivariant and𝐺 𝜑 𝑏 𝑡 ,
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then there exists 𝑏′ ∈ B with SuppB 𝑏 ∩ SuppT𝑡 = ∅ and 𝐺 𝜑 𝑏′ 𝑡 . Moreover, 𝐺 is said to be bnd-
compatible if it only holds for items satisfying the bnd restriction:𝐺 𝑅 𝑏 𝑡 implies bnd 𝑏 for all 𝑅,𝑏, 𝑡 .

Finally, we want to be able express notions of size for our explicit binders that go beyond mere
cardinality, such as łtouching only finitely many supervariablesž. Rather than attempting to get too
specific here, we employ an abstract predicate bsmall : P(Var) → Bool (read łbinder-smallž) subject
to some sanity assumptions: bsmall is said to be closed under union if bsmall 𝑋 and bsmall 𝑌 implies
bsmall (𝑋 ∪ 𝑌 ) for all 𝑋,𝑌 ⊆ Var . Moreover, 𝐼𝐺 and bnd are said to be bsmall-compatible if 𝐼𝐺 𝑡

implies bsmall (SuppT𝑡) for all 𝑡 ∈ T , and bnd 𝑏 implies bsmall (SuppB 𝑏) for all 𝑏 ∈ B, respectively.
The above generalizes our previous setting for strong rule induction, which can be obtained by

taking B to be the 𝜅-LS-nominal set having B = P<𝜅 (Var), and _[_]
B and SuppB as the image and

identity operators, respectively; and taking bnd and bsmall to be vacuously true.
All the above assumptions should be expected to hold for most reasonable choices of the bsmall

predicate, and indeed they hold for the ≈ example if we take bsmall to mean łtouches only finitely
many supervariablesž. So we can hope for a strong induction theorem that works when further
restricting the parameters with a bsmall-ness assumption. And indeed, the proof of Thm. 20 (which
was in turn adapted from that of Thm. 7) almost works, save for the step where we proved the
existence of a permutation 𝜏 such that the facts labelled (vi) and (vii) hold. We want something
similar to the cardinality reasoning invoked there, which applies to 𝜅-smallness, to also apply to
binder-smallness. We call the predicate bnd bsmall-liftable when the following condition holds: For
all 𝐴,𝐴′ ∈ P<𝜅 (Var) and 𝑏 ∈ B such that bsmall 𝐴 and bsmall 𝐴′, if 𝐴′ ⊆ 𝐴 and SuppB 𝑏 ∩𝐴′

= ∅,
then there exists 𝜏 ∈ Perm𝜅,bnd such that Im 𝜏 (SuppB 𝑏) ∩𝐴 = ∅ and ∀𝑥 ∈ 𝐴′ . 𝜏 𝑥 = 𝑥 .

With these ingredients, we can prove a binder-explicit strong rule induction criterion. A parameter
structure P = (P, Psupp : P → P<𝜅 (Var)) is called bsmall-compatible if bsmall (Psupp 𝑝) for all 𝑝 .

Thm 23. Let T= (T , _[_]T, SuppT) and B = (B, _[_]B, SuppB) be 𝜅-LS-nominal sets, bnd : B →
Bool and bsmall : P(Var) → Bool predicates, and 𝐺 : (T → Bool) → (B → T → Bool) an oper-
ator, such that: (1) 𝐺 is monotonic, bnd-compatible, bnd-equivariant and (T,B, bnd)-refreshable;
(2) bsmall is closed under union; (3) 𝐼𝐺 and bnd are bsmall-compatible; (4) bnd is bsmall-liftable.

Let (P, Psupp) be a bsmall-compatible parameter structure and 𝜑 : P → T → Bool such that:

∀𝑝 ∈ P, 𝑡 ∈ T , 𝑏 ∈ B.

(

SuppB 𝑏 ∩ (Psupp 𝑝 ∪ SuppT𝑡) = ∅ ∧
𝐺 (𝜆𝑡 ′ . 𝐼𝐺 𝑡 ′ ∧ ∀𝑝′ ∈ P . 𝜑 𝑝′ 𝑡 ′) 𝑏 𝑡

)

−→ 𝜑 𝑝 𝑡 .

Then ∀𝑝 ∈ P, 𝑡 ∈ 𝑇 . 𝐼𝐺 𝑡 −→ 𝜑 𝑝 𝑡 .

Thm. 23 is, by design, a generalization of Thm. 20. Also, it can be instantiated to obtain the
desired strong induction for renaming equivalence, namely Prop. 21 (taking 𝜅 = ℵ1):
- T= (T , _[_]T, SuppT) taken as the ℵ1-LS-nominal set structure on T = ILTerm2;

- B = (B, _[_]B, SuppB) defined by taking B = Var∞,≠
⊥ = Var∞,≠ ∪ {⊥}, where the elements of

Var∞,≠ are the proper binders and ⊥ means łno binderž; and taking _[_]B and SuppB as the
liftings to Var∞,≠

⊥ of the map and set operators from Var∞,≠;

- bnd defined to hold for ⊥ and for any xs ∈ Super ;

- bsmall 𝐴 defined as ł{xs ∈ Super | set xs ∩ 𝐴 ≠ ∅} finitež;

- 𝐺 as shown in Fig. 11, making 𝐼𝐺 (the uncurried version of) ≈.
The verification of Thm. 23’s T-refreshability assumption goes by a straightforward variation of

our previous heuristic, workingwith permutations applied directly to binders (via _[_]B) rather than
to sets of bound variables (via Im). Moreover, the bnd-compatibility of 𝐺 , the closedness of bsmall

under union, and the bsmall-compatibility of bnd are immediate; and the bsmall-compatibility of
𝐼𝐺 follows by routine standard induction on 𝐼𝐺 . The only non-routine check is that of the bsmall-
liftability of bnd, which amounts to the following property: For all xs ∈ Super and countable
sets of variables 𝐴,𝐴′ that touch only finitely many supervariables and such that 𝐴′ ⊆ 𝐴 and 𝐴′
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does not touch xs, there exists a supervariable-preserving permutation 𝜎 on variables such that
{𝜎 𝑥 | 𝑥 ∈ set xs} ∩𝐴 = ∅ and Core 𝜎 ∩𝐴′

= ∅. This is proved by choosing a supervariable ys that
is distinct (hence disjoint) from xs and is not touched by 𝐴, and defining 𝜏 to swap the elements
of xs and ys componentwise and to be identity everywhere else (hence on 𝐴′ too).

10 Tool Support and Case Studies in Isabelle/HOL

We mechanized this paper’s general theorems, instances and (counter) examples in Isabelle/HOL
[Nipkow et al. 2002]. We further validated our induction principles in two proof developments:
transitivity of the System F<: subtyping (part of POPLmark [Aydemir et al. 2005]) and the isomor-
phism between the affine uniform infinitary 𝜆-calculus and the standard 𝜆-calculus [Mazza 2012].
(Our technical report [van Brügge et al. 2025b, Apps. E, F, and G.3] gives details.) We also pursued
an abstract case study: proving the rule-format based criterion of Urban et al. [2007] as an instance
of our theorem. (Our technical report [van Brügge et al. 2025b, App. A] gives details.)
To support the use of the general theorems in concrete instances, we implemented a defini-

tional extension of Isabelle’s inductive specification and proof facilities, exported to users as new
commands binder_datatype, binder_inductive, and make_binder_inductive, and the proof method
binder_induction. The implementation and mechanization are available [van Brügge et al. 2025a].
From a user specification of the syntax and its binders, the command binder_datatype defines

the type of terms for that syntax quotiented to alpha-equivalence along the foundations sketched
by Blanchette et al. [2019]. It also defines the constructors, renaming and free variable operators,
proves their basic properties, and infers structural induction and recursion principles. We deployed
it to obtain all this paper’s datatypes: 𝜆-terms, 𝜋-calculus processes and commitments, System F<:
types, L𝜅1,𝜅2-formulas, and 𝜆-iterms. (Our technical report [van Brügge et al. 2025b, Apps. G.1 and
D] gives details.)

Our general rule induction criteria, Thms. 7, 20 and 23, were formalized using Isabelle’s locales
[Ballarin 2014; Kammüller et al. 1999], a module system allowing to fix parameters, make assump-
tions about them, and infer consequences from these assumptions. For example, with Thm. 20 the
parameters are the tuple T= (T , _[_]T, SuppT) and the operator 𝐺 : (T → Bool) → (P<𝜅 (Var) →
T → Bool), the assumptions are that T is a 𝜅-LS-nominal set and 𝐺 is monotonic, equivariant
and (weakly) T-refreshable; and the culmination of what is being inferred in that locale is the
conclusion of Thm. 20, i.e., that the indicated strong rule induction holds for the predicate 𝐼𝐺
defined inductively from𝐺 . Similarly for Thm. 7 and Thm. 23. Since Thm. 23 is more general than
Thm. 20 which in turn is more general than Thm. 7, we only proved Thm. 23 directly and inferred
Thm. 20 by showing how the former’s parameters and assumptions can be instantiated to the
latter’s parameters and assumptions via a sublocale relationship (and similarly for inferring Thm. 7
from Thm. 20). Results stated in a locale can be obtained by interpretation, Isabelle’s mechanism
for instantiating a locale’s parameters with concrete values and discharging the assumptions.

The commands binder_inductive and make_binder_inductive provide a high-level language for
the user to endow an inductive predicates with a strong (binding-aware) rule induction principle
(as an instance of our general result). binder_inductive behaves like the Isabelle/HOL inductive
command for specifying standard inductive predicates by instantiating the Knaster-Tarski theorem
(a command available in most HOL-based provers), but it additionally attempts to formulate and
prove a strong rule induction principle. Namely, from a user specification of such a predicate using
syntax identical to that required by the inductive command, our tool derives the relevant nominal
set (or 𝜅-LS-nominal set) infrastructure and the low-level operator 𝐺 (as shown in this paper’s
examples), proves an instance of Thm. 20 for𝐺 , and outputs the strong induction theorem and other
useful results such as the inductive predicate’s equivariance. Currently, the tool automates the proofs
of the (𝜅-LS-)nominal set axioms and equivariance, but requires the user to prove T-refreshabilityÐ
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typically following the heuristic described in Section 6, which we have supported via some Isabelle
tactics. The command make_binder_inductive is an incremental alternative to binder_inductive,
allowing to decouple the standard inductive definition of a predicate (via łinductivež) from its
registration to produce a strong rule induction principle for it. Thus, issuing binder_inductive is
equivalent to issuing an łinductivež followed by make_binder_inductive. The advantage of this
decoupled approach is that in between the łinductivež and make_binder_inductive commands one
can state and prove any inductive properties of the predicate needed in the proof of the assumptions
for strong rule induction (as illustrated at the end of ğ8.2). The concrete strong rule induction
priniciples for most examples (Props. 2, 13, 14, 16, 21, and all others mentioned in our technical
report [van Brügge et al. 2025b, Apps. B and F]) were obtained using binder_inductive. The strong
rule induction principles requiring explicit binders (Thm. 23) such as Prop. 22 and others from our
technical report [van Brügge et al. 2025b, App. E] were obtained by manual locale interpretation.
Finally, our proof method binder_induction makes strong induction convenient to deploy in

proofs. It allows the users to start induction while indicating the parameters to be avoided, as
opposed to building the parameter structure explicitly.
We conclude with an example of our toolbox for the working syntax-with-bindings formalizer

in action: the declaration of the datatype of System F<: types, the subtyping relation, and an
example proof outline (of weakening of subtyping) with essential elements particular to our tools
highlighted, namely the binding information for the datatype’s constructorsÐhere, the fact that the
Forall constructor (denoted by ∀ in ğ8.2) binds the first (variable) argument into the third argument,
and the parameters to be avoided when applying strong rule induction to prove weakening.

binder_datatype ’tvar sftypeP = TVr ’tvar | Top | Fun (’var sftypeP) (’var sftypeP)
| Forall (𝑥 ::’tvar) (’tvar typ) (t::’tvar typ) binds 𝑥 in t

type_synonym sftype = tvar sftypeP

inductive ty :: (tvar × sftype) list→ tvar sftype → tvar sftype → bool (_ ⊢ _ <: _) where
SA_Top: wf Γ =⇒ closed_in S Γ =⇒ Γ ⊢ S <: Top
| SA_Refl_TVar: wf Γ =⇒ closed_in (TyVar x) Γ =⇒ Γ ⊢ TyVar x <: TyVar x
| SA_Trans_TVar: (x, U) ∈ set Γ =⇒ Γ ⊢ U <: T =⇒ Γ ⊢ TyVar x <: T
| SA_Arrow: Γ ⊢ T1 <: S1 =⇒ Γ ⊢ S2 <: T2 =⇒ Γ ⊢ Fun S1 S2 <: Fun T1 T2
| SA_All: Γ ⊢ T1 <: S1 =⇒ Γ;(x,T1) ⊢ S2 <: T2 =⇒ Γ ⊢ Forall x S1 S2 <: Forall x T1 T2
... 2 immediate lemmas about typing (mentioned at the end of ğ8.2) proved by rule induction

make_binder_inductive ty
... 30 lines proof of weak T-refreshability using the heuristic (ğ6)

lemma ty_weakening: JΓ ⊢ 𝑆 <: 𝑇 ; ⊢ wf (Γ;Δ)K =⇒ Γ;Δ ⊢ 𝑆 <: 𝑇

proof (binder_induction Γ 𝑆 𝑇 avoiding: dom Δ rule: ty_strong_induct)
... 12 lines routine proof using the strong induction principle’s Barendregt convention

Note that our datatype ’var sftypeP for System F<: types is polymorphic in the type ’tvar of
(type) variablesÐand this is the case with all our datatypes for this paper’s examples. This is to
achieve slightly higher generality. Namely, instead of working with a fixed set of variables of suitable
cardinality (which in the finitary case is just ℵ0), that set is kept as a parameterÐand in Isabelle/HOL,
taking advantage of polymorphism, this is a type variable ’tvar of type class that specifies the
cardinality constraint. (The binder_datatype command automatically assigns ’tvar to have the
suitable type class.) This allows more flexibility in case we want to nest the given datatype inside
another datatype that perhaps requires larger sets of variables. But once the exact datatypes needed
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for a case study have been decided, to cut down the unnecessary polymorphism we instantiate
the type variables with fixed types; here, we instantiate ’tvar with a fixed type tvar of suitable
cardinality (here, countable), and sftype is introduced as an Isabelle type synonym for tvar sftypeP,
i.e., for the instance of the polymorphic type ’tvar sftypeP with the fixed type tvar. The subsequent
inductive and make_binder_inductive commands shown above use this monomorphic type.

11 Further Related Work

The proximal related work is Urban et al. [2007], which we have extensively discussed throughout
this paper. It is the literature’s most general account of rule induction obeying Barendregt’s variable
convention. Its syntactic format criterion generalizes previous others, which operate on particular
syntaxes [Bengtson 2010; McKinna and Pollack 1999; Norrish 2006; Urban and Norrish 2005].

Complementary to ourwork on binding-aware rule induction is work on binding-aware datatypes.
This includes general mechanisms for building alpha-quotiented datatypes for binding signatures
[Blanchette et al. 2019; Pitts 2006; Urban and Kaliszyk 2012], and also Barendregt-convention ob-
serving (strong) structural induction and recursion [Blanchette et al. 2019; Norrish 2004; Pitts 2006].
Since structural induction can be regarded as a particular case of rule induction (for the monotonic
operator that applies the datatype’s constructors), our work can be seen as generalizing the strong in-
duction components of those worksÐalthough the main difficulty there lies with the construction of
the datatypes and the inference of the recursion principles, which are orthogonal to our contribution.
Our tool described in ğ10 provides support for both binding-aware rule induction and binding-

aware datatypes in Isabelle. It is more expressive than Nominal Isabelle [Urban and Tasson 2005]
(including the Nominal 2 variant [Urban and Kaliszyk 2012]) in both the allowed datatypes and
inductive predicatesÐreflecting the higher generality and flexibility of our criterion compared to
Urban et al. [2007]. But it is currently in a prototype stage, lacking Nominal Isabelle’s high degree
of automation which has been finetuned based on feedback from its many users over the years. We
are contemplating a future integration of these two tools, combining the best of both worlds.
We are not the first to relax the finite support assumption of nominal setsÐPitts [2013, ğ2.10]

summarizes existing approaches. On the way to his completeness theorem for nominal logic,
Cheney [2006] generalizes the support operator by noticing that the finite subsets of atoms (in
our terminology, variables) Pfin (Var) form an ideal of P(Var) that contains all singleton sets {𝑥},
and replacing Pfin (Var) with an arbitrary such ideal I, thus introducing I-nominal setsÐdefined
as pre-nominal sets such that every element has a supporting set of atoms from I. The role of
I-nominal sets is that nominal logic deduction becomes complete w.r.t. these looser, ideal-supported
models. Since P<𝜅 (Var) is also such an ideal, Cheney’sI -nominal sets cover structures with infinite
support. However, regardless of the ideal I (be it Pfin (Var), or P<𝜅 (Var), etc.), Cheney still defines
the notion of supporting set using swapping, which is equivalent to using finite-core permutations,
whereas we allow larger permutations whose cores have cardinality < 𝜅. While staying with
finite-core permutations was suitable for Cheney’s goal of proving completeness, as we discuss in
Remark 18 strong induction coping with 𝜅-small support requires 𝜅-small-core permutations. Since
I-nominal sets are (semi-)natural w.r.t. finite-core permutations only, a variation of our Thm. 20
would apply to I-nominal sets if we restricted the parameters to be finitely supported (i.e., Psupp
to return finite sets). But being able to avoid only finitely many variables when proving facts about
structures having infinitely many (free) variables would not be very useful.
Dowek and Gabbay [2012] introduce permissive nominal sets, a generalization of nominal sets

based on separating atoms (variables) in two categories, along the distinction between free and
bound variables. The elements in permissive nominal sets have supporting permission sets, which
contain finitely many atoms of one category and co-finitely many of the other; this ensures the
existence of least supporting sets. Like with Cheney’s I-nominal sets and differently from our
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𝜅-LS-nominal sets, the notion of supporting set is defined there using finite-core permutations.
Permissive nominal sets are the semantic underpinning of permissive nominal logic [Dowek and
Gabbay 2012, 2023; Dowek et al. 2010], an elaborate extension of nominal logic with enhanced
support for contextual and higher-order reasoning. Another difference between both I-nominal sets
and permissive nominal sets and our LS-nominal sets is that, the former retain the minimality of the
support whereas in the latter we replaced minimality with the weaker axiom of (semi-)naturality.

Gabbay [2007] develops a nominal-style axiomatic set theory, FMG (Fraenkel-Mostowski Gener-
alized), which generalizes the Fraenkel-Mostowski set theory previously introduced by Gabbay and
Pitts [2002] as a foundation for nominal logic. In FMG, łsmallnessž of a set (such as the support of an
item) no longer means łfinitenessž, but the possibility to internally well-order that set. This covers
in particular cardinality bounds like the ones we use in LS-nominal sets. When developing his
theory, Gabbay also constructs datatypes and develops mechanisms for extending functions from
representatives to equivalence classes (via his Barendregt abstractive functions). Our preliminary
investigations suggest that our criterion for strong rule induction could be adapted to Gabbay’s
FMG, complementing his results about datatypes and recursive-function definition principles.

Like the above works, we operate within (a transfinite generalization of) the nominal paradigm,
where the names of the variables are visible, but ultimately irrelevant in that their choice does not
matter. Barendregt’s convention only makes sense in this paradigm. The other two major paradigms
on representing and reasoning about syntax with bindings are based on nameless / De Bruijn repre-
sentations [de Bruijn 1972] (and its type-safe and scope-safe generalizations, e.g., [Allais et al. 2018;
Fiore et al. 1999; Schäfer et al. 2015]) and higher-order abstract syntax (HOAS) [Baelde et al. 2014;
Harper et al. 1987; Pfenning and Elliott 1988; Pfenning and Schürmann 1999; Pientka 2010]. (Cross-
paradigm hybrids have also been proposed, e.g., [Aydemir et al. 2008; Charguéraud 2012; Felty and
Momigliano 2012; McKinna and Pollack 1999; Pollack et al. 2012].) There are relative pros and cons
between these paradigms [Abel et al. 2017; Berghofer and Urban 2006; Felty and Momigliano 2012;
Gheri and Popescu 2020; Kaiser et al. 2017; Norrish and Vestergaard 2007]. An advantage of the nom-
inal paradigm is faithfulness to the informal, textbook descriptions of the systems. Our contribution
is also in this direction, by lowering the informal-formal gap in nominal-style strong rule induction.

While our LS-nominal sets accommodate both infinitely branching and infinitely deep (non-well-
founded) syntax, our infinitary examples (in ğ9.1, ğ9.3, and our technical report [van Brügge et al.
2025b, App. E]) only involve the former. The latter also has a rich literatureÐcentered around con-
cepts such as Böhm, Lévy-Longo and Berarducci trees [Barendregt and Klop 2009; Berarducci and
Dezani-Ciancaglini 1999], used in the 𝜆-calculus semantics. While inductively defined predicates on
non-well-founded trees will fall under our strong induction criterion, such structures are often best
explored not inductively, but coinductively, i.e., via predicates defined not as least but as greatest
fixed points. We leave as future work the study of Barendregt’s variable convention for rule-based
coinduction. This would complement existing results on nominal-syle codatypes and corecursion
[Blanchette et al. 2019; Kurz et al. 2012, 2013; Milius and Wißmann 2015; Popescu 2024].
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