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Abstract

This paper investigates a Multi-Stage Stochastic Districting Problem (MSSDP). The goal is
to devise a districting plan (i.e., clusters of Territorial Units—TUs) accounting for uncertain
parameters changing over a discrete multi-period planning horizon. The problem is cast
as a multi-stage stochastic programming problem. It is assumed that uncertainty can be
captured by a finite set of scenarios, which induces a scenario tree. Each node in the tree
corresponds to the realization of all the stochastic parameters from the root node—the state
of nature—up to that node. A mathematical programming model is proposed that embeds
redistricting recourse decisions and other recourse actions to ensure that the districts are
balanced regarding their activity. The model is tested on instances generated using literature
data containing real geographical data. The results demonstrate the relevance of hedging
against uncertainty in multi-period districting. Since the model is challenging to tackle using
a general-purpose solver, a heuristic algorithm is proposed based on a restricted model. The
computational results obtained give evidence that the approximate algorithm can produce
high-quality feasible solutions within acceptable computation times.

Keywords Districting · Multi-stage stochastic programming · Heuristics

1 Introduction

A Districting Problem (DP) consists of partitioning a set of basic Territorial Units (TUs) into
a predefined number of clusters, called districts, according to some planning criteria. Indeed,
several features are usually desired in the solutions devised for these problems, such as: (i)
integrity, i.e., each TU has to be assigned exactly to one district; (ii) balancing, expressing the
need for districts of similar size w.r.t. to some activity measure(s)—hereafter, the demand—
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linked with the TUs (e.g., territorial extension, population, demand for goods or services,
etc.); (iii) compactness, indicating that the shape of a district should be mostly “rounded”,
that is, not elongated and undistorted; (iv) contiguity, meaning that the districting plan does
not contain enclaves. The latter also implies that there is always a path connecting two TUs
belonging to the same district that does not cross any other districts.

In the literature, DPs have been successfully exploited to deal with various practical
applications, including the definition of administrative boundaries and electoral zones (i.e.,
political districting, see Ricca et al., 2013), strategic service planning (e.g., health-care or
school systems, see Bruno et al., 2016; Farughi et al., 2019), sales territory design (Ríos-
Mercado and López-Pérez, 2013) and distribution logistics (Bender et al., 2020; Sandoval
et al., 2022). For an overview of the topic, the interested reader can refer to Kalcsics and
Ríos-Mercado (2019) and Ríos-Mercado (2020). As the latter sources reveal, most of the
body of knowledge on DPs focuses on deterministic and single-period settings. However,
when looking at the above-discussed applications, it is clear that demands are not always
known beforehand. In many cases, in fact, demand is uncertain and has to be dealt with
or anticipated accordingly. Furthermore, it is often relevant to also consider a planning
horizon during which the underlying parameters change. These two aspects lead to a more
realistic and comprehensive representation of practical DPs. In this paper, solution techniques
are developed with the goal of hedging against uncertainty, anticipating future trends, and
adapting decisions to the changing setting.

Notably, time-dependent decisions and stochastic models have already been covered by
some of the existing literature on DPs, although scarcely in an integrated way. Concern-
ing multi-period districting, Lei et al. (2015) investigate dynamic travelling salesmen with
multiple depots, where customers are grouped in districts, and the travel cost in each dis-
trict is approximated by the Beardwood-Halton-Hammersley formula (BHH, see Beardwood
et al., 1959). Bender et al. (2016, 2018) introduce a multi-period service design problem
divided into two subproblems: (i) a partitioning subproblem, in which customers must be
grouped into service territories, and (ii) a scheduling subproblem, to determine customer vis-
its over the multi-period planning horizon. Finally, Yanık et al. (2019) consider a multi-period
multi-criteria districting model for primary health services, specifically, patient admissions to
general practitioners. Regarding stochastic districting, the existing literature mostly tackles
problems in the context of vehicle routing. Haugland et al. (2007) propose a tabu search and
a multi-start heuristic to design delivery districts for vehicle routing problems with stochas-
tic demand. Carlsson and Delage (2013) investigate a distributionally robust optimization
framework for route districting with uncertain client locations. Moment-based ambiguity
sets are considered for capturing the distribution underlying those locations. Lei et al. (2012)
introduce the vehicle routing and districting problem assuming customers with an uncer-
tain location and presence. The problem is modelled as a two-stage stochastic program
with a here-and-now districting decision and wait-and-see routes. The BHH formula is used
to approximate the (uncertain) driving time. This work has been extended to a multi-period
framework in Lei et al. (2016), which is, to the best of the authors’ knowledge, the only article
investigating the inclusion of time-dependent decisions in a stochastic districting problem.

Focusing on basic DPs (i.e., with no routing decisions), various modeling perspectives
have been investigated in the literature: chance-constrained programming, robust optimiza-
tion, and stochastic programming. In terms of chance-constrained programming, Diglio et
al. (2021) develop a sim-heuristic (Juan et al., 2015) to find feasible solutions for a district-
ing problem with balancing requirements treated as probabilistic constraints (the decision
maker is satisfied with a solution that satisfies those constraints with at least some prescribed
probability). In a follow-up paper, the same authors (Diglio et al., 2023) develop a sampling
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procedure, which is further enhanced in Baldassarre et al. (2023). Mostafayi Darmian et al.
(2021) consider robust optimization for dealing with uncertainty in DPs. Demand is repre-
sented either by box uncertainty or by an uncertainty set induced by a maximum total scaled
variation of the demand with respect to their nominal values (Baron et al., 2011). Finally,
the work by Diglio et al. (2020) is a relatively recent study adopting a stochastic program-

ming approach for the problem. Specifically, the authors introduce a two-stage stochastic
programming model for districting in that reference. In the first stage, a districting plan is
devised to seek a set of compact districts; in the second stage, different recourse actions are
considered for ensuring balancing, such as reassigning TUs or implementing other specific
actions to overcome shortage or surplus at the districts. The authors consider other aspects of
practical relevance, such as a maximum dispersion allowed and similarity of a redistricting
plan w.r.t. the original (here-and-now) districting solution. The reader is also addressed to
Saldanha-da-Gama and Wang (2024) for a comprehensive discussion on the topic.

The work by Diglio et al. (2020) is set at the core of the developments proposed in this
manuscript. In fact, the present paper extends the modeling framework introduced therein
into a multi-period setting. The aim is to devise a multi-stage decision-making process in
stochastic districting. The formulation starts with the deterministic version of the problem,
which is then extended to embed stochasticity in demands and costs. The recourse actions in
different periods include redistricting (i.e., reassignments of TUs) and other recourse actions
to adapt the decisions to the observed parameters, thus ensuring that the districts are balanced.
To the best of the authors’ knowledge, no previous works have dealt with such a challenge in
a classical DP, and an explicit mathematical formulation for a multi-period DP under uncer-
tainty is missing. As such, the major contributions provided by this work are the following: (i)
proposing a novel and general modelling framework for Multi-Stage Stochastic Districting
Problems (MSSDPs); (ii) demonstrating, through extensive experiments on instances built
on real geographical data, that the problem leads to meaningful solutions and that capturing
stochasticity is relevant in the investigated problem. Besides, a heuristic approach is pro-
posed to obtain approximate solutions to the problem. Indeed, as experienced, the stochastic
programming resulting from the proposed extension can hardly be tackled efficiently using a
general-purpose solver or even specially tailored exact algorithms (see, e.g., Aldasoro et al.,
2013; Escudero et al., 2010, 2012). The devised algorithm seeks to solve a reduced model
obtained by considering a restricted set of “promising” candidate representatives for the dis-
tricts. The latter is obtained using information from the solution of the linear relaxation of
the model. The algorithm proves effective in producing high-quality solutions at a reasonable
computational effort, thus representing a first successful idea for the problem at hand that
paves the way for future algorithmic developments.

The remainder of this paper is organized as follows. In the next section, the deterministic
multi-period version of the problem is introduced. In Sect. 3, uncertainty is embedded in that
model. The heuristic proposed is described in Sect. 4. In Sect. 5, computational results are
reported. The article ends with an overview of the work and future research perspectives.

2 An optimizationmodel for multi-period districting

The districting problem comprises a set of TUs whose demand for some commodity or service
varies throughout a planning horizon divided into a finite number of time periods. For now,
it is assumed that such variation can be accurately predicted. The objective is to partition
those TUs into a given number of districts in each period. The goal is to obtain compact
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districts. As customary in the districting literature, a surrogate measure for compactness is
used, namely the total cost (e.g., road distances) for assigning the TUs to the defined districts.
Due to the time-dependent demand, in each time period, districts may be reorganized, i.e.,
some TUs may be reassigned, which, nonetheless, is assumed to incur some cost. Such a
cost is assumed to result from assigning a TU to a district it was not previously assigned to,
minus the saving for removing the TU from its previous district. Districts must be balanced
when their activity does not deviate from a reference value more than the prescribed amount.
Accordingly, as an alternative to reassigning some TUs, it may be preferable to incur an extra
cost for corrective measures that handle shortage or surplus at a district depending on the
case (e.g., outsourcing or downsizing the workforce). Each district has a representative TU
that may change from one period to another. Hence, when a TU is assigned to a district, the
language is abused by saying that a TU is being assigned to the district’s representative. It
is noted that single-assignment is assumed for the TUs as customary in districting problems,
thus ensuring integrity — a common feature relevant in practice.

Aiming at developing a mathematical formulation for the problem, the following sets are
introduced:

I , set of TUs.
T P , set of time periods, T P = {1, . . . , T }.
Additionally, the parameters that define the problem are introduced:

pt , number of districts to operate in period t ∈ T P .
di t , demand of TU i ∈ I in period t ∈ T P .
μt , reference value for the demand assigned to each district in period t ∈ T P .

This value is defined as μt = 1
pt

∑

i∈I di t (t ∈ T P), i.e., the exact demand assigned
to each district if the districts are perfectly balanced—which may not be possible due
to the single assignment assumption.

α, allowed deviation for the demand assigned to each district in each period w.r.t. the
reference value in that period.

ci j , initial cost for assigning TU i ∈ I to TU j ∈ I (period 1).
ri j t , cost for reassigning TU i ∈ I to TU j ∈ I in (the beginning of) period t ∈ T P \ {1}.
si j t , saving for removing TU i ∈ I from district j ∈ I in (the beginning of) period

t ∈ T P \ {1}.
g j t , unit penalty for surplus at district j ∈ I in period t ∈ T P w.r.t. the maximum deviation

stated by α.
h j t , unit penalty for shortage at district j ∈ I in period t ∈ T P w.r.t. the maximum

deviation stated by α.

The multi-period districting problem underlying this work can be formulated using the
following sets of variables:

xi j t =

⎧

⎪

⎨

⎪

⎩

1, if TU i is assigned to TU j

in (the beginning of) period t;
0, otherwise.

(i, j ∈ I , t ∈ T P)

vi j t =
{

1, if TU i is reassigned to TU j in (the beginning of) period t;
0, otherwise.

(i, j ∈ I , t ∈ T P\{1})

wi j t =
{

1, if TU i is removed from district j in (the beginning of) period t;
0, otherwise.

(i, j ∈ I , t ∈ T P \ {1})
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ψ j t = demand surplus in district j in period t (w.r.t. the upper threshold), j ∈ I , t ∈ T P .
ϕ j t = demand shortage in district j in period t (w.r.t. the lower threshold), j ∈ I , t ∈ T P .
Noting that x j j t = 1 for some j ∈ I and t ∈ T P , indicates that TU j is assigned to itself

in period t , which also means that it is selected as the “representative” TU of its district in
that period.

Considering the above parameters and decision variables, an optimization model can be
formulated for the multi-period districting problem being studied, which is called (M1):

min
∑

i∈I

∑

j∈I

ci j di1xi j1 +
∑

t∈T P\{1}

∑

i∈I

∑

j∈I

(ri j t di tvi j t − si j t di twi j t )

+
∑

t∈T P

∑

j∈I

(

g j tψ j t + h j tϕ j t

)

, (1)

s. t.
∑

j∈I

xi j t = 1 ∀i ∈ I , t ∈ T P, (2)

∑

j∈I

x j j t = pt ∀t ∈ T P, (3)

vi j t ≥ xi j t − xi j,t−1 ∀i, j ∈ I , t ∈ T P \ {1}, (4)

wi j t ≤ xi j,t−1 ∀i, j ∈ I , t ∈ T P \ {1}, (5)

wi j t + xi j t ≤ 1 ∀i, j ∈ I , t ∈ T P \ {1}, (6)

(1 − α)μt x j j t ≤
∑

i∈I

di t xi j t − ψ j t + ϕ j t ≤ (1 + α)μt x j j t ∀ j ∈ I , t ∈ T P, (7)

xi j t ∈ {0, 1} ∀i, j ∈ I , t ∈ T P, (8)

vi j t ∈ {0, 1} ∀i, j ∈ I , t ∈ T P \ {1}, (9)

wi j t ∈ {0, 1} ∀i, j ∈ I , t ∈ T P \ {1}, (10)

ψ j t ≥ 0 ∀ j ∈ I , t ∈ T P, (11)

ϕ j t ≥ 0 ∀ j ∈ I , t ∈ T P. (12)

In the above model, the objective function (1) represents the total cost for the entire planning
horizon, given by the sum of three terms: (i) the total assignment cost incurred for building
districts at the beginning of the planning horizon; (ii) the total cost for redesigning districts,
i.e., reassigning TUs over the planning horizon minus the corresponding savings (accounted
for since period 2); (iii) costs for shortage or surplus. As often done in districting, demands
are used as weights when computing the assignment costs (see Kalcsics and Ríos-Mercado,
2019). Constraints (2) ensure that every TU is assigned to exactly one district in every period.
Constraints (4)–(6) quantify the reassignments/removals throughout the planning horizon so
that the corresponding costs are paid. In particular, Constraint (4) states that there is an
actual reassignment whenever a given TU i is assigned in time period t to a district j it was
not previously assigned to (i.e., xi j t = 1, and xi j,t−1 = 0). Constraint (5) ensures that the
removal of some TU i from district j in time period t cannot be accounted for if that TU
was not assigned to that district (xi j,t−1 = 0). Also, Constraint (6) guarantees that a TU i

can be either assigned or reassigned to district j in each time period. Constraints (7) are the
balancing constraints; they guarantee that the demand served by each district in every time
period is within the maximum prescribed deviation α from the reference value. Note that
surplus and shortages are also considered. Finally, constraints (8)–(12) define the domain of
the decision variables.
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Fig. 1 A multi-stage scenario
tree—three stages in the planning
horizon

Remark 1 It should be noted that in the above model, contiguity is not explicitly considered.
However, optimizing compactness plays in favor of contiguity. In other words, a very compact
solution tends to be also contiguous. This evidence is at the base of successful exact solution
approaches for districting (Salazar-Aguilar et al., 2011). Clearly, this is not always possible
because of the balancing requirements. Nevertheless, many authors do not explicitly address
contiguity in their models, especially when dealing with point-like basic TUs (Kalcsics and
Ríos-Mercado, 2019). This is also the case, among others, of the work by Diglio et al. (2020),
which is set at the core of the developments presented in the current paper.

3 Embedding stochasticity

It is now assumed that the future is uncertain. Uncertainty is most likely associated with
demand, but it can also refer to the costs, including the reassignment of TUs and the surplus
and shortage costs paid for recovering balancing.

Besides, uncertainty is assumed to be captured by a finite set of previously identified
scenarios that induce a scenario tree. Each node in this tree—apart from the root—corresponds
to the realization of all the (uncertain) parameters up to that node. The root node represents
the initial setting (status quo), directly calling for a here-and-now decision to be made. In
the second stage of the scenario tree, the shortage and surplus costs corresponding to period
1 can now be accounted for because the demand has eventually been revealed. Furthermore,
planning for a redistricting can be done. Thus, the nodes in stage 2 are represented by child
nodes of the root. The tree proceeds by enumerating all the possible moments in which
the costs can be accounted for, and the territory design can be changed. In the last stage,
the only thing to do is to account for the shortage and surplus costs using the information
corresponding to the demand observed.

In Fig. 1, a multi-stage scenario tree with three stages is illustrated. In the second stage
the uncertainty associated with that stage is revealed. In Stage 3 the uncertainty associated
with that stage is revealed.

Remark 2 It is worth noting that the scenario tree in Fig. 1, along with the described problem
setting, can also be interpreted in time-related terms. Stage 1 marks the beginning of the
planning horizon. Stage 2 represents the end of period one and the start of period two. Stage
3 marks the end of period 2 and of the planning horizon. In other words, the example above
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depicts a scenario tree with three stages and two time periods. The demands are realized
during a time period, i.e., between two consecutive stages. However, since the problem is not
cast within a multi-horizon setting (Escudero and Monge, 2018; Kaut et al., 2014), there is
no reason to make a difference between period and stages. Hence, only the term “stage” will
be used hereafter.

In the given terminology, one scenario is a full sequence of events from the first stage
to the last one. In other words, one scenario fully determines all the information for the
entire planning horizon and thus induces a deterministic multi-period districting problem as
defined in Sect. 2. In Fig. 1, four possible sequences can be observed, i.e., four scenarios.
Each scenario is associated with one and only one leaf node in the scenario tree. For instance,
the scenario culminating in node 5 consists of the sequence of events leading from the status
quo (stage 1) to the possible “future” observed in stage 2, which is represented by node 2,
and, finally, to the possible “future” in stage 3 which is represented by node 5.

Based upon the above representation adopted for the uncertainty, a multi-stage stochastic
programming model emerges as a possibility for the problem. To develop such a model, some
additional notation is introduced as follows:

N , set of nodes in the scenario tree.
M , number of stages in the decision-making process.

Nm , set of nodes in stage m ∈ M .
�, set of scenarios in the scenario tree. Since there is only one path from the root node to

every leaf in the tree, a scenario is fully identified by the corresponding leaf node.
γ (n), immediate predecessor of node n ∈ N \ {1}.
m(n), stage to which node n belongs to, n ∈ N .

πn , probability associated with node n ∈ N \ {1}. It is unnecessary to consider the proba-
bility associated with node 1 since it is equal to 1 (the node corresponds to the current
state of nature). Note also that in each stage, some node will occur for sure. There-
fore, the probabilities of the nodes are such that, for every stage m ∈ M \ {1}, i.e.,
∑

n∈Nm

πn = 1.

Example 1 In the case of the scenario tree depicted in Fig. 1, N = {1, . . . , 7} and � =
{4, 5, 6, 7}. For instance, N2 = {2, 3}, γ (5) = 2, m(6) = 3.

In order to formulate the multi-stage stochastic programming problem, the notation already
presented will be adopted, namely, ci j , i, j ∈ I , and α, with the same meaning as before.
It is important to note that a node n ∈ N\� in the scenario tree represents stage m(n). For
that stage, it is known that the number of districts should be pm(n). To simplify the notation,
this number is represented simply by pn , and it is associated with node n since no confusion
emerges. In other words, the value pn (n ∈ N\�) is the same for all nodes in the same stage.

To ensure that a general setting is investigated, it is assumed that all the other parameters
are stochastic. This calls for them to be redefined as follows:

dn
i , demand of TU i ∈ I in stage m(n) if node n ∈ N \{1} in the scenario tree occurs. Note

that the demand of each TU in each stage is unknown beforehand. In the scenario tree,
node n belongs to stage m(n), so it represents a possibility for the “future” that may be
observed. Thus, for some node n ∈ N\{1}, dn

j represents one possible observation of

the random variable di,m(n). The μn value is defined as 1
pm(n)−1

∑

i∈I dn
i (n ∈ N \ {1}).

This is a value associated with node n that represents the reference value for the demand
that should be assigned to each district in stage m(n), i.e., the stage of node n.
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gn
j , unit penalty cost for surplus at district j in node n ( j ∈ I , n ∈ N \ {1}). Due to

uncertainty, the penalty for surplus can be assessed over time. Hence, in the stochastic
model, these costs are associated with nodes in stages 2, . . . , M .

hn
j , unit penalty cost for shortage at district j in node n ( j ∈ I , n ∈ N \ {1}). As for the

surplus costs, in the stochastic model, these costs are associated with nodes in stages
2, . . . , M .

rn
i j , unit cost for reassigning TU i to district j in node n (i, j ∈ I , n ∈ N\(�∪{1})). Note

that reassignments are made neither at stage 1 (node 1) nor at stage M (nodes in �).
sn

i j , unit saving for removing TU i from district j in node n (i, j ∈ I , n ∈ N\(� ∪ {1})).
As for the reassignment costs, only stages 2, . . . , M − 1 are considered (from stage 2
to stage M − 1).

Regarding the decision variables, they are grouped into two sets:

(i) Variables accounting for the shortage and surplus in each stage. Note that such values
can only be assessed after the demand in the stage is disclosed.

(ii) Variables corresponding to planning for a stage. These correspond to districting/redistricting
decisions.

The decision variables can be formally defined as follows:
ψn

j = demand surplus in district j in node n, i.e., a possible value for the surplus occurring
in district j in stage m(n) ( j ∈ I , n ∈ N \ {1}).

ϕn
j = demand shortage in district j in node n, i.e., a possible value for the shortage

occurring in district j in stage m(n) ( j ∈ I , n ∈ N \ {1}).

xn
i j =

{

1, if TU i is assigned to TU j in node n (stage m(n));
0, otherwise.

(i, j ∈ I , n ∈ N\�)

vn
i j =

{

1, if TU i is reassigned to TU j in node n (stage m(n));
0, otherwise.

(i, j ∈ I , n ∈ N\(� ∪ {1}))

wn
i j =

{

1, if TU i is removed from district j in node n stage m(n));
0, otherwise.

(i, j ∈ I , n ∈ N\(� ∪ {1}))
Using the node-indexed decision variables presented, one can formulate a multi-stage

stochastic programming model for the multi-period stochastic districting problem being
investigated. The objective function represents the total expected cost (initial districting,
plus territory redesign, shortages, and surplus):

∑

i∈I

∑

j∈I

ci j

⎛

⎝

∑

n∈N |γ (n)=1

πndn
i

⎞

⎠ x1
i j

+
∑

n∈N\(�∪{1})
πn

∑

i∈I

∑

j∈I

⎛

⎝rn
i j

⎛

⎝

∑

ν∈N |γ (ν)=n

πν

πn
dν

i

⎞

⎠ vn
i j − sn

i j

⎛

⎝

∑

ν∈N |γ (ν)=n

πν

πn
dν

i

⎞

⎠ wn
i j

⎞

⎠

+
∑

n∈N\{1}
πn

∑

j∈I

(

gn
j ψ

n
j + hn

jϕ
n
j

)

,

=
∑

i∈I

∑

j∈I

⎡

⎣ci j x1
i j

∑

n∈N |γ (n)=1

πndn
i

⎤

⎦
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+
∑

n∈N\(�∪{1})

∑

i∈I

∑

j∈I

⎡

⎣

(

rn
i jv

n
i j − sn

i jw
n
i j

)

∑

ν∈N |γ (ν)=n

πνdν
i

⎤

⎦

+
∑

n∈N\{1}
πn

∑

j∈I

(

gn
j ψ

n
j + hn

jϕ
n
j

)

,

which can be rewritten as:

∑

i∈I

∑

j∈I

ci j x1
i j

⎛

⎝

∑

n∈N |γ (n)=1

πndn
i

⎞

⎠

+
∑

n∈N\(N1∪N2)

∑

i∈I

πndn
i

⎛

⎝

∑

j∈I

(r
γ (n)

i j v
γ (n)

i j − s
γ (n)

i j w
γ (n)

i j )

⎞

⎠

+
∑

n∈N\{1}
πn

∑

j∈I

(

gn
j ψ

n
j + hn

j ϕ
n
j

)

. (13)

So, the Multi-Stage Stochastic Districting Problem (MSSDP) can be finally formulated as
the following model, which is called (M2):

min (13),

s. t.
∑

j∈I

xn
i j = 1 ∀i ∈ I , n ∈ N \ �, (14)

∑

j∈I

xn
j j = pn ∀n ∈ N \ �, (15)

vn
i j ≥ xn

i j − x
γ (n)

i j ∀i, j ∈ I , n ∈ N \ (� ∪ {1}), (16)

wn
i j ≤ x

γ (n)

i j ∀i, j ∈ I , n ∈ N \ (� ∪ {1}), (17)

wn
i j + xn

i j ≤ 1 ∀i, j ∈ I , n ∈ N \ (� ∪ {1}), (18)

(1 − α)μn x
γ (n)

j j ≤
∑

i∈I

dn
i x

γ (n)

i j − ψn
j + ϕn

j ≤ (1 + α)μn x
γ (n)

j j ∀ j ∈ I , n ∈ N \ {1},

(19)

xn
i j ∈ {0, 1} ∀i, j ∈ I , n ∈ N \ �, (20)

vn
i j ∈ {0, 1} ∀i, j ∈ I , n ∈ N \ (� ∪ {1}), (21)

wn
i j ∈ {0, 1} ∀i, j ∈ I , n ∈ N \ (� ∪ {1}), (22)

ψn
j ≥ 0 ∀ j ∈ I , n ∈ N \ {1}, (23)

ϕn
j ≥ 0 ∀ j ∈ I , n ∈ N \ {1}. (24)

In the above model, the set of constraints that is not so straightforward is (19). Consider a
node n ∈ N\{1}. This means that in stage m(γ (n)) + 1 ≡ m(n), the demand observed is
part of the “future” leading to node n, i.e., dn

i , i ∈ I . The shortage and surplus at district
j are represented by ψn

j and ϕn
j respectively. However, the shortage and surplus depend on

the (re-)districting holding in stage m(γ (n)) + 1 ≡ m(n), which is represented by variables
x

γ (n)

i j . On the other hand, the reference value for this stage depends on the observed demand,
which explains the use of value μn in (19). This explanation is illustrated in Fig. 2.
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Fig. 2 Illustration of the building blocks for Constraints (19)

Remark 3 In the objective function, different cost factors are considered: penalty costs and
(re-)assignment costs/savings. Note that, due to the non-negativity of parameters gn

j and hn
j ,

surplus and shortages can be calculated as follows:

ψn
j = max{0,

∑

i∈I

dn
i x

γ (n)

i j − (1 + α)μn x
γ (n)

j j }, j ∈ I , n ∈ N \ {1}

ϕn
j = max{0, (1 − α)μn x

γ (n)

j j −
∑

i∈I

dn
i x

γ (n)

i j }, j ∈ I , n ∈ N \ {1}.

In practice, they account for the deviation from the upper and lower thresholds in the balancing
constraints. These quantities turn out to be crucial for the trade-off between two different
courses of action that the model is seeking throughout the planning horizon: Reassignment
of TUs and performing extraordinary actions to compensate for shortages/surplus. If the
costs associated with the latter are too high compared to those associated with the former,
the problem reduces to a multi-period districting-redistricting problem. In the other extreme
case, reassignments are forbidden. Hence, the problem has a bi-objective “flavour”, although
it is not handled explicitly in a multicriteria setting.

3.1 The relevance of considering amulti-stage stochastic model

One important aspect when considering a multi-stage stochastic model (as has just been done)
concerns its effective need. In two-stage stochastic programming, this is often assessed by the
so-called value of the stochastic solution. This value can be extended to the multi-stage case
in different ways (see, e.g., Escudero et al., 2007; Ziegler, 2012). In any case, the underlying
idea is always to compute an expected value solution as an approximation to the stochastic
problem. In this work, a conditionally expected value approach is adopted, corresponding to
a dynamic solution to the average scenario as proposed in the above papers.

The process can be briefly summarized as follows: compute the expected values for all
random variables and compute the deterministic solution. Fix the first-stage decision. Com-
pute conditional expected values for all random variables in the subtree for each node in
the subsequent stage of the scenario tree and solve the (deterministic) problem thus induced
from that node. Use the solutions to fix the decisions for the actual stage. Proceed to the next
stage and iterate likewise until the leaf nodes of the scenario tree are reached.

According to this procedure, a model, say EVn , is solved in every node of the scenario tree.
We denote its optimal value by Z EV n . This is done sequentially for stages 1, 2, . . . , M − 1.
Every model EV n “aggregates” the costs from stage m(n) to the end of the planning horizon.
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Following Escudero et al. (2007), the expected result in stage m of using the above dynamic
solution of the average scenario is defined, denoted by EDEVm (m = 1, . . . , M − 1) as the
expected value of the optimal values of problems EV n problems, with n ∈ N , such that
m(n) = m. In other words, EDEVm is defined as:

EDEVm =
∑

n∈Nm

πn Z EV n , m = 1, . . . , M − 1.

Finally, the dynamic value of the stochastic solution is computed as:

DV SS = E DEVM−1 − S P, or %DV SS =
E DEVM−1 − S P

S P
× 100,

where S P is the optimal value of the multi-stage stochastic model.
Although insightful regarding the possibility of simplifying the multi-stage stochastic

model, the DVSS does not actually assess the relevance of capturing uncertainty in the
problem. To do so, one relies on another well-known indicator: the Expected Value of Perfect
Information (EVPI). The EVPI measures how much a decision maker would be willing to
pay to get access to perfect information about future demand realization(s). Therefore, the
higher the EVPI, the more important the role uncertainty plays in the problem (and, thus, the
more relevant it is to capture it). This is a value computed easily: for each scenario ω ∈ �

one computes the optimal value of the corresponding multi-period single-scenario problem.
Denote that value by Zω. The value of the wait-and-see solution value is computed as:

W S =
∑

ω∈�

πω Zω,

and, finally:

EV P I = S P − W S, or %EV P I =
S P − W S

W S
× 100.

4 A heuristic algorithm

The mathematical model proposed for the MSSDP in the previous section easily becomes
intractable due to the number of scenarios in the scenario tree that will increase fast with the
number of stages. For this reason, in this section, a heuristic algorithm is proposed seeking
to find hopefully good feasible solutions to the problem.

The procedure relies on the resolution of the problem by considering a restricted model
in which the set of representative TUs that can be selected in each node n ∈ N \ � of the
scenario tree is limited to a restricted set of candidates, say Cn . Recall that in the last stage,
M , only reassignments, surplus, and shortages based on districting decisions made in stage
M −1 are accounted for, which explains why no restricted sets are defined in stage M . Thus,
the restricted model, which is called (M2R), results from (M2) with the following additional
constraints:

∑

j∈Cn

xn
i j = 1, i ∈ I , n ∈ N \ �, (25)

xn
i j = 0, i ∈ I , j ∈ I \ Cn, n ∈ N \ �. (26)

Constraints (25) allow the assignment of TU i in node n only to a potential representative,
while Constraints (26) forbid assignments to non-potential representatives. Note that it is
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possible to avoid the introduction of variables xn
i j , i ∈ I , j ∈ I\Cn, n ∈ N\� although

they are kept for a clearer exposition.
The heuristic is formalized in Algorithm 1. Lines 1–8 seek to iteratively define the restricted

sets Cn , n ∈ N\�. Initially, no restriction is imposed on the candidate sets Cn (line 1). Thus,
all sets coincide with I , and models (M2) and (M2R) coincide (all the TUs are initially
regarded as potential representatives).

A loop starts in phase 1 and ends in stage M −1 to define all the restricted sets to consider
in each stage. In particular, in iteration m, the sets Cn for nodes n in stage m become fixed.
This is accomplished as follows. First, the linear relaxation of (M2R) is solved. Note that,
in the current iteration m, the restricted sets Cn for all stages before m have been fixed,
which is already reflected in (M2R) and thus in its linear relaxation, via Constraints (25) and
(26), that should be updated each time new restricted sets are found. Now, the solution of
the linear relaxation is examined and the values of the self-assignment variables xn

j j for n

in stage m (m(n) = m) are retrieved. Those greater than zero provide a candidate for being
a TU representative. Accordingly, every set Cn in stage m is built from scratch using only
such TUs (lines 5–8). When the model (M2R) is solved next time, these restricted sets are
updated accordingly.

When the sets Cn are fully determined, the model (M2R) (that now has embedded all the
restricted sets) is solved. This is done in line 9 of Algorithm 1. The obtained solution is the
approximation proposed for the optimal solution of MSSDP.

Algorithm 1 Heuristic.
1: Cn ← I , n ∈ N \ �; // set of candidate representatives for each node
2: for m ∈ {1, .., M − 1} do // for each stage, except the last one
3: Solve the linear relaxation of the model (M2R). Denote the corresponding solution by x̄ ;
4: for n ∈ Nm do // examine the solution
5: Cn ← ∅;
6: for j ∈ I do

7: if x̄n
j j

> 0 then

8: Cn ← Cn ∪ { j}; // store TU j as a potential representative for node n

9: Solve the model (M2R);
10: return x⋆. // a feasible solution for the MSSDP

5 Computational experiments

This section reports on the computational experiments performed to validate the proposed
model (M2) for the MSSDP and the heuristic proposed for approximating its optimal solu-
tion. The test data used is described in Sect. 5.1, while the obtained results are presented in
Sects. 5.2–5.3. Specifically, Sect. 5.2 overviews extensive results. Section 5.3 focuses on addi-
tional results for larger-sized instances. Finally, the reader is also addressed to the Electronic
Supplement—Appendix A, where information about some selected instances is provided to
understand the solutions obtained and illustrate the relevance of capturing uncertainty in the
investigated problem.
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Fig. 3 Test instance - basic TUs
corresponding to the centroids of
the province of Novara (note:
“southern” centroids displayed as
empty dots)

5.1 Test data and implementation details

For the computational experiments, the set of instances from Diglio et al. (2020) is used as
a starting point. These instances use real geographical data corresponding to the province of
Novara, in northern Italy. Specifically, there are 88 point-like basic TUs (|I | = 88), which
are determined as the centroids of the municipalities in the province (see Fig. 3).

To investigate the relevance of considering a multi-stage decision-making process under
uncertainty, the focus is on a small case with three stages, namely, that depicted in Fig. 1.
Hence, for illustrative purposes, four scenarios (|�| = 4) and seven nodes (|N | = 7) are
considered. The probabilities of reaching each node n ∈ N from the immediate predecessor
are the same for each node.

The following introduces a setting where the only stochastic parameter is represented by
demands. The corresponding data was obtained as follows. The demands in node 1 were
generated assuming they were represented by random variables following a Uniform Dis-
tribution with a fixed expected value equal to 50, and Relative Standard Deviation (RSD)
equal to 0.11 To ensure similarity in demands, a choice is made at the start of the planning
horizon. It is assumed that the demands in the lower branch of the scenario tree will remain
unchanged. This means that for i in I, d3

i = d6
i = d7

i = d1
i .

However, some variability is introduced in the upper branch of the scenario tree, specifi-
cally in nodes 2, 4, and 5. For node 2, it is assumed that there is a 50% probability that TUs
(Transportation Units) will experience a 25% reduction in demand compared to that in node
1. To achieve this, a random number λ2

i is generated following a Bernoulli distribution with
a parameter of 0.50. If the generated random number equals one, the demand in node 2 is

1 For a random variable d, its RSD is given by the ratio between the square root of its variance (Var [d]) and

its expected value (E[d]), namely:
√

Var [d]
E[d] . When considering such values, for a Uniform distribution in the

range [a, b], it is possible to calculate a as E[d](1 −
√

3 × RSD), and b as E[d](1 +
√

3 × RSD).
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computed as 75% of the corresponding demand in node 1. Otherwise, the demand in node 2
will remain the same as that in node 1. The same mechanism applies to nodes 4 and 5, with
a 50% probability of a 50% and 75% reduction in demand, respectively.

The generation process can replicate situations where demand originating from TUs may
undergo unexpected severe reductions or increases in the future. In summary, there is:

dn
i =

{

(1 − θn) × d
γ (n)

i , if λn
i = 1,

d
γ (n)

i , if λn
i = 0,

i ∈ I , n ∈ {2, 4, 5},

with θ2 = 0.25, θ4 = 0.50, and θ5 = 0.75.
Using the above procedure, ten different instances were generated, referred to as

“Instances_1”. Additionally, a second set of instances, called “Instances_2”, was created,
in which the same demand-generation procedure was applied only to the “southern” TUs.
These TUs have 50% of the centroids having the lowest y-coordinates. Doing so enforced a
“local” trend in demand variation. This approach is expected to make balancing constraints
more difficult to meet in the following stages, which may result in higher reassignment/penalty
costs. In Fig. 3, the “southern” TUs are displayed as empty dots. All the instances used in
the computational tests whose results are reported in this section are available to anyone
interested upon request from the authors.

Concerning the other parameters underlying the given instances, they were set as follows:

• Assignment costs: ci j = ℓi j , i, j ∈ I , where ℓi j is the euclidean distance between TUs
i and j ;

• The probabilities of the nodes n ∈ N\{1} in the scenario tree are set equal to 1
2 , 1

2 , 1
4 , 1

4 ,
1
4 , and 1

4 for nodes 2 to 7, respectively.
• The reassignment costs are defined as rn

i j = ℓi j , i, j ∈ I , n ∈ N\{� ∪ {1}};
• The savings from removing a TU from a district are determined as sn

i j = ζ · li j , i, j ∈ I ,
n ∈ N\(� ∪ {1}), with ζ ∈ [0, 1]. Hence, the savings are defined as a fraction of the
assignment costs. ζ = 0 is set to zero, which means no savings are considered.

• Finally, for the penalty costs, the maximum distance between any pair of TUs is consid-
ered as gn

j = hn
j = maxi, j∈I {ℓi j }, j ∈ I , n ∈ N\{1}. In other words, it is set as the

maximum distance between any pair of TUs.

Remark 4 The above-discussed settings lead to an interesting interpretation of the unit penalty
costs. To explain it, let us focus on a single TU i . It is supposed that by reassigning this TU
in node n to a new district k, a surplus in the district it currently belongs to, say j , can be
avoided. The corresponding penalty and reassignment costs can be computed, respectively,
as g j × dn

i , and ℓik × dn
i . Therefore, a reassignment will be performed only if ℓik < g j .

Similar reasoning can be followed for shortages. In practice, penalty costs can be interpreted
as the maximum distance within which reassignments are worth accepting. In this specific
case, a TU is reassigned as long as its distance from the new representative is less than the
maximum distance among the TUs. Otherwise, penalties are preferred. This observation is
in line with the already mentioned bi-objective “flavour” of the problem (see Sect. 3).

Once the above parameters are fixed, various experiments are realized by varying the value
of the tolerance α ∈ {0.05, 0.10, 0.15, 0.20, 0.25}, and the number of districts p ∈ {4, 6}.
In total, 200 experiments are performed: five values of α, two values of p, and ten different
demand generations for both Instances_1 and Instances_2.

All the experiments were performed on an Intel(R) Core(TM) i7-7700 with 3.60 GHz
and 64 GB of RAM, running the Windows 10 Pro 64-bit operating system. The models and
the heuristic were coded in Python 3.7, using IBM ILOG CPLEX 12.10 as a solver. A time
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limit of three hours was set for the solution of the MSSDP. The procedures for calculating
the Dynamic Value of the Stochastic Solution (DVSS) and the Expected Value of Perfect
Information (EVPI) were only run when the corresponding MSSDP was solved up to proven
optimality within the prescribed time limit. For both procedures, an overall time limit of three
hours—10800 s—was considered.

5.2 Extensive results

In the following, the results obtained by solving model (M2) for all the generated instances
described in Sect. 5.1 will be discussed. The results are summarized in Table 1. For every
instance, the presented information includes:

• The computational performance of the model, by showing: (i) the number of optimal
solutions—out of 10—obtained within the imposed time limit (10,800 s); (ii) the mini-
mum, maximum, and average optimality gap (in %) of the obtained solutions (clearly,
the gap equals zero when solutions are optimal); (iii) the minimum, maximum, and aver-
age computing times (seconds). The table displays “t.l.” under the maximum computing
time column if at least one instance was not optimally solved within the time limit. Of
course, if no optimal solutions were obtained, “t.l.” would also occur for the minimum
and average cases.

• The relevance of capturing uncertainty in the problem by means of the %EVPI and
the quality of the expected value solution for approximating the optimal solution to the
stochastic problem through the %DVSS. These indicators were only calculated when the
corresponding model’s solutions were optimal. Accordingly, “N/A” is displayed if none
of the ten instances was solved to proven optimality.

Starting with a focus on Instances_1, it can be observed that the model could optimally
solve all the tested instances for p = 4 within acceptable computing times, averaging 117 s. In
fact, the number of optimal solutions was the same for all considered values of the tolerance α,
equaling 10. It is also worth highlighting that computing times tend to increase as α decreases.
This result is not unexpected, as lower values of α tighten the balancing constraints, thus
making them harder to meet. This emphasizes the trade-off between the (re-)assignments and
penalty costs when seeking the optimal solution to the problem. Interestingly, such a finding
is reflected by the distributions of the %DVSS and %EVPI. In particular, as α increases, the
%DVSS reduces to about 8% for α = 0.20 and α = 0.25. This indicates that as instances
become relatively easier to solve, deterministic expected-value problems can produce better
approximate solutions to the MSSDP. Nevertheless, the above values are not negligible.
Furthermore, note that the %DVSS equals 15.50% on average, with a peak of more than 30%
for α = 0.10. Therefore, it can be argued that explicitly considering uncertainty in the model
is crucial. The relevance of hedging against uncertainty is also supported by the obtained
values for the %EVPI.

A similar behaviour is observed for p = 6. However, these instances proved harder to
solve, especially for α = 0.05. Indeed, under such settings, the model could not obtain the
optimal solutions for two instances, exhibiting an optimality gap equal to 1.71% in the worst
case. Recall that an increase in the value of p reduces the lower and upper threshold used in
the balancing constraints. Clearly, this effect is amplified if jointly occurring with a decrease
of α. Finally, no significant differences are devised in terms of the %DVSS and %EVPI.

The computational performance of the model drastically reduces when tackling Instances_2.
In particular, optimal solutions were not obtained for p = 6 and α = 0.05. Remarkably,
the corresponding average optimality gap is about 7% in this case. Also, the running times
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increase significantly, being higher than 3000 and 5000 s for p = 4 and p = 6, respectively.
These results highlight that resorting to heuristic procedures is necessary to reduce the com-
putational effort required to obtain feasible (and, hopefully, higher-quality) solutions to the
problem, even for small-sized instances, as shown in Sect. 5.2.2.

On a last note, it is observed that the uncertainty considerations turn out to be more
relevant for these instances, as the higher values of %DVSS and %EVPI reveal, which
suggests that capturing uncertainty becomes more relevant when it only affects a subset of
locally-distributed TUs. For a further discussion on the latter, the reader is also referred
to the Electronic Supplement—Appendix A. Moreover, a deeper look into these indicators
is given in Sect. 5.2.1. Finally, for more detailed results about the performed experiments,
the interested reader is also addressed to the Electronic Supplement—Appendix B, Tables
B1—B4.

Next, the analysis proceeds in two different directions. Section 5.2.1 provides some addi-
tional insights and results from the solution of the model, while Sect. 5.2.2 overviews the
performance of the proposed heuristic.

5.2.1 Additional insights

This section explores three further aspects of relevance to our problem: (i) a cost breakdown
analysis, to assess the motivation for the values of the %DVSS and %EVPI discussed above;
(ii) the effect of considering both decreasing and increasing demand scenarios; (iii) the effect
of savings.

(i) Cost breakdown analysis

Hereafter, a cost breakdown analysis of the obtained solutions is presented to explain the
values of the %DVSS and %EVPI that emerged from the performed experiments. To this
end, a subset of solutions is considered—specifically, those obtained for Instances_1, p = 4,
and α = 0.10, 0.15, 0.20 (i.e., rows 2, 3, and 4, respectively, in the upper part of Table 1).

For these 30 solutions, Table 2 reports: (i) the objective function (OF) and its three
components, i.e., (ii) the initial assignment costs (AssCosts), (iii) the reassignment costs
(ReassCosts), and (iv) the penalty costs (PenCosts) for the MSSDP, its expected value approx-
imation, i.e., the so-called E DEVM−1, and the wait-and-see (WS) solution. Note that, for
brevity, the above indicators are expressed as the average of the ten solutions obtained for
each value of α.

The comparison between the MSSDP and EDEVM−1 explains the high observed %DVSS.
As the table shows, the objective function of the EDEVM−1 is higher than the MSSDP
regardless of the value of α. The reason for this outcome is clear. Indeed, approximating the
stochastic program by its expected value leads to a more compact first-stage solution (i.e.,
the Expected Value solution rooted in node 1, i.e., the so-called EV 1). The latter, in fact, has
lower initial assignment costs than the first-stage solution of the MSSDP (see the “AssCosts”-
column). However, this turns out to be very weak when hedging against uncertainty, leading
to more expensive reassignments and penalties for unmet balancing.

The comparison between the WS and MSSDP reveals that, regardless of α, accessing
perfect information about uncertainty can foster the identification of more compact first-
stage solutions (the initial assignment costs —“AssCosts”—are lower than the WS). Also,
it helps hedge against uncertainty more effectively, as the lower reassignment costs and
penalties reveal. However, the differences are somewhat limited when one looks at the values
involved, which clarifies the low observed %EVPI values.

ii) Varying demand scenarios
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Table 1 Summary of the results obtained by solving model (M2)

Instance p α #Optimal Optimality Gap (%) Computing time (s) %DVSS %EVPI
(out of 10) Min Max Avg Min Max Avg Min Max Avg Min Max Avg

Instances_1 4 0.05 10 0 0 0 26 3101 390 2.61 28.01 11.25 0.4 2.5 1.39

0.1 10 0 0 0 19 165 59 6.77 49.65 30.45 0.1 1.76 0.86

0.15 10 0 0 0 23 386 101 11.35 38.57 19.57 0.39 2.06 1.15

0.2 10 0 0 0 13 29 19 0.96 28.33 8.25 0.26 1.53 0.95

0.25 10 0 0 0 12 21 14 0.1 23.46 7.96 0.29 1.39 0.61

Total 50 0 0 0 12 3101 117 0.1 49.65 15.50 0.1 2.5 0.99

6 0.05 8 0 1.71 0.22 163 t.l 4738 6 37.12 21.55 1.45 4.4 2.73

0.1 10 0 0 0 13 296 88 0.42 32.14 15.65 0.1 2.17 1.14

0.15 10 0 0 0 14 70 29 5.61 43.71 17.25 0.32 1.59 0.86

0.2 10 0 0 0 11 27 17 2.05 22.08 10.69 0.12 1.45 0.59

0.25 10 0 0 0 10 21 14 0 16.3 7.72 0 1.24 0.38

Total 48 0 1.71 0.04 10 t.l 977 0 43.71 14.57 0 4.4 1.14

Instances_2 4 0.05 2 0 1.95 0.76 1307 t.l 9775 44.58 50.23 47.4 5.43 7.05 6.24

0.1 8 0 0.88 0.13 247 t.l 3928 43.56 55.11 48.58 2.96 8.52 6.42

0.15 10 0 0 0 46 8362 1525 42.44 65.79 55.69 2.62 8.79 5.77

0.2 10 0 0 0 37 1594 468 41.48 59.19 50.5 3.13 8.2 5.72

0.25 10 0 0 0 71 588 297 24.34 60.68 43.91 2.51 7.26 5.09

Total 40 0 1.95 0.18 37 t.l 3199 24.34 65.79 49.22 2.51 8.79 5.85

6 0.05 0 2.7 11.56 7.13 t.l t.l t.l N/A N/A N/A N/A N/A N/A

0.1 1 0 2.5 1.28 8417 t.l 10,568 32.27 32.27 32.27 2.7 2.7 2.7

0.15 10 0 0 0 140 10,385 3640 42.21 52.57 48.35 1.86 6.53 4.15

0.2 10 0 0 0 30 453 127 33.63 54.15 47.33 1.2 4.92 2.57

0.25 10 0 0 0 17 238 48 18.15 56.01 37.73 1.07 3.19 1.73

Total 31 0 11.56 1.68 17 t.l 5037 18.15 56.01 41.42 1.07 6.53 2.79

1
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Table 2 Cost breakdown analysis for a subset of obtained optimal solutions (88-TUs, p = 4, Instances_1

α OF AssCosts ReassCosts PenCosts

0.10 MSSDP 2.93E+07 2.92E+07 1.10E+05 4.60E+04

EDEVM−1 3.83E+07 2.90E+07 8.29E+06 9.15E+05

WS 2.91E+07 2.91E+07 0.00E+00 4.66E+03

0.15 MSSDP 2.88E+07 2.86E+07 8.51E+04 5.39E+04

EDEVM−1 3.44E+07 2.84E+07 4.87E+06 1.12E+06

WS 2.85E+07 2.85E+07 3.93E+03 3.14E+03

0.20 MSSDP 2.82E+07 2.80E+07 1.64E+05 2.40E+04

EDEVM−1 3.05E+07 2.79E+07 1.78E+06 8.42E+05

WS 2.79E+07 2.79E+07 5.45E+03 1.27E+04

Table 3 Results for the 88-TUs
instances without (w/o) and with
(w) increasing demand scenarios

α %DVSS %EVPI CPU times
w/o w w/o w w/o w

0.10 30.45 31.85 0.87 1.05 59 154

0.15 19.57 33.18 1.15 1.13 101 82

0.20 8.25 18.03 0.95 1.28 19 95

So far, instances with decreasing demand scenarios have been considered. In this section,
additional tests are performed where changes in the demand can occur also in the “lower
branch” of the tree, i.e., in nodes 3, 6, and 7. Specifically, it is assumed that demands can
increase following the procedure for their generation described in 5.1 (and using the same
values of θ therein defined). In practice, demands in node 3 can increase by 25% compared to
node 1, while in nodes 6 and 7 they can increase by 50% and 75% w.r.t. node 3, respectively.
These increases have a probability (λi ) of 0.50 to occur. Mathematically, the following holds:

dn
i =

⎧

⎪

⎨

⎪

⎩

(1 − θn) × d
γ (n)

i , n ∈ {2, 4, 5}, if λn
i = 1,

(1 + θn) × d
γ (n)

i , n ∈ {3, 6, 7}, if λn
i = 1,

d
γ (n)

i , n ∈ N\{1}, if λn
i = 0,

with θ2 = θ3 = 0.25, θ4 = θ6 = 0.50, and θ5 = θ7 = 0.75.
For these tests, the 88-TUs of the type of Instances_1 were considered and solved for p = 4

and α ∈ {0.10, 0.15, 0.20}, thus resulting in 30 new experiments (10 demand generation for
each combination of p and α). Table 3 summarizes the main obtained findings, by showing, for
each value of α the average (i) %DVSS, (ii) % EVPI, and (iii) CPU Time (in sec.). Specifically,
results are given for both cases, i.e., without and with increasing demands (denoted by “w/o”
and “w”, respectively). Note that results for the “with”-cases are the same as in Table 1.

The table reveals several key findings. Firstly, the values of %DVSS are consistently
higher for the instances including increasing demand scenarios. This indicates that determin-
istic approximations are less accurate when considering mixed-demand scenarios. Secondly,
slightly higher values of the %EVPI are observed, meaning that accessing perfect informa-
tion has higher relevance in such a setting. Thirdly, the instances appear to be relatively more
challenging to solve—except for α = 0.15—as the corresponding running times underscore.
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Table 4 Assessing the impact of savings (88-TUs instances, p = 4, α = 0.25, Instances_2)

ζ OF AssCosts ReassCosts PenCosts CPU time

0 3.16E+07 3.00E+07 1.57E+06 3.01E+04 588

0.2 3.15E+07 3.00E+07 1.45E+06 3.01E+04 3105

0.4 3.14E+07 3.00E+07 1.34E+06 3.01E+04 4677

0.6 3.13E+07 3.00E+07 1.22E+06 3.01E+04 21,941

0.8 3.05E+07 2.88E+07 1.74E+06 0.00E+00 17,289

1 2.81E+07 9.83E+07 -7.02E+07 0.00E+00 5272

Overall, these initial findings suggest that this line of investigation holds promise. However,
further and more extensive analysis is needed to confirm their generalizability.

(iii) The role of savings

This section aims to show how savings can impact the solutions produced by the proposed
model. To this end, some further computational tests were performed. As an illustrative
example, a specific instance was considered (out of the ten generated for Instances_2) and
tested for p = 4, α = 0.25 and by varying the savings sn

i j . Recall that savings obtained by
removing a TU from a district are defined as follows: sn

i j = ζ · li j , i, j ∈ I , n ∈ N\(�∪{1}),
with ζ ∈ [0, 1]. Hence, the savings are a fraction of the assignment costs. For these new
experiments, ζ was varied from 0 (i.e., no savings are considered) to 1 (i.e., the saving equals
the initial assignment cost) with a pace equal to 0.2. The obtained results are summarized
in Table 4, which reports, for each tested value of ζ : (i) the objective function (OF) and
its three components, i.e., (ii) the initial assignment costs (AssCosts), (iii) the reassignment
costs (ReassCosts, net of the savings), (iv) the penalty costs (PenCosts), and (v) the CPU
Times needed to solve these instances up to optimality (in seconds).

As the Table shows, the model produces the same optimal solutions for ζ values up to 0.6.
Indeed, the initial assignment costs and the penalty costs are the same, while the reassignment
costs are obviously different because of the different savings being considered.

When looking at the solution obtained for ζ = 0.8, it can be observed that the first stage
solution has lower initial assignment costs, but higher reassignment costs. However, such
reassignments allow the model to identify a fully balanced solution, i.e., with penalty costs
equal to 0. This fact underscores the impact of savings. Indeed, if they are in play, the model
can seek more compact first-stage solutions and has an incentive for numerous (cheaper)
reassignments in the second stage. In turn, these reassignments can help avoid penalty costs.

For lower values of ζ , instead, it can noticed penalty costs are paid. Indeed, to avoid them
and meet balancing, numerous (highly expensive) reassignments would be needed. This
explains why, in order to reduce reassignments and penalties, a less compact first-stage is
observed. It is worth noticing that these findings further underline the inherent multi-objective
flavor of our model.

Finally, for ζ = 1, the initial assignment costs are high, suggesting a poorly compact first-
stage solution. However, the value of reassignment costs is negative, which indicates that
savings surpass reassignment costs. This means that numerous and cheaper reassignments
are made to evolve the initial solution toward a more compact and fully balanced districting
plan (penalty costs are again null).

On a final note, it is also observed that the impact of savings is not negligible in terms
of computational times, which are at least five times higher w.r.t. to the base-case (i.e., for
ζ = 0).
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5.2.2 Results for the proposed heuristic

This step of the analysis consists of assessing the performance of the heuristic introduced in
Sect. 4. To this end, Algorithm 1 was applied to the whole set of generated testbed instances,
and its results were benchmarked against those obtained from the implementation of the
model (M2).

A brief comparative assessment is reported in Table 5, which displays, for each Instance:
(i) the minimum, maximum, and average gap between the objective functions (�O F );
(ii) the number of optimal solutions yielded by the model (“Model”) and the heuristic
(“Heur”); (iii) the minimum, maximum, and average computing times required by the
model and the heuristic. Note that the above-mentioned gap is computed as: �O F =
100 × (Z Heur − Z Model)(Z Model), with Z Model and Z Heur denoting the objective function
values for the solutions obtained by the model and heuristic, respectively. Thus, a negative
deviation indicates cases in which the heuristic solution outperforms the best feasible solu-
tion found by the model. Clearly, such a circumstance may occur only when the model does
not achieve an optimal solution within the imposed time limit.

As the table shows, the heuristic produces very good solutions to the problem. This is
particularly evident when looking at Instances_1. For p = 4, the heuristic attains the optimal
solution in 42 out of 50 cases. In the remaining ones, the corresponding gaps are minimal,
being equal—at most—to 0.83% (for α = 0.05) and 0.03% on average. The number of
optimal solutions achieved by the heuristic increases to 46 for p = 6. Again, the few non-
zero gaps between the objective functions are very limited and equal to 0.36% in the worst
case, i.e., for α = 0.10. Also, these results highlight something that is wished to be seen.
Specifically, if the focus is on α = 0.05, it can be found that the minimum and maximum
gaps equal −0.12% and 0%, respectively. Therefore, it can be concluded that the heuristic
either attains the optimal solution to the problem or outperforms the model when its resolution
reaches the time limit prescribed by producing higher-quality solutions. These (near-)optimal
solutions are obtained at a very acceptable computational effort. It should be observed that
while computing times are comparable for higher values of α, savings become significant as
α decreases. On average, it is noticed that the heuristic runs for 28 and 61 s for p = 4 and
p = 6, respectively. In particular, in the latter case, it is worth underlining that the algorithm
produces (almost) the same number of optimal solutions by lowering the computing times to
about one-fifteenth (from 977 to 61 s).

These findings are confirmed when focusing on the more challenging Instances_2. The
number of optimal solutions reached by the heuristic reduces (19 out of 31). However, the gaps
are relatively small and equal to 0.85% in the worst case (p = 6, α = 0.15). Interestingly, it
must be highlighted that the heuristic can produce significantly better solutions whenever the
model fails to achieve the optimal solutions to the problem within the imposed time limit. In
fact, the average gap equals −1.66% for p = 6, α = 0.05, with an improvement of 3.55%
in the best case. Although increased w.r.t. to the first set of instances, running times remain
acceptable and, above all, they are one order of magnitude lower than the corresponding
solution times of the model (on average, 111 vs. 3199 s for p = 4; 478 vs. 5307 s for p = 6).
More detailed results about are given into the Electronic Supplement—Appendix B, Tables
B1—B4.

Overall, these findings validate the proposed heuristic and classify it as effective for the
investigated problem.
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Table 5 Assessing the performance of the proposed heuristic

Instance p α �O F # Optimal Computing time (s)
(%) (out of 10) Model Heur

Min Max Avg Model Heur Min Max Avg Min Max Avg

Instances_1 4 0.05 0 0.83 0.08 10 9 26 3101 390 26 40 30

0.1 0 0.21 0.03 10 8 19 165 59 27 28 28

0.15 0 0.22 0.06 10 5 23 386 101 27 31 28

0.2 0 0 0 10 10 13 29 19 26 27 27

0.25 0 0 0 10 10 12 21 14 25 27 26

Total 0 0.83 0.03 50 42 12 3101 117 25 40 28

6 0.05 −0.12 0 −0.02 8 8 162 t.l 4738 29 754 192

0.1 0 0.36 0.04 10 9 13 296 88 26 39 30

0.15 0 0 0 10 10 14 70 29 26 42 30

0.2 0 0.02 0 10 9 11 27 16 26 30 27

0.25 0 0 0 10 10 10 21 14 25 28 26

Total −0.12 0.36 0 48 46 10 t.l 977 25 754 61

Instances_2 4 0.05 −0.1 0.6 0.26 2 2 1307 t.l 9775 56 1388 396

0.1 −0.14 0.59 0.14 8 4 246 t.l 3928 31 147 64

0.15 0 0.36 0.07 10 8 45 8362 1525 29 58 36

0.2 0 0.31 0.05 10 7 37 1594 468 27 35 31

0.25 0 0.67 0.19 10 5 71 588 297 27 44 30

Total −0.14 0.67 0.14 40 26 37 t.l 3199 27 1388 111

6 0.05 −3.55 0.1 −1.66 0 0 t.l t.l t.l 1019 3502 1588

0.1 −0.26 0.32 −0.03 1 1 8417 t.l 10,567 67 1693 657

0.15 0 0.85 0.14 10 5 140 10,385 3640 36 161 84

0.2 0 0.31 0.03 10 8 29 453 126 29 37 32

0.25 0 0.18 0.06 10 5 17 238 48 27 32 29

Total −3.55 0.85 −0.29 31 19 17 t.l 5037 27 3502 478

1
23



Annals of Operations Research

5.3 Further results: larger-sized instances

The last step of the empirical analysis consists of additional computational tests to assess the
capability of the model and the heuristic to solve larger-sized instances for the investigated
problem in terms of (i) an increased number of TUs and (ii) a higher number of stages (and
scenarios). The related discussions follow in Sects. 5.3.1 and 5.3.2, respectively.

5.3.1 The impact of the number of TUs

For these computations, the 120-TUs instances (i.e., |I | = 120) used by Diglio et al. (2020)
were considered, and the same experimental setting as above was replicated. Thus, 200
additional experiments were performed, summarized in Table 6. For the sake of brevity, only
the average values of some relevant indicators are reported in the latter, while a more extensive
overview is provided into the Electronic Supplement—Appendix B, Tables B5–B8.

Three main elements seem to emerge from these extended experiments. First, capturing
uncertainty in the problem remains crucial. In particular, the (average) values of %DVSS
are often higher than those obtained for the 88-TUs instances (see Table 1), thus revealing
that the size of the problem seems to affect this aspect. Second, and as expected, the latter
has a clear effect on the computational performance of the model. Indeed, although most of
the tested instances are optimally solved within the imposed time limit, the average running
times are significantly increased w.r.t. to the former tests. Finally, the heuristic confirms its
effectiveness, being capable of attaining (near-)optimal or even improved solutions at an
acceptable computational effort.

5.3.2 The impact of the number of stages

For these experiments, the 88-TUs instances were considered. To this end, demands were
generated by using the method described in Sect. 5.1. Recall that the following values of θ

were assumed for three stages: 0.25 for node 2, 0.5 for node 4, and 0.75 for node 5. Recall
also that, for a given node n, θn expresses the percentage by which the demand for a generic
TU i may reduce w.r.t. to its predecessor.

The scenario tree shown in Fig. 1 was used as a reference and extended to include four and
five stages, resulting in eight and 16 scenarios, respectively. In the case of four stages, nodes
8 and 9 would be successors of node 4, with associated values of θ = 0.5 and θ = 0.75. The
same applied to nodes 10 and 11, successors of node 5. No variations in the demand occurred
for nodes 3, 6, 7, and their successors. The same reasoning was assumed for a five-stage
scenario tree. It is worth underlining that in this generation process, no differentiation was
made between the “Northern” and “Southern” TUs, which means that demand changes could
apply to all the TUs (as for Instances_1). Finally, the equiprobability of the scenarios was
still assumed, i.e., with each scenario having a probability equal to 1

|�| to occurr.
The initial focus is on four stages. Various tests were performed by setting p = 4 and

varying α ∈ {0.10, 0.15, 0.20}. Again, for each combination of p and α, ten instances were
generated by varying the demands. This resulted in 30 additional experiments, whose results
are summarized in Table 7. The structure of the table and the information therein reported
are the same as in Table 6.

It is important to underline that no time limit was imposed for these runs. Hence, all
the tested instances were solved up to proven optimality, and the corresponding %DVSS
and %EVPI were calculated. Interestingly, it can be observed that both indicators are higher
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Table 6 Results for the 120-TUs instances

Instance p α Avg Avg # Optimal (out of 10) Avg �O F Avg computing times (s)
%DVSS %EVPI Model Heur (%) Model Heur

Instances_1 4 0.05 42.43 1.17 10 9 0.02 738 91

0.1 12.1 1.26 10 9 0.01 1030 59

0.15 33.9 1.23 10 9 0.01 224 58

0.2 23.05 1.24 10 10 0 325 57

0.25 27.04 1 10 10 0 125 54

Total 27.7 1.18 50 47 0.01 488 64

6 0.05 30.23 2.14 8 7 0.03 5531 228

0.1 15.61 1.11 10 7 0.02 373 58

0.15 19.04 0.54 10 10 0 63 55

0.2 17.2 0.34 10 10 0 39 54

0.25 14.72 0.3 10 10 0 29 53

Total 19.36 0.88 48 44 0.01 1207 89

Instances_2 4 0.05 N/A N/A 0 0 −0.33 t .l 4011

0.1 67.62 4.33 6 3 0.07 6468 669

0.15 58.4 3.96 10 1 0.17 1232 114

0.2 56.07 4.12 10 8 0.05 2035 186

0.25 49.77 3.63 10 9 0 1247 77

Total 57.96 4.01 36 21 −0.01 4358 1012

6 0.05 N/A N/A 0 0 −0.56 t .l 2748

0.1 26.01 3.25 1 1 −0.07 9747 355

0.15 41.67 2.38 10 9 0.01 1856 66

0.2 35.65 1.33 10 9 0 88 56

0.25 44.4 0.72 10 10 0 42 54

Total 36.93 1.92 31 29 −0.12 4509 656
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Table 7 Results for the 88-TUs instances with four stages

α Avg Avg # Optimal (out of 10) Avg �O F Avg Computing times (s)
%DVSS %EVPI Model Heur (%) Model Heur

0.10 34.34 2.01 10 9 0.02 13,735 231

0.15 27.15 2.06 10 9 0.00 10,690 167

0.20 18.97 1.93 10 8 0.03 8484 136

Total 26.82 2.00 30 27 0.02 10,970 178

Table 8 Results for the 88-TUs instances with five stages

# Optimal (out of 10) Avg �O F Avg OPTgap Avg G APH L B Avg computing times (s)
Model Heur (%) (%) (%) Model Heur

2 0 −4.76 5.58 0.89 10,185 2803

(even significantly) when compared to those reported in Table 1. This indicates that capturing
uncertainty becomes more and more relevant as the number of stages (and scenarios) increases
in the investigated problem.

Moreover, it can noticed that the heuristic still classifies as effective, being able to achieve
27 optimal solutions out of 30, with negligible optimality gaps in the remanding cases (on
average equal to 0.02%—see the “Avg �O F ”-column). Finally, the computing times are still
very reasonable, as the algorithm converges, on average, in 178 s (231 in the worst case, for
α = 0.10), that is, about 60 times faster than the solver. Further details on the performed
experiments can be found in the Electronic Supplement—Appendix B, Table B9.

Ten additional experiments were performed for five stages, corresponding to ten different
demand generations for the 88-TUs instances, with p = 4 and α = 0.20. In this case, a
time limit of 3 h was again imposed. The detailed results for these runs are reported in the
Electronic Supplement—Appendix B, Table B10, while some summary statistics are reported
in Table 8. In the latter table, the following indicators are also displayed in addition to already
presented information for previous tests:

• The average optimality gap—across the ten experiments—of the solutions obtained by
CPLEX (Avg. OPTgap);

• The average relative gap—across the ten experiments—between the objective function
of the solutions yielded by the heuristic and the lower bound provided by CPLEX (Avg.
G APH L B). It is measured as G APH L B = Z H −ZL B

ZL B
, with Z H and ZL B denoting the

objective functions of the heuristic solution and the lower bound, respectively.

As the table shows, the solver attains only two optimal solutions within the given time
limit, with an average running time of more than 10,000 s. The optimality gap reported by
CPLEX was not negligible for the remaining cases, averaging 5.58% (as shown the “Avg
OPTgap”-column) and reaching 22.87% in the worst case (see 8—specifically, experiment 4).
In contrast, the heuristic runs approximately four times faster, converging in just over 2800 s.
More importantly, it outperforms the solver significantly in terms of solution quality. The
proposed algorithm improves the best integer solution returned by the solver by an average
of about 4.76% (as shown in the “Avg �O F ”-column). Remarkably, the relative gap of the
heuristic from the lower bound provided by CPLEX is very limited and equal to 0.89% on
average (see the “Avg G APH L B”-column).

123



Annals of Operations Research

The results once again confirm the effectiveness of the heuristic, demonstrating that it
can represent a valuable tool for solving medium-sized instances involving up to five stages
and 16 scenarios. However, results for six stages, which are not presented for brevity, show
that the running times of the heuristic increase significantly. This indicates the need for
more refined solution methods to handle instances involving higher-cardinality scenario sets.
Nevertheless, and on a positive note, it is important to underline that appropriate scenario-
reduction techniques can be applied to make the latter more manageable for the proposed
algorithm.

6 Conclusions

In this paper, a multi-period stochastic districting problem was investigated. A finite set
of scenarios inducing a scenario tree was assumed to capture uncertainty. In the proposed
multi-stage stochastic programming model, an initial districting plan was designed at the
root node of the scenario tree (the beginning of the planning horizon). Due to the time-
dependent and uncertain demands, districts could be rearranged, i.e., some Territorial Units
(TUs) could be reassigned at each stage to meet the balancing requirements. Extraordinary
actions compensating shortages/surplus in each district at each node were also considered.
The proposed model seeks to optimize an objective function given by the sum of three terms:
the assignment costs for the initial districting, the costs occurring for redistricting (i.e., TUs’
reassignments), and the penalty costs for unmet balancing constraints. A heuristic algorithm
to find approximate solutions to the problem was also devised. The introduced procedure
solves a restricted model considering a subset of candidate representatives of the districts,
found by exploiting information obtained from the solution of the linear relaxation of the
problem.

Computational tests performed using test-bed instances from the literature, built upon
real geographical data, show the model’s capability to solve real-world-like case studies and,
above all, the relevance of capturing uncertainty in the investigated problem. To this end,
appropriate measures such as the Dynamic Value of the Stochastic Solution (DVSS) and
the Expected Value of Perfect Information (EVPI) were computed. Besides, the proposed
heuristic proved effective, producing near-optimal solutions with reduced computational
effort.

The work done has, of course, some limitations which open various future research direc-
tions. First of all, it should be acknowledged that artificially generated data was used for the
experiments. While this reveals the relevance of the modelling framework w.r.t. a generic
demand distribution, it also calls for future applications to a real-world case study (and, hence,
an actual demand distribution). Secondly, the proposed heuristic represents a first attempt to
solve the MSSDP. Therefore, another line of research worth pursuing leads to the definition of
more sophisticated algorithms for solving larger-sized instances involving a higher number
of TUs, more complex scenario trees, and the inclusion of explicit contiguity requirements.
Finally, it should be noted that the proposed model’s mentioned bi-objective flavour calls for
(explicit) multi-objective extensions of MSSDPs.

Supplementary Information The online version contains supplementary material available at https://doi.
org/10.1007/s10479-024-06459-7.
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