
Nature Geoscience | Volume 18 | January 2025 | 78–83 78

nature geoscience

Article https://doi.org/10.1038/s41561-024-01606-y

Preservation of organic carbon in marine 
sediments sustained by sorption and 
transformation processes
 

Peyman Babakhani    1,2  , Andrew W. Dale    3, Clare Woulds4, 
Oliver W. Moore    1,5, Ke-Qing Xiao    1,6, Lisa Curti    1 & Caroline L. Peacock    1

Controls on organic carbon preservation in marine sediments remain 
controversial but crucial for understanding past and future climate 
dynamics. Here we develop a conceptual-mathematical model to determine 
the key processes for the preservation of organic carbon. The model 
considers the major processes involved in the breakdown of organic carbon, 
including dissolved organic carbon hydrolysis, mixing, remineralization, 
mineral sorption and molecular transformation. This allows redefining 
of burial efficiency as preservation efficiency, which considers both 
particulate organic carbon and mineral-phase organic carbon. We show that 
preservation efficiency is almost three times higher than the conventionally 
defi ned burial efficiency and reconciles predictions with global field data. 
Kinetic sorption and transformation are the dominant controls on organic 
carbon preservation. We conclude that a synergistic effect between kinetic 
sorption and molecular transformation (geopolymerization) creates a 
mineral shuttle in which mineral-phase organic carbon is protected from 
remineralization in the surface sediment and released at depth. The results 
explain why transformed organic carbon persists over long timescales and 
increases with depth.

The preservation of organic carbon (OC) in marine sediments is 
critical to the global carbon and oxygen cycles and, thus, to Earth’s 
climate and atmospheric composition1–4, the distribution of energy 
resources5,6 and finding potential ocean-based mitigation strategies 
for the removal of excess atmospheric carbon dioxide that drives 
climate change7,8. The controls on carbon preservation, however, 
are currently unclear9–11. In the surface ocean, primary producers or 
phytoplankton take up atmospheric carbon dioxide to generate bio-
mass, a fraction of which reaches the sediment as particulate OC (POC) 
and undergoes a series of complex degradation pathways, which 
may ultimately lead to either carbon remineralization or burial9,12. 
However, this paradigm neglects the role of dissolved OC (DOC) in 

carbon preservation13,14. DOC, which is produced from the hydrolysis 
of POC, is a key intermediary in carbon cycling before OC is remin-
eralized to inorganic carbon, for example, carbon dioxide. Present 
concentrations of DOC in marine sediment pore waters, however, 
may seem low15, leading to a lack of knowledge on its role in OC pres-
ervation and cycling. Nevertheless, experimental investigations and 
field measurements6,12,16–18 suggest that DOC may accumulate over 
time as a result of its sorption to minerals forming mineral-phase OC 
(MOC) and/or its molecular transformation within sediments known 
as geopolymerization13,14,16,18–21, or its dilution in the water column after 
diffusing out from sediments22,23, and may thus substantially impact 
the carbon cycle on Earth24,25.

Received: 2 May 2023

Accepted: 29 October 2024

Published online: 3 January 2025

 Check for updates

1School of Earth and Environment, University of Leeds, Leeds, UK. 2Department of Civil Engineering and Management, University of Manchester, 
Manchester, UK. 3GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Germany. 4School of Geography, University of Leeds, Leeds, UK. 5Department 
of Environment and Geography, University of York, York, UK. 6Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences,  
Beijing, China.  e-mail: peyman.babakhani@manchester.ac.uk

http://www.nature.com/naturegeoscience
https://doi.org/10.1038/s41561-024-01606-y
http://orcid.org/0000-0002-5318-4320
http://orcid.org/0000-0002-4186-5997
http://orcid.org/0000-0002-2014-0065
http://orcid.org/0000-0001-6809-9340
http://orcid.org/0000-0002-5700-3291
http://orcid.org/0000-0003-3754-9294
http://crossmark.crossref.org/dialog/?doi=10.1038/s41561-024-01606-y&domain=pdf
mailto:peyman.babakhani@manchester.ac.uk


Nature Geoscience | Volume 18 | January 2025 | 78–83 79

Article https://doi.org/10.1038/s41561-024-01606-y

via a direct transfer of DOC1 to lrDOC14 (Fig. 1). We further consider 
the geopolymerization of low-MW DOC (DOCm) to higher-MW mol-
ecules herein referred to as geopolymerized substances (GPS-DOC 
or simply GPS)21,29 with increasingly lower reactivity (GPS1, GPS2 and 
so on), which eventually contribute to the lrDOC pool (Fig. 1). Our 
lrDOC pool, thus, comprises both intrinsically undegradable DOC 
and aged molecularly transformed GPS. Reactivities of DOC pools 
are selected on the basis of their lifetimes in the water column and are 
categorized as labile and semi-labile (DOC1, DOC2 and so on, grouped 
as (semi)labile-DOC, with a lifetime of ~9 h to ~1.5 years), mid-reactive 
(GPS1, GPS2 and so on, with a lifetime of ~20 years) and least-reactive 
(lrDOC, with a lifetime of ~16,000 years)24. To represent the sorption 
of DOC to minerals, we include a two-site description of ‘equilibrium 
adsorption’16,18,19 and ‘kinetic sorption/desorption’. Kinetic sorption/
desorption, which is a general description of sorption/desorption pro-
cesses that are not in equilibrium, mostly aims to represent occlusion 
within minerals, co-precipitation and/or aggregation with minerals, 
and reverse processes that result in the desorption of carbon from 
the mineral matrix17,18,30. The net result of the kinetic sorption–desorp-
tion leads to the formation of MOC31–33 pools, including (semi)labile 
DOC-MOC, GPS-MOC and lrDOC-MOC (Fig. 1). These MOC pools are 
then transported with minerals similar to POC pools that are mixed 
with minerals, although MOC is different from POC by origin, that is, 
POC originates from the water column whereas MOC is formed in the 
sediments via kinetic sorption of DOC to minerals.

We incorporate our conceptual model (Fig. 1) into a vertically 
resolved RTM for marine sediments that couples transport processes 
(for example, sediment burial velocity before compaction, and biotur-
bation mixing)34 and biogeochemical reactions (for example, DOC rem-
ineralization). We execute the validated RTM in a Monte Carlo approach 
(>1,000 simulations) using input parameters that are varied randomly 

So far, the contributions of these processes to OC preservation 
and, thus, carbon cycling have received relatively little attention and 
are poorly known. Moreover, the conventional concept of OC burial 
efficiency (BE) in sediments—an indicator of the potential to preserve 
carbon and quantify global budgets of carbon in modern and ancient 
sediments1,4,26–28—is conceptually incorrect if preservation of OC via 
DOC sorption and transformation is considerable and ignored. We 
redefine BE as preservation efficiency (PE), which includes both con-
ventionally considered POC burial and MOC preservation.

Here, we develop a mechanistic reaction-transport model (RTM) 
that considers the key processes of OC preservation in marine sedi-
ments via DOC cycling. After extensive validation, the model is used 
alongside Monte Carlo and artificial neural network (ANN) analyses 
to provide global insights into the role of the processes controlling 
carbon preservation in marine sediments and show where and how 
preservation occurs.

Conceptualizing carbon cycling and preservation 
in sediments
Our conceptual model for carbon cycling and preservation in sedi-
ments begins with the hydrolysis of several discrete POC fractions 
(POC1, POC2 and so on) to a single DOC pool (DOC1) of high molecular 
weight (MW) (Fig. 1). Continuing sequential hydrolysis of DOC1 pro-
duces DOC with increasingly lower MW (DOC2, DOC3 and so on) and 
higher reactivity (remineralization rate), analogous to the recent para-
digm for DOC cycling in the water column20. The sequential hydrolysis 
approach is markedly different from the previous hypothesis (Fig. 1), 
where each discrete POC fraction produces a corresponding DOC 
pool with similar reactivity to its parent POC pool14. To represent the 
production of least-reactive DOC (lrDOC), we include the direct accu-
mulation of freshly hydrolysed but intrinsically undegradable DOC 
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Fig. 1 | Conceptual model for DOC cycling in sediments. The proposed 
conceptual model incorporates mechanisms of geopolymerization, equilibrium 
adsorption and kinetic sorption and a modified concept of hydrolysis that 
follows DOC cycling in the water column20. Model schematic nomenclature 
includes POC, GPS, lrDOC, various mineral-sorbed DOC ((semi)labile DOC-MOC, 
GPS-MOC and lrDOC-MOC), DIC and MW. All DOC, GPS and lrDOC pools can 
interact with minerals through equilibrium adsorption and kinetic sorption. 
In general, POC pools that originate from the water column can be hydrolysed 

at any depth in the sediment or remain unhydrolysed. Their transport in the 
sediment is similar to the sediment solid minerals. MOC pools are transported 
similarly to sediment solid minerals and POC, but they originate from the net 
sorption of DOC, GPS and lrDOC to minerals and are further assumed to be 
unreactive unless the carbon is desorbed from minerals. Part of the POC, which 
is not hydrolysed at a given depth, and part of the MOC, which is not desorbed at 
that depth, are considered to be permanently buried.
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within globally relevant ranges (Supplementary Table 1) based on 
statistical distributions taken from six field-modelling datasets (Sup-
plementary Figs. 1 and 2) and ten previous studies (Supplementary 
Table 2) to examine the broader role of different OC preservation 
processes (Supplementary Fig. 3, stage 1).

We then use the RTM-generated dataset to train an ANN35 and deter-
mine the importance of processes that control OC preservation (Sup-
plementary Fig. 3, stage 2). Our model allows both MOC formation in the 
solid-phase OC and POC burial at depth to be included in the definition 
of PE in contrast to the conventional approach where only POC burial is 
considered in the model27,28. The equations for the conventional and the 
newly defined PE (equations (6) and (7)) and other details of our model 
development, testing and execution are given in Supplementary Sections 1 
and 2. We use PE to evaluate the overall model performance against global 
data. We further validate our mathematical model and other aspects of 
our model as summarized in Methods and fully described in Supplemen-
tary Section 2, Supplementary Figs. 4–12 and Supplementary Tables 3–7.

Model evaluation
The incorporation of MOC into models of PE is compared with the clas-
sical approach28,36 that considers only POC in Fig. 2 (refs. 12,36). The 
PE of POC alone cannot explain the observed trend and envelope of PE 
values versus sediment accumulation rate (Fig. 2a, dashed lines)12,36. 
Only when the preservation of MOC is considered along with POC does 
the vast majority of model output data fall inside the envelope (Fig. 2b).

Many different factors have been proposed to explain OC preserva-
tion in marine sediments9,12. The ability of our model to predict available 
global PE data indicates that consideration of DOC cycling and related 
processes, especially sorption and geopolymerization, is critical to 
predicting PE. This is remarkable because no model parameters were 
tuned in these simulations (Fig. 2). Our approach of combining RTM, 
ANN and Monte Carlo allows the process-based understanding of 

carbon dynamics to be translated into global understanding without 
the necessity for model fitting to specific sites that may introduce 
uncertainties related to site-specific conditions.

Our model definition of POC hydrolysis is similar to that consid-
ered as POC remineralization elsewhere9,27,28, and thus, our estimation 
for PE of POC is similar to the conventional approach28, which also 
underestimates field PE with estimated global values that are less than 
10% (ref. 28). Our model, however, additionally tracks DOC hydrolysed 
from POC and its sorption to minerals, which eventually leads to a much 
better prediction of PE field data compared with the conventional 
approach. The mean values for all Monte Carlo model runs (n = 1,450) 
are 16.1 ± 1% and 43.8 ± 1% for PE of POC and POC + MOC, respectively.

The role of different processes in carbon 
preservation
We quantify the importance of six model processes in controlling 
key indicators of carbon preservation, including PE and MOC forma-
tion rates (or DOC sorption rates). Three processes are traditionally 
understood to be important for carbon preservation37, namely, DOC 
hydrolysis to increasingly lower-MW DOC, DOC remineralization and 
sediment mixing by fauna. The importance of the other three processes 
is disputed or poorly understood, namely, kinetic sorption, equilibrium 
adsorption and geopolymerization (Supplementary Tables 8 and 9).

The results reveal that kinetic sorption is the most important 
process for PE with a relative importance of 30.2 ± 3% among the six 
processes, followed by mixing (19.7 ± 2%), remineralization (15.4 ± 1%), 
geopolymerization (12.9 ± 1%), DOC hydrolysis (12.2 ± 1%) and equilib-
rium adsorption (9.6 ± 1%) (Fig. 3a). In general, processes that control 
POC burial flux and carbon turnover at depth, such as mixing and rem-
ineralization, are more important for PE than geopolymerization and 
DOC hydrolysis. We also investigate the most important processes for 
the preservation rate of DOC-MOC species (Supplementary Fig. 13) that 
are averaged in Fig. 3b. These show that geopolymerization (29.8 ± 2% 
relative to all six processes) is the most important process for DOC-MOC 
preservation, followed by kinetic sorption (22.6 ± 3%), DOC hydrolysis 
(21.0 ± 2%), remineralization (14.6 ± 1%), mixing (7.1 ± 1%) and equilibrium 
adsorption (4.9 ± 1%) (Fig. 3b). The highest importance of the geopoly-
merization process in controlling DOC-MOC preservation adds weight 
to the existence of a synergic effect of geopolymerization with DOC 
sorption, in which geopolymerization renders DOC less reactive and 
sorption provides extra protection from microbial remineralization18,21.
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generated for 1,450 model runs in a Monte Carlo approach (transparent black 
dots) for the conventional approach to calculate PE of POC that considers only 
POC (a) and for the newly defined PE that considers both POC and MOC (b). These 
are compared with field data from previous studies12,36. The spread of model data 
is derived from a normal distribution of the net sediment accumulation rate data 
observed in the global grid datasets (Supplementary Figs. 1 and 2). The envelope 
line (dashed line) represents the general boundaries of the spread of data 
identified in previous studies13,41. Low BW O2 stands for low bottom water oxygen 
concentration.
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(a) and to preservation rates for MOC (b). The six processes are DOC hydrolysis, 
DOC remineralization, mixing, equilibrium adsorption, kinetic sorption 
and geopolymerization. The newly defined PE is given by equation (7). The 
preservation rates for MOC are shown as the rate of MOC formation, which is the 
sum of net kinetic sorption rates integrated at the depth of 1 m (µmol cm−2 yr−1) 
for DOC, GPS and lrDOC. The importance of each process is obtained on the 
basis of the maximum sensitivity of the parameters categorized for each process. 
The categorization is presented in Supplementary Table 9. Each bar is the mean 
of 1,000 executions of the process importance analysis, and the error bars 
represent the 95% confidence interval. Details of sampling in the Monte Carlo 
method for process importance analysis are provided in Supplementary Sections 
1.3–1.5 and in previous studies35.
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Previous considerations of DOC sorption in marine sediments 
have been limited to a simple equilibrium surface adsorption process 
expressed using a partition coefficient (Kd), whether in a modelling 
framework38,39 or in field and experimental investigations16,19. Others 
have argued that equilibrium adsorption cannot be responsible for 
the preservation of intrinsically labile organic compounds and some 
type of irreversible sorption and/or change in OC reactivity might 
be responsible33,40,41. Proposed patterns, such as monolayer adsorp-
tion of DOC onto mineral surfaces40,42, still rely on the assumption of 
mere surface-mediated adsorption and have been criticized for not 
being able to describe the observed preservation in various ocean 
settings33,41,43. Our consideration of several concurrent processes shows 
that, while carbon preservation indicators are still not insensitive to 
the equilibrium adsorption process, their control by this process is the 
least among the six processes considered (Fig. 3a,b). While equilibrium 
adsorption can reduce the DOC concentration that is bioavailable in 
pore fluids, thereby retarding DOC degradation18,44, DOC at equilibrium 
sites can be instantaneously desorbed if the DOC concentrations in the 
pore water decrease (for example, as a result of microbial degradation 
or kinetic sorption)33. Kinetically controlled mineral DOC protection 
mechanisms such as co-precipitation, occlusion and aggregation, how-
ever, can protect DOC over much longer timescales31–33. Our analysis 
reveals that the kinetic sorption process is the most important factor 
in controlling PE (Fig. 3a) and the second most important in controlling 
averaged MOC preservation rates (Fig. 3b).

Recently, it has been shown that geopolymerization in the form of 
a Maillard-type condensation reaction through catalysis by dissolved 
or particulate iron and manganese is a crucial process for benthic DOC 

cycling21. Yet, quantification of the geopolymerization process and its 
importance compared with other processes of carbon preservation has 
so far remained difficult10. Our analysis shows that geopolymerization 
is equally, or more, important for PE compared with DOC hydrolysis 
(Fig. 3a). Furthermore, on average, geopolymerization is the most 
important factor for the preservation rate of DOC species among all 
six processes considered (Fig. 3b).

How sorption and geopolymerization control OC 
preservation
We use sediment depth profiles (Fig. 4 and Supplementary Section 3) 
obtained from the Monte Carlo simulations to provide a broader insight 
into how different processes control OC preservation. We observe that 
the mixed layer acts as a shuttle for different DOC pools by protecting 
them from exposure to oxygen, nutrients and microbial enzymes and, 
consequently, limiting their rapid remineralization in the mixed layer 
and delivering them to greater depths (Fig. 4a). We also investigate 
the pathways of lrDOC production, which show that geopolymeriza-
tion contributes 16.3% to lrDOC formation (Fig. 4b). These are fully 
discussed in Supplementary Section 4.

We further observe that PE can vary with the sediment depth horizon 
or age horizon28. The modelled profiles of PE versus depth in sediment con-
sidering only POC as well as POC plus MOC (Fig. 4c) agree with ref. 28 that 
there is a change in PE with depth. However, it appears that this change 
becomes less discernible below 75 cm. More importantly, MOC formation 
grows substantially within the top 10 cm and continues to increase below 
this depth (Fig. 4d) to the point where MOC exceeds the POC content below 
50 cm (further discussed in Supplementary Section 4).
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these plots are presented in Supplementary Section 3. c, The PE (%) for only 
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calculated PE by a factor of 2.7 at 1 m depth compared with the conventional 
approach considering only POC. d, POC fluxes and MOC preservation rate. MOC 
content exceeds POC at a depth of ~50 cm and still continues to rise below this 
depth. All values have been averaged for 1,450 Monte Carlo model runs. The 
shaded areas of the curves represent 95% confidence intervals obtained from 
Monte Carlo model runs. The light-yellow-shaded region represents the mixed 
layer depth (top 10 cm).
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In conclusion, our results reveal that, aside from conventionally 
known processes (hydrolysis, mixing and remineralization), kinetic 
sorption and geopolymerization probably play a major role in OC 
preservation. Kinetic sorption creates a mineral shuttle that effectively 
removes DOC from the active surface layer and releases it at depth, 
while geopolymerization as an age-dependent process renders OC less 
reactive. Kinetic sorption leads to the formation of a mineral-associated 
fraction that becomes larger than the POC pool below ~50 cm, even 
though the globally averaged POC profile (Fig. 4d, green curve) and PE 
of POC remain similar to those predicted by the conventional paradigm. 
Thus, the preservation of OC in marine sediments, hitherto conceived 
to be due to the burial of POC, is a result of several DOC-related pro-
cesses, including hydrolysis, geopolymerization and net sorption of 
DOC to minerals. Consideration of these processes in a single model 
reconciles the otherwise mismatch of modelled PE with field data 
and sheds light on the concurrent and complex roles of different pro-
cesses. We suggest that our conceptualization should be considered 
in models of carbon cycling and may lead to better quantification and 
understanding of global carbon budgets, present and past climate 
dynamics and long-term implications for potential ocean-based carbon 
dioxide removal technologies7,8,11. We acknowledge that, although we 
have followed the best modelling practice and our model presents 
advancement in several facets, other models may still be developed in 
the future that better describe the carbon cycle in marine sediments.

Online content
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Methods
Methodology
Overview of the modelling procedure. A RTM is developed to 
consider the cycling and preservation of DOC in marine sediment. 
This RTM is then emulated with artificial intelligence, which is used 
as a tool for conducting a robust process importance analysis. The 
flowchart of the model deployment is shown in Supplementary 
Fig. 3. The artificial intelligence technique we use in this study is an  
ANN, and the RTM is emulated with ANN through a Monte Carlo 
approach (Supplementary Fig. 3, stage 1), whereby the RTM is exe-
cuted multiple times (for example, 1,000–2,000) using randomly  
varied input parameters to obtain the model outputs (for example,  
the preservation rates for different MOC fractions). These input–
output datasets are then used to train an ANN (Supplementary 
Fig. 3, stage 2)35, which allows assessment of the sensitivities of each 
output to different input parameters grouped into a number of  
processes.

Among the 68 unknown input parameters of the model, we obtain 
the ranges and statistical distributions for 6 of the input parameters, 
including water depth45, sediment accumulation rate46, sediment 
surface porosity47 and sediment–water interface concentrations of 
POC, which are assumed to be the same as total OC47, NO3 (refs. 48,49) 
and O2 (refs. 48,49) (Supplementary Tables 1 and 8 and Supplementary 
Figs. 1 and 2) from globally gridded data. For other typical unknown 
parameters, we compiled data from ten previous studies that had 
conducted reactive transport modelling on field data (summarized in 
Supplementary Tables 1 and 2). The ranges for new parameters were 
also taken either from the literature24 or from fitting our model to the 
field-modelling data from the literature (Burdige et al.14,50). Although 
we have tested the RTM against field datasets and have selected the 
ranges for some of the new model parameters by considering the 
calibrated parameter values (Supplementary Section 2.2), such model 
fittings to field datasets are useful but not necessary. This is because 
the RTM, which is based on established or hypothetical concepts, 
already embodies process-based knowledge in the approach, and 
the additional application of ANN and Monte Carlo allows the use of 
parameter ranges instead of set values. A more detailed description 
of the overall modelling procedure is provided in Supplementary 
Section 1.1.

Formulation of the RTM. The RTM considers all common early 
diagenesis reactions for different compounds including dissolved 
species (O2, SO4, NH4, NO3, dissolved inorganic carbon (DIC), H2S, 
CH4, Fe2+, Mn2+, DOC1 to DOCm, GPS1 to GPSp, and lrDOC, where 
subscript m represents the maximum number of DOC pools and 
subscript p represents the maximum number of GPS pools) and 
particulate species (highly reactive iron oxide, Fe(OH)3

HR, mod-
erately reactive iron oxide, Fe(OH)3

MR, non-reactive iron oxide, 
Fe(OH)3

UR, MnO2, FeS, FeS2, S0, and POC1 to POCn, where subscript 
n represents the maximum number of POC pools) as listed in Sup-
plementary Table 10. Here, we considered seven species for POC, 
four species for DOC and two species for GPS in addition to lrDOC. 
The number of different carbon species are selected mainly on the 
basis of consistency with previous literature24 and with consid-
eration of other aspects of modelling, including alignment with 
the conceptual model, smooth transition of rates across different 
species for numerical solution considerations and minimizing the 
number of unknown model parameters. It should be noted that, as 
demonstrated in the Supplementary Section 1.2.2, the selection of 
the number of these species, for example, DOC pools, per se, does 
not affect the model outputs noticeably.

The three governing equations of RTM for dissolved species, par-
ticulate species and sorbed species, respectively, are as follows, while 
the full details of the model development and validation are provided 

in Supplementary Sections 1 and 2:

	(1)	 The governing equation for dissolved species:

(φ + ρsεKd i)
∂Cd i
∂t

= ∂
∂z
((φD + ρsεKd iDb)

∂Cd i
∂z

)

− ∂
∂z
((φvd + ρsεKd ivp)Cd i) + φα (Cd i (0) − Cd i (Z))

+φ∑j=1 Rd i, j − ksorp iCd i +
ksorp i
Kdsorp i

Sd i

(1)

	(2)	 The governing equation for particulate species:

ρsε
∂Cp i
∂t

= ρs
∂
∂z (

εDb
∂Cp i
∂z ) − ρs

∂
∂z (

εvpCp i) + ρsεRp i (2)

	(3)	 The governing equation for mineral phase, MOC, resulting from 
the kinetically sorbed fraction of dissolved species:

ρsε
∂Sd i
∂t

= ρs
∂
∂z
(εDb

∂Sd i
∂z
) − ρs

∂
∂z
(εvpSd i) + ρsε∑j=1 RSd i, j

+ksorp iCd i −
ksorp i
Kdsorp i

Sd i,
(3)

where Cdi is the concentration of dissolved species i (mM or µmol cm−3 
of pore water), Cpi is the concentration of particulate species i (g g−1), 
Sdi is the concentration of dissolved species i kinetically sorbed to sedi-
ment minerals (µmol g−1 of solid sediments), φ is porosity, ε is the solid 
fraction of sediments, which is equal to 1 − φ, vd and vp are the burial 
velocities of pore water and particulate species (cm yr−1), ρs is the dry 
density of sediments (g cm−3), Di is the apparent diffusion coefficient of 
dissolved species i (cm2 yr−1), α is the bio-irrigation coefficient (cm2 yr−1), 
Db is the bioturbation coefficient (cm2 yr−1), z is the sediment depth with 
respect to the coordinate system located at the sediment–water inter-
face (cm), Rp, Rd and RSd stand for reaction rates of particulate, dissolved 
and kinetically sorbed species (yr−1, µmol cm−3 yr−1 and µmol g−1 yr−1), 
respectively, which are temporally and spatially variable, ksorp is the 
mass transfer rate between the dissolved and kinetically sorbed phases 
to minerals (MOC pools) (yr−1), and Kdsorp is the so-called distribution 
coefficient in the kinetic mass transfer expression (cm3 g−1).

The first stage of the hydrolysis is considered similar to the conven-
tional first-order multi-POC degradation model known as the multi-G 
model51 with a series of POC pools converting to a single DOC pool, 
DOC1, in parallel:

{
∂Cp i
∂t }

Hydrolysis
= Rp i = kiCp i, (4)

where ki is the hydrolysis rate constant, which was considered in a 
similar way to the degradation rate constants of POC in the continuum 
model following previous studies9,34,52.

The sequential stage of the hydrolysis has been described using a 
consecutive first-order reaction expression20,53:

{φ
∂Cd i
∂t }

Hydrolysis
= {φ∑

j=1
Rd i, j}

Hydrolysis

= λDOCi−1Cd i−1 − λDOCi Cd i, (5)

where λDOCi is the conversion rate of DOCi to DOCi+1, and λDOCi−1 is the 
conversion rate of DOCi−1 to DOCi in yr−1.

The same mathematical formula is used to describe 
geopolymerization54,55 as provided in Supplementary Section 1 along 
with the other details.

Calculation of PE. PE, elsewhere known as BE, conventionally consid-
ered for POC28,36 is defined as follows:
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PE = POC flux at depth L
Total POC flux at sediment surface

× 100, (6)

where L is a given depth herein considered as 1 m. In the present study, 
owing to the full consideration of the fate of DOC in our model, we are 
able to present a more accurate consideration of PE that includes the 
fraction of solid phase OC that has undergone hydrolysis and sorption 
to minerals:

PE = POC flux at depth L + Sorption rate integrated over depth L
Total POC flux at sediment surface

× 100.
(7)

The sorption rate is the net DOC kinetic sorption rate (sorption 
rate minus desorption rate or the net MOC formation rate). Further 
explanations about the rates are provided in Supplementary Sec-
tions 2.4 and 3. Although the consideration of depth-versus-age 
horizons in early digenesis modelling can be important for global 
predictions, as was recently highlighted28, in the present study, we 
considered only a constant depth horizon as the aim is to obtain 
insight into the processes that control OC preservation rather than 
making global predictions.

ANN for process importance analysis. The ANN is a versatile and 
universal tool for function approximation problems and is notable 
for its application to complex, nonlinear systems35,56. The commonly 
used ANN structure is a three-layer configuration comprising input, 
hidden and output layers35,57–59. Each of these layers is composed of a 
series of nodes (neurons) with their numbers in the input and output 
layers corresponding to the number of input and output variables, 
respectively. The number of neurons on the hidden or middle layers 
should be optimized when finding the best fit during the training 
process57,60. The main equation used for processing the information 
(or signal) in the structure of the ANN is a simple algebraic equation in 
the form of y = w × x + b, which applies to each neuron in the hidden 
layer. The information is then summed up for all nodes; additional 
functions called transfer (or activation) functions that are exerted 
on the input and output information that are detailed elsewhere35,57. 
Here, x stands for the input information (or signal), y stands for out-
put information, w is weights and b is biases. Weights and biases are 
the hyperparameters of the ANN, which are determined after fitting 
ANN to data, and once they are determined, they form an empirical 
network that can be used for new predictions. In the scope of the 
present study, we use ANN only for process importance analysis, not 
for prediction. Here, we use the partial derivative method35,57,58,61 for 
process importance analysis. In brief, in this method, the derivatives 
of the equations used in the structure of ANN are used to represent 
the role of each ANN input in controlling the ANN output; for exam-
ple, for the main equation y = w × x + b, the derivative is equal to w. 
In this way, the w value for each neuron represents the strength of 
the signals passing through that neuron35,57–59. This implies that in 
the process importance analysis, the input parameter values do not 
play a marked role; rather, it is their variations that are important 
and reflected in the structure of the ANN. Details of the ANN model 
used here have been selected following ref. 35 and are described in 
Supplementary Section 1.5.

Model validation. We validate our model in a number of ways. We vali-
date our developed governing equations of the RTM on the basis of an 
analytical approach. In this approach, for the condition where equilib-
rium adsorption and kinetic sorption are expected to behave similarly, 
that is, at high exchange rates, we first run the model after turning off 
equilibrium adsorption and then run the model again turning off the 
kinetic sorption expression. Then, the model outputs for these two 
types of simulation are compared. We used existing field-modelling 
data (principally from Santa Barbara Basin, given the comprehensive 

dataset available)14,62 as shown in Supplementary Figs. 5–11 and Sup-
plementary Table 6. We also validated the model on the basis of mass 
budgets. The use of the ANN is validated on the basis of its ability to 
describe the data (measured using goodness-of-fit criteria described 
in Supplementary Section 2.2) and using the uncertainties it yields 
in the process importance analysis. Finally, validation of the overall 
RTM modelling process was carried out using mass budgets of the 
averaged model outputs over the multiple runs of the Monte Carlo. 
This was done using the concept of mass flow in the model illustrated 
in Supplementary Fig. 14.

The results of the model output comparison between the cases 
when kinetic sorption is operative and when the equilibrium adsorp-
tion is operative at a high mass transfer rate show an excellent match 
(R2 = 1.000; Supplementary Fig. 4) verifying our approach towards 
development and implementation of sorption formulation in the 
governing equations.

The results of the model fit to several field or modelling datasets, 
including Meysman et al.62 (Supplementary Fig. 5), Kraal et al.63 (Sup-
plementary Figs. 6 and 8 and Supplementary Tables 3–5) and Bur-
dige et al.14,50 (Supplementary Figs. 9–11 and Supplementary Tables 6) 
show excellent matches between our model and existing field-model 
datasets for most of the concentration-versus-depth profiles. The 
exceptions are generally FeS2 and Mn2+ profiles, which show poorer 
model fit due to the lack of carbonate species in our model. The added 
complexity of our model (more unknown parameters) is validated in 
eight steps against the Santa Barbara Basin dataset14,50 (Supplementary 
Table 6), showing that each step is justifiable in terms of improvements 
in model fits to the data for the cost of complexity, according to model 
selection criteria64 increasing from 0.626 in step 2 to 0.843 in step 7. 
Burdige et al.14,50 further considered δ13C, Δ14C and carbon-to-nitrogen 
ratios in their model and matched them with field measurements that 
are not conducted here.

The ANN model could fit the data in all cases with the best predic-
tive fit Nash–Sutcliffe model efficiency criterion65 ranging from 0.923 
to 0.944 (Supplementary Table 7 and Supplementary Fig. 12). The 
uncertainties in the ANN process importance analysis determined 
as a 95% confidence interval were relatively minor (see error bars in 
Fig. 3). These uncertainties range from 4.6% to 29.9% (12.6% on average) 
of the mean values for the cases investigated and shown in Fig. 3 and 
Supplementary Fig. 13.

The mass budgets for different cross-sections of the simplified 
conceptual model shown in Supplementary Fig. 14 were calculated on the 
basis of averaged results of all Monte Carlo model runs (1,450) at stage 1. 
According to these results, the mass budget in cross-section A–A is MBA–A 
= 57.136 µmol cm−2 yr−1, in B–B is MBB–B = 57.197 µmol cm−2 yr−1 and in C–C 
is MBC–C = 57.189 µmol cm−2 yr−1, demonstrating an overall mass balance 
error of ~0.1%, which is less than the acceptable mass balance error of 1% 
considered in our general modelling process. It should be noted that, 
despite our extensive model validation process, in the present study, we 
use the model only for process importance analysis and finding insight 
into the underlying processes responsible for OC preservation, not for 
making global predictions, which is the subject of future study. Finally, 
based on acceptable uncertainties (95% confidence interval) related 
to the sum of all >1,000 RTM runs, shown as the shaded area around 
the curves in Fig. 4 and Supplementary Fig. 16, and the uncertainties 
of process importance analysis obtained from the ANN stage shown in 
Fig. 3, our general approach of random variation of input parameters 
is appropriate.

It should be noted that limitation in the capacity of sorption 
sites, for example, monolayer sorption16,40, typically does not apply 
to kinetic sorption because the kinetic sorption model in the present 
study mainly represents the processes that internalize DOC into the 
mineral matrix, such as occlusion, co-precipitation and aggrega-
tion, and thus, limited-capacity sorption considered in the literature 
mostly through the monolayer surface adsorption hypothesis is not 
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applicable to our MOC production. Furthermore, kinetic sorption is 
slower than equilibrium adsorption, which is known to be instantane-
ous. Thus, kinetic sorption, which is limited by pore water concentra-
tions that are also controlled by hydrolysis, degradation and so on, is 
less likely to face a second limitation by the capacity of sorption sites 
compared with instantaneous equilibrium adsorption for which dif-
ferent types of isotherm, such as linear, Langmuir and Freundlich, 
have been defined66,67. Adding an additional parameter to force a 
proportion of the OC to be taken up by the kinetic and equilibrium 
sorption sites would add more unknown parameters and is deemed 
unnecessary in this case.

Data availability
Data associated with Figs. 2–4 are available via figshare at https://doi.
org/10.6084/m9.figshare.27273006 (ref. 68). Data related to Supple-
mentary Figs. 13, 15 and 16 and the main datasets (such as those gener-
ated by RTM through the Monte Carlo process (stage 1) and used in the 
ANN process importance analysis (stage 2)) are available via figshare at 
https://doi.org/10.6084/m9.figshare.27273030 (ref. 69).

Code availability
Computer codes are available from the authors upon request.
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