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Mixed responses to targeted therapy driven
by chromosomal instability through p53
dysfunction and genome doubling

Sebastijan Hobor1,122, Maise Al Bakir 1,122, Crispin T. Hiley1,2,3,122,

Marcin Skrzypski1,2,3,4,122, Alexander M. Frankell 1,2, Bjorn Bakker1,5,

Thomas B. K. Watkins1, Aleksandra Markovets6, Jonathan R. Dry 7,

Andrew P. Brown7, Jasper van der Aart 8, Hilda van den Bos5,

Diana Spierings 5, Dahmane Oukrif9, Marco Novelli9, Turja Chakrabarti10,

Adam H. Rabinowitz11, Laila Ait Hassou12, Saskia Litière13, D. Lucas Kerr 10,

Lisa Tan10, Gavin Kelly 13, David A. Moore 2,14, Matthew J. Renshaw 15,

Subramanian Venkatesan1, William Hill1, Ariana Huebner 1,2,16,

Carlos Martínez-Ruiz 2,16, James R. M. Black 2,16, Wei Wu 10,

Mihaela Angelova 1, Nicholas McGranahan 2,16, Julian Downward 17,

Juliann Chmielecki7, Carl Barrett7, Kevin Litchfield 1, Su Kit Chew1,2,

Collin M. Blakely 10, Elza C. de Bruin 8, Floris Foijer5, Karen H. Vousden 18,

Trever G. Bivona 10,19, TRACERx consortium*, Robert E. Hynds 1,2,

Nnennaya Kanu2,123 , Simone Zaccaria 2,20,123 , Eva Grönroos 1,123 &

Charles Swanton 1,2,3,123

The phenomenon of mixed/heterogenous treatment responses to cancer

therapies within an individual patient presents a challenging clinical scenario.

Furthermore, the molecular basis of mixed intra-patient tumor responses

remains unclear. Here, we show that patients with metastatic lung adeno-

carcinoma harbouring co-mutations of EGFR and TP53, are more likely to have

mixed intra-patient tumor responses to EGFR tyrosine kinase inhibition (TKI),

compared to those with an EGFR mutation alone. The combined presence of

whole genome doubling (WGD) and TP53 co-mutations leads to increased

genome instability and genomic copy number aberrations in genes implicated

in EGFR TKI resistance. Using mouse models and an in vitro isogenic p53-

mutant model system, we provide evidence that WGD provides diverse routes

to drug resistance by increasing the probability of acquiring copy-number

gains or losses relative to non-WGD cells. These data provide amolecular basis

for mixed tumor responses to targeted therapy, within an individual patient,

with implications for therapeutic strategies.

Up to 50% of all never-smokers who develop lung adenocarcinoma

(LUAD) harbor tumors with mutations in the epidermal growth factor

receptor (EGFR)1,2. EGFR mutations are predominantly clonal, making

this an optimal therapeutic target. Unfortunately, only a minority of

patients have a lasting treatment benefit for more than two years3–5.

The median progression-free survival for patients receiving EGFR tyr-

osine kinase inhibition (TKI) therapy with osimertinib is 18.9 months

and 10.1 months for patients with EGFR mutation-positive metastatic
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non-small cell lung cancer (NSCLC) when receiving treatment in the

first and second line, respectively6,7. Primary resistance, with no

objective treatment response, is seen in 20% and 29% of patients

receiving osimertinib as first- and second-line treatment, respectively7.

Acquired resistance is defined clinically as systemic progression as

measured by RECIST (Response Evaluation Criteria in Solid Tumors8,9)

after a period of initial response to EGFR TKI therapy10. Common

resistance mechanisms include secondary alterations in EGFR itself,

such as the “gatekeeper” T790M mutation in response to erlotinib

treatment11, as well as TKI bypass via alternative signaling pathways

and/or somatic copy-number alterations (SCNAs), including amplifi-

cations of genes such as MET, ERBB2, KRAS, NRAS, and BRAF12. How-

ever, in ~30% of patients, the mechanisms of acquired resistance

remain unknown13,14.

Mixed treatment responses, also known as heterogeneous

responses, where responding and non-responding metastases are

detected within the same patient, have been observed with varying

frequency in many cancer types. For example, 11% of patients with

BRAFV600E-mutant melanoma or thyroid cancer had mixed responses

after treatment with a BRAF inhibitor15, whereas 56% of patients with

renal clear cell cancer treated with anti-angiogenic tyrosine kinase

inhibitors displayed mixed treatment responses16. In the CAIRO I/II

studies of patients with colorectal cancer and livermetastasis, a mixed

response to therapy was associated with poorer survival outcome17.

When measuring response to therapy using current clinical

RECIST version 1.1 guidelines9, the sum of the diameters of all target

lesions is used9. Within a cohort of patients classified as having a stable

disease or partial response to treatment, there will be some patients

with mixed responses i.e., responding lesions and, at the same time,

progression of other lesions. Current RECIST reporting criteria do not

consider such discordant radiological responses18, nor do they con-

form to the standard definitions of acquired resistance to therapy

since both responding and resistant lesions occur within the same

patient simultaneously.

Only a limited number of studies have explored the prevalence of

mixed responses to TKI in LUAD18,19, and to our knowledge, none have

investigated the underlyingmechanistic basis of acquired resistance in

this context. Since a single progressing lesion might contribute to

systemic re-seeding, disease progression, early treatment failure and

drug discontinuation, understanding the mechanisms of clonal diver-

sification and intra-patient mixed tumor response dynamics may

improve patient screening and therapeutic strategies20.

TP53 is mutated in around 40% of all patients with NSCLC, and

TP53pathwayperturbations in EGFR-driven tumors are associatedwith

shortened progression-free (PFS) and overall survival (OS), in the

context of treatment with first-, second-, or third-generation EGFR

inhibitors20. It was recently suggested that loss of TP53 function,

together with other genetic events, facilitates the acquisition of EGFR

TKI resistance mutations21. Mechanistically, TP53 loss of function per-

mits the tolerance of chromosomal instability (CIN) and is enriched in

whole genome-doubled (WGD) tumors22–24. Moreover, studies have

demonstrated that WGD results in rapid propagation of CIN and

acquisition of SCNAs25–28.

We hypothesized that TP53 loss together with WGD permits the

rapid onset of CIN and SCNA acquisition, leading to more diverse

tumor genotypes and phenotypes, thereby contributing to the radi-

ologically observedmixed tumor responseswithin patients with clonal

actionable driver events. We investigated this hypothesis in multiple

clinical cohorts of patients with clonal EGFR-activating mutations

treated with EGFR TKI, in genetically engineered mouse models

(GEMMs) driven by clonal EGFR activating mutations with or without

Trp53 loss, and in isogenic cell lines to examine mechanisms of resis-

tance and cellular evolution under therapeutic pressure using func-

tional models, whole-exome DNA sequencing, and single-cell DNA

sequencing.

Results
Mixed clinical responses to TKI therapy are prevalent in EGFR-
driven lung adenocarcinoma
There is limited information available on mixed responses to targeted

therapies and cytotoxic chemotherapy in NSCLC as most studies only

report data required to meet RECISTv1.1 criteria for response18. We

used the Reiter and Vogelstein15 defined response parameters to dis-

tinguish homogeneous from mixed tumor responses in both human

and murine datasets. Unlike RECISTv1.1, which defines progressive

disease as a 20% increase in total diameter calculated as the sumof the

diameter of all measured lesions, Reiter et al. defined response in

individual lesions. A lesion was considered to respond if it shrank by at

least 30% in diameter and stable if it did not grow more than 10% or

reduce in size by more than 30%. Progression was defined by at least a

10% increase in lesion diameter. A homogeneous objective response to

therapy was defined as having at least one lesion with a greater than

30% reduction in size, in combination with other lesions being stable

(less than 10% growth) or reducing in size. The appearance of new

lesions was not considered in the Reiter et al. definition of a mixed

response. However, in the context of lesions thatmeet the criteria for a

radiological response, we included the appearanceof oneormore new

lesions in the mixed response classification, even if all other lesions

were responding. If lesions within the same patient were assigned to

both the response and progression criteria or the patient developed a

new lesion, the patient was classified as having a mixed response to

therapy.

All assessments of responsewere performed at a single time point

where imaging was available and, unless specified otherwise, were

performed at the first response assessment following treatment

(12 weeks post-treatment ± 2 weeks). As we assessed radiological

response on a lesion-by-lesion basis early in the course of treatment,

we were able to identify non-responding lesions before a patient’s

overall tumor response reached the clinical definition of acquired

resistance10. Therefore, to distinguish between clinical definitions of

primary and acquired resistance, designed to standardize criteria for

clinical trial enrollment, we refer to the growth of an established lesion

as the “development of resistance”. Similarly, we apply the same

nomenclature to our murine data and the genetic aberrations asso-

ciated with the development of resistance19.

These radiological response parameters were first applied to

analyse the European Organization for Research and Treatment of

Cancer (EORTC) RECIST database19, which contains response assess-

ments from patients in phase II and phase III clinical trials. The last

imaging assessment occurring during the first 12 weeks of treatment

was used for the analysis and compared to the baseline pretreatment

imaging assessment. The dataset includes response data from 8,365

patients with lung cancer (NSCLC and SCLC). Of the 428 NSCLC

patients treated with erlotinib, 237 patients had at least two target

lesions as defined by RECISTv1.1. Of these patients, 31% (73/237) had at

least one responding target lesion that reduced in size by 30% ormore

(Supplementary Fig. 1a). Within this group, 34% (25/73) had a mixed

response to erlotinib treatment. The majority of patients within this

group (21/25), had growth of at least one existing target lesion

(Fig. 1a, b and Supplementary Table 1), whereas a minority of patients

(4/25), had a mixed response to erlotinib due to the appearance of a

newmetastatic lesion or progression in a non-target lesion (Fig. 1b). To

summarize, in all patients where a mixed response to erlotinib could

bemeasured, i.e., two ormore target lesions could be assessed, 25/237

patients had a mixed response.

Of the 1633 patients treated with cytotoxic chemotherapy, 1092

patients had at least two target lesions. Within this group, 64% (699/

1092 patients), had at least one lesion that shrank by 30% or more.

However, this does not imply a RECIST response, as the sum of the

diameters of the target lesions may have decreased by less than 30%.

Within the 699 patients with one responding target lesion, 24% had a

Article https://doi.org/10.1038/s41467-024-47606-9

Nature Communications |         (2024) 15:4871 2



mixed response (165/699). Within this group of patients, a majority

had growth of at least one existing target lesion as a component of the

mixed response (106/165, Fig. 1a, Supplementary Fig. 1b, and Supple-

mentary Table 2). In 59/165 patients, the mixed response was due to

the appearance of a new metastatic lesion or progression in a non-

target lesion. In all the patients where a mixed response to che-

motherapy could be measured, i.e., two or more target lesions could

be assessed, 165/1092 patients had a mixed response.

Focusing on those patients with at least one responding target

lesion, we found that 34% (25/73) and 24% (165/699) of responding

patients treated with erlotinib or chemotherapy respectively, dis-

playedmixed responses to treatment (Fig. 1a). However, as responding

patients were defined by the response in a single lesion rather than as

the sumof diameters of the target lesions as per RECIST, our definition

could include patients from across the RECIST response spectrum.

Due to this reason, the response rates to erlotinib and chemotherapy

reported here may differ from what would be expected clinically.

Indeed, using the response criteria outlined above, we found that

within the EORTC cohort, 5.9% and 13% of erlotinib-treated patients,

classifiedwith partial response (PR) or stable disease (SD) according to

the RECIST criteria, respectively, did in fact have mixed responses

(Supplementary Fig. 1c, left panel). The equivalent numbers for

patients treatedwith chemotherapywere 13.5%achieving SD and 16.9%

for patients achieving a PR (Supplementary Fig. 1c, right panel).

Although there are no scans or genomic data associated with the

EORTC dataset, re-analysis of the underlying lesion measurements

demonstrates thatmixed responses are commonly observed in NSCLC

patients treated with either TKI or chemotherapy.

TP53 pathway disruption is associatedwith shorter progression-
free survival and mixed clinical responses to TKI therapy
To understand the molecular basis underlying mixed responses in

EGFR-mutant lung cancer, we used existing genomically annotated

clinical cohorts. In clinical LUAD cohorts, loss of TP53 function has
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Fig. 1 | TP53 pathway disruption is associated with shorter progression-free

survival and mixed clinical responses to TKI therapy. a Bar chart showing the

percentage of responding patients with homogenous (gray) or mixed (red)

responses to treatment with erlotinib or chemotherapy. bMixed responses in the

RECIST database were analysed using response criteria defined by ref. 15. Patients

with at least two lesions where one shrank by at least 30% were included in the

analysis. The number of patients with homogenous responses are shown in black

for patients receiving erlotinib. The different patterns of progression seen in

patients with a mixed response are shown in red. c Kaplan–Meier survival analysis

of patients with E (n = 35, yellow line) and EP tumors (n = 82, green line), in the

AURA2, AURA3, and AURA phase II expansion cohort, demonstrating the differ-

ence in PFS after osimertinib treatment (Log-rank test (two-sided) p = 4e−04, HR

0.36, CI: 0.20–0.65). d Bar chart of the proportion of Homogenous (yellow) and

Mixed (green) responses to osimertinib in patients with E or EP tumors (p =0.0106

two-sided Fisher’s exact test). e Bar chart of the proportion of patients with E or EP

mutant tumours with new lesions during osimertinib treatment (p =0.0846 two-

sided Fisher’s exact test). f Individual first tumor response within six months on

osimertinib treatment, presented as % change in CT-measured tumor length. Each

x-axis tick represents one patient (n = 21, E group of patients with 127 lesions and

n = 39, EP group of patients with 246 lesions in total). The dotted lines show the

Reiter et al. criteria for response (−30%) and progression (10%), respectively. Gray

dots and whiskers represent the median change in tumor size and variability

around the median value using the median absolute deviation (MAD) for each

patient. Boxes underneath the graph indicate the occurrences of new lesions (red

box), andmixed responses of existing lesions, as defined by ref. 15 (gray box), and

patients with mixed responses with or without the occurrences of new lesions

(blue box). Source data are provided as a Source Data file.
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been associated with reduced PFS and OS20. Molecularly, TP53 path-

way disruption (defined as deleterious mutations in TP53 affecting

splice sites, DNA binding, transactivation domains and tetramer

binding, TP53 deletion, or clonal MDM2/4 amplification) has been

shown to increase the tolerance and propagation of genomic

instability and CIN29–32. We hypothesized that TP53 pathway disruption

in tumors with clonal EGFR activating mutations may promote cell-to-

cell diversification by permitting the acquisition and propagation

of SCNAs. An increase in SCNAs might be a substrate upon which

selection for drug-resistant subclones could act and thereby

expandphenotypic diversity andopportunities for thedevelopmentof

resistance, resulting in an increased frequency of mixed tumor

responses within the same individual under the selective pressure of

therapy.

The incidence of EGFR driver mutation-positive LUAD varies geo-

graphically and by genetic ancestry. In order to quantify the proportion

of patients with EGFR driver mutation-positive LUAD with TP53 co-

mutation, we analysed the incidence of EGFR and TP53 alterations in

threewell-annotated, geographically distinct LUADcohorts. Concurrent

TP53 pathway disruption was observed in 52% of the first prospectively

recruited 421 patients in the TRACERx study (UK)33, in 72% of the TCGA

cohort (US)1, and in 47% of the OncoSG cohort (East Asia)34 (Supple-

mentary Fig. 2a). Within the TRACERx421 cohort, there were 249 LUAD

cancers sequenced, of which 25 harbored a clonal EGFR mutation. Of

these 25 cases, sevenwere found to have clonal TP53mutations and two

to have subclonal TP53mutations. An additional four tumors had clonal

MDM2/4 amplification events and the remaining 12 tumors were classi-

fied as TP53 pathway wildtype (Supplementary Fig. 2b).

To investigate the effect of TP53 pathway disruption on targeted

therapy response and TKI resistance, we used data from the AURA2

and AURA3 clinical trials, as well as the AURA trial phase II expansion

cohort, which tested the efficacy of osimertinib in patients with

metastatic EGFR mutation-positive NSCLC (Identifiers: NCT02094261,

NCT02151981, and NCT01802632; see Supplementary Table 3 for

patient selection criteria). All patients from the AURA clinical trials

included in our analysis had NSCLCs that tested positive for both an

EGFR activating mutation (e.g., L858R) and the EGFRT790M resistance

mutation, had progressed following first-line EGFR TKI treatment and

were treatedwith the third generation TKI osimertinib. Although some

patients in these studies had an assessment of TP53 co-mutation using

circulating tumor DNA (ctDNA)35, our PFS analysis of the combined

AURA cohorts was restricted to patients with available tissue-based

tumor somatic analysis (n = 117) due to the difficulty in calling copy-

number loss from ctDNA and the confounding impact of clonal

hematopoiesis of indeterminate potential on TP53 mutations in cir-

culating lymphocytes. Consistent with previous reports20, patients

whose tumors harbored oncogenic EGFRmutations and TP53 pathway

disruption (EP, n = 82) had significantly worse PFS compared to

patients whose tumors had only oncogenic EGFRmutations (E, n = 35),

p = 4e−04, HR 0.36, CI 0.20–0.65 (Fig. 1c). This difference could not be

explained by a difference in the number of metastatic lesions present

in the two patient groups before the start of osimertinib treatment

(median numbers of lesions per patient: 5.5 E and 6 EP; p = 0.7366,

Supplementary Fig. 2c, two-sided Mann-Whitney U test) or by other

clinical variables (Supplementary Fig. 2d).

Next, response dynamics were examined in the 68 patients from

the AURA cohorts who had at least two metastatic lesions at the

baseline scan, had tissue-based tumor somatic analysis, and had con-

sented to share longitudinal follow-up imaging (See Consort diagram,

Supplementary Fig. 2e, for exclusion criteria). Within these trials,

patients were imaged every 6 weeks following randomization. A total

of 395 metastatic lesions from 46 patients with EP tumors and 22

patients with E tumors from the AURA2 (n = 24), AURA3 (n = 33), and

AURA phase II expansion cohort (n = 11) were assessed to investigate

homogenous and mixed responses during osimertinib therapy. In

total, at the time of first assessment, 60/68 patients were defined as

responders as they had at least one metastatic lesion that reduced in

size by 30% or more (E: range 2–13 lesions per patient; EP: range 2–15

lesions per patient).

At the first follow-up time point, responding patients with EP

tumorswere significantlymore likely tohavemixedobjective responses

to therapy with the progression of one or more existing metastatic

lesions consistent with the early development of resistance (Fig. 1d, 10/

39 EP vs 0/21 E, p =0.0106, Fisher’s exact test). At this early time point,

newmetastatic lesions were only observed in the EP patient group, but

this difference did not reach significance (Fig. 1e, 7/39 EP vs 0/21 E,

p =0.0846 Fisher’s exact test). Patients with EP tumors had significantly

higher variability in response between metastatic lesions (as measured

using the median absolute deviation (MAD) of lesion response within

each patient) and this was consistent whether measured at the first

follow-up scan (Fig. 1f, p =0.01 Mann–Whitney U-test) or at the point of

maximum response where 64 out of 68 patients had at least one

responding lesion (Supplementary Fig. 3a, p=0.032 two-

sided Mann–Whitney U-test). At the point of maximum response,

patients with EP tumors continued to be more likely to have mixed

responses to therapy (Supplementary Fig. 3b, 29/42 EP vs 5/22 E,

p =0.0006, two-sided Fisher’s exact test) and were also more likely to

progress with a newmetastatic lesion (Supplementary Fig. 3c, 25/42 EP

vs 5/22 E, p =0.0079, two-sided Fisher’s exact test) compared to

patients with E tumors. No specific TP53 mutation correlated with

homogenous or mixed responses in this dataset (Supplementary

Fig. 3d).We next investigated radiological responses froman additional

dataset of osimertinib-treatedpatients fromtheUniversity ofCalifornia,

San Francisco (UCSF) Clinical Cohort (Supplementary Fig. 3e). At the

time of the first surveillance scan, new metastatic lesions were only

evident in the EP group (0/14 E mutant group compared to 5/34 EP

mutant group). We also analysed 113 lesions from the first surveillance

scans of 31 patients (E = 9, EP = 22) with at least one responding lesion.

Although we only could observe mixed responses in two EP patients at

this early time point, the MAD of response was significantly different

between the two patient groups (median of the MAD; E = 2% compared

to EP = 13%, Supplementary Fig. 3f, p=0.0165, Wilcoxon test). Focusing

on patients with at least one responding lesion, there was a small but

significant increase in the appearance of new metastatic lesions in the

EP patient group when analysing the combined AURA and UCSF data-

sets (0/30 E compared to 8/54 EP mutant group, p=0.049) suggesting

that loss of p53 function predicts the appearance of early new meta-

static lesions in patients receiving EGFR TKI therapy. These data high-

light the association between TP53 pathway dysfunction, mixed

responses to EGFR TKI therapy, and reduced PFS in patients with

metastatic EGFR driver mutation-positive NSCLC.

Trp53 loss is associated with more rapid therapy resistance and
acquisition of alternative mechanisms of resistance to TKI
therapy in mouse models
Tomodel the impact of clonal p53 disruption in EGFR-mutant LUAD in

the context of mixed responses to therapy, EGFRL858R (E) and

EGFRL858RTrp53fl/fl (EP) GEMMswere used (Supplementary Fig. 4a). Lung

specific expression and recombination was induced via intratracheal

delivery of adenoviral Cre and tumor development was monitored

usingmicro-CT scanning (See Supplementary Fig. 4b for workflow). EP

mice demonstrated earlier tumor initiation (Supplementary Fig. 4c,

p <0.0001, two-sided Mann–Whitney U-test), a higher number of

tumor nodules per mouse (Supplementary Fig. 4d, p =0.0124, two-

sided Mann–Whitney U-test), increased tumor proliferation indices

(Supplementary Fig. 4e, p <0.0001,Mann–WhitneyU-test) and a trend

towards higher tumor grade (Supplementary Fig. 4f, p =0.1704,

Kruskal–Wallis test) when compared to tumors from E mice. We

observed significantly reduced overall survival of EPmice compared to

E mice (Supplementary Fig. 4g, p = 0.0014, Mantel–Cox test).
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Weevaluated the suitability ofGEMMsas amodel system to assess

mixed responses in EGFR-driven lung cancer by generating combined

synteny SCNAmaps of treatment-naïvemouse and human tumors. Re-

mapping the mouse LUAD genome onto the human LUAD genome

revealed that, in all samples investigated, oncogenes, such asAKT1 and

tumor suppressors, such as PBRM1, SETD2, BAP1, and SMAD3, were

recurrently affected by copy-number gains (pink) and losses (blue)

respectively in both human and mouse tumors irrespective of E or EP

status (Fig. 2a). Syntenic gains or losses that were restricted to either E

or EP tumors included the tumor suppressor gene CDKN2A, which was

predominantly lost in mouse and human E tumors, whereas syntenic

loss of PTEN, which has been associated with TKI resistance36, was

mainly observed in treatment-naïve EP tumors. These analyses

demonstrate that tumors from E and EP mice recapitulate several of

the genomic events observed in human tumors and highlight the

potential importance of a limited set of genes commonly gainedor lost

in the earliest stages of EGFR-driven tumorigenesis (Fig. 2a and Sup-

plementary Data 1).

Next, mice were scanned using micro-CT one month after Cre-

mediated induction, and tumor development was monitored with

monthly scans (see Methods). Erlotinib treatment was initiated upon

identifying at least one lung tumor with a minimal diameter of 1mm. If

multiple smaller tumors were found (granular appearance of lungs),

mice were scanned again after 2 weeks, and if it was deemed that the

welfare of the animal would be compromised within the next 2 weeks,

therapy was initiated (Supplementary Fig. 5a and Supplementary

Data 2). As seen in treatment-naïve animals, EP mice had significantly

reducedOS compared to Emicewith treatment durations ranging from

two weeks to 12 months (median survival after initiating erlotinib

treatment: 13 (EP) and 34 (E) weeks respectively, Fig. 2b, p <0.0001,

log-rank Mantel–Cox test). Micro-CT imaging of response dynamics

using the same parameters as the patient data in Fig. 1f, revealed that

within the first month of therapy, tumors in individual Emice almost all

uniformly responded to treatment with erlotinib (Fig. 2c). In contrast,

EP mouse tumors exhibited significantly greater heterogeneity in

response dynamics between tumors, with some lesions responding to

treatment and others progressing within the same animal. To analyze

the degree of variability in lesion size, the MAD percentage tumor

diameter change within each animal was compared, which demon-

strated significantly higher variability in tumor response in the EP than

in the E mouse group (Fig. 2c, p =0.006464, two-sided Mann–Whitney

U-test, Effect size: −0.53232, Cohen’s ds).

The observation that acquired resistance was a rare event in the

erlotinib-treated E mouse cohort but not in the EP mouse cohort (2

out of 12 E mice had at least one resistant lesion compared to 11 out

of 16 EPmice, Fig. 2c)motivated us to further explore the association

between TP53 pathway disruption and the development of resis-

tance to therapy. The combination of longer latency times to tumor

development together with fewer nodules per mouse in the E group

(Supplementary Fig. 4c, d) prompted us to increase the probability

of generating resistant tumors by adapting an intermittent dosing

protocol shown to generate erlotinib-resistant tumors37 (see Meth-

ods). Even when using this protocol, significantly more EP mice than

E mice developed at least one therapy-resistant tumor (Fig. 2d,

p = 0.0082, two-sided Chi-squared test). In addition, the develop-

ment of resistance occurred significantly faster in EP mice (range

8–111 days after start of erlotinib) than in E mice (range 28–330 days

after start of erlotinib, Fig. 2e, p < 0.0001, two-sided Mann–Whitney

U-test). Within the first month of erlotinib treatment, 17/18 EP and 3/

13 E mice had at least one resistant nodule, suggesting a higher

propensity to develop early resistance to therapy in EPmice. Overall,

these results indicate that Trp53 loss increases the probability of and

reduces the time to developing therapy resistance.

To assess whether somatic resistance mutations, such as T790M,

identified from repeat biopsy of patient tumors with clinically defined

acquired resistance to TKI therapy38, could explain the development of

resistance in the mouse tumors, we performed whole-exome sequen-

cing (WES, median depth of 92x, range: 58–169x) of 9 E and 10 EP

erlotinib-resistant mouse tumors. There was no significant difference

in the total tumorpointmutational burdenbetween the twogenotypes

in either the naïve or treated mouse tumor samples, or in the human

TRACERx421, OncoSG, or TCGA cohorts (Supplementary Fig. 5b–e).

Resistance to TKI treatment via histological transformation13 of EGFR-

driven LUAD to small-cell cancer with accompanying RB1mutations is

a well-described phenomenon39. Neither Rb1 mutations nor histologi-

cal transformation was observed in the analysed resistant

mouse tumor samples. In E-resistant mouse tumors, we identified four

EGFR bypass mutations (oncogenic Kras mutations; Q61H, Q61R, and

two G12D mutations13) and one gain-of-function mutation in Fgfr2

(C382R)40 (Fig. 2f). No acquired Trp53mutations were observed in the

E cohort after treatment. In contrast, only one known resistance-

associated mutation, EGFRT790M, was identified in an EP mouse tumor

(Fig. 2f), suggesting that alternative mechanisms might be driving

resistance in the remaining EP tumors.

p53 dysfunction results in elevated SCNAs of genes associated
with TKI resistance and increased cell-to-cell diversity
To investigate alternative, non-SNV-related mechanisms of resistance

resulting from p53 loss of function, single-cell whole-genome

sequencing (scWGS) was performed on FACS-sorted nuclei obtained

fromdifferent ploidy groupswithin naïve and resistant E and EPmouse

cells (see Methods). This approach revealed clear genomic differences

between these four groups (Supplementary Fig. 6a, b). We utilized

MEDICC to analyse the evolutionary timing of copy-number changes,

including genome doubling, using the total copy number as input (see

Supplementary Fig. 6c for workflow). A representative example of the

derived phylogenies, gains, losses, and the timing of WGD is shown in

Supplementary Fig. 6d.When investigating the earliest events on these

phylogenetic trees (those within three edges from the most recent

common ancestor, MRCA), we found a difference in the expansion of

cells with copy number losses in E compared to EP tumors. In resistant

E tumors, cells which underwent an early loss expanded very little,

resulting in a lower cancer cell fraction (CCF) compared to EP cellswith

early losses (Fig. 3a, p =0.0435, two-sided Mann–Whitney U-test). E

cells with gains were more likely to expand and form the majority of

the tumor. This phenomenon was not observed to the same degree in

resistant EP tumors or in treatment-naïve tumors. This result is con-

cordant with recent data obtained from cell lines, where TP53 loss

correlated with a higher frequency of chromosome losses compared

to isogenic TP53WT cells41. The overall frequency of SCNAs across the

genome was higher in the EP naïve mouse and human (OncoSG)

tumors compared to E tumors (Supplementary Fig. 7a, b Mouse:

median frequency E 15% vs EP 38%, p < 2.2e-16 Human: median fre-

quency E 8% vs EP 12%, p < 2.2e-16; two-sided Mann–Whitney U-tests).

Due to the relatively low number of patients with EGFR mutations in

the Tx421 cohort, there was insufficient statistical power to perform

this analysis in that dataset.

Further assessment of the extent of chromosomal alterations

revealed that EP mouse tumors exhibited a higher frequency of both

copy-number gains and losses across the whole genome compared to

E tumors in both treatment naïve and resistant settings (Fig. 3b upper

vs lower genomewide plots, Supplementary Fig. 7c, naïve E vs EP gains

p =0.0002, resistant E vs EP gains p = 0.0013, naïve E vs EP losses

p =0.0244, resistant E vs EP losses p =0.1679, two-sided t-tests).

While no copy-number gains were observed to be significantly

more frequent in E TKI-resistant mouse tumors compared to E

treatment-naïve mouse tumors (Fig. 3b, upper panel), a higher fre-

quency of copy-number gains of genes implicated in TKI resistance

wasobserved in EP-resistantmouse tumors compared to EP treatment-

naïve tumors (Fig. 3b, lower panel). For example, a region of
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Fig. 2 | Trp53 loss results inmixed responses and therapy resistance inmurine

models of NSCLC. a Mouse-to-human across genome synteny histograms. Upper

panel E mice vs. patients with E tumors. Lower panel EP mice vs patients with EP

tumors. Significantly changed regions inboth species are coloredpink (gain) andblue

(loss). b Kaplan–Meier survival analysis of E (n= 10, yellow line) and EP (n= 17, green

line) mice, demonstrating the difference in OS after erlotinib treatment (p <0.0001,

HR 3.72, 95% CI: 1.65–8.38, log-rank Mantel–Cox test). c Differences in tumor

responses after one month of erlotinib treatment in E (n= 12 yellow) and EP (n= 16

green) mice, presented as % change in CT-measured tumor diameter. Each column

represents one mouse, and each dot represents one tumor within the mouse

(p =0.006464, two-sidedMann–Whitney U-test). The dotted lines show the Reiter et

al criteria for response (−30%) and progression (10%), respectively. d Bar chart

showing the proportion of sensitive and resistant tumors in E (yellow) and EP (green)

mice (p =0.0082, two-sided chi-squared test). The total number of mice in each

group are indicated in the bars. e Dot plot showing time to resistance in E (n= 13

yellow) and EP (n= 18 green) mice (P= <0.0001 two-sided Mann–Whitney U-test). f

Bar chart showing identified single-nucleotide variant-related resistancemechanisms

in E and EP mice. Source data are provided as a Source Data file.
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Fig. 3 | Trp53, togetherwithWGD, results in therapy resistance associatedwith

increased CIN and cell-to-cell variability. a Dot plot of mean cancer cell fraction

per tumor of early losses in naïve (E, n = 23; EP n = 20) and resistant E (n = 9 yellow)

and EP (n = 10 green) tumors. b Frequency of copy-number gains (positive y-axis)

and losses (negative y-axis) in treatment naïve (yellow) vs resistant (green) tumors

with either E (upper panel) or EP (lower panel) genotypes. c Ploidy-relative copy-

number gains (red colors) are reported across all mouse tumors, separating

treatment naïve vs resistant and E vs EP (ploidy represented in gray colors) for 18

genes whose amplification is known to have an impact on TKI resistance. d For

every group (triangle shape) of single cells obtained from the same FACS ploidy

peak (red colors) from either naïve E (top row), naïve EP (second row), resistant E

(third row), or resistant EP (bottomrow)mouse tumors, the fractionof the genome

affected by different SCNAs (yellow-to-blue colors) was computed between every

pair of cells (square within a triangle) as a proxy to measure cell-to-cell diversity.

e Dot plot of average Shannon evenness index measured per tumor from naïve

(n = 21) and resistant (n = 7) E (yellow) vs naïve (n = 19) and resistant (n = 710) EP

(green) mouse tumors (naïve p =0.0066, resistant p =0.0004, two-sided Man-

n–Whitney U-tests). Bar charts showing WGD frequencies in lesions from patients

with E and EP tumors from f Tx421 (usingWES data, ns, two-sided chi-squared test)

and g OncoSG cohort (using WES data, p =0.0080, two-sided chi-squared test).

Dot plot showing weighted Genome Instability Index (wGII) of tumors with or

without WGD in patients with E or EP lesions from the h Tx421 (non-WGD: E n = 3,

EP n = 1. WGD: E n = 9, EP n = 11 p =0.0310, two-sided Mann–Whitney U-test) and

iOncoSG cohorts (non-WGD: E n = 26, EP n = 10, p =0.8758. WGD: n = 9 E, n = 11 EP,

p =0.0392, two-sidedMann–WhitneyU-test). Source data are provided as a Source

Data file.
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chromosome 6p, harboring MET and BRAF, was significantly more

frequently gained in EP resistant compared to EP treatment-naïve

tumors (Fig. 3b lower panel, p = 0.01135, see Methods). Similarly,

genomic regions in chromosomes 6q and 16p that, amongst others,

encode genes associated with EGFR TKI resistance, such as Kras and

Mapk113, were more significantly gained in EP TKI-resistant mouse

tumors compared to EP treatment-naïve mouse tumors (Fig. 3b lower

panel, p =0.0007, see Methods).

Based on these data, we analysed the copy-number status of

several additional genes that have been implicated in TKI

resistance12–14,42 and investigated the SCNAs between the two geno-

types. A significantly higher frequency of copy-number gains involving

published TKI resistance associated genes was observed in EP

treatment-naïvemouse tumors compared to E treatment-naïve tumors

(Fig. 3c and Supplementary Fig. 7d left panel p = 5e−10, Chi-squared

test), as well as in EP-resistant mouse tumors compared to E resistant

mouse tumors (Fig. 3c and Supplementary Fig. 7d right panel,

p = 2.7e−6, two-sided Chi-squared test), which may contribute to the

development of resistance.

To investigate the extent of heterogeneity within the naïve and

resistant E and EP tumors, the SCNAs in individual cells were inferred

fromscWGSdata, and cell-to-cell diversitywas estimatedbymeasuring

the fraction of the genome affected by different SCNAs between every

pair of cells obtained from the same tumor and the same group of cells

with the sameploidy (Fig. 3d,Methods). Consistentwith a role for TP53

pathway disruption in the potentiation of CIN, single cells from both

naïve and resistant mouse EP tumors were found to display sig-

nificantly higher genome ploidies than E tumors (Supplementary

Fig. 7e) and a higher prevalence ofWGD in resistant tumors (naïve E vs.

EP; p =0.1365, resistant E vs. EP; p =0.0060 two-sided Chi-squared

test, Supplementary Fig. 7f). A higher extent of cell-to-cell diversitywas

also observed between cells derived from EP tumors compared to

single cells from E tumors, which resulted in significantly higher intra-

tumorheterogeneity (asmeasuredby Shannonevenness index, Fig. 3e,

naïve p =0.0066 and resistant, p =0.0004 tumors, two-

sidedMann–WhitneyU-tests). The cell-to-cell diversity observed in the

EP tumors reflected a significantly higher weighted genome instability

index (wGII), consistent with the greater chromosomal complexity and

elevated burden of SCNAs43 in both naïve and resistant EP mouse

tumors compared to Emouse tumors (Supplementary Fig. 7g, h; naïve

p < 2.22e−16 and resistant p < 2.22e−16, two sided Mann–Whitney U-

tests). Taken together, these results suggest that the development of

resistance in E tumors is often driven by point mutations (Fig. 2f),

whereas both human and mouse EP tumors have greater SCNA het-

erogeneity leading to the selection of SCNAs encoding genes known to

drive resistance to EGFR TKIs.

To ascertain the contribution of WGD to the elevated genome

instability in EP tumors, we next examinedWGDevents in the Tx421 and

OncoSG cohorts and observed thatWGD tended to bemore frequent in

EP tumors than in E tumors (WGD frequency; Tx421 71.4% (E); 85.7%

(EP); OncoSG 65.3% (E); 84.8% (EP); (p =0.2383, Fig. 3f and p=0.008

Fig. 3g two-sidedChi-squared tests). However, these small differences in

WGD frequencies alone were unlikely to explain the profound pheno-

typic differences in resistance dynamics between E and EP tumors,

prompting us to investigate whether WGD could be associated with

elevated CIN in a manner dependent on p53 pathway dysfunction.

When further assessing the extent of genome instability, as measured

by the wGII, we observed higher wGII in WGD EP tumors compared to

WGD E tumors in the Tx421 and OncoSG cohort (Fig. 3h, i; Tx421;

p =0.031, OncoSG; p =0.0392, two-sided Mann–Whitney U-tests) sug-

gesting that WGD is associated with elevated CIN, which is more pro-

nounced on a p53 mutant background. This observation was also

recapitulatedwhenassessing the effect ofWGDongenome instability in

KRAS and KRAS/p53 pathway mutant tumors in the Tx421 cohort

(Supplementary Fig. 7i, p =0.0004, two-sided Mann–Whitney U-test).

Combined WGD and the presence of p53 dysfunction generates
a permissive landscape facilitating genetic resistance to TKI
Based on these data, we hypothesized that WGD, together with p53

dysfunction, accelerates cell-to-cell variation in the acquisition of

SCNAs, generating a diversity upon which selection can act. In the

context of EGFR TKI therapy, this genomic diversity may promote

more rapid acquisition of resistance and mixed responses seen

in the human and murine data compared to E tumors with

functional p53.

To decipher the contribution of WGD in acquired drug resistance

on a background of p53 dysfunction, we used an isogenic clonal

EGFR/TP53 mutant human NSCLC PC9 cell model system, with and

without an additional WGD event. The LUAD cell line PC9 is triploid

and harbors both an oncogenic EGFR Ex19del and an inactivating TP53

mutation (p.Arg248Gln)11,44–47. Similar to other cancer cell lines26,48, a

small fraction of PC9 cells undergo spontaneous WGD events in cell

culture. Using single-cell sorting, we obtained cells with a relative DNA

content of 3N (triploid, 24 single-cell clones isolated) and isogenic cells

that had spontaneously undergone an additional WGD event with a

relative DNA content of 6N within the parental 3N population (hex-

aploid, 24 single-cell clones isolated; Supplementary Fig. 8a, b).

A subpopulation of PC9 cells harbors the EGFR T790M mutation,

which is the most frequent resistance mechanism in response to

erlotinib treatment11,45,49. However, all 24 triploid and 24 hexaploid-

derived early passage WGD cell populations were equally sensitive to

erlotinib (Supplementary Fig. 8c), indicating that T790M mutations

were absent from the clonal founder cells and that at baseline, these

clones had not acquired additional genetic alterations associated with

EGFR TKI resistance. Importantly, the IC50 values of these early pas-

sage triploids (T) and hexaploid (H) progenitor clones were compar-

able to the parental population (IC50 ≈ 15 nM), confirming that a

spontaneous WGD event alone on a p53 mutant background does not

confer drug resistance (Supplementary Fig. 8c). To investigate the

emergence and frequency of resistance, each of the 48 progenitor

clones were seeded into a full 96-well plate each (5000 cells per well)

and cultured in the presence of 1.5 µM erlotinib (we defined acquired

resistance as survival in a 100-fold higher concentration than the

observed median IC50 value of the parental clones50, see Supple-

mentary Fig. 8a, right panel, for workflow). The emergence of resistant

subclones was recorded after 5 weeks of continuous erlotinib treat-

ment. In parallel, each progenitor clone was cultured in the absence of

erlotinib to investigate a potential drift in copy-number status (Sup-

plementary Fig. 8d, see below).

Both triploid and hexaploid clones were able to generate

erlotinib-resistant subclones within the 5-week time period. A sig-

nificantly higher proportion of hexaploid progenitor clones generated

at leastone resistant subclone compared to their triploid counterparts,

indicating that within five weeks of drug exposure, a WGD event

together with p53 dysfunction promotes the development of drug

resistance (12/24 triploid vs 19/24 hexaploid progenitors, p =0.0346,

Chi-squared test, Fig. 4a, b). To investigate a mechanistic basis for this

observation, we performed WES of 34 triploid- and 40 hexaploid-

derived erlotinib-resistant subclones. Assessing the presence of known

resistance mechanisms across the subclones, we found that 15/34

triploid-resistant subclones harbored a T790M mutation and 11/34

triploid-resistant clones harbored a RAS/PI3K pathway activating

mutation. In contrast, 19/40 resistant hexaploid/genome-doubled

subclones harbored mutations in T790M (15/40) or the RAS/PI3K

pathway (4/40), with the remaining clones having no known point

mutation mechanism of resistance; Fig. 4c, left panel). In line with a

recent publication51, different routes to resistance were observed in

daughter clones derived from a single parent clone. We also observed

variability in the ploidy of daughter clones derived from the same

parental clone. Taken together, triploid-resistant subclones (26/34)

were significantly more likely to harbor an SNV as a mechanism of
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resistance compared to hexaploid, genome-doubled clones (19/40,

p =0.021, Chi-squared test),

Consistent with data presented for the EP mouse tumors (Sup-

plementary Fig. 7a–c),WGDwith p53 dysfunction was also found to be

significantly associated with an increase in the frequency of SCNA

acquisition across the genome in resistant PC9 hexaploid cells (Fig. 4d

and Supplementary Fig. 9a, Paired Wilcoxon test, p < 2.2e−16 for both

gains and losses, see Supplementary Data 3 for significantly gained or

lost genes in the two genotypes). Furthermore, we found a significant

difference in clone-to-clone diversity (measured as the fraction of the

genome with different SCNAs between every clone pair) between

hexaploid-resistant clones and triploid-resistant clones (Fig. 4e and

Supplementary Fig. 9b p = 6.611e−263, two-sidedMann–WhitneyU-test).

The results from the isogenic PC9 system reflect an increasedplasticity
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and ability to modify copy-number states in the resistant hexaploid

clones compared to triploid clones, suggesting that WGD is an alter-

native mechanism to generate resistance. Consistent with the

hypothesis that WGD events are positively selected for during the

development of EGFR TKI resistance in p53 mutant cells, flow-

cytometry analysis revealed that 22.6% (12/53) of resistant clones ori-

ginating from triploid progenitors had increased their ploidy more

than 1.5 times, (median of increased ploidy ≈6, range ≈4.5–7.5),

whereas only 1% of the resistant hexaploid clones further increased

their ploidy more than 1.5 times (one subclone out of 101 clones ana-

lysed Supplementary Fig. 9c).

Based on these findings, we would expect triploid clones, without

a known somaticmutation event, to acquire ploidy gains and SCNAs as

their mechanism of resistance. Consistent with this hypothesis, only

one of the six triploid clones investigated that underwent aWGD event

during the acquisition of EGFR TKI resistance developed a T790M

mutation. The remaining 5/6 previously triploid clones had sig-

nificantly higher numbers of copy-number gains in genes associated

with TKI resistance, such as FGFR3, NRAS, and ERBB2, compared to

clones which remained triploid after having acquired resistance

(Fig. 4c, right panel, p <0.00001, two-sided Chi-squared test). Con-

versely, six hexaploid clones, that displayed a reduction in their ploidy

to a triploid state, harbored a point mutation as a mechanism of

resistance (five subclones; T790M, one subclone; SPEN E1043X) fol-

lowing the acquisition of EGFR TKI resistance.

Thesedata support the roleofWGDon aTP53mutant background

in the expansion of genomic opportunities for the development of

treatment resistance, primarily through SCNA-basedmechanisms and,

less frequently, through pointmutation-driven resistancemechanisms

following a reduction in tumor ploidy status. Since the resistance of

hexaploid PC9 subclones and EP mouse tumors is likely driven by

SCNAs at a high frequency, we compared the copy-number profiles of

hexaploid PC9-resistant subclones with those of EP-resistant mouse

tumors through a synteny analysis to investigate the presence of

shared recurrent SCNA-driven mechanisms. We identified the pre-

sence of several genes previously implicated in TKI resistance altered

in both model systems, such as KRAS, SRC, and BRAF (Supplementary

Fig. 10a, gains; b, losses).

To validate potential copy-number mechanisms of erlotinib

resistance in PC9 cells, a functional siRNA screen was performed in

four hexaploid-resistant subclones with distinct copy-number changes

(Supplementary Fig. 10c) and in the parental PC9 cells. We used siRNA

to silence 43 genes significantly gained in any oneof the populations of

resistant hexaploid subclones that had been sequenced. Cell numbers

were scored by DAPI staining and scanning in a CellInsight CX7 High

content platform after 5 days of erlotinib treatment.

Erlotinib resistance was assessed by comparing cell numbers fol-

lowing gene silencing in the presence or absence of erlotinib (see

Methods, Fig. 4f). In total, of the 43 gained genes investigated, 10,

includingNRAS, ERBB3,HRAS, BRAF,NRAS,HRAS and BRAF led to EGFR

TKI-re-sensitization (p < 0.05, light blue triangles) in at least one hex-

aploid subclone after siRNA mediated knockdown (Fig. 4f) suggesting

that, depending on the subclone, copy-number gains in these genes

might contribute to TKI resistance and that different resistance

mechanismsmight be adopted by the individual resistant subclones in

line with reported results51.

These clinical, in vivo and in vitro data indicate that loss of p53 in

the context of mutated EGFR and WGD, leads to an altered and mal-

leable genomic landscape which accelerates the evolution of SCNAs

under selection pressure, such as that imposed by targeted therapy. In

turn, this facilitates the emergence of resistant subclonesmore rapidly

through the acquisition of SCNAs encompassing genes functionally

implicated in drug resistance and, less commonly, following a reduc-

tion in ploidy, through SNV-based mechanisms (Fig. 4g). Clinically,

TP53 dysfunction with WGD likely expands the potential routes to

therapy resistance during clonal evolution, contributing to earlier

treatment failure, that can manifest as mixed responses to therapy

within individual patients.

Discussion
Despite the clinical efficacy of EGFR TKI therapy in oncogenic EGFR

mutation-driven LUAD, resistance develops in themajority of patients.

This is associated with additional oncogenic mutations and

SCNAs13,14,21. Except for gatekeeper mutations such as T790M, suc-

cessfully targeting these resistancemechanisms has been challenging,

and in a large proportion of patients, a clear resistance mechanism is

not always evident. Our analyses indicate that there is greater com-

plexity in the response of tumor lesions than is evident from conven-

tional RECISTv1.1 definitions. We demonstrate that mixed responses,

where there are both responding and progressing lesions within an

individual patient, are common in patients with NSCLC treated with

either chemotherapy or EGFR TKI therapy, and are likely associated

with reduced clinical benefit. Understanding the mechanisms under-

lying mixed responses may help identify new therapeutic approaches

to forestall resistance, including both novel systemic therapies or early

intervention with ablative local therapies.

CIN, WGD, and an increased prevalence of SCNAs have all been

associated with a worse prognosis in several tumor histologies22,28,52.

Our work demonstrates the plasticity rendered by p53 dysfunction

together with WGD in driving a diversity of resistance mechanisms

through somatic mutations and SCNAs. We observed a high degree of

concordance between the human andmurine datasets suggesting that

the GEMMs used in this study provide relevant models to study clonal

evolution in human EGFR-driven LUAD in both the naïve and EGFR TKI-

treated settings. We identify syntenic genomic regions affected by

SCNAs in both mice and patients that may contribute to the early

development of resistance observed following TKI therapy in EP

tumors. For example, PTEN was significantly lost in naïve EP, but not E

tumors (Fig. 2a), and PTEN loss has been shown to contribute to TKI

resistance36.

Fig. 4 | Genome doubling permits elevated ploidy and promotes multiple

avenues to therapy resistance in the presence of p53 pathway dysfunction.

a Plot showing the number of resistant subclones generated from each of the 24

triploid and 24 hexaploid progenitor clones after 5 weeks of culture in 1.5μM

erlotinib. b Number of triploid (blue) and hexaploid (red) progenitor PC9 clones

that generated at least one erlotinib-resistant subclone (p =0.0346, chi-squared

test). c Left panel: Presence of somatic mutations in genes related to the EGFR

pathway (black squares) is reported across all triploid (upper blue row) and hex-

aploid (upper red row) resistant daughter clones derived fromeither triploid (lower

blue row) or hexaploid (lower red row) parental clones. Right panel: Ploidy-relative

copy-number gains (red colors) are reported for resistant daughter clones that

have changed their ploidy state for 13 genes whose gain is known to have a role in

TKI resistance. d Frequency of copy-number gains (positive y-axis) and losses

(negative y-axis) are reported across either triploid (blue) or hexaploid (red)

resistant daughter clones, highlighting events affecting oncogenes and tumor

suppressors. e Clone-to-clone diversity measured by computing the copy-number

difference (fraction of genome with different copy numbers reported in blue col-

ors) between either left all pairs of triploid and hexaploid resistant daughter clones

derived from the same parental clone (triangles), or right all pairs of triploid and

hexaploid resistant daughter clones. f Impact of siRNA mediated repression of

gained genes on re-sensitization of erlotinib-resistant hexaploid PC9 subclones. By

factoring in effects on viability, the effect of gene silencing on erlotinib resistance

was scored. Tiles corresponding to genes exhibiting a significant treatment-varying

response upon knockdown (p <0.05) in a hexaploid subclone are colored. Hue

corresponds to the direction of change, and brightness to the erlotinib treatment

status. Gene names depicted in bold did not impact parental PC9 viability. gModel

depicting factors contributing to tumor resistance in E and EP tumors. Source data

are provided as a Source Data file.
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A recent study revealed that WGD occurs in almost 30% of all

sequenced tumors22 and we have recently proposed WGD as a

mechanism that mitigates the accumulation of deleterious mutations23.

Our in vivomodels indicate that althoughE tumors frequently exhibited

WGD, these tumors predominantly had homogenous responses to

treatment. Thesedata suggest thatWGDalonedoesnotpromotemixed

responses in tumors with a functioning p53 signaling pathway (Figs.1e,

2c). Instead, the isogenic model data presented here demonstrates

that it is in the context of p53 dysfunction that WGD broadens the

potential routes to acquired resistance by increasing somatic copy-

number diversity. Importantly, an acute genome doubling event in PC9

cells on the background of p53 dysfunction is insufficient for EGFR TKI

resistance. Resistance only emerges more frequently after 5 weeks of

TKI exposure in these cells, a similar time course to the first CT scan

after initiating TKI therapy in the AURA trials.

These data suggest that in addition to common EGFR resistance

mechanisms such as T790M, the combination of WGD and p53 dys-

function provides the SCNA diversity required to generate resistant

clones capable of withstanding the selection pressure generated by

EGFR TKI therapy. We identified that the knockdown of several genes

gained in resistant PC9 hexaploid subclones conferred erlotinib re-

sensitization, many of which have been previously associated with

EGFR/RAS/PI3K pathway activation in different systems13,53. Taken

together, our data suggest a vital role for TP53 loss in permitting

subsequent mixed somatic copy-number evolution following a WGD

event, thereby expanding the possible routes to erlotinib resistance,

resulting in early treatment failure and contributing to the dynamic

nature of lesion-to-lesion response within individuals. Our data con-

firms the association of reduced overall survival in the context of EGFR

and TP53 co-mutations and suggests that the presence of TP53 path-

way alterations in EGFR-driven lung cancer might act as a surrogate

marker of CIN and identify patients at increased risk of mixed tumor

responses to TKI therapy and earlier progression.

Our clinical analyses of a total of 508 lesions from 99 patients is

not without limitations: the tissue samples analysed were taken from

three different trials (AURA trial phase 2 expansion cohort, AURA2

trial, and AURA3 trial) and were limited to those patients with tissue-

based somatic tumor analyses as well as available imaging for long-

itudinal analyses. However, there was no difference in clinical char-

acteristics between patients with E and EP tumors (Supplementary

Fig. 2b). Furthermore, the PFS times observed with this smaller cohort

are comparable to those seen in the AURA3 study. Finally, although

data based on plasma analysis of TP53 from the AURA3 trial showed

minimal differences in PFS between TP53 mutant and wild-type

patients35 contrary to our tissue based analysis, clonal hematopoiesis

of indeterminate potential (CHIP) complicates plasma mutation calls

(particularly for TP53) and calling TP53 copy number loss from ctDNA

is challenging.

In conclusion, these findings demonstrate that EGFR activation,

togetherwith TP53 pathway inactivation andWGD, remodels the copy-

number landscape to create an environment which is permissive for

the development of diverse mechanisms of resistance to TKI therapy

resulting in mixed response dynamics in vivo. A better understanding

of SCNA-driven resistance mechanisms is required to develop strate-

gies that improve outcomes in this setting where high levels of CIN are

tolerated. Successful approaches may involve a combination of local

therapy to remove or ablate sources of complex genotypes that con-

tain TKI-resistant clones together with a combination of drug treat-

ments to target SCNA-driven resistance. While our study focused on

TP53 mutations in EGFR-mutated LUAD, we propose that the conclu-

sions drawn with respect to response heterogeneity may be generally

applicable in tumors with a clonal actionable driver oncogene and loss

of p53 function. Our findings suggest that assessing TP53 status may

guide more informed discussions regarding TKI success rates, and the

potential clinical benefit of frequent disease monitoring.

Methods
All regulated animal procedures were approved by The Francis Crick

Institute BRF StrategicOversightCommittee, incorporating theAnimal

Welfare and Ethical Review Body, conforming with UK Home Office

guidelines and regulations under the Animals (Scientific Procedures)

Act 1986 including Amendment Regulations 2012. The TRACERx

observational study (NCT01888601) has an approval from the UK

research and ethics committee (13/LO/1546).

Animal procedures
Animals were housed in ventilated cages with unlimited access to food

(2018 Autoclavable Rodent Breeding Diet, ENVIGO RMS UK LTD,

T.2018S.12) and water. EGFR-L858R [Tg(tet-O-EGFR∗L858R)56Hev]54

mice were obtained from the National Cancer Institute Mouse Repo-

sitory. R26tTA [Gt(ROSA)26Sortm1(tTA)Roos]55 and Trp53fl/fl

[Trp53tm1Brn]56 mice were obtained from Jackson laboratory. Mice

were backcrossed onto a C57Bl6/J background and further crossed to

generate Rosa26tTaLSL/tet(O)EGFRL858R and Rosa26tTaLSL/tet(O)

EGFRL858R/Trp53flox/flox mice. After weaning, the mice were geno-

typed (Transnetyx, Memphis, USA) and placed in groups of one to five

animals in individually ventilated cages, with a 12-h daylight cycle.

Recombination (animal age 2–6.5 months) was initiated by adenoviral

CMV-Cre (Viral Vector Core, University of Iowa, USA) delivered via

intratracheal intubation (single dose, 2.5 × 107virus particles/50μl).

The animal cohorts used for experiments were balanced for sex.

Micro-CT imaging
For tumor emergence, tracking and measurements, the thorax was

scanned once a month using a Bruker, Skyscan 1176. Mice were anes-

thetized using isoflurane, and the acquired CT images were processed

using RespGate for respiratory gating and NRecon for z-stack image

reconstruction. For tumor diametermeasurement, volume calculation

and viewing, we used a combination of CT-Analyser and DataViewer.

The final resolution of reconstructed z-stacked images was 50μm/

pixel. An object was deemed a tumor if its measured diameter was at

least 300μm and if, by comparing two consecutive monthly CT scans,

the size had increased orwas absent in the previous scan. No regulated

procedures undertaken in this project exceeded the permitted limits

(10% weight loss over a 24 h period). Mice were sacrificed immediately

after observing any difficulty breathing or if projected/expected to

start showing distress before the next CT scan. Observation of difficult

breathing included when a mouse was under general anesthesia while

micro-CT scanning. Including general anesthesia in abnormal breath-

ing distress also enabled us to maintain high and consistent quality of

micro-CT images and tumor volume and diameter measurements.

Calculated diameters were analysed using GraphPad Prism 7 for sta-

tistical graph design.

Tissue harvest, histology, tumor burden analysis, image
cytometry
After sacrifice, lung tissue was immediately removed, and individual

tumor nodules were isolated from one lung lobe. In order to generate

single cells, tumors were cut into small pieces and incubated in 1ml

collagenase/dispase (MERCK, 102696380011, 1mg/ml in PBS) at 37 °C

for 15min with continuous shaking. Tumor material was pipetted up

and down until able to pass easily through a p1000 tip, allowed to

sediment, and the supernatant was removed and placed on ice. A fresh

aliquot of collagenase/dispase was added to the tissue, and the sam-

ples were incubated for an additional 15min. The material was com-

bined and passed through a 100 µm cell strainer before washing the

cells once in PBS and freezing in 90%FBS/10%DMSO. The remaining

lung lobes were fixed overnight in 10% neutral buffered formalin,

transferred to 70% ethanol and processed for paraffin embedding.

Tissue sections (4μm) were stained with H&E or immunostained with

anti-Ki67 (Abcam, ab15580) using the ROCHE Ventana platform,
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antibody dilution 1:1000 with 24min CC1 antigen retrieval and OM

anti-rabbit HRP (05269679001). Lung and tumor area quantifications

were carried out onH&E-stained slides. Tumor gradingwas carried out

by a trained pathologist according to published criteria57. Paraffin-

embedded blocks were used for image cytometry analysis. Formalin-

fixed paraffine-embedded tumors were used for the preparation of

nuclei suspensions, the nuclei were stained with Feulgen–Schiff. The

samples were analyzed with the Fairfield DNA Ploidy system (Fairfield

Imaging, Kent, UK) which measures the optical density and nuclear

area. The integrated optical density of each nucleus was calculated,

with lymphocytes used as internal reference cells to determine the

position of the diploid fraction58.

Mouse therapy regimens
Mice were weighed weekly and treated with erlotinib (ERL; 5mg/ml in

0.3% methylcellulose/H2O, Mon-Fri, 25mg/kg) or chemotherapy

(mixed suspension of carboplatin and paclitaxel, 3.33 and 0.66mg/ml

respectively) via intraperitoneal injection (See Supplementary Table 4

for mouse treatments). Mice began therapy upon identifying at least

one lung tumor with a minimal diameter of 1mm. If multiple smaller

tumorswere found (granular appearanceof lungs),micewere scanned

again after 2 weeks, and if it was thought that the animal’s welfare

could be compromised within the next 2 weeks, therapy was initiated.

Mice initially treatedwith chemotherapy (4weeks, twodosesperweek,

16.65mg/kg carboplatin and 3.3mg/kg paclitaxel) were allowed to

recover for one month before starting ERL treatment. In cases where

CT scans showed small or no treatment response, ERL was given

immediately. For generating resistant tumors, an alternating monthly

ERL on and off schedule was changed to continuous therapy after the

detection of resistance by micro-CT.

DNA purification and processing
Genomic DNA was purified using AllPrep DNA/RNA Mini Kit (Qiagen)

from cells, fresh frozen tissue, and matched-normal control tissue

(tail), following the manufacturer’s recommendations. After an initial

quality control by gel electrophoresis, DNA was quantified using

QubitTM dsDNA BR Assay Kit (Thermo Fisher Scientific) and

BioAnalyzer.

Whole-exome sequencing—mouse data
WES was performed by the Advanced Sequencing Facility at The

Francis Crick Institute using the Agilent SureSelectXT Mouse All Exon

Kit for library preparation. Sequencing was performed on HiSeq 4000

platforms.

Alignment—mouse. All sampleswerede-multiplexed and the resultant

FASTQ files aligned to mm10 using bwa-mem (bwa v0.7.15). De-

duplication was performed using Picard (v2.1.1) (http://broadinstitute.

github.io/picard). Quality control metrics were collated using FASTQC

(v0.10.1—http://www.bioinformatics.babraham.ac.uk/projects/fastqc/),

Picard, and GATK (v3.6). SAMtools (v1.3.1) was used to generate mpi-

leup files from the resultant BAM files. Thresholds for base phred score

and mapping quality were set at 20. A threshold of 50 was set for the

coefficient of downgrading mapping quality, with the argument for

base alignment quality calculation being deactivated. The median

depth of coverage for all samples was 92x (range: 58–169x).

Variant detection and annotation—mouse. Variant calling was per-

formed using VarScan2(v2.4.1), MuTect(v1.1.7), and Scalpel(v0.5.3)59–61

The following argument settings were used for variant detection

using VarScan2:

--min-coverage 8 --min-coverage-normal 10 --min-coverage-tumor

6 --min-var-freq0.01 --min-freq-for-hom0.75 --normal-purity 1 --p-value

0.99 --somatic-p-value 0.05 --tumor-purity 0.5 --strand-filter 0.

For MuTect, only “PASS” variants were used for further analyses.

With the exception of allowing variants to be detected down to a VAF

of 0.001, default settings were used for Scalpel insertion/deletion

detection.

To minimize false positives, additional filtering was performed.

For single-nucleotide variants (SNVs) or dinucleotides detected by

VarScan2, a minimum tumor sequencing depth of 30, variant allele

frequency (VAF) of 5%, variant read count of 5, and a somatic p value

<0.01 were required to pass a variant. For variants detected by VarS-

can2 between 2 and 5%VAF, themutation also needs to be detected by

MuTect.

As for insertions/deletions (INDELs), variants need tobepassedby

both Scalpel (“PASS”) and VarScan2 (somatic p value <0.001). A mini-

mum depth of 50x, 10 alt reads, and VAF of 2% was required.

For all SNVs, INDELs and dinucleotides, any variant also detected

in thepairedgermline samplewithmore thanfive alternative reads or a

VAF greater than 1% was filtered out.

The detected variants were annotated using Annovar62.

Human EGFR transgene amplicon sequencing of mouse tumors
FASTQ files were aligned to hg19 obtained from the GATK bundle

(v2.8) using bwa-mem (bwa v0.7.15)63,64. Analyses were performed

using R (version 3.3.1) and the bam2R function of the deepSNV (v1.18.1)

R library65. The median depth of coverage of sequenced EGFR exons

(19,20,21) was 5290x (range: 2238-8040). Variants associated with

resistance to EGFR tyrosine kinase inhibitors were queried using

deepSNV’s bam2R function, with the arguments q = 20 and s = 2. The

variants explored include: T790M, D761Y, L861Q, G796X, G797X,

L792X, and L747S. L858R, the driver mutation in the mouse model

used, was identified in every sequenced sample.

Synteny analysis
To perform synteny mapping, we leveraged the genomic ranges R

package with homology mapping from the human to the mouse gen-

ome (Synteny Portal66) to calculate the rate of gains and losses

observed in mouse tumors in each homogenous region of the human

genome.

Identification of recurrent SCNAs
The sampling and simulation method proposed by ref. 25 was used to

identify recurrent SCNAs in different cohorts with inferred copy-

number profiles in this study. Briefly, given a cohort of N tumors with

inferred copy-number profiles, the rate of gains Rg,t and the rate of

losses Rl,t in each tumor t is estimated as the fraction of the genome

affected by related events. Using the estimated rates, the background

distribution of gains and losses is obtained by performing 1000 simu-

lations. Specifically, for each simulation, the copy-number state of

each tumor t is determined using a Bernoulli model with a probability

of Rg,t for gains and Rl,t for losses, and the resulting total number of

expectedgains or losses is obtainedby summingover all tumors.Using

the simulated total numbers of gains and losses across all simulations,

background empirical distributions are computed as well as a 95%

confidence interval, which is used to define a threshold on frequencies

for defining recurrent gains and losses, respectively. To determine the

deviation from euploidy as a measure for SCNA amplitude, we calcu-

lated the binwise non-absolute deviation from copy number state 2

across all curated single-cell WGS libraries. The mean deviation was

thenplotted across the genomicpositions by genotype (Evs EP) andby

treatment group (naïve vs resistant).

Single-cell whole-genome sequencing
Lung tumors were either snap frozen as whole tissue, or homogenized

into single-cell suspensions and frozen in FBSwith 10%DMSO. Samples

were stored at −80 °C until further processing. For single-cell analysis,
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we performed single-cell DNA sequencing using an established

protocol67,68.

Preparation. To isolate nuclei for flow sorting from frozen tissues,

samples were dissociated by pushing small tissue fragments through a

70 µmstrainer using a syringeplunger in nuclei isolation buffer (10mM

Tris-HCl pH 8.0, 0.32M sucrose, 5mM CaCl2, 3mM Mg(Ac)2, 0.1mM

EDTA, 1mM DTT, 0.1% Triton X-100 (v/v)). Nuclei were spun down at

1000 × g for 5min at 4 °C and resuspended into PBS with 2% BSA,

10 µg/mL Hoechst 33258, and 10 µg/mL propidium iodide (PI). Single-

cell suspensions were prepared for flow sort by resuspension in nuclei

staining buffer (100mM Tris-HCl pH 7.5, 154 nM NaCl, 1mM CaCl2,

0.5mM MgCl2, 0.2% BSA, 0.1% NP40 (v/v), 10 µg/mL Hoechst 33258,

and 10 µg/mL PI). Isolated nuclei suspensions were collected into FACS

tubes with 70 µm strainer caps. Both frozen tissue and single-cell sus-

pension samples were incubated on ice for at least 15min prior to flow

sorting. Intact single nuclei from predetermined DNA populations

were sorted using a FACSJazz (BD Biosciences) into 96-well plates

containing ProFreeze-CDM (Lonza) buffer and 7.5% DMSO. Plates were

sealed and centrifuged at 500 × g for 5min at 4 °C and stored at−80 °C

until library preparation.

For library preparation and sequencing, DNA was fragmented

using micrococcal nuclease (MNase) followed by end-repair, A-tailing,

and Illumina adapter ligation. AMPpure XP beads and 80% ethanol

were used for clean-up steps between reactions. Barcoding and library

amplification were performed using a multiplexing primer mix and

PCR for 17 cycles. All liquid handling prior to pooling was done using a

Bravo Automated Liquid Handling Platform (Agilent). Libraries were

subsequently pooled, cleaned using ethanol, and size-selected using

2% E-Gel EX agarose gels with SYBR Safe Stain. Mono- and dinucleo-

somal bands were excised, and DNA was isolated using a Zymoclean™

Gel DNA Recovery kit. Libraries were quantified using a Qubit fluo-

rometer (Thermo Fisher Scientific), and library fragment size dis-

tributions were assessed on a Bioanalyzer (Agilent). Library pools were

diluted to 2 nM and sequenced on an Illumina NextSeq500 at ERIBA

(Groningen, The Netherlands). FASTQ-files were generated using

standard Illumina software (bcl2fastq v1.8.4).

Analysis. De-multiplexed FASTQs were aligned to the mouse genome

mm10 using Bowtie2 (v2.2.4)69. Duplicate reads were removed using

BamUtil (v1.0.3)70. Single-cell copy-number profiles were generated

using AneuFinder (v1.8.0)70. The ploidies of the cells were estimated

using flow-cytometry analyses described above. AneuFinder was per-

mitted to find copy-number solutionswith a ploidy range of ±0.5 of the

flow-cytometry estimated ploidy (the “most.frequent.state”). The

“edivisive” method was used for copy-number detection. Blacklisted

regions were generated from the published euploid reference67. Copy-

number profiles were generated with bin sizes of 2Mb and GC cor-

rection. The number of random permutations was set at 20; and the

sig.lvl argument was set at 0.05.

For quality control of scDNA-seq, we used several metrics auto-

matically generated by the AneuFinder, as well as additional metrics.

Additional QC metrics included the median absolute deviation of

coverage in each copy-number (CN) segment and the median devia-

tion from the coverage equivalent to the copy number called in each

CN segment. First multi-variant clustering is performed (clusterBy-

Quality function from the AneuFinder package) on the automatically

calculated metrics by AneuFinder using all cells in the study. We

excluded any cell clusters in which the average read count in each 2

megabase (Mb) bin was <100 and the SOS (sum of squares between

rawand scaledCNprofiles)was>3 × 106.We thenperformedadditional

filters on each of the remaining cells using read count, SOS, entropy,

spikiness, complexity, and our own QC metrics (see associated code).

Finally, we performed a visual QC of the remaining cells and removed

an additional 63 cells where the raw sequencing coverage poorly fit the

calculated copy number. This was caused by either highly variable

sequencing coverage within bins or due to incorrect ploidy estimation

in these cases. In total, 499/2448 cells (18%) were removed during the

quality control process.

Filtering and QC. Using the inferred single-cell copy numbers, we

filtered and excluded cells from two specific groups of cells. Firstly, we

identified andexcluded fromdownstreamanalysis normal diploid cells

(likely corresponding to normal epithelia contamination or infiltrating

lymphocytes) as any cell with no or very few SCNAs, that is, a fraction

of the genome <5% with a total copy number of 2. The same filtering

threshold has been applied to cellswith <5%of total copy numbersof 4

as these cells might correspond to in G2 cell cycle phase. Second, cells

with noisy inferred copy-number profiles are frequent in single-cell

sequencing due to the presence of cells in the S-phase of the cell cycle

with actively replicating DNA (12–42%), cells with a low number of

sequenced reads (~8%), and doublets (>2%). To prevent an impact on

downstreamanalysis, we have identified cells with noisy profiles as any

cell that only shared <33% of SCNAs breakpoints or whole-

chromosomal aberrations with the other cancer cells from the same

tumor. After excluding normal diploid cells and cancer cells with noisy

copy-number profiles, the remaining cells were used for downstream

analysis. On this basis, after sequencing, data from2/9 E-resistantmice

were excluded from further analysis due to the low quality of

resulting cells.

Human clinical survival and imaging data
For all imaging analysis, the criteria for a mixed/heterogeneous

response was defined by Reiter and colleagues15. The RECIST database

was queried for NSCLC patients who had at least two lesions, one of

which shrank by 30% or more, and these patient’s RECISTv1.1 mea-

surements were subsequently used for the analysis of response to

erlotinib andcytotoxic chemotherapy. Informedconsent for all patients

within the AURA studies used for this analysis was taken by the sponsor

(AstraZeneca) for the clinical trial activity and for the sharing of

sequencing and imaging data with external collaborators. Patients from

the AURA cohorts (Suppl. Table 3) were combined for the relevant

analysis. For the survival analysis all patients had somaticTP53 and EGFR

mutation status assessedby the FoundationOne commercial assay from

Foundation Medicine. Only pathogenic mutations were used to assign

the relevant genotype. Patients who had consented to share imaging

and had at least two measurable lesions were included in the sub-

sequent analysis (see consort diagram). DIACOM files containing CT

axial imaging performed with contrast were reviewed for each patient.

All measurable lesions were included irrespective of whether they were

defined as target lesions. Themeasurements of lesion dimensions were

performed by two clinical oncologists (MS and CH). RadiAnt DICOM

Viewer 5.5.0 software was used. The longest diameter of each lesion

from axial imaging was summed and compared to the baseline osi-

mertinib CT scan. The percentage change frombaselinewas assessed at

thefirst scan (~12weeks since commencementofosimertinib) andat the

time of maximum response. We adopted the Reiter et al thresholds for

grading the degree of response of an individual lesion to define it as

responding, stable, or progressing. Two time points were used for

determiningmixed responses in this study: (i) the responseof all lesions

at the first follow-up scan performed 6–8 weeks after the beginning of

the treatment or (ii) the best response ever achieved by a lesion was

used to call the heterogeneity of response. Homogeneous responsewas

recorded if at least one lesion attained at least partial response, i.e.,

≥30% shrinkage of the largest diameters, and the remaining lesions did

not increase in size by more than 10%, and there were no new lesions.

Otherwise, a mixed response was recorded.

The EORTC RECIST database was queried for mixed responses as

outlined in the text. The response assessment closed to 12 weeks fol-

lowing initiation of treated was used for the analysis.
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Additional AURA2/3 patient treatment information
Patients in the AURA3 trial were previously treated only with a first

generation of EGFR TKI (gefitinib or erlotinib), whereas patients in the

AURA2 trial and the AURA-extension cohorts additionally received one

or more lines of chemotherapy before switching to osimertinib. The

subset used for theoverall survival analysis includedpatientswhowere

selected because of a poor response to osimertinib (defined as those

with progressive or stable disease only or those with partial or com-

plete response but a PFS of less than six months). For this subset,

pretreatment targeted sequencing data were analysed; patients with

deleterious mutations in TP53 (affecting splice sites, DNA binding,

transactivation domains, and tetramer binding), TP53 deletion, or

MDM2/4 amplification were defined as having p53 pathway disruption

(EP; 82 of 117).

University of California, San Francisco (UCSF) clinical cohort
analysis
We analyzed patients with metastatic non-small cell lung cancer

(NSCLC) with EGFR exon 19 deletions, L858R, or T790M mutations

who received osimertinib therapy between 2015 and 2021. Tumor

genomic analysiswas conductedusing theUCSF 500CancerGene test,

which employs next-generation sequencing to detect somatic altera-

tions in a panel of 529 cancer genes.

Patients were stratified based on tumor genomics: (1) those with

TP53 pathway disruption, including p53 mutations and MDM2 ampli-

fications. (2) those with wild-type TP53. We analyzed treatment

response by assessing radiographic changes in the size of individual

malignant lesions. We compared the largest diameter of each lesion

between pretreatment imaging and the first surveillance scan while

also noting the emergence of any new lesions.

Cell culture
PC9 cells were obtained from Cell Services at The Francis Crick Insti-

tute, UK, where short tandem repeat profiling andmycoplasma testing

is routinely performed to ensure cell identity and quality. The STR

testing for the batch of banked PC9 cells used in this project was

performed on 22/07/2020 and 12/08/2020. Cells were maintained at

37 °C in 5%CO2 in RPMIorDulbecco’sModified EagleMedium (DMEM)

with high glucose and L-glutamine, respectively (Invitrogen), supple-

mented with 10% FBS, 1× PenStrep (Sigma). Cells were incubated with

10μg/mL Hoescht 33342 (Sigma) for 1 h at 37 °C. Cells were single-cell

sorted and assessed for ploidy (Supplementary Fig. 8a).

Flow-cytometry
Clonal cell populations were cultured in 10 cm dishes until ~60% con-

fluency, harvested by trypsinization (0.05% trypsin, Thermo Fisher

Scientific), washed with PBS, and fixed/permeabilized by drop-wise

addition of 2ml 70% ethanol while stirring and stored at 4 °C until

further use. On the day of analysis, fixed cells were washed twice with

PBS and stained using 50mg/ml propidium iodide solution (PI; up to

2ml per cell pellet), filtered through 30mm nylon mesh into 5ml

round bottom polystyrene tubes (Corning) and incubated at 4 °C

overnight. DNA index of cell populations was measured the following

day using a BD LSR Fortessa flow cytometer. Fixed parental PC9 cells

were used as controls for all cytometry analysis batches. The same

gating strategy (Supplementary Fig. 8a) was used in all experiments,

and the analysis and inference of ploidy was performed using

FlowJo10 software.

Erlotinib dose-response curve
Cellswere seeded, 2000 cells perwell, in 100 µL, in triplicate in96-well,

black, transparent flat-bottom plates, and treated with erlotinib (dose

700–0 µM) for 96 hours in standard culturing conditions. Cell viability

was assessed using CellTiter-Blue(Promega) according to the manu-

facturer’s recommendations. Fluorescence was measured using an

EnVision 2102 MultiLabel Reader, at 560Ex/590Em nm. All measure-

ments were normalized against background fluorescence. Final data

analysis, graphing, calculation of IC50, and statistical analysis was

performed using Microsoft Excel and GraphPad Prism software. Bio-

logical replicates were separated by one cell passage and data from

three biological replicates were combined for the calculation of IC50

and plotting of the dose-response response curve per cellular group.

Generating erlotinib-resistant subclones
We randomly selected 48 progenitor clones (24 triploid and 24 hex-

aploid) and plated each clone into one 96-well, flat-bottom culture

plate, at a density of 5000 cells per well. Cells were cultured in stan-

dardconditions in 200μl completemediaperwell, supplementedwith

1.5μMerlotinib. Themedia was changed twice per week. After 5 weeks

of incubation, plates were inspected under the microscope, and wells

with viable colonies were labeled for expansion. Expansion followed a

standardprotocol of passaging through 24-well and6-well plates to 10-

and 15-cm culture dishes (Falcon). All subclonal populations were

expanded with media containing 1.5 μM erlotinib.

Whole-exome sequencing—PC9 cell lines
WES was performed by the Advanced Sequencing Facility at The

Francis Crick Institute using the Twist BioScience Agilent Human Core

Exome Kit for library preparation. Sequencing was performed on

HiSeq 4000 platforms.

Alignment—PC9 cell line. All samples were de-multiplexed and the

resultant FASTQfiles aligned to the hg19 genomeusing bwa-mem (bwa

v0.7.15). De-duplication was performed using Picard (v1.107) (http://

broadinstitute.github.io/picard). Quality controlmetrics were collated

using FASTQC (v0.11.5- http://www.bioinformatics.babraham.ac.uk/

projects/fastqc/), Picard, and GATK (v3.6). SAMtools (v1.3.1) was

used to generatempileupfiles from the resultant BAMfiles. Thresholds

for base phred score and mapping quality were set at 20. A threshold

of 50 was set for the coefficient of downgradingmapping quality, with

the argument for base alignment quality calculation being deactivated.

The median depth of coverage for all samples was 155x (90-251x).

Variant detection and annotation—PC9 cell lines. Variant detection

was performedusingMuTect2 (GATKv4.1.3) using a tumor-only variant

calling workflow (https://docs.gdc.cancer.gov/Data/Bioinformatics_

Pipelines/DNA_Seq_Variant_Calling_Pipeline/).

First, OXOG (oxidation of guanine to 8-oxoguanine) artifact

metrics were calculated using the CollectSequencingArtifactMetrics

command. Pileup summaries for all the cell lines were created using

theGetPileupSummaries command,with the gnomadcommonbiallelic

SNPs provided (https://gnomad.broadinstitute.org/downloads). Con-

tamination metrics were calculated using the CalculateContamination

command. Variant calling was performed using MuTect2, with the

gnomad germline reference provided, as well as a panel of normal

samples created by 4136 TCGA curated normal samples (gatk4_mu-

tect2_4136_pon.vcf.gz). The resulting VCF was sorted using Picard

(v2.18.11). The FilterMutectCalls command was used to filter any con-

taminated variant calls identified from the CalculateContamination

step. Additional orientation bias filtering was performed using the

FilterByOrientationBias command. Variants that failed MuTect2 filter-

ing were excluded from downstream analyses (variants identified as

“clustered_events”, “slippage”, “weak_evidence”, “base_qual”, “strand_-

bias”, “contamination”,” multiallelic”, “map_qual”, “position”, “frag-

ment”). To further minimize false calls, a minimum variant depth of

coverage of 50x was needed, with more than 10 reads supporting the

alternate allele for INDELs/multi-nucleotide variants, 5 reads support-

ing the alternate allele for SNVs, and a variant allele frequency of more

than 2% being required. Variant annotation was performed using

Annovar. Variants with an SNP frequency in the population of more
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than 5% were filtered from downstream analyses (using exac database

and 1000genomes project). Driver mutations in cancer genes (genes

found in the cancer gene census (v90)70,71 and a pan-cancer consensus

oncogene list generated by ref. 72) were explored as possiblemutation

mechanisms of resistance.

Somatic copy number aberration detection—PC9 cell lines. Bed-

Tools (v2.26) was used to extract the read counts across 1Mb bins in

the sequenced progenitor and resistant cell lines using the multicov

function. Bins with no coverage in the progenitor or resistant cell lines

were removed from downstream analyses.

Single SNPs were identified from the progenitor cell lines using

platypus (v0.8.1). Default parameters were used apart from the gen-

Indels flag set to FALSE. The resistant cell lines were genotyped based

on the variants identified in the progenitor cell line. Only autosomal

chromosome SNPs in resistant cell lines with a coverage depth of at

least 40 and variant count of at least 10 were kept for downstream

analyses. A two-sided binomial test was used to define SNPs as het-

erozygous (comparing BAF to 0.5, with p value threshold of 0.05).

Copy-number calling. Existing copy-number calling methods require

DNA sequencing ofmatched-normal samples for each tumor sample to

be analysed, whichwere not available for the considered PC9 cell lines.

However, for every derived PC9 subclone analysed in this study, DNA

sequencing data from each corresponding progenitor PC9 clone is

available. Moreover, in this study, we were only interested in identi-

fying SCNAs that have been specifically acquired in the derived PC9

cell lines while excluding those SCNAs in the corresponding pro-

genitor. In fact, only the former can correspond to potential

mechanisms of resistance. To reach these goals, we proposed a copy-

number calling approach which extends existing methods by using

progenitor sequencing data instead of matched-normal sequencing

data and only identifies novel SCNAs in the derived cell line. As such,

the proposed method is composed of four steps.

First, DNA sequencing reads are counted in fixed-size genomic

bins. In particular, BedTools (v2.26) was used to extract the read counts

across 1Mb bins in the sequenced progenitor and resistant cell lines

using themulticov function. Bins with no coverage in the progenitor or

resistant cell lines were excluded from downstream analyses.

Second, germline single-nucleotide polymorphisms (SNPs) were

identified from theprogenitor cell lines using platypus (v0.8.1). Default

parameters were used apart from the genIndels flag set to FALSE. The

resistant cell lines were genotyped based on the variants identified in

the progenitor cell line. Only autosomal chromosomeSNPs in resistant

cell lines with a coverage depth of at least 40 and variant count of at

least 10 were kept for downstream analyses. A two-sided binomial test

wasused to define SNPs as heterozygous (comparingBAF to0.5,withp

value threshold of 0.05).

Third, the existing segmentation algorithm DNAcopy (v1.54) was

used with default settings to identify genomic segments resulting from

SCNAs. Since read-depth ratios are required as an input to this algo-

rithm,wecalculated read-depth ratios for everygenomicbin as the ratio

of the corresponding read counts in the resistant cell line to those in the

progenitor cell line. To account for a different total number of

sequencing reads that are sequenced in different samples, the read-

depth ratiowas further divided by the ratio of the total number of reads

in the progenitor cell line to the total number of reads in the resistant

cell line. As such, DNAcopy combines neighboring genomic bins that

are affected by the same SCNA and are part of the same genomic seg-

ment. Moreover, an estimated read-depth ratio is provided for each

genomic segment, which is a value proportional to the corresponding

copy-number variation from the progenitor to the derived cell line.

Lastly, we identied genomic regions affected by copy-number

gains or losses using allelic-balancedgenomic regions as a reference. In

fact, similar to previous copy-number studies, we assume that allelic-

balanced genomic regions (i.e., genomic regions in which every cell

has the same number of copies, such as (1, 1), (2, 2), etc.) are always

present. Note that this is a reasonable assumption since SCNAs do not

generally affect every genomic region, and the remaining genomic

regions are affected by zeroormoreWGDs. As such, we identify allelic-

balanced genomic regions as genomic bins in which the hypothesis of

allelic balance (allele frequency equal to 0.5) cannot be excluded for

>20% of the putative SNPs in such bin (a threshold of 20% has been

chosen to account for the presence of somatic variants and homo-

zygous SNPswith sequencing errors). Specifically, we perform this test

using a standard Binomialmodel for sequencing data. We thus use the

read-depth ratios for all the genomic bins in allelic-balanced segments

to empirically estimate the distribution of read-depth ratios for these

regions. Since multiple copy-number states can underly allelic-

balanced genomic region, we use a Gaussian model for read-depth

ratios as in previous studies, and we separate the distributions of dif-

ferent copy-number states using a Gaussian use a Gaussian mixture

model (edivisive method of mclust algorithm, v5.4.5). We then select

the largest distribution as a reference, and we use the reference

Gaussian distribution to identify lost bins using a two-sided Z-test.

Given the expected number of false positives based on the chosen size

of the fixed-size genomic bins, a significance level of 0.1% has been

used. As such, genomic bins affected by SCNAs are identified as bins

for which the reference distribution can be rejected, and the gained or

lost status is defined according to whether the values are higher or

lower than expected, respectively. Lastly, gained and lost cancer genes

are selected as those found in the cancer gene census (v90)71, and a

pan-cancer consensus oncogene list is generated by ref. 72.

Resistant PC9 subclone erlotinib re-sensitization screen
A selection of hexaploid erlotinib-resistant subclones with recurrent

copy-number gains identified through WES analysis were screened to

identify genes required for maintenance of resistance. Using Dhar-

mafect 2 (Horizon Discovery), cells were reverse transfected in 96-well

plateswith 37.5 nM siRNApools in the presenceor absenceof 1.5μg/ml

erlotinib and cell growth was monitored in an incucyte or cytomat

incubator for up to 5 days until confluent. Cells were subsequently

fixed with 4% paraformaldehyde and stained with 1μg/ml dapi. Plates

were scanned in a CellInsight CX7 High content platform and valid

object counts weremeasured. Plate positional normalization using the

outer product of row and columnmedians across the entire screenwas

performed to reduce the influence of edge effects. The screen was

performed in triplicate and UBB was used as a positive control to

assess loss of viability. Non-targeting controls were used for parental

PC9 cells and resistant subclones to establish baseline conditions. For

each gene, a linear model on log-transformed data was fitted in R73 to

account for a three-way interaction of perturbation status (against

control), subclone and erlotinib treatment, along with a plate effect.

Estimatedmarginal means from thatmodel, and their standard errors,

for the erlotinib treatment: knockdown interaction per subclone

were used to p values (unadjusted p-values < 0.05 were deemed sta-

tistically significant).

Statistics and reproducibility
For analysis of patient data, no a priori sample size calculations were

performed, and cohort sizes were dependent on patient data avail-

ability from both observational and clinical trials. Analysis of murine

and human imaging data were performed in blinded fashion with

respect to Trp53/TP53 status respectively. For statistical analysis of

cellular diversity, single-cell data from two mice was excluded due to

too low coverage to reliably perform the analysis.

Reporting summary
Further information on research design is available in the Nature

Portfolio Reporting Summary linked to this article.
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Data availability
Source data are provided with this manuscript74. The sequencing data

generated in this study have been deposited in ENAwith the accession

numbers PRJEB55482, PRJEB55481, and PRJEB55479 and is publicly

available. Processed data (including copy-number profiles and related

analysis) for the E/EP mouse tumors and for the PC9 resistance cell

lines are available in Zenodo at [https://doi.org/10.5281/zenodo.

10156620]. The whole-exome data (from the TRACERx study) used

during this study has been deposited at the European

Genome–phenome Archive, accession code EGAS00001006494.

Access is controlledby theTRACERxdata access committee. Details on

how to apply for access are available on the linked page. Data from the

TCGA and OncoSG can be found at https://www.cbioportal.org/ and

https://src.gisapps.org/OncoSG/ respectively. Data from the AURA

trials is available on request from AstraZeneca https://vivli.org/

ourmember/astrazeneca/. Clinical parameters from the San Fran-

cisco Clinical Cohort are available upon request in a de-identified

manner from Dr. Bivona or Dr. Blakely. Biological materials are avail-

able on request Source data are provided with this paper.

Code availability
The code to reproduce the single-cell and PC9 analysis and figures in

this study is available in GitHub at [https://github.com/zaccaria-lab/

TP53loss_WGD]. / [https://doi.org/10.5281/zenodo.10658423].
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