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Strategy Diffusion and Conformity in Evolutionary Dynamics on

General Networks

Rio Aurachman1 and Giuliano Punzo2

Abstract— Networks of social interactions can drive the
dynamics of socio-technical systems. In groups, where strategic
decisions are shaped by the tension between cooperation and
defection, the replicator equation serves as a valuable tool un-
derpinning the modelling of evolutionary dynamics of strategies.

In this work, we integrate the replicator dynamics with an
SI (Susceptible-Infected) model for information diffusion in
general networks. Considering also conformity, we model the
evolution of cooperation in a public good game. The trajectories
of the resulting dynamical systems converge to consensus
about an internal point solution in the snowdrift setting and
boundary solutions of full cooperation or full defection in social
dilemmas, asymmetric games and stag hunt settings. Through
the application of the Lyapunov stability theorem, we establish
the stability of the internal equilibrium point. We then examine
the basin of attraction obtaining the conditions leading to full
cooperation.

This work is relevant for the study of social dynamics in
groups where strategic interactions are mediated by conformity.

Index Terms— Networks, Cooperation, Replicator, Diffusion
ModelNetworks, Cooperation, Replicator, Diffusion Model

I. INTRODUCTION

In social and biological systems, it is not uncommon to

witness the renounce to selfish benefits for the common

good [1]. In general, defecting and selfishly prioritising own

reward is the normal course of action. Altruistic behaviours

often imply costly choices. Comprehending the phenomenon

of cooperative behaviour in human societies has been iden-

tified as one of the significant scientific issues of the 21st

century, in particular when linked to environment and social

factors [2]. It is moreover clear that individuals behave

differently in isolations and groups, where networks of social

ties can be considered [3] [4].

Diffusion processes, learning and games have been previ-

ously combined to understand spreading dynamics among

individuals [5]. Diffusion on the general network is well

understood, in particular in relation to epidemics, rumours

and misinformation spread [6] [7].

For the spreading of cooperative behaviours in networks,

the use of replicator dynamics is prevalent, where players

replicate strategies adopted by more successful individuals,

who gain more from “playing the game” [8].

It can be argued, however, that bounded rationality and

non-complete information about strategies and their out-

comes may prevent the spreading of winning strategy. In

fact, when players interact each with a different subset of
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other players, the best strategy for one may be suboptimal

for others. The different strategy outcomes, as well as the

information players receive about them, are related to the

network topology defining each player’s neighbourhood. The

interplay between the knowledge of the perceived best payoff

and the reward from the strategy being played becomes the

motivation for creating a model that combines replicator and

information diffusion. This has not been explored to date to

the best of our knowledge.

By combining games, information diffusion, conformity,

and network setting, our work shed light on the role that

these dynamics and structure have on the outcome of the

repeated games.

Moving beyond the restrictions to networks with specific

topologies or degree distributions [9], our model considers

a general network. Every player interacts with a subset of

the population and, as in the classical replicator dynamics, if

a strategy yields a payout that is above the average of said

subset, that strategy will be selected by more players [10].

The model we propose takes the typical structure of the

network susceptible-infected (SI) diffusion model, which is

chosen to govern the spreading of information about the

best strategy to adopt. As different from the traditional SI

models, here we consider a non constant infection rate which

is determined by the pay-off matrix of the public good game,

which in turn evolves with replicator dynamics.

In addition, our model also considers a conformity mech-

anism between player. It is believed that rational thinking

is not the only factor of dynamics of strategy As shown in

behavioural experiments, individuals trade off the rewards

they would get from an optimal strategy, for more popular

choices, to reduce risk and fit within their community [11].

While other studies have explored mixed strategies but typ-

ically in non-networked settings or general network [12], our

study combines mixed strategies, general network structures,

and a conformity mechanism.

II. MODEL DEVELOPMENT

We will focus on repeated public good games played on

a network, where each node is a player, and edges connect

players in the same game. At every repetition of the game,

each player will play the public good game simultaneously

with all the players they are in contact with. The network is

modelled as a graph G = (V,E). vi is the i− th element of

the set of nodes V , i.e. vi ∈ V . E is a set of ordered pair

of nodes, also known as edges and E ⊆ υ × υ.

The adjacency matrix A = [aij ] captures the connection

structure between nodes. We assume that the network is



undirected and strongly connected, meaning that there is a

path from every node to every other node. This results in the

A having entries in all rows and columns. We also define the

neighbour set Hi = {j : (vi, vj) ∈ E}, which indicates the

set of indices for the neighbours of i. We consider a payoff

matrix
[

P Q

R S

]

, (1)

where P,Q,R, S are constant scalar values mapping to

mutual cooperation (P ), mutual defection (S), the payoff

for cooperating with defectors (Q) and the payoff to defect

while playing with cooperators (R). A mixed strategy xi ∈
X = [0, 1], representing the degree to which a generic

node i contributes (cooperates) toward the public good. Let

xi ∈ X represents the degree of cooperation by a node and

its complement 1−xi will represent the degree of defection.

This means that, if player i chooses to cooperate by an

amount xi, they will receive in return

fci =
1

|Hi|+ 1





∑

j

xjP +
∑

j

(1− xj)Q



 (2)

where the sums extend to Hi ∪ i as i plays the game with

their neighbours. Moreover, as they defect by 1 − xi, they

will receive an additional payoff

fdi
=

1

|Hi|+ 1





∑

j

xjR+
∑

j

(1− xj)S



 . (3)

The mixed strategy approach aligns well with the individual-

based mean field [13], popular in the study of dynamical

systems. The strategy can be interpreted as the likelihood

that the node is in one of the binary states 0 (defection) or

1 (cooperation). In each round of the game, players receive

rewards from their chosen strategy. As this happens, each

player will review and update their strategy simultaneously.

The network Susceptible-Infected (SI) model can be used

as a mechanism for the spread of cooperation. In its indi-

vidual mean field formulation, the SI model can be written

as

ẋ(t) = β(In − diag(x(t)))Ax(t) (4)

where the elements of the vector x are the probabilities of

individuals to be infected and A is the (unweighted) adja-

cency matrix of the connection graph among the individuals.

Equation (4) features a constant and scalar infection rate β to

determine the probability that an infected individual spreads

a disease to a susceptible one [6]. As explained in [14], the

infection rate can be modified through a mechanism inspired

by the replicator dynamics.

In mean field models for fully mixed populations, the

replicator dynamics is ẋ = x(fc − f̄) where x is the

proportion of cooperators in the population. Moreover, f̄ =
x fc+(1−x)fd is the average payoff, fc = P x+Q(1−x)
and fd = R x + S(1 − x) are the payoffs for cooperation

and defection that depend on the proportion of cooperators

and defectors. Note that the replicator equation in its scalar

form can be written as

ẋ = (fc − fd)(1− x)x. (5)

The similarity between Equations (4) and (5) becomes

apparent if we take β = fc−fd and consider the interactions

between players happening over the network, which justifies

the vector form. We can hence define the vector

β = fc − fd = [A(x(P −R) +A(1− x)(Q− S))] (6)

as rewards are now different for each player, with elements of

the vectors fc and fd defined by equations (2) and (3). In our

settings, each player takes part in the game, choosing whether

to cooperate or defect on a continuous scale. Therefore,

Equation (4) for the strategy diffusion process, and Equation

(6) for the actual play of the game, involve not only Hi (the

neighbours of node i) but also the node vi itself, as previously

discussed. This translates into a network with self-loop in

every node and a nonzero diagonal of the adjacency matrix.

In the well-known SI network model, the only stable equi-

librium point is at x = 1 for values of the infection rate

β ∈ ]0, 1] [6]. Here, β dynamically takes both positive and

negative values, different for each player and influenced by

the game dynamics as well as the value of P,Q,R, S of

the payoff matrix. This makes equilibrium points other that

x = 1 emerge, which can be studied analytically together

with their stability. In particular, this applies for the payoff

matrix associated to a snowdrift game, which present a rick

dynamics in our setting and will be considered in section

III-D.

We also introduce an imitation or conformity behaviour

driving the strategy evolution together with the choice pro-

tocol driven by payoff difference. We assume that, besides

updating the strategy based on the reward received in com-

parison to the other players, each player tends to align their

strategies with closest neighbours, as experiments show [15].

We consider that both strategic updates and conformity

depend on the player’s neighbourhood, that is, the most

successful strategy are evaluated locally. This leads us to

consider the strategy weighted on the neighbours x̄ as

x̄ = diag−1(A1)Ax = A∗x. (7)

So the evolutionary dynamics is changed into

ẋ(t) = x̄− x+ diag(β) diag(1− x)x̄. (8)

From Equations (7) and (8) we get

ẋ(t) = (A∗ − I)x+ diag(β) diag(1− x)A∗x. (9)

Note that A∗ is row-stochastic. The new player-wise variable

diffusion rate then becomes

β = A∗ [(P −R)x+ (Q− S)(1− x)]). (10)

Considering −L = A∗ − I and

B(x) = diag(β)( diag(1− x)A∗). (11)



the evolutionary dynamics can be expressed as

ẋ(t) = (−L+B(x))x. (12)

Equation (12) represents a dynamical system that in-

corporates elements of both spatial structure and strategic

interactions. The Laplacian L captures the imitation process

over the local neighbourhoods while B(x) accounts for

the game dynamics, which represents strategic interactions

among rational entities. Overall, the model combines the

interplay between the stabilizing mechanism of the Laplacian

and strategic interactions in game.

III. EQUILIBRIUM POINTS

A. General Equilibrium

The equilibrium points must satisfy

−diag(β) diag(1− x)A∗x = 0. (13)

We shall now look at an equilibrium point at consensus

to then prove that, under some assumptions, it is the only

possible equilibrium point for the system.

At consensus, i.e. where x = span{1}, we get (A∗− I)x =
−Lx = 0 as for the Laplacian of a connected graph, the

eigenvector corresponding to the 0 eigenvalue is also in

span{1}. Equilibrium at consensus therefore can be achieved

by x = 1, x = 0 or β = 0.

While the x = 1, x = 0 are immediate to verify, the

condition β = 0 leads to an equilibrium point which is a

function of the game setting, specifically the P − R and

Q− S values, as shown in Equation (10). As the adjacency

matrix per-multiplies the expression in Equation (10), the

equilibrium point obtained for β = 0 does not depend on

the network structure, although it may affecting uniqueness.

The variation of P − R and Q − S values can characterize

unique game types, which we are going to focus next.

B. Equilibrium for Prisoner’s dilemma Game Setting

In the Prisoner’s dilemma setting where P < R and Q <

S, the only stable equilibrium point is all-defect. The current

modelling does not deviate from the established literature and

reaches the all-defect equilibrium or x = 0 [16].

Results exists about cooperation emerging as a possible

equilibrium through modifications of the Prisoner’s Dilemma

game [17]. However, in on our model, the conformity mecha-

nism may prevent the spread of cooperation in spatial games

and undermine cooperative clusters. Even when cooperation

returns higher payoff, the conformity mechanism can force

cooperating nodes to defect, leading to the eventual collapse

of cooperation throughout the network.

C. Equilibrium points with asymmetric game setting

In the asymmetric game setting, where P > R and

Q > S, the only stable equilibrium point corresponds to all-

cooperate as cooperation is the strictly dominant strategy, ie,

it is the best strategy irrespectively of the choices of other

players. This is evidenced by the fact that, the payoffs of the

asymmetric game make the elements of ẋ always positive

when the elements of x are between 0 and 1. Therefore, the

cooperation for each player would monotonically increase

until the equilibrium x = 1 is achieved.

D. Equilibrium Points With Snowdrift Game Setting

In the snowdrift game setting, where P < R and Q > S,

the stable equilibrium will vary based on the payoff matrix

value. Setting β = 0 in Equation (10), we get

−(P −R)A∗x = (Q− S)A∗(1− x). (14)

Assuming that the graph does not have a singular adjacency

matrix [18], premultiplying both sides by A∗−1 and rear-

ranging, the equilibrium point becomes

xeq =
(Q− S)

(Q− S)− (P −R)
1. (15)

In contrast to previous research that explores the snowdrift

game in various settings — such as iterated games [19],

spatial models [20], continuous strategies [21], and N -

player interactions [22] — our model proposes a relevance

novel combination: a networked N -player snowdrift game

with continuous strategies. With this novel framework, our

findings align with those of [17], which indicate that both

the traditional snowdrift game and the continuous strategy

snowdrift game maintain a mixed evolutionary stable equi-

librium in well-mixed populations. Similar to the prisoner’s

dilemma setting, this may be related to the effects of the

conformity mechanism.

E. Equilibrium for the Stag Hunt Game Setting

In the stag hunt setting where P > R and Q < S, the sta-

ble equilibrium point depends on the setting of the network

and the initial condition. Here we propose a threshold that

ensures the stable spread of cooperation, as will be presented

in Theorem 2.

F. The Mapping of Equilibrium

After observing all possible configurations of payoff ma-

trix, we can map the equilibria as shown in Figure 1.

The equilibrium region is divided into four quadrants: full

defection (dilemmas), full cooperation (asymmetric games),

a region where the equilibrium cannot be determined only by

the payoff matrix but is influenced by the network structure

and initial conditions (stag hunt), and a quadrant presenting

a continuous range of equilibria between zero and one

(snowdrift).

IV. BOUNDNESS

Consistently with the model interpretation, the evolution

of the state x in Equation (12) should follow bounded

trajectories with each coordinate (player) moving between 0

(full defection) and 1 (full cooperation). This is established

in the following.

Lemma 1: The trajectories of the system of equation

(12), are confined within the hypercube [0, 1]N for initial

conditions within hypercube. In particular, the boundary at

0 constrains the trajectories of x for games with equilib-

rium in full cooperation or internal solutions, (snowdrift or

asymmetric game with Q > S). Similarly, the boundary at



Fig. 1. Three dimensional plot showing the consensus equilibrium of the
dynamical system as a function of the difference between the elements of
the payoff matrix (P,Q,R, S). The regions of full defection (x = 0) with
P − R < 0 and Q − S < 0, full cooperation (x = 1) with P − R > 0
and Q− S > 0, and the interior point corresponding to the equilibrium in
(0 < x < 1) with P − R < 0 and Q − S > 0 are visible. The region
corresponding to P − R > 0 and Q − S < 0 is not considered since in
this case the equilibrium depends on the initial conditions and the network
topology, and cannot be defined solely by the payoff matrix.

1 constrains the trajectories for games with equilibrium in

full defection or internal solutions (snowdrift and prisoner’s

dilemma with P < R).

Proof: Consider the dynamics near the boundaries of

the hypercube and define F(x) such that ẋ = F(x). The state

close to the boundary at 0 can be written as x = 0 + 1ϵ,

where ϵ is an arbitrarily small number.

The limit value of ϵ to zero, or F(0+1ϵ), can be calculated

using L’Hospital Theorem or

lim
x→0

F(x) = lim
ϵ→0

F(0+1ϵ) =
∂F(0+ 1ϵ)

∂ϵ

∣

∣

∣

∣

ϵ=0

= (Q−S)1.

(16)

Equation (16) will have a positive value if Q > S, which

indicates that the system state will move from the x = 0

towards equilibrium. This proves the boundary at x = 0

for the snowdrift game, which has the equilibrium xeq =
(Q−S)

(Q−S)−(P−R)1 and the asymmetric game with the equilib-

rium x = 1.

For the boundary at x = 1 we calculate the derivation of

F(1− 1ϵ) which results in

lim
x→1

F(x) = lim
ϵ→0

F(1−1ϵ) =
∂F(1− 1ϵ)

∂ϵ

∣

∣

∣

∣

ϵ=0

= (P−R)1.

(17)

Equation (17) will have a negative value if P < R, which

indicates that the state of the system will move from x = 1 to

equilibrium. This proves the boundary at x = 1 for the snow-

drift game, which has the equilibrium xeq = (Q−S)
(Q−S)−(P−R)1

and the prisoner dilemma with the equilibrium x = 0.

V. STABILITY

Theorem 1: The dynamical system in Equation (12) is

globally asymptotically stable (GAS) at the equilibrium point

xeq = (Q−S)
(Q−S)−(P−R)1 if Q− S > P −R.

Proof: To prove that the equilibrium xeq =
(Q−S)

(R−P )+(Q−S)1 is GAS, consider the Lyapunov function

V =
1

2
(x− xeq)

T (x− xeq), (18)

which is always positive and zero when x = xeq . Moreover

V (x−xeq) is radially unbounded. The time derivative yields

V̇ = (x− xeq)
T ẋ. (19)

For simplicity, by defining g ≜ x− xeq , we can write V̇ =
gT ẋ. It follows that β = A∗(−g((Q − S) − (P − R))),
l = Q− S and k = P −R, so

β = (k − l)A∗g. (20)

The Lyapunov function then becomes

V̇ = gT ((A∗ − I)x+ diag(β) diag(1− x)A∗x).

As

diag(β)A∗x = (k − l)diag(A∗g)A∗x (21)

and diag(A∗g)A∗x = diag(A∗x)A∗g, we can write

V̇ = gT ((A∗ − I)x+ diag(1− x)diag(A∗x) (k − l)A∗g).
(22)

This leads to

V̇ = −gTLx− (l − k)gTD+ A∗g,

where

D+ = diag(1− x)diag(A∗x). (23)

Recalling that x = g + xeq , we get

V̇ = −gTLg − (gTLxeq)− (l − k)gTD+ A∗g. (24)

As xeq ∈ span{1}, the middle term of Equation (24) is

null. The first term is nonpositive as the Laplacian is positive

semidefinite and D+A∗ has all nonnegative entries that, with

A∗ being nonsingular makes the last term is negative too. It

can therefore be concluded that V̇ is negative as long as

l > k.

Corollary 1: The dynamical system in Equation (12) has

globally asymptotically stable equilibrium points at x = 0

and x = 1 for Q < S, P < R and Q > S, P > R

respectively.

Proof: The proof of the stability for x = 0 follows

directly from Theorem 1 and is omitted for brevity. In fact,

both satisfy Equation (13) at consensus and the statement

simply follows by considering the boundness of the dynam-

ics, therefore can be obtained as special cases of Theorem

1.

While just a special case of the consensus equilibrium, this

results shows the possibility of obtaining any equilibrium

point in the snowdrift game, including one in pure strategies.

We can now relate the initial conditions, ie the strategy at

the onset of the game, with the values of the payoff matrix.

Theorem 2: The cooperation will spread throughout the

network if

k > sup1x=x0
−

(x− 1)T (−Lx+ l diag(1−A∗x)d+

(x− 1)T diag(A∗x)d+
,

(25)



Where d+ = diag(1− x)A∗x

Proof: To prove the asymptotic stability of the equi-

librium point x = 1, we propose the following Lyapunov

function

V =
1

2
(x− 1)T (x− 1). (26)

The V value is positive because squared and zero when x =
1. The time derivative yields

V̇ = (x− 1)T ẋ (27)

V̇ = (x−1)T ((A∗−I)x+diag(β) diag(I−x)A∗x). (28)

where β can also be written as

β = (P −R)A∗x+ (Q− S)A∗(1− x) . (29)

Therefore, V̇ can be written as

V̇ = (x−1)T ((A∗−I)x+diag(β) diag(1−x)A∗x). (30)

Substituting for β and imposing V̇ < 0, we get

− (P −R)(x− 1)T diag(A∗x)diag(1− x)A∗x >

(x− 1)T ((A∗ − I)x

+ (Q− S)(x− 1)T diag(1−A∗x)diag(1− x)A∗x) .
(31)

Rearranging we get

k > −
(x− 1)T (−Lx+ l diag(1−A∗x)d+)

(x− 1)T diag(A∗x)d+
(32)

Finally, the theorem is proved by considering the supremum

to impose all initial conditions are within the threshold.

We note here that our theoretical results rely on the network

strong connectivity which guaranteee that expressions such

as (25) return finite values.

VI. NUMERICAL SIMULATION

To validate our analytical results, we perform numerical

simulations by integrating Equation (12) using both real-

world and artificial networks. The real-world networks in-

clude an undirected and unweighted tailor employee Network

(TE) with 39 nodes and 169 edges [23], a mobile phone

connection network (MP) with 1984 nodes and 31790 edges

[24], and a biological macrophage network (BM) with 475

nodes and 2162 edges replicated from [9]. Additionally, we

generate artificial 10-node networks, including Erdős-Rényi,

regular, star, and line topologies. In all cases, we analyze the

time evolution of cooperation and compare the equilibrium

points obtained from MATLAB-based ordinary differential

equation simulations with the corresponding analytical so-

lutions. Our observations are summarized in Fig. 2. It can

be seen that, for each simulation, the equilibrium value

and its stability from the analytical results align with the

simulation outcomes. Panels (a) and (b) show consistency

with Theorem 1, using two different networks with random

initial conditions, and snowdrift game setting. Irrespectively

of the initial conditions, the simulated dynamics converge to

a specific mixed-strategy equilibrium point xeq, determined

by the payoff matrix (red star).

Panels (c), (e), and (f) validate Theorem 2 with the stag

hunt game setting. In panel (c), using the microphage net-

work and same randomized initial conditions, the increase of

k from 1 to 2 shifts the system from a defection equilibrium

to a cooperation equilibrium. Panel (f) shows how changes of

the network structure will affect cooperation. While difficult

to evidence from the figure, we note that, in the numerical

simulations, highly connected networks diminish cooperation

in the stag hunt settings, which correspond to an increase of

the threshold (25).

Panel (d) in particular validates Corollary 1, demonstrating

that the dominant strategy—whether cooperation or defec-

tion—converges to a stable equilibrium of all cooperation

or all defection, respectively. Regardless of the variety of

settings and initial conditions, the boundness claimed in

Lemma 1, is always verified.

Fig. 2. Trajectory plots of the dynamical system using Tailor Employee
(TE), Mobile Phone Connection (MP) and Biological Microphage (BM)
networks. Thin colored lines represent the average of each set of simulations,
bold colored lines represent the overall average across all sets, and gray lines
represent individual node trajectories within each set. (a) Snowdrift with MP
network. Red dot represent equilibrium point by analytical calculation from
Theorem 1. (b) Corresponding to Theorem 1, the snowdrift game with payoff
matrix P,Q,R, S = 3, 6, 6, 4. The light gray and thick red lines represent
the BM network, while the darker gray and bold blue lines represent the
TE network. (c) Corresponding to Theorem 2, the stag hunt game with the
BM network and l = −2. The light gray and thick cyan lines represent
k = 2, while the dark gray and thick magenta lines represent k = 1. (d)
Corresponding to Corollary 1 and TE network, light gray and thick yellow
lines represent the payoff matrix P,Q,R, S = 5, 4, 2, 3, and dark gray and
thick green lines represent the payoff matrix P,Q,R, S = 2, 3, 5, 4. (e,f)
The stag hunt game with P,Q,R, S = 6, 5, 5, 6 is simulated on 10-node
artificial network, corresponding to Theorem 2. (e) Simulated star network
with several random sets of initial conditions. (f) Same initial condition but
different 10-node network topologies.

VII. CONCLUSIONS

This work proposes a novel dynamical system model

that combines the replicator equation and the SI model



on networks. The payoff matrix determines the consensus-

type stable equilibrium point of the dynamical system. The

state of each node represents the proportion of cooperation,

coinciding with their strategy bounded between zero (total

defection) and one (full cooperation). The dynamics are a

combination of the consensus process and the game process.

We departed from a number of assumptions that are popu-

lar in the literature on the evolution of cooperative behaviours

such as only considering pure strategies in either well-mixed

populations or generic networks [10]. We propose a model

that suits general networks, using mixed strategies, and

inducing a conformity mechanism. This allows for under-

standing how initial conditions network and payoff structures

affect the spread of cooperation. While the literature offers

the analysis of some of these factors in isolation [25] [26],

our study explores their combined effects on the emergence

of stable equilibria, considering both internal solutions and

boundary points. This finding is made possible by the newly

integrated proposed framework.

Some limitations arise from the intrinsic consensus con-

verging nature of the dynamics. In fact, the model leverages

a diffusive dynamics that employs game mechanisms, setting

it apart from the traditional framework of evolutionary game

dynamics as in [4]. Results about to non-consensus stable

equilibrium are available in the literature, notably in [27].

However they tend to rely heavily on numerical results and

limited to specific game settings (social dilemmas in the

case of [27]). Our approach does not capture the full variety

of possible outcomes, which may expand when considering

differences between players, in addition to different neigh-

bour sets. This may explain the limited set of equilibria

we account for. On the other hand, our approach allows

for a detailed understanding of how cooperation spreads

through the network at the level of individual nodes with

mixed strategies, a concept that also motivates research in

epidemic modelling. Overcoming of some limitations could

be obtained by implementing node-based payoff matrices,

where each player compete in their own version of the game.

This could extend to including zealots as well.

Potential applications of this model include social systems,

as demonstrated with the Tailor employee network (Figure

2(b)). Additionally, this model can serve as an approach

for controlling distributed systems requiring imitation and

conformity among agents, as simulated and illustrated for

the mobile phone connection network (Figure 2(a)).

Finally, we note that our model is open to replacing the

SI diffusion mechanism with other diffusion and opinion dy-

namics models. The game setting can also be extended from

the public goods game to other game scenarios. Additionally,

it is possible to use our results as basis to study optimal

incentives to promote cooperation amongst multiple decision

makers.
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