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Abstract

Utility operators face a challenging task in managing wastewater networks to proactively enhance network
monitoring. To address this issue, this paper develops a framework for optimized placing of sensors in
sewer networks with the aim of maximizing the information obtained about the state of the network. To
that end, mutual information is proposed as a measure of the evidence acquired about the state of the
network by the placed sensors. The problem formulation leverages a stochastic description of the network
states to analytically characterize the mutual information in the system and pose the sensor placement
problem. To circumvent the combinatorial problem that arises in the placement configurations, we propose
a new algorithm coined the one-step modified greedy algorithm, which employs the greedy heuristic for
all possible initial sensor placements. This algorithm enables further exploration of solutions outside the
initial greedy solution within a computationally tractable time. The algorithm is applied to two real sewer
networks, the first is a sewer network in the South of England with 479 nodes and 567 links, and the second
is the sewer network in Bellinge, a village in Denmark that contains 1020 nodes and 1015 links. Sensor
placements from the modified greedy algorithm are validated by comparing their performance in estimating
unmonitored locations against other heuristic placements using linear and neural network models. Results
show the one-step modified greedy placements outperform others in most cases and tend to cluster sensors
for efficiently monitoring parts of the network. The proposed framework and modified greedy algorithm
provide wastewater utility operators with a sensor placement method that enables them to design the data
acquisition and monitoring infrastructure for large networks.

Keywords: Sensor placement, Sensor selection, Mutual information, Sewer flow monitoring, Sewer level
monitoring, Network hydraulic performance

1. Introduction

Within the last decade, installations of sewer level
monitors (SLM) and volumetric sewer flow mon-
itors (SFM) have been increasingly deployed into
sewer networks for the purpose of monitoring net-
work hydraulic performance and also interpreting
flow patterns to locate defects, such as blockages.
Currently, the locations chosen for SLM and SFM
are often selected by an employee of the managing
water utility with expert knowledge according to
the purpose of installation, i.e. flood risk estimation
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or blockage detection. Little literature currently ex-
ists for objective sensor placement for SLM and/or
SFM for estimation/prediction and forecasting pur-
poses such as sewer flooding in large networks. In
the age of smart technologies, the approach taken
by wastewater utilities has been to deploy ever-
increasing numbers of sensors into their networks,
however, poor sensor placements result in an insuf-
ficient acquisition of useful information about the
state of the network. This work is the first to pose
the problem of sensor placement in sewer networks
for the task of network monitoring as a mutual in-
formation maximization problem.

The outbreak of Industry 4.0 has resulted in sig-
nificant investment and innovation from industry
in general for the use of sensor systems and tech-
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nologies (Javaid et al., 2021). Having access to
an integrated wireless sensor network (WSN) that
seamlessly migrates real-time data to the cloud can
benefit wastewater network operators and local au-
thorities by being able to monitor their networks in
near real-time for purposes such as proactive block-
age and other anomaly detection (Faris et al., 2024;
Rosin et al., 2022; Sumer Derya et al., 2007), sewer
flooding (internal and external), pollutants and dis-
ease monitoring (Nourinejad et al., 2021; Banik
et al., 2015) and general long-term network perfor-
mance (Ashley and Hopkinson, 2002). The recent
mass scale of sensor installations in wastewater net-
works in the UK seems to have partially stemmed
from the 2019 price review conducted by OFWAT
(the UK economic regulator for the UK’s water
and sewerage operators) for asset management plan
(AMP) 7 (01 April 2020 - 31 March 2025). In the
reporting guidance for internal sewer flooding under
key principles (OFWAT, 2017), it states: ‘There is
an assumption that there will be continued improve-
ment by all companies in the short and medium
term through innovation, new technology, data qual-
ity improvements’, and as such the cost of installing
and maintaining WSNs is a continuing expendi-
ture.

A summary of sensor placement problems consid-
ered in wastewater networks is presented below, fol-
lowed by typical methods for formulating and solv-
ing sensor placement problems. Sensor placement
literature in wastewater networks is originally con-
cerned with the calibration of deterministic hydro-
dynamic models and water quality monitoring. Cal-
ibrating hydrodynamical models depends on data
generated by sensors placed in the network. The
process of deciding sensible locations to minimize
the number of sensors needed for model calibration
is first considered in (Clemens, 2002) and further
studied in (Vonach et al., 2018). The approach in
(Clemens, 2002) computes the singular value de-
compositions (SVD) for the Jacobian matrix of er-
rors between model values and measuring data with
respect to the model parameters for each possi-
ble fixed combination of sensor placements. The
Jacobian matrix with the largest minimum singu-
lar value among the sensor placements is selected,
and the resulting locations of sensor placement are
used for model calibration. Moreover, this method
uses an exhaustive SVD search of all possible place-
ment combinations, which is computationally in-
tractable as the number of locations and amount of

sensors selected for placement increases. An iter-
ative approach to computing the calibrated model
is explored in (Vonach et al., 2018), which uses the
Nash-Sutcliffe-Efficiency (NSE) statistic (Nash and
Sutcliffe, 1970) based on water level times series
data for systematically sampled sensor placements.
Therein, the authors point out that not considering
different initial conditions for the model is a prob-
lem and that any solution found for model calibra-
tion will only be locally optimal. The aforemen-
tioned articles highlight the importance of sensor
placement procedures for the appropriate calibra-
tion of hydrodynamical models.

In water quality monitoring, the introduction of
the SARS-CoV-2 virus has received attention from
researchers interested in locating areas where the
virus is currently present in wastewater networks
for epidemiological modeling and is posed as a sen-
sor placement problem. The ‘SARS-CoV-2 sewage
surveillance’ problem is considered in (Nourinejad
et al., 2021), (Larson et al., 2020), and (Calle et al.,
2021) where sensor placement problems are formed
as locations to conduct genetic-remnant tests. The
work conducted in (Nourinejad et al., 2021) is an
extension of (Larson et al., 2020), where they pose
the sensor placement problem as a mixed integer
non-linear programming problem solely based on
the network topology, which seeks to minimize the
number of sampled manholes required to find the
source manhole of the SARS-CoV-2 virus. The
work in (Calle et al., 2021) follows similar meth-
ods to the above studies, but the number of sensors
considered is small (< 10), and therefore, it is diffi-
cult to validate the contributions for larger network
systems. Another widely considered problem in
wastewater monitoring is that of detecting danger-
ous non-point pollutant sources, e.g. herbicides and
fertilizers, pathogens, road salt, and sediment from
run-off, which can all impact the performance of the
sewer network and the sewage treatment works. In
(Banik et al., 2015, 2017b) and (Kang et al., 2013),
data simulated from the Storm Water Management
Model (SWMM) (Rossman, 2010) tool is used to
determine sensor placements for the purpose of wa-
ter quality monitoring. (Banik et al., 2015) consid-
ers a multiobjective optimization problem of maxi-
mizing joint entropy and minimizing the total cor-
relation between the different network nodes, which
uses concentration data generated from different
contamination scenarios. The multi-objective op-
timization problem obtains a Pareto front of so-
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lutions by using the NSGA-II algorithm (K. Deb
et al., 2002) but the authors note that any place-
ment chosen from the Pareto front needs further in-
vestigation and is not straightforward to assess its
validity. (Banik et al., 2017b) extends his previous
work by comparing different problem formulations
for sensor placements in sewer systems for contami-
nant detection with the method proposed in (Banik
et al., 2015). The authors compare formulations
from a mixture of multiobjective information the-
ory measures, detection time–reliability procedures,
and single objective-based versions of all objectives
considered in the multiobjective case. The NSGA-
II algorithm is used to solve the multiobjective opti-
mization problems, whilst a greedy method is used
to solve the single optimization problems. Using
their performance index, they showed that the so-
lutions obtained using the greedy algorithm in the
single objective cases were similar to those obtained
in the Pareto front of the best-performing multiob-
jective optimization problem solved by the NSGA-
II algorithm. The work in (Kang et al., 2013) uses
analysis of variance (ANOVA) on different contam-
inant scenarios to choose a node for sensor place-
ment but validates the proposed methodology on
a small network of 10 nodes and 9 links. (Yazdi,
2018) also uses the SWMM tool for designing sen-
sor placements in sewer networks for water quality
purposes. The authors propose the single objective
methodology of maximizing the entropy of water
quality time series data, using Differential Evolu-
tion (Storn and Price, 1997), a genetic algorithm
to solve the optimization problem. (Wang et al.,
2023) considers the sensor placement problem by
taking into account water quality and hydraulic
properties of drainage networks for routine mon-
itoring by developing a re-clustering methodology.
AK-means clustering algorithm is implemented us-
ing water level and pollutant concentration data
of all nodes, generated by a SWMM model. The
average closeness centrality and average node in-
flow indexes are introduced as measures that in-
corporate decision-maker preferences into the sen-
sor placement design. The placements obtained by
the K-means and reindexing are then validated us-
ing the information methods used in (Banik et al.,
2015). We have established that the sensor place-
ment problem is also important in the detection
of various contamination scenarios or sampling for
the SARS-CoV-2 virus but the current state of the
art is fragmented and techniques tend to be be-
spoke to the specific settings. In more recent years,

sensor placement problems in sewer networks have
gained some traction for sewer flooding detection.
(Fattoruso et al., 2015) considers the problem of
the optimal sampling design for sensor placement,
which follows a similar methodology to model cal-
ibration. Therein, a multiobjective problem that
maximizes the hydrological model calibration accu-
racy and fixes the number of sensors within some
fixed interval is posed. In (Li, 2021) the sensor
placement problem for flood forecasting under un-
certainty from future rainfall events is considered.
The authors simulate historical and future periods
of continuous rainfall-runoff data using the SWMM
tool and then combines the unsupervised machine
learning technique of agglomerative clustering and
analysis of variance (ANOVA). The clustering tech-
nique specifies the number of clusters in which a
sensor is placed, then the ANOVA technique is used
to determine which node within the cluster the sen-
sor should be placed at. Both studies present dif-
ferent ideas for sensor placement for sewer flooding,
but both studies showcase case studies with only
simple and relatively small networks.

The sensor placement problem is typically formu-
lated based on having access to a combination of
graph data (such as GIS shape files) and simulated
data. Based on the problem formulation, an opera-
tionally meaningful cost function is selected to opti-
mize. An example of a purely graph-based problem
formulation in addition to those already mentioned
includes (Simone et al., 2023), in which a graph-
theoretic back-tracking procedure is developed for
sensor placement, with the end purpose of contam-
inant and pathogen detection in wastewater net-
works. The authors in (Ogie et al., 2017) propose
a sensor placement problem formulation purely in
terms of geospatial features, in which a multiobjec-
tive function based on infrastructure density (hy-
drological infrastructure components based up and
downstream of each node), number of upstream
nodes, classification of waterways and geographical
distance between nodes is formulated. The authors
use the NSGA-II algorithm to solve the multiob-
jective problem, and apply their methodology to
Jakarta, where they consider placing 4 water level
sensors, and then consider placing an additional 10
sensors.

Approaches that use simulated data often include
cost function definitions based on information-
theoretic measures such as entropy (Banik et al.,
2015), total correlation (Banik et al., 2017a),
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and mutual information (Krause et al., 2008b).
Information-theoretic measures were first intro-
duced in the seminal work by Shannon (C. E. Shan-
non, 1948) that establishes the foundations of infor-
mation theory. The field of information theory is
concerned with the study of information processes
with application to a wide range of scientific do-
mains. The main workhorse to aid in the analysis
of information processes are the information mea-
sures, defined as functionals of the probability dis-
tributions of the underlying stochastic processes. In
particular, mutual information provides a quantita-
tive description of the amount of information that is
shared by two stochastic processes. Solving sensor
placement problems for complex networks is gener-
ally very difficult, due to the combinatorial nature
of the problem. For large networks consisting of
n 2 N nodes and selecting k < n, k 2 N locations
for sensor placement, the number of possible com-
binations grows exponentially as n grows, and is
typically NP-hard for non-linear costs with one ex-
ample being shown in (Ko et al., 1995). The largest
network known to the authors, to have considered
the sensor placement problem comes from (Krause
et al., 2008a) where they considered the contam-
ination detection problem on a water distribution
system from an actual metropolitan area network
which has 21,000 nodes and simulated placing 30
sensors. The works surveyed showcase a variety
of different problem formulations and proposed so-
lutions to find sensor placement procedures. It is
worth noting that most of the contributions in this
area tend to consider a small number of sensors to
be placed in the network, despite some notable ex-
ceptions such as (Krause et al., 2008a). However,
the total possible sensor placements for 30 sensors
in a network of 21,000 nodes has the approximately
same number of combinations as a network of 1000
nodes placing 60 sensors, and so scalability in se-
lecting the number of sensors should be factored
into proposed solutions especially when considering
large networks (> 1000 nodes). Water companies
are facing a dilemma about requiring more informa-
tion about the performance of their networks (CSO
spills, flooding incidents), whilst on the opposite
front, facing economic and workforce issues as a
result of government and regulator policy that is
starting to restrict the deployment of large num-
bers of even ‘low-cost’ sensors.

1.1. Outline of the Paper

In Section 2, we develop the sensor placement
method by introducing our system and sensing
model. It further introduces our performance mea-
sure and problem formulation and finishes with our
proposed solution to solving the sensor placement
problem. We proceed in Section 3 by outlining the
methods we will use to validate the proposed sen-
sor placement algorithm. This includes Section 3.1
which presents our estimation framework, and Sec-
tion 3.2 which explains our loss function of choice
for the estimation framework. Section 3.3 describes
other sensor placement heuristics we use to com-
pare the estimation results obtained using Section
3.1. Sections 4.1 and 4.2 contain real case studies
that demonstrate our sensor placement and esti-
mation results. Moreover, in Section 4.2 we give
a more detailed analysis of estimation results and
compare both flow and water depth sensor place-
ment results. Finally, in Section 5, we conclude
the results of both case studies with a discussion to
examine the useability of the proposed method in
other sewer collection networks.

2. Sensor Placement Method

2.1. System Model

We model a wastewater network as a graph where
the nodes describe the elements of the wastewater
system e.g. manholes and pumps, and the edges de-
scribe the pipes connecting the different elements.
Specifically, the graph is characterized by the set
of nodes V = {1, 2, . . . , n} with n 2 N, where
each node corresponds to a system asset/element,
and the set of edges as E = {(i, j) 2 V ⇥ V :
node i is connected to node j}, where each edge
represents a pipe in the network. Jointly, the set of
edges E and the set of nodes V define an undirected
graph G = (V, E). Without loss of generality, we as-
sume the state of node i 2 V is determined by the
vector xi 2 R

l, where l 2 N denotes the number of
physical magnitudes describing the state of the sys-
tem element, e.g. water depth and volumetric flow.
In this paper, we focus initially on volumetric flow,
and therefore, the state xi 2 R fully describes the
state of the element i 2 V. We note that the case
study in Section 4.2 also considers sensor placement
for water depth as well as volumetric flow.

In the remainder of this section, we define the
mathematical objects that enable us to model the
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Table of Notation

Symbol Description

; The empty set

Xi The state at node i

N(µ,σ2) The Gaussian distribution with mean µ and variance σ
2

fXi
The probability density function of the random variable Xi

fX,Y The joint probability density function of the random variables X and Y

Ik The k ⇥ k identity matrix

R+ The set of all positive real numbers > 0

Sn
++ The set of all n⇥ n matrices that are positive definite

kXkF The Frobenius norm of a matrix X, calculated as
»

P

i

P

j X
2
i,j

wastewater system and formulate the sensor place-
ment problem. The following definition describes
the selection of sensor placements in the wastewa-
ter system in terms of the node selection problem
of the graph G = (V, E). In this setting, we denote
the elements of the system that are monitored by
the set A ✓ V. The sensor placement problem is
equivalent to identifying the set of nodes in which
sensors are placed with the aim of aiding the oper-
ator in monitoring the state of the system.

Definition 1. Consider the graph G = (V, E) de-
scribing the wastewater system, the set of all k-
configurations with k sensor placements is given by
the set

Mk := {A ✓ V : |A| = k} , (1)

where | · | denotes the cardinality of the set.

Remark 1. The cardinality of the set Mk for a
graph with n nodes is given by

|Mk| =
n!

k!(n� k)!
. (2)

Definition 1 and Remark 1 unveil the difficulty in
sensor placement problems when we consider net-
works containing upwards of thousands of nodes,
i.e. due to the exponential growth of combinations
as n grows, the search space becomes computa-
tionally expensive to explore by exhaustive search
methods.

2.1.1. Random Model for the States

To address the complexity and underlying uncer-
tainty in the wastewater network, we model the

states in the system as a random process. In doing
so, we aim to capture any partial model informa-
tion, dynamical behavior, and stochasticity of the
physical magnitudes describing the state of the sys-
tem elements. That being the case, the states as
random variables are denoted by Xi ⇠ PXi

for i 2
V. The spatial dependence between elements of
the system is described by the n-dimensional ran-
dom vector where the joint distribution PXn :=
PX1,X2,...,Xn

captures the spatial dependencies be-
tween different nodes. While the temporal depen-
dence of the states is an important aspect of a
wastewater system, in this paper we adopt the view
that spatial dependencies between nodes are invari-
ant to time shifts. Note that this does not im-
ply that the statistics of states are stationary, but
rather the dependencies describing different spatial
locations are invariant to time. More specifically,
we will assume that the covariances between states
(i.e. Xi and Xj) over different time shifts (i.e. 1
month or 6 months) are the same on average when
we estimate the covariances of the states using time
series data. This in turn implies that we model the
covariance matrix which describes dependencies be-
tween the states as independent of time. This as-
sumption is put into place explicitly in Assumption
A3 in Section 2.3.2.

2.1.2. Additive Noise Sensing Model

Sensors introduce noise in the measured physical
magnitude, and therefore, this needs to be incorpo-
rated into the sensing model. Additionally, the ad-
ditive noise model enables us to account for other
sources of uncertainty in the sensing process, e.g.
dispersions arising from diverse installation settings
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or unknown operational conditions impinging on
the performance of the sensor. We adopt an addi-
tive noise model approach and include two assump-
tions on the noise for the sensing model.

Assumption 1 (A1): sensor readings are subject
to additive white Gaussian noise (AWGN), denoted
as Zi at node i 2 V.

Assumption 2 (A2): the AWGN process for each
sensor is independent and identically distributed
(i.i.d.) with mean 0 and variance σ

2 2 R+. For-
mally, for all i 2 V we have that Zi ⇠ N(0,σ2).

As a result of these assumptions and the fact that
the state variables are modeled as random variables,
the observations obtained by the sensor are also
random variables. Let us denote the observation
at node i 2 V as Yi ⇠ PYi

. Then, it follows from
Assumption 1 and Assumption 2 that the observa-
tion is given by

Yi = Xi + Zi. (3)

Moreover, assuming we have k sensors in the net-
work selected amongst n nodes, then the observa-
tion vector Y k is defined as

Y k := (Yi1 , . . . , Yik)
T, (4)

where the subscript ij denotes the j-th selected sen-
sor. For ease of algebraic manipulation, it is conve-
nient to describe (4) in matrix form, such that we
can express Y k for any set A 2Mk of sensor place-
ments in terms of an observation matrix H, defined
in the following.

Definition 2. The set of linear observation matri-
ces Hk is described by

Hk :=

ß

H 2 {0, 1}k×n : H =
�

eTi1 , e
T

i2
, . . . , eTik

�T

with ij 2 A \ {i1, . . . , ij−1} for j = 1, . . . , k

™

, (5)

where ei 2 {0, 1}n is the i-th column basis vector,
i.e. 1 in the i-th position and 0 otherwise.

Combining Definition 2 with (4) yields the following
observation model:

Y k := HXn + Zk, for all H 2 Hk. (6)

2.2. Performance Measure for Sensor Place-
ment

The objective of the operator for the sensor place-
ment is to guarantee that operationally significant

data is acquired with the purpose of use for real-
time monitoring, flood risk prediction, blockage de-
tection, and state estimation procedures, among
others. The data describing the states feeds into
multiple services and functionalities with often dif-
ferent objectives, captured by different performance
measures, e.g. probability of detection for blockage
detection. Naturally, designing the sensor place-
ment procedure according to different performance
measures yields different placement strategies that
might not provide guarantees for all the different
procedures in the system. Given the economic and
implementation constraints that sensor placements
entail, it is necessary to devise sensor placement
procedures that provide a wide range of perfor-
mance guarantees across all services and function-
alities that the operator needs to implement with
the data produced by the sensors in the system.
As a result of the scale and complexity of typical
wastewater networks, it is imperative to design sen-
sor placement procedures that are computationally
implementable, make use of as few sensing resources
as possible, and provide general performance guar-
antees.

Mutual information is an information-theoretic
measure that provides an operational definition
of the amount of evidence contained in the data.
Specifically, it quantifies the information that is
shared between two different random processes, and
in doing so, establishes a quantitative framework to
evaluate the utility of data in fundamental terms,
i.e. without targeting specific performance mea-
sures. By doing so, we effectively decouple the as-
sessment of data utility from the specific service
or functionality. This, in turn, enables us to pose
the sensor placement problem in fundamental terms
and to provide sensor placement guidelines that tar-
get the amount of information captured by the sen-
sors, irrespective of the use that is given to that
data. Given this, we define the cost function for the
sensor placement problem as the measure of mutual
information between the observations and the state
variables.

Definition 3. The mutual information (Cover,
2005) between two continuous random variables X

and Y , denoted as I(X;Y ), with joint probability
density function fX,Y (x, y) is given by

I(X;Y ) :=

Z

R2

fX,Y (x, y) log

Å

fX,Y (x, y)

fX(x)fY (y)

ã

dxdy.
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Mutual information is a non-negative and non-
linear measure of dependence between the two ran-
dom variablesX and Y . Note that it is a symmetric
measure, i.e. I(X;Y ) = I(Y ;X). Equipped with
this measure, we now formulate the sensor place-
ment problem as a mutual information maximiza-
tion problem below.

2.3. Problem Formulation

2.3.1. Mutual Information Maximisation

The sensor placement problem consists of obtaining
the set of sensor placement indices Ik 2 Mk such
that

I := argmax
Ik∈Mk

I(Xn;Y k). (7)

Combining (6) with (7), we can re-write (7) in terms
of the observation matrix such that

H∗
k := argmax

H∈Hk

I(Xn;HXn + Zk), (8)

where H∗
k is the observation matrix describing the

optimal sensor placement for k sensors.

2.3.2. Gaussian Model for State Variables

Mutual information is a functional of the joint prob-
ability distribution and the marginals of the ran-
dom variables involved. As a result, computing it
requires knowledge of the probability density func-
tions, which in practical settings is not known. To
circumvent this issue, we need to assume a proba-
bility distribution for the underlying random pro-
cesses governing the state variablesXn. Essentially,
this boils down to modeling the random character-
istics of the state variables by choosing an appro-
priate distribution to describe them. In the follow-
ing, we adopt a Gaussian model for all the state
variables based on a maximum entropy principle
interpretation of the inductive bias introduced by
the model (Cover, 2005, Ch 12). By assigning a
multivariate Gaussian distribution to a joint prob-
ability distribution of the random variables describ-
ing the state variables, we are introducing the least
amount of bias in our modeling choice. In fact,
the multivariate Gaussian distribution is the maxi-
mally non-committal distribution that satisfies the
second-order moment constraint that the data ex-
hibits.

Assumption 3 (A3): the probability distribu-
tion of the state variables satisfies Xn ⇠ Nn(µ,Σ),
where µ 2 R

n and Σ 2 Sn
++.

In the following, we describe the mutual infor-
mation between the states and the observations
for the case in which the states are Gaussian dis-
tributed.

Theorem 1. Under Assumption 3, it holds that

I(Xn;HXn + Zk) =

1

2
log

Å

1

σ
2k

det
�

HΣHT + σ
2Ik
�

ã

, (9)

where det(·) denotes the determinant of a square
matrix.

Proof. Appendix A.

As a result of Theorem 1 and the aforementioned
assumptions, the optimization problem (8) can be
reformulated as

H∗
k = argmax

H∈Hk

1

2
log

Å

1

σ
2k

det
�

HΣHT + σ
2Ik
�

ã

.

(10)

2.4. Proposed Sensor Placement Solution

The computational complexity of optimization
problems similar to (10) are NP-hard (Ko et al.,
1995), as is the case with most nonlinear cost func-
tions associated with the sensor placement prob-
lems. Hence, proposing a method to solve (10) de-
pends on the size of the network, but in general it
is computationally intractable. For larger networks,
typically two approaches are considered; exact and
heuristic. Exact approaches for this type of problem
generally include some form of Branch and Bound
algorithm (Lee and Fampa, 2022), where the algo-
rithm splits the problem into smaller sub-problems
and uses computable upper and lower bounds of the
optimization problem to remove sub-problems that
perform worse than the current optimal solution.
The bounds are problem-dependent, and without
them, the algorithm becomes an exhaustive search
of the state space. Hence, Branch and Bound can
be computationally expensive and do not guaran-
tee convergence to an exact solution. A common
heuristic for solving non-linear discrete optimiza-
tion problems is the greedy algorithm (Jungnickel,
2013) and its variations (Taillard, 2023), due to
its simplicity of implementation and cost-benefit.
The greedy algorithm uses the heuristic of taking
the best solution available at every step or stage,
and sequentially repeating this step until some pre-
defined criteria or condition is met. The greedy

7



Algorithm 1 One-step modified greedy algorithm

Input : n = |V| from (1);
k from (1);
σ
2 from (A3);

Σ from (9).

Output: H†
j from (9) for all j 2 [1, k].

for i = 1 : n do

H†
1[i] (ei)

T from (2)

for j = 2 : k do

Aj  ;
for v 2 V \ Ik do

Hj  
 

H†
j−1[i]

eTiv

!

Aj  Aj [Hj

end

H†
j [i] argmax

Hj⊆Aj

1

2
log

Å

1

σ
2j

det
�

HjΣHT

j + σ
2Ij
�

ã

end

end

H†
k  max

i∈[1,n]
H†

k[i]

heuristic only considers finding locally optimal so-
lutions (at each step), and will not find the optimal
global solution in more complex optimization prob-
lems.

Wastewater networks pose an interesting challenge
to the sensor placement problem due to the size of
the networks, often comprising of several thousand
nodes. The size further exacerbates the difficulty
posed by the non-linearity of the determinant oper-
ator in (10). Alternatively, to tackle the optimiza-
tion problem in (10), we propose a modified version
of the greedy algorithm, which we coin the one-step
modified greedy algorithm.

The modified greedy algorithm runs a standard
greedy selection procedure for each available node
as the initial solution to the greedy heuristic and
compares the performance attained by each of the
initialization steps. The selection of all the initial-
ization choices that yield maximum mutual infor-
mation is the selected sensor placement.

This approach has several advantages:

• The standard greedy heuristic does not consider
solutions outside of its initial solution set. By
allowing the extension from the modified greedy

algorithm, we allow for the exploration of other
solutions that do not include the true initial so-
lution to the greedy heuristic.

• The algorithm can be tweaked to include a set of
fixed selected sensors in the initial solution which
gives flexibility to design sensor extensions in ex-
isting sensor networks.

• Flexibility in implementing other constraints not
currently considered (i.e. distance constraints).

• The mutual information can be computed for an
arbitrary number of sensors selected in the net-
work, which provides a framework for how many
sensors are needed, assuming the sensing require-
ments of a network.

Since the proposed modified greedy algorithm is a
heuristic, we do not expect to solve (10) exactly,
but enable the analysis in large networks. The one-
step modified greedy algorithm is shown in Algo-
rithm 1, and a complexity analysis is presented in
Appendix A. The cost function as shown in The-
orem 1 admits the following properties: it is sub-
modular, nondecreasing, and satisfies the condition
of taking the value 0 when no sensors are placed.
The performance of the one-step modified greedy
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algorithm is lower bounded by the standard greedy
heuristic, which in turn is lower bounded by 63%
of the optimal solution (for a fixed k) (Nemhauser
et al., 1978), providing the aforementioned condi-
tions are satisfied. This admits a lower bound on
the performance of the one-step modified greedy al-
gorithm as 63% of the optimal solution. We provide
the proof of these claims in (Crowley and Esnaola,
2024).

3. Approaches to Validating Sensor Place-
ments

To validate the sensor placement obtained by im-
plementing Algorithm 1 on a given network, we will
consider two case studies and compare the mutual
information performance between different sensor
placements and assess this performance based on
methods we will now introduce.

3.1. Estimation of Unmonitored Nodes

3.1.1. Estimation Framework

The proposed sensor placement procedure targets
mutual information as the performance measure.
However, in practical settings, mutual information
does not yield operational insight into the network
performance. Knowledge of the state of the net-
works is vital for the management and operation
of the network. Therefore, to validate the results
of the proposed sensor placement Algorithm 1, we
use conventional estimation techniques to estimate
the state variables for the unmonitored nodes. The
aim of doing this is twofold: firstly, it provides a
benchmarking framework to compare different algo-
rithm placement techniques with an operationally
meaningful comparison measure. Secondly, it en-
ables us to validate the use of mutual informa-
tion as a performance measure for the design of
the sensor placement procedure. Indeed, we show
that the maximization of mutual information yields
a performance improvement in the state estima-
tion setting. Formally, consider the random vari-
able vector Xn = (X1, . . . , Xn)

T as the states at
all node locations, and define the vector contain-
ing the k observations of the selected sensors by
Y k := (Yi1 , . . . , Yik)

T with ij 2 Ik for j = 1, . . . , k.
Furthermore, we define the states of unmonitored
nodes as X−k = (Xi1 , . . . , Xin−k

)T with ij 2 V \ Ik
for j = 1, . . . , n � k. Given the state observations
Y k, we aim to estimate the unmonitored state vari-
ables, i.e. X̂−k := g

�

Y k
�

, where g : Rk ! R
n−k

is the estimation procedure. We use two standard
estimation procedures to assess the sensor place-
ments: a general linear model (GLM) and a gen-
eral regression neural network (GRNN). The GLM
is adopted because of its low complexity and asymp-
totically tends to the minimum mean square error
estimator. The GRNN is further adopted for com-
parison to the GLM because it is a purely data-
driven method and has been used in various esti-
mation applications in the water (Bowden et al.,
2006) and wastewater (Heddam et al., 2016) litera-
ture. For the general linear model, we assume that
the estimate is expressed as

X−k =

Å

1
Y k

ãT

� + ✏, (11)

where � 2 R
(k+1)×(n−k) and ✏ 2 R

n−k is the vec-
tor of independent normal random variables with
mean 0 and variance σ

2
j . Note that for this model

σ
2
j varies for each node. The matrix � contains the

parameters of the general linear model obtained us-
ing ordinary least squares. The function g1(Y

k) is
then defined as

g1(Y
k) :=

Å

1
Y k

ãT

�. (12)

We also consider a general regression neural net-
work (GRNN), first conceived in (D. F. Specht,
1991) which is a type of probabilistic neural network
(Wasserman, 1993), that estimates the conditional
expectation of a random output variable given some
input variables. The GRNN is calculated by es-
timating the joint probability density function be-
tween input and output random variables using ker-
nel density estimators which incorporate training
data. By the definition of conditional probability
and marginalizing the joint distribution, the condi-
tional expectation of the state Xj , with j 2 V \ Ik
is given by

E
⇥

Xj |Y
k
⇤

=

Z

R

xjfY k,Xj
(Y k, xj) dxj

Z

R

fY k,Xj
(Y k, xj) dxj

. (13)

The joint probability density fY k,Xj
is often un-

known in practice, therefore it can be estimated
using sample training data and a non-parametric
estimate of the joint probability density (kernel
density estimators). If we assume that fY k,Xj

⇠
Nk+1(µj ,Σj), with µj =

�

E[Y k],E[Xj ]
�T 2 R

k+1
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and Σj 2 Sk+1
++ , then the density can be expressed

as

fY k,Xj
(y, xj) =

Ç

1

(2π)
k+1

2 det(Σ)
1
2

å

⇥ (14)

exp

Ç

�1

2

Åï

y
xj

ò

� µj

ãT

Σ
−1

Åï

y
xj

ò

� µj

ã

å

.

By further assuming Σ = σ
2Ik+1, where σ > 0

is a spread parameter to be tuned by the user,
and replacing µj with the Q sample training points

yi 2 R
k and xi

j 2 R with i = 1, 2, . . . , Q, such that
the non-parametric estimate of fY k,Xj

, denoted by

f̂Y k,Xj
, can be expressed as

f̂Y k,Xj
(y, xj) :=

Ç

1

(2π)
k+1

2 σ
k+1

å

⇥ (15)

"

1

n

Q
X

i=1

exp

Ç

� (y � yi)T(y � yi)

2σ2

å

⇥ exp

Ç

�
(xj � xi

j)
2

2σ2

å

#

.

By substituting (15) into (13) and some manipu-
lation, we obtain the conditional expectation given
by

gXj
(Y k) :=

PQ
i=1 x

i
j exp

Ç

�kY
k � yik22
2σ2

å

PQ
i=1 exp

Ç

�kY
k � yik22
2σ2

å . (16)

The GRNN estimate is then defined in closed form
as

g2(Y
k) := (gXj1

, gXj2
, . . . , gXjn−k

)(Y k), (17)

or more commonly formulated as a neural net-
work, with the architecture shown in (D. F. Specht,
1991).

3.2. Loss Function

To validate the performance of the estimation, the
loss function chosen is normalized mean square er-
ror (NMSE) due to being operationally meaningful
across different orders of magnitudes for the states
we want to estimate. For each k sensor placement,
there will be (n� k) unmonitored nodes we are es-
timating. Let us also define Xv as the matrix of
validation data for unmonitored nodes and X̂v as

the estimated matrix from each of the estimation
methods, then the normalized mean square error of
X̂v is given as

NMSE
Ä

X̂v
ä

=
kXv � X̂vk2F
kXvk2F

. (18)

Sewer network systems are mostly gravity-driven
systems, and hence the larger flows in the network
are predominantly downstream toward the end of
the network. To ensure we do not penalize esti-
mating smaller flows by mainly placing sensors in
locations with larger flows, we adopt normalizing
the loss function from the standard mean square
error.

3.3. Heuristic Sensor Placements

To compare the performance of the sensor place-
ments obtained in Algorithm 1, we also need to
consider other heuristic sensor placements for com-
parison for estimation performance. Since there
are currently no placements in the literature for
our purpose that we are aware of, we have decided
to compare choosing sensor placements according
to:

• Nodes with the greatest (maximum) sum of state
measurements in the training data (in the sen-
sor placement process). Ranked from largest to
smallest, and the first k locations are chosen for
sensor placement.

• Randomly choosing locations with uniform prob-
ability for sensor placement.

Intuitively, random placements give an unbiased
baseline for the amount of information gained about
the network and an unbiased baseline performance
obtained from the NMSE. Sensor placement based
on the largest state measurements provides some
physical insight into the underlying hydrodynam-
ics and provides another purely state-driven bench-
mark for the performance of NMSE. Note that
in practice, the method of placing sensors us-
ing the largest state measurements methodology is
not practical. However, it provides an interesting
opportunity to compare mutual information and
NMSE between this placement and other heuristic
methods.

Finally, a rule based approach is introduced and
will be adopted in the more complex second case
study. The locations of sensors are chosen in line
with the following guidelines: (Britain, 1987, Sec-
tion 2.3.1)
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(i) At the system outfalls.

(ii) In sewers that drain large sub-catchments,
placing sensors near trunk sewers.

(iii) At points along the main trunk or major
junctions where the effects of major sub-
catchment flows can be monitored.

The rule based approach incorporates expert knowl-
edge obtained solely from GIS data and is the state-
of-the-art benchmark for sewer systems, which pro-
vides a fair comparison when considering mutual
information and NMSE performance.

4. Numerical Results

The two case studies we will present showcase a
variety of different characteristics and data avail-
ability. For example, the first study looks at a rel-
atively small single urban sewer network, and the
latter study is a larger urban network with signifi-
cantly more complexity in its topology where sev-
eral catchments are individually clustered and con-
nected. On data availability, the first case study
has two days’ worth of simulated hydraulic time se-
ries data, whereas the latter study has two years
of simulated hydraulic time series data. The first
case study is a foul system, so there is no precip-
itation involved - however, the second case study
is a combined sewer network and so includes real-
life precipitation measurements obtained from rain
gauges. The dynamics of the system are inherently
captured in the topology of the system, which is
then reflected in the simulated time series data.
This provides an interesting opportunity to test the
impact of mutual information for both case studies
which showcase different degrees of topology com-
plexity as well as the presence and absence of rain-
fall. When the system is larger and more complex,
we expect to see larger amounts of information con-
tained in the system and more complex spatial re-
lationships. By demonstrating our algorithm for
both of these case studies, we show that the pro-
posed algorithm is scalable and can be applied to
any type of sewer network with a given time series
data set.

Water utilities are increasingly choosing to install
water level monitors over flow monitors due to their
reduced cost. For this reason, we also consider the
sensor placement problem for water depth measure-
ments in the more complex second case study and

contrast this placement with the flow sensor place-
ment to observe any noticeable differences.

4.1. Case Study 1

Case Study 1 is based on an urban drainage catch-
ment in the South of England. Due to confiden-
tiality issues from the water utility that supplies
services in this area, we do not provide any specific
details, but a general overview of the catchment.
The network model consists of 479 nodes and 567
links. For this paper, we were provided with sim-
ulation data obtained from a calibrated hydrody-
namical model of this network from the wastewater
utility operator. This consists of two days of dry
weather flow data (m3s−1), at a 2-minute tempo-
ral resolution. The results consist of one-weekday
daily flow profile and one-weekend daily flow profile
at all nodes in the network, of which the first day
in the data set is the weekday and the second day
is the weekend profile. We only consider the flow
rate in this case study. The network is populated
by approximately 12000 people and covers an area
of 5km2.

Figure 1: A map depicting the case study catchment in the
South of England with data obtained from shape files sup-
plied by the water utility.
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Figure 2: The first graph (left) displays the mutual information for each aforementioned sensor placement, ranging from 1 to
125 sensors placed in the network. The second graph (right) displays the mutual information gained from selecting the sensor
placement found from Algorithm 1 compared to the other heuristic methods. We note that max total sum placement is short
for nodes with the greatest sum of state measurements (see Section 3.3).

4.1.1. Data Preparation

For the catchment in the South of England, the 2-
day time series of simulated volumetric flow data
was split into two separate data sets. The training
data set contains the first 70% of the 2-day time
series of simulated volumetric flow data. The re-
maining 30% is to be used as our validation test
set. The training set is used for the sensor place-
ment procedure, and also for the training of the
GLM and GRNN estimation methods. The valida-
tion test set will be used to validate the performance
of both estimation techniques.

4.1.2. Sensor Placement

We apply Algorithm 1 to the training data set
for the catchment in the South of England, and
compare the mutual information obtained from the
algorithm’s sensor placement against the meth-
ods described in Section 3.3. We apply the sen-
sor placement algorithm with the following con-
straints:

• We set the standard deviation σ of the additive
noise introduced by the sensors measuring volu-
metric flow as

p
10−4 m3s−1.

The standard deviation is set to
p
10−4 m3s−1

following advice given in the MCERTs report
(Environment-Agency, 2020, Table 6, Pg. 9),
which states that an acceptable standard devi-
ation for flow sensors (class 3) should be within
4-5%, and hence the variance should be within
16-25%. This quantification of variance is not an
exact physical magnitude, so we assume that ac-

counting for some external noise (i.e. from instal-
lation), a realistic sensor variance for flow mon-

itoring is given. For context,
p
10−4 m3s−1 is

equivalent to
p
0.1 litres s−1.

• We run the modified greedy algorithm with a
stopping criterion k = 125, which is about 25%
of the total number of node locations.

• Given the parameters of the network, n = 479
and k = 125, the one-step modified greedy algo-
rithm completed in approximately 18 minutes.

For each fixed number of sensors deployed, we ran-
domly pick 1000 locations to simulate and compute
the mutual information with respect to the min-
imum, mean, and maximum mutual information
achieved for each simulation. The results are de-
picted in Figure 2. The results also display the
worst-case gain in mutual information of 10� 20%
until 20 sensors are placed when comparing the sen-
sor placement obtained from Algorithm 1 with the
sensor placement obtained from the maximum sum
of state measurements heuristic. As the number
of selected sensors increases to 40, the mutual in-
formation gain decreases to 0, i.e. our placement
aligns very similarly with the nodes with the great-
est sum of state measurements. When compared
to the best mutual information achieved by ran-
dom placement of sensors, the mutual information
obtained with Algorithm 1 placement is 30-60%
larger than the largest mutual information obtained
from the random placement of 1000 location simu-
lations.
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Number of sensors 10 25 50 100

Estimation method GLM NMSE GRNN NMSE GLM NMSE GRNN NMSE GLM NMSE GRNN NMSE GLM NMSE GRNN NMSE

Algorithm 1 0.0368 0.0311 0.0109 0.0352 0.0070 0.0198 0.0002 0.0058

Largest total sum 0.2016 0.2163 0.0326 0.0571 0.0050 0.0215 0.0117 0.0495

Random placement 1 0.3593 0.3586 0.3178 0.3480 0.0738 0.0975 0.0170 0.0749

Random placement 2 0.3418 0.3478 0.3396 0.3843 0.0914 0.1157 0.3059 0.3825

Random placement 3 0.3592 0.3570 0.0988 0.1076 0.0587 0.1221 0.1750 0.3189

Random placement 4 0.3338 0.3340 0.2065 0.2066 0.3685 0.3726 0.0642 0.1640

Random placement 5 0.3586 0.3572 0.3156 0.3141 0.2727 0.3406 0.0435 0.0895

Table 1: Normalised mean square error results using the volumetric flow validation data set for estimation for the catchment
in the South of England. The results show sensor placements for the set of numbers {10,25,50,100}, comparing Algorithm 1’s
sensor placement against some simple heuristics and 5 random placements. The smallest NMSEs for each sensor placement
and estimation method are shown in bold font.

Figure 3: Likelihood of sensor placement for 125 sensor
placements from Algorithm 1.

The heat map presented in Figure 3 shows the like-
lihood of each node being selected for each of Al-
gorithm 1 placements when up to 125 sensor place-
ments are considered. The heat map identifies the
placements that are more likely to acquire more
information. It is interesting to note that the lo-
cations chosen by Algorithm 1 are in the areas of
high flows. However, when more than 40 sensors are
placed in the network the sensor placement contains
the same amount of mutual information as the max
total sum placement, as shown in Figure 2. This
suggests that for networks with low or moderate

sensor deployment rates, the information content
of the locations is not governed by the largest flow
locations and mutual information successfully un-
covers underlying dependencies between locations
that are in turn leveraged by Algorithm 1.

4.1.3. Estimation Results

To validate the sensor placement chosen by Algo-
rithm 1, we apply our estimation framework to the
catchment in the South of England (Section 3.1).
Note that the sensor placement observations used
for the estimation simulations are the true state
measurements since the observations are obtained
from the hydrodynamic model (i.e. Y k = Xk).
Similarly to the sensor placement process, we use
the training data for training the estimation pro-
cedures, and then estimation is performed over the
remaining validation data according to the sensor
placement.

The results shown in Table 1 highlight that us-
ing standard GLM and GRNN techniques, our pro-
posed placement method performs better in terms
of normalized mean square error than the other
placements for different numbers of placed sensors.
The exception is the case with 50 sensors, where the
nodes with the greatest sum of state measurements
slightly outperform the NMSE that Algorithm 1
yields by approximately 0.0019.

4.2. Case Study 2

Case study 2 is based on an urban drainage system
in the village of Bellinge, Odense, Denmark. The
network consists of 1020 nodes and 1050 links. The
catchment model involves several smaller suburban
towns, to the left in Figure 4, is Braendekilde. The
center of Figure 4 shows Bellinge, and the far right
of Figure 4 shows Dyrup. The wastewater treat-
ment plant is downstream of Dyrup (not captured
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Figure 4: Graph depicting Bellinge from the SWMM shape files.

in the catchment), which travels to the Ejby Molle
water resource recovery facility in central Odense
(Pedersen et al., 2021, Figure 1). In this work, we
use the Storm Water Management Model (SWMM)
from (Pedersen et al., 2021) for Bellinge that gen-
erates flow rate and water depth data for a 2 year
interval with 2-minute resolution. The model incor-
porates the observed rainfall data over the same 2
year interval over which flow rate data is generated.
For a more detailed description of the topology of
Bellinge and the model used herein, please refer to
(Pedersen et al., 2021).

4.2.1. Data Creation and Preparation

The SWMM model for Bellinge is used to simulate
four approximate six-month intervals for a total in-
terval of two years of data. The dates simulated are
shown below in (MM/DD/YYYY) format.

• Simulation 1: 01/01/2018 to 07/01/2018.

• Simulation 2: 07/01/2018 to 01/01/2019.

• Simulation 3: 01/01/2019 to 07/02/2019.

• Simulation 4: 07/02/2019 to 01/03/2020.

Simulations 1 and 2 are combined to form the first-
year data set which we use as our training data
set. Simulations 3 and 4 are combined to form the

second-year data set which we use for validation
purposes.

4.2.2. Sensor Placement

We apply Algorithm 1 to the training data set for
Bellinge, and compare the sensor placements mu-
tual information against those described in Section
3.3. We apply Algorithm 1 with the following con-
straints:

• We set the standard deviation σ introduced by
the sensors to

p
10−4 m3s−1, in line with Case

Study 1.

• We run the modified greedy algorithm with stop-
ping criterion k = 250, about 25% of the total
number of node locations.

• Given the parameters of the network, n = 1020
and k = 250, the one-step modified greedy algo-
rithm completed in approximately 14 hours.

In Figure 5, for each fixed number of sensors de-
ployed, we simulate 1000 random realizations to
select sensor locations and plot the mutual infor-
mation with respect to the minimum, mean, and
maximum mutual information achieved for each of
those 1000 realizations.

Figure 6 shows the results obtained from Algorithm
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Figure 5: The first (left) graph displays the mutual information for each sensor placement method, running from 1 to 250
sensors placed in the network. The second (right) displays the gain in mutual information by selecting the sensor placement
found from Algorithm 1 compared to the other heuristic methods.

Number of sensors 25 50 75 100

Estimation method GLM NMSE GRNN NMSE GLM NMSE GRNN NMSE GLM NMSE GRNN NMSE GLM NMSE GRNN NMSE

Algorithm 1 0.0069 0.0343 0.0032 0.0284 0.0027 0.0273 0.0041 0.0333

Rule based 0.0300 0.0604 0.0196 0.0570 0.0198 0.0562 0.0116 0.0448

Largest total sum 0.3149 0.3124 > 1 0.3021 > 1 0.3065 > 1 0.3119

Random placement 1 0.0655 0.0893 0.0680 0.0987 0.0880 0.0965 0.0866 0.0783

Random placement 2 > 1 0.0941 0.1213 0.0918 > 1 0.0690 > 1 0.0940

Random placement 3 0.0732 0.1047 > 1 0.0849 > 1 0.0845 > 1 0.0802

Random placement 4 0.1677 0.1506 0.0432 0.0776 > 1 0.0729 0.0588 0.0783

Random placement 5 0.2063 0.1157 > 1 0.0928 0.0619 0.0885 > 1 0.0805

Table 2: Normalised mean square error results using the volumetric flow validation data set for estimation in Bellinge. The
results for the set {25, 50, 75, 100} of sensors selected are shown, comparing Algorithm 1’s sensor placement against heuristic
placements and 5 random placements. The smallest NMSEs for each sensor placement and estimation method are shown in
bold font.

Number of sensors 125 150 175 200

Estimation method GLM NMSE GRNN NMSE GLM NMSE GRNN NMSE GLM NMSE GRNN NMSE GLM NMSE GRNN NMSE

Algorithm 1 0.0094 0.0621 0.0174 0.1166 0.0142 0.0943 0.0154 0.1079

Rule based 0.0149 0.0455 0.0307 0.0484 0.0327 0.0503 0.0314 0.0520

Largest total sum > 1 0.3212 > 1 0.3230 > 1 0.3260 > 1 0.3276

Random placement 1 > 1 0.0862 0.2182 0.0805 > 1 0.0746 > 1 0.0837

Random placement 2 > 1 0.0831 0.1929 0.0710 > 1 0.0809 0.1956 0.0807

Random placement 3 0.2601 0.0815 0.1546 0.0754 > 1 0.0758 > 1 0.0761

Random placement 4 0.3657 0.0803 0.0834 0.0774 > 1 0.0772 > 1 0.0732

Random placement 5 0.1052 0.0795 0.0735 0.0736 > 1 0.0762 > 1 0.0732

Table 3: Similarly to Table 2, we obtain NMSE results for the set {125, 150, 175, 200} of sensors selected. The smallest NMSEs
for each sensor placement and estimation method are shown in bold font.

1, which identifies several hot spots that contain
larger amounts of information about the state of
the network. Remarkably, the pipes that carry the
flow from Bellinge to Dyrup are particularly infor-
mative, with other places of high information in-
cluding the southern base of Bellinge, pipes exiting
Braendekilde, and pipes exiting Dyrup.

4.2.3. Rule Based Placement

Considering the WRC rules from Section 3.3, the
model is then further split into three segments to
enforce an approximately uniform spatial density
coverage. Segment 1 is Braendekilde, whose border
is split midway between Bellinge and Braendekilde.
Segment 2 is Bellinge, whose border is split midway
between Bellinge and Dyrup, and segment three is
Dyrup. For every 10 sensors deployed:
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Figure 6: Likelihood of sensor placement for 250 sensor placements from Algorithm 1 using volumetric flow data.

(i) 1 sensor is placed in segment 1.

(ii) 7 sensors are placed in segment 2.

(iii) 2 sensors are placed in segment 3.

After approximately 100 sensors are placed, the re-
maining are placed spatially to get greater network
coverage as the guidelines issued by the WRc are
satisfied.

4.2.4. Estimation Results

Similarly to Case Study 1, the observations that we
are using from the sensor placements are the true
state measurements since the observations are ob-
tained from a hydrodynamic model (i.e. Y k = Xk).
The results from Table 2 show better performance
across the board for the sensor placement of Algo-
rithm 1 when compared to the other placements for
both estimation techniques. Table 3 shows similar
performance for Algorithm 1 using the general lin-
ear model, whereas the rule based sensor placement
performs better when using the general regression
neural network.

4.2.5. Sensor Placement Example

We investigate limiting the number of sensors due
to resource allocation constraints, e.g. budget con-
straints. We fix the number of placed sensors in

the network as approximately 5% of the total node
locations, for a total of 50 nodes. The results ob-
tained by selecting this number are shown in Figure
8. We are particularly interested in understanding
the range and variability of the error introduced by
the estimation framework. To illustrate this, Fig-
ure 7 depicts the histograms of the square error in
logarithmic base 10 for all unmonitored sites and
realizations for both GLM and GRNN.

Figure 7: Logarithmic base 10 of the square errors for all
realizations in the validation data set for both the GLM and
GRNN estimation techniques.
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Figure 8: The sensor placement obtained by Algorithm 1 for 50 placed sensors.

The majority of square errors illustrated in Fig-
ure 7 fall within the interval [10−16, 10−4], or
[�16,�4] as shown in logarithmic base 10. Both
histograms show multimodal distributions, with
secondary peaks appearing in the larger error tail.
The GLM and GRNN demonstrate comparable av-
erage performance; however, the GRNN exhibits a
heavier tail towards larger errors, while the GLM’s
error distribution decays more rapidly in this re-
gion. This implies that GRNN estimates are more
likely to introduce larger errors but the bulk of the
errors, i.e. the more typical errors, are smaller
for the GRNN. On the other hand, the GRNN
square errors are more spread out with compar-
atively heavier tails, and the mode of GRNN is
slightly translated towards smaller errors.

We now turn our attention to the strict weather
conditions case. Specifically, we investigate the esti-
mation performance for both techniques for unmon-
itored nodes using the sensor placement depicted in
Figure 8 under strict wet weather conditions. Two
intervals of wet weather are selected:

• Event 1: 03/03/2019 to 03/17/2019.

• Event 2: 10/08/2019 to 10/19/2019.

The rainfall data for these events is provided within
the rainfall .dat file attached to the SWMM model.

Figure 9: Simulated unmonitored flow realizations plotted
against estimates obtained from the sensor placement in Fig-
ure 8 for realizations in the wet weather events. The scatter
plots are plotted against the line y = x, scattered points be-
low the line indicate the estimator has underestimated the
flow and overestimated above the line y = x.

Figure 9 shows that for the given sensor placement,
the GLM outperforms the GRNN with only a few
outliers deviating far away from the line y = x,
indicating that the GLM shows better results for
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Figure 10: Likelihood of sensor placement for 250 sensor placements from Algorithm 1 using water depth data.

estimating flows in wet weather conditions for this
sensor placement. The mean square error for the
GLM and GRNN in these event intervals are 1.711⇥
10−6 and 1.382⇥10−5 (m3s−1)2 respectively.

4.2.6. Water Depth Sensor Placement

So far, we have only considered sensor placements
using volumetric flow data. We now consider wa-
ter depth instead, i.e. readings obtained from an
SLM, to analyze how the physical magnitude used
to describe the state of the network impacts the
placement produced by Algorithm 1.

• We set the standard deviation σ introduced by
the level sensors as

p
25 mm.

The standard deviation is set to
p
25 mm in light

of the MCERTs report (Environment-Agency,
2020, Pg. 5), which states that the resolution
requirements for level sensors in a certification
range of 1 m to 5 m for class 3 sensors should
be less than 20 mm. We account for external
noise in our setting, i.e. from installation or the
conditions of the sewer that govern the noise, so
setting the standard deviation to

p
25 mm is a

sensible choice.

• We run the modified greedy algorithm with stop-

ping criterion k = 250, about 25% of the total
number of node locations.

The results obtained from Algorithm 1 using depth
data are shown in Figure 10. The estimation sim-
ulations run in Section 4.2.4 are also run for water
depth data. The rule based sensor placement and
the random sensor placements are unchanged, and
the largest total sum heuristic placement is updated
based on the water depth data.

It is worth noting the difference in the likelihood
of sensor placements between volumetric flow and
water depth data for Algorithm 1’s sensor place-
ment. To illustrate the contrast, a heat map is
shown in Figure 11 depicting the absolute difference
of the likelihood ratios for both data scenarios. The
heatmap displays differences and highlights that the
most significant change pertains to the main clus-
ter located in the sewers joining Bellinge from the
north (from the west side).

4.3. Interpretation of Results

The results shown in Table 2 for flow estimation
indicate that for both the GLM and GRNN, the
NMSE obtained by the placement of Algorithm
1 outperforms the rule based and heuristic place-
ments when up to 100 sensors are considered. Fig-
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Figure 11: Absolute difference of the likelihoods between sensor placements from volumetric flow data vs water depth
data for 250 sensor placements. When observing the absolute ratio difference, the closer to white (or the value 1), means the
node was virtually chosen for every sensor placement with water depth data but wasn’t selected with volumetric flow data.

Number of sensors 25 50 75 100

Estimation method GLM NMSE GRNN NMSE GLM NMSE GRNN NMSE GLM NMSE GRNN NMSE GLM NMSE GRNN NMSE

Algorithm 1 0.0103 0.0142 0.0051 0.0078 0.0042 0.0065 0.0035 0.0041

Rule based 0.0472 0.0408 0.0191 0.0191 0.0241 0.0193 0.0156 0.0199

Largest total sum 0.0747 0.0706 0.0749 0.0702 0.0971 0.0612 0.2649 0.0621

Random placement 1 0.0670 0.0576 0.5498 0.0517 0.1407 0.0426 0.1209 0.0346

Random placement 2 0.2600 0.0285 0.5335 0.0580 0.1577 0.0517 > 1 0.0306

Random placement 3 0.0956 0.0625 > 1 0.0754 > 1 0.0606 0.1617 0.0266

Random placement 4 0.1317 0.0454 > 1 0.0608 0.1618 0.0160 0.1374 0.0405

Random placement 5 0.4481 0.0669 0.0697 0.0358 0.0961 0.0298 > 1 0.0284

Table 4: Normalised mean square error results using the water depth validation data set for estimation in Bellinge. The
results for the set {25, 50, 75, 100} of sensors selected are shown, comparing Algorithm 1’s sensor placement against heuristic
placements and 5 random placements. The smallest NMSEs for each sensor placement and estimation method are shown in
bold font.

Number of sensors 125 150 175 200

Estimation method GLM NMSE GRNN NMSE GLM NMSE GRNN NMSE GLM NMSE GRNN NMSE GLM NMSE GRNN NMSE

Algorithm 1 0.0194 0.0295 0.0136 0.0277 0.0131 0.0273 0.0129 0.0232

Rule based 0.0086 0.0110 0.0211 0.0099 0.0311 0.0097 0.0228 0.0088

Largest total sum 0.9007 0.0628 > 1 0.0634 > 1 0.0639 > 1 0.0640

Random placement 1 > 1 0.0285 0.0362 0.0223 0.1910 0.0221 > 1 0.0285

Random placement 2 0.3273 0.0246 0.1654 0.0177 0.1083 0.0265 0.8148 0.0249

Random placement 3 0.7026 0.0296 0.7541 0.0388 > 1 0.0376 > 1 0.0167

Random placement 4 0.5170 0.0397 0.2257 0.0461 0.2015 0.0272 0.2666 0.0207

Random placement 5 > 1 0.0261 0.0752 0.0251 0.1716 0.0203 0.9024 0.0261

Table 5: Similarly to Table 4, we obtain NMSE results for the set {125, 150, 175, 200} of sensors selected. The smallest NMSEs
for each sensor placement and estimation method are shown in bold font.
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Figure 12: A plot showing the mean square error of Algorithm 1’s sensor placement estimating flow at unmonitored nodes vs
mutual information obtained from Algorithm 1’s sensor placement. This was plotted for each number of sensors we simulated
in Tables 2 and 3.

ure 5 (right) shows in comparison to the estimation
results that our proposed sensor placement method
yields at least a 40% gain in mutual information
with respect to all other sensor placements when
considering between 5 and 50 sensors. Between 50
and 100 sensors, we observe a gain in mutual in-
formation of at least 30%. However, for the same
interval, the total sum placement obtains more mu-
tual information than the rule based placement but
performs worse in terms of NMSE for all estima-
tion methods. The results in Table 3 suggest that
Algorithm 1’s sensor placement displayed the best
NMSE using the GLM, yet the rule based place-
ment yielded a better NMSE using the GRNN in
comparison with the GRNN from Algorithm 1’s
sensor placement.

To assess the interplay between mutual informa-
tion and the estimation performance that results
from Algorithm 1 placements we plot both mea-
sures in Figure 12. Interestingly, the mean square
error decay is moderate for low values of k but de-
creases exponentially fast with the mutual infor-
mation for large values of k. Remarkably, the tran-
sition seems to occur around 125 placed sensors,
which suggests a phase transition type effect once
a sufficient amount of sensors are placed in the net-
work.

5. Discussion

The results shown from both case studies show that
by using our proposed Algorithm to maximize mu-
tual information, we obtain superior estimation re-
sults using NMSE in comparison to other heuristic
sensor placements. The simulated network cases
have significantly different topology and complexity
characteristics, as well as the amount of data used,
weather conditions, etc. Yet, both networks visu-
ally demonstrate similar performances when apply-
ing our proposed sensor placement framework (i.e.
outperforming other sensor placements for both
mutual information and NMSE estimation perfor-
mance). Figure 12 further supports our hypothesis,
that as we maximize mutual information, MSE de-
creases monotonically with the number of placed
sensors.

However, one limitation within the problem formu-
lation and algorithm implementation that should be
noted is that specific network elements such as stor-
age tanks and outfalls, etc are all treated equally as
‘nodes’ alongside manholes, which of course is oper-
ationally significant for the intended use of each ele-
ment. Specifically, we see this within Case Study 2.
To circumvent this issue, the user may wish to im-
plement their specific constraints with this in mind.
For example, modifying the optimization problem
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such that:

H∗
k = argmax

H∈Hk

1

2
log

Å

1

σ
2k

det
�

HΣHT + σ
2Ik
�

ã

,

Subject to: User requirements 1,

User requirements 2,

where

• User requirements 1:
Preselect {Xi1 , . . . , Xiy} ⇢ H, y < k for
outfalls, storages (user specific).

• User requirements 2: Sparsity restraints. User-
specific requirements such as distance or con-
nectivity constraints between sensor place-
ments.

With this in mind, the user can pick (in user re-
quirements 1) operationally important nodes (for
example, storage tanks) to be preselected within
the algorithm’s sensor placement choice. For user
requirements 2, if required, the user can specify
some type of sparsity in sensor placement chosen by
the algorithm. To implement these constraints into
the algorithm, only minor modifications within the
search space would be needed. We provide sensor
placement examples with the distance constraints
applied to Case Study 2 in the supplementary mate-
rial. The distance constraint that introduced spar-
sity to the sensor placement degraded the NMSE
compared to the unconstrained case described in
the paper.

To implement the proposed framework for an arbi-
trary wastewater network, the user requires access
to a hydrodynamic model (and hence the capacity
to generate simulated flow data) and the respec-
tive GIS files associated with the hydrodynamical
model. The code that runs the simulations and
shows the figures seen throughout this paper con-
verts the GIS shape files into structured arrays in
MATLAB and relies on the order of time series data
for the nodes to be in the same order as the nodes
in the structured array.

The results displayed in both case studies show that
sensor placements that maximize the amount of in-
formation in sewer networks tend to cluster, i.e.
there are parts of the network that are more locally
informative about the global state of the network.
We note that should the user want to implement
other constraints on the proposed sensor placement

algorithm, this can be attained at the expense of
decreasing the mutual information.

The estimation techniques used in this study are
standard generic techniques that require minimal
tuning for implementation. The goal of this pa-
per is not to devise the best estimation technique
but rather to showcase the performance of different
standard techniques under different sensor place-
ment strategies.

6. Conclusion

This work presents an objective and computation-
ally efficient approach to optimizing sensor place-
ments for large sewer networks using mutual infor-
mation as the performance measure. Validation of
performance is obtained using standard estimation
techniques. We show that the sensor placement ob-
tained from Algorithm 1 performs significantly bet-
ter for varying amounts of sensors when consider-
ing normalized mean square error in comparison to
other heuristic sensor placement approaches in both
case studies presented. We conclude that mutual
information is an appropriate performance measure
for sensor placement procedures that aim to per-
form network estimation in sewer networks. To the
best of the knowledge of the authors, this is the first
work that considers sensor placement in sewer net-
works for network state estimation by using mutual
information. The proposed framework and modi-
fied greedy algorithm provide wastewater utility op-
erators with a systematic sensor placement method
that enables them to design the data acquisition
and monitoring infrastructure for the network. The
proposed method provides robust information ac-
quisition guarantees that translate into the utility
of the data for a wide range of applications. The
low computational burden of the proposed solution
opens the door to designing sensor placements for
large-scale networks and to the development of re-
silient monitoring solutions that can be evaluated
for a large range of operational regimes.
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Appendix A.

Proof of Theorem (1). We first denote the joint
probability density of Xn and Y k as fXn,Y k , which
can be written as

fXn,Y k ⇠ N

ÅÅ

µ

Hµ

ã

,

Å

Σ ΣHT

HΣ HΣHT + σ
2Ik

ãã

,

⇠ N(µn+k,Σn+k).

We can then calculate the mutual information be-
tween Xn and Y k as

I(Xn;Y k) = tr
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For the calculation of det(Σn+k), we have used the
Schur complement property as described in (Seber,
2007, Pg. 296: 14.17. (c)).

Complexity Analysis of the One-step Modified
Greedy Algorithm.

The matrix HjΣHT

j + σ
2Ij is positive definite

(2 S++
j ) since HjΣHT

j is a principle submatrix

of Σ, which is positive definite, and Σ and σ
2Ij

are both symmetric positive definite (Σ by assump-
tion). Using the property that HjΣHT

j + σ
2Ij is

positive definite, there exists a Cholesky decompo-
sition of HjΣHT

j + σ
2Ij , which costs O

�

j3
�

opera-
tions to compute (Press et al., 2007, Pg. 100). With
the Cholesky factorization, the determinant can be
calculated using elementary operations. For one
iteration of the modified greedy algorithm, stop-
ping once we have reached k selected sensor place-

ments, costs O
Ä

Pk
j=2(n� j + 1)(j)3

ä

operations,

since there are (n � j + 1) possible branches for
the greedy heuristic to search, and the determi-
nant cost is (j)3 operations. From the modified
greedy algorithm, we are now searching over each
of the n initial nodes, and hence the total cost is

O
Ä

Pk
j=2 n(n� j + 1)(j)3

ä

operations. It follows

that
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Figure 13: This figure illustrates several interesting plots of node 1 from training data for flow from the Bellinge model (Case
Study 2). The top figure shows the time series plot for each data point. The figure in the bottom left shows a histogram of
the training data, and finally, the last image is a qqplot which measures similarity to the normal distribution, which we have
assumed in Assumption 3 (A3).
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Simulations for computing Algorithm 1’s sensor
placement times were run on Matlab 2023a, using a
Mac studio with an Apple M1 max chip and 32GB
of unified memory.

Appendix B.

Link to supplementary material.
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