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SUMMARY

This article introduces the class of continuous-time locally stationary wavelet processes.

Continuous-time models enable us to properly provide scale-based time series models for

irregularly spaced observations for the first time, while also permitting a spectral repre-

sentation of the process over a continuous range of scales. We derive results for both the

theoretical setting, where we assume access to the entire process sample path, and a more

practical one, which developsmethods for estimating the quantities of interest from sampled

time series. The latter estimates are accurately computable in reasonable time by solv-

ing the relevant linear integral equation using the iterative soft-thresholding algorithm of

Daubechies et al. (2004). Appropriate smoothing techniques are also developed and applied

in this new setting. Comparisons to previous methods are conducted on the heart rate time

series of a sleeping infant. Additionally, we exemplify our new methods by computing spec-

tral and autocovariance estimates on irregularly spaced heart rate data obtained from a

recent sleep-state study.

Some key words: Continuous-time model; Irregular spacing; Local autocovariance; Nonstationary time series;

Wavelet; Wavelet spectrum.

1. Introduction

It is often customary to assume that a time series is second-order stationary, since plenty

of theoretically sound and well-tested methods are readily available for its analysis; see, for

example, Brockwell & Davis (1991) or Percival & Walden (2020). It is well known that a

⃝c 2025 Biometrika Trust
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/
licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is
properly cited.

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/b
io

m
e
t/a

rtic
le

/1
1
2
/2

/a
s
a
f0

1
5
/8

0
7
5
1
2
3
 b

y
 g

u
e
s
t o

n
 0

2
 J

u
ly

 2
0
2
5



2 H. A. Palasciano, M. I. Knight and G. P. Nason

stationary stochastic process X(t), t ∈ R, has a spectral representation of the form

X(t) =

∫ ∞

−∞

exp(iωt) dZ(ω), (1)

where Z(ω) is a square-integrable orthogonal increment process with E[|dZ(ω)|2] =

dS(I)(ω) and S(I)(ω) is the integrated spectrum of X(t). The autocovariance function of

X(t), denoted c(τ ), has a similar representation in the frequency domain,

c(τ ) =

∫ ∞

−∞

exp(iωτ) dS(I)(ω); (2)

see, for example, Priestley (1983). However, in practice, many time series are unlikely to

be stationary, such as is often the case in finance for instance (Mikosch & Stărică, 2004;

Fryzlewicz, 2005). To extend these quantities to the nonstationary case, Priestley (1983)

suggested introducing a time-varying amplitude function A(t,ω) in (1), giving

X(t) =

∫ ∞

−∞

A(t,ω) exp(iωt) dZ(ω). (3)

Models such as (3) form the basis for locally stationary time series, later developed by

Dahlhaus (1997) in discrete time.

Nason et al. (2000) introduced the locally stationary wavelet processes, which replaced

the set of functions {exp(iωt)} by a set of discrete nondecimated wavelets. As with locally

stationary Fourier processes (Dahlhaus, 1997), the local stationarity is enforced via con-

straints on the amplitude functions. From locally stationary wavelet processes, one can then

obtain a time-scale decomposition of the spectral density function, known as the evolu-

tionary wavelet spectrum, and a wavelet representation of the local autocovariance similar

to (2).

However, discrete-time locally stationary wavelet processes are constructed under the

assumption that the time series data are obtained at a constant sampling rate, which is not

always the case as, in practice, observations can either be missing or be irregularly spaced.

Attempts to provide a suitable alternative for missing data weremade byKnight et al. (2012)

via the use of the nondecimated lifting transform from Knight & Nason (2009). Unfortu-

nately, (i) theKnight et al. (2012) estimates only resemble the true spectrumdefined inNason

et al. (2000) in that they can only estimate an underlying spectrum at the n time-points

in the irregular sample and nowhere in-between; (ii) the lifting methods of Knight et al.

(2012) bestow no complete analytical formula connection, nor asymptotic theory, between

the expected periodogram and the original spectrum, at each time, such as can be found in

equation (20) in Proposition 4 of Nason et al. (2000) or Theorem 3 below; (iii) the scales

in Knight et al. (2012) are artificial and depend on the inter-point spacing of the samples

and, hence, do not have a one-to-one correspondence to the actual wavelet scales under-

lying both the discrete and continuous locally stationary wavelet processes in Nason et al.

(2000) and below, respectively. Ideally, spectral estimates should not depend on the sam-

pling scheme. (iv) Knight et al. (2012) stated that their methods are ‘highly computationally

intensive’ in that the periodogram evaluated at each time-point requires computation of a

full lifting (second-generation wavelet) transform for multiple, P, runs corresponding to dif-

ferent lifting trajectories. For good estimation, typically P is large and was set to P = 1000
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Continuous-time locally stationary wavelet processes 3

and P = 5000 in Knight et al. (2012). Hence, periodogram estimation in Knight et al. (2012)

requires nP lifting wavelet transforms compared to our method that uses one, or certainly

at least O(1). Knight et al. (2012) did not specify spectral computational effort, but they

remarked that it is considerably more computationally intensive than their periodogram

computation.

Instead, we propose the use of genuine continuous-time locally stationary wavelet pro-

cesses, which are natural counterparts to the discrete-time versions fromNason et al. (2000).

To the best of our knowledge, our new methods are the only ones that can accurately

estimate wavelet spectral properties of an irregularly sampled process within a reasonable

computational time frame. Ourmethod estimates the spectrum itself, not a simulacrum as in

Knight et al. (2012), and is among the few guaranteeing the nonnegativity of the spectrum

(the other we know of was for regularly spaced data in chapter 4 of P. Fryzlewicz’s 2003

PhD thesis from the University of Bristol).

Aside from the practical advantages that a continuous-time model provides, our results

are also interesting from a more theoretical perspective. In fact, many discrete-time

models and methods also possess a continuous-time counterpart; see, for example, Brock-

well et al. (1991, 2007), Brockwell (2001), Lucchese et al. (2023) and Calvello et al. (2024).

Recently, Bitter et al. (2023) adapted locally stationary Fourier processes from the discrete-

(Dahlhaus, 1997, 2012) to the continuous-time setting. Since, so far, the theory of locally

stationary wavelet processes exists in discrete time only, our objective is to introduce paral-

lel continuous-time models, study their theoretical properties and develop a practical means

for their estimation and analysis. In doing so, we obtain a representation of the evolutionary

wavelet spectrum across a continuous range of scales, providing a complete decomposition

of the underlying frequencies of the process.

2. Background and notation

We briefly review the relevant background material for our continuous-time locally sta-

tionary wavelet processes. The SupplementaryMaterial contains amore detailed discussion.

Discrete-time locally stationary wavelet processes (Nason et al., 2000; Nason, 2008)

are time series models that have found applications in various domains, including finance

(Fryzlewicz, 2005), economics (Winkelmann, 2016), aliasing detection (Eckley & Nason,

2018; Palasciano & Nason, 2023), biology (Hargreaves et al., 2019), gravitational-wave

detection (Romano & Cornish, 2017) and energy (Nowotarski et al., 2013; de Menezes

et al., 2016), to name but a few. They are defined as a sequence of doubly indexed stochastic

processes having the representation

Xt,T =

∞
∑

j=1

∞
∑

k=−∞

wj,k;Tψj,k−tξj,k

in the mean square sense, where {wj,k;T }j∈N,k∈Z is a set of amplitudes, {ψj,k−t}j∈N,k∈Z are

discrete wavelets and {ξj,k}j∈N,k∈Z is a collection of uncorrelated random variables with zero

mean and unit variance. Conditions are imposed on the amplitude functions to prevent

them from varying too quickly, thus preserving the local stationarity of the process. More

importantly, one assumes that, as T → ∞, wj,k;T converges to Wj(k/T), a rescaled-time

Lipschitz continuous amplitude function defined on z = k/T ∈ (0, 1). The idea of rescaled

time was first introduced by Dahlhaus (1997) and is frequently used when working with
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4 H. A. Palasciano, M. I. Knight and G. P. Nason

locally stationary processes. The corresponding evolutionary wavelet spectrum, autocorre-

lation wavelet and local autocovariance of the locally stationary wavelet process, for j ∈ N

and τ ∈ Z, are

Sj(z) = |Wj(z)|
2, 9j(τ ) =

∑

k

ψj,kψj,k−τ and c(z, τ) =

∞
∑

j=1

Sj(z)9j(τ ),

respectively. To estimate the evolutionary wavelet spectrum, Nason et al. (2000) first esti-

mated the raw wavelet periodogram using the nondecimated wavelet transform and then

applied a correction with the inner product operator Aj,ℓ =
∑

τ 9j(τ )9ℓ(τ ), j, ℓ ∈ N.

See Nason et al. (2000) for further details. Section 3 below defines the continuous-

time counterparts of all these quantities and § 4 develops methods to estimate these in

practice.

Lévy processes and bases play a crucial role in the definition of locally stationary wavelet

processes in continuous time. The following overview draws heavily from Walsh (1986),

Rajput & Rosinski (1989), Applebaum (2009) and Barndorff-Nielsen et al. (2018). We take

(�,F ,P) to be the underlying probability space, {S,B(S)} to be a Borel space and denote

the bounded Borel sets of B(S) by Bb(S). A real-valued Lévy basis L on S is a collection

{L(A) : A ∈ Bb(S)} of random variables such that the law of L(A) is infinitely divisible for

all A ∈ Bb(S) and, if A and B are disjoint subsets in Bb(S), L(A) and L(B) are independent

and L(A∪B) = L(A)+L(B) almost surely. We restrict our attention to homogeneous Lévy

bases as defined by Barndorff-Nielsen et al. (2018), since this is synonymous with stationar-

ity.We say that a homogeneous Lévy basisG is Gaussian if G(A) ∼ N {µLeb(A), σ 2Leb(A)}

for all A ∈ B(Rn) and some µ ∈ R and σ ∈ R
+, where Leb denotes the Lebesgue measure.

Homogeneous Gaussian Lévy bases are equivalent to the concept of white noise defined by

Walsh (1986). Furthermore, if L is a homogeneous Lévy basis on {R,B(R)} then the process

(Lt)t⩾0 with Lt = L([0, t]) is a Lévy process. Conversely, given a Lévy process (Lt)t⩾0, we

can obtain a Lévy basis L by setting L((s, t]) = Lt − Ls.

The iterative soft-thresholding algorithm of Daubechies (1992) is a powerful regulariza-

tion method that we find useful in § 4 below for estimating the continuous-time evolutionary

wavelet spectrum from an estimate of the raw wavelet periodogram. This algorithm was

developed to obtain regularized solutions to linear inverse problems Th = f , where f =

g + ε is some noisy observation of the true signal g. In our setting, T is a linear inte-

gral operator, f , g and h are some functions in a Hilbert space H and ε is the noise. In a

purely theoretical setting, Mercer’s theorem (Mercer, 1909) or methods from Kress (1999)

can be used to obtain a solution. Instead, Daubechies (1992) suggested minimizing the

functional

8µ,p(h) = ||Th− f ||2 +
∑

γ∈Ŵ

µγ |⟨h, eγ ⟩|
p (4)

for 1 ⩽ p ⩽ 2, where {eγ }γ∈Ŵ is an orthogonal basis of H and µ = (µγ )γ∈Ŵ is a vector of

weights, which act as regularization parameters. In our setting, we are interested in penal-

izing positive and negative coefficients asymmetrically for the case p = 1 and so replace

each µγ ∈ µ with the positive weights (µ+
γ ,µ

−
γ ). The solution is then given by the iterative

soft-thresholding algorithm

hn = Sµ{hn−1 + T²(f − Thn−1)},
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Continuous-time locally stationary wavelet processes 5

where

Sµ(h) =
∑

γ∈Ŵ

Sµ+
γ ,µ

−
γ
(⟨h, eγ ⟩)eγ , Sµ+

γ ,µ
−
γ
(x) =











x− µ+
γ /2 if x ⩾ µ+

γ /2,

0 if − µ−
γ /2 < x < µ+

γ /2,

x+ µ−
γ /2 if x ⩽ −µ−

γ /2,

(5)

andT² denotes the adjoint of T . As shown byDaubechies et al. (2004), this iterative scheme

converges to the unique minimizer of (4) for arbitrarily chosen h0 ∈ H. More details can be

found in Daubechies et al. (2004, 2016) or Bertero et al. (2021).

3. Locally stationary wavelet processes in continuous time: theory

3.1. Process definition

Our continuous-time locally stationary wavelet processes rely on continuous waveletsψ ∈

L2(R) for which we assume that

∫ ∞

−∞

ψ(t) dt = 0, ||ψ ||2 =

∫ ∞

−∞

|ψ(t)|2 dt = 1. (6)

From ψ ∈ L2(R), an entire family of wavelets {ψu,v(t), u ∈ R
+, v ∈ R} can be generated via

ψu,v(t) = u−1/2ψ{u−1(t− v)} = ψ(u, t− v), (7)

preserving the properties in (6), for all u ∈ R
+ and v ∈ R. In (7) we have introduced the

notation ψ(·, ·), making the dependence on scale more explicit, with ψ(1, t) = ψ(t). For

more information on the continuous wavelet transform, see Daubechies (1992).

In continuous time, we assume knowledge of the entire path rather than a finite set

of observations. Consequently, it becomes irrelevant to define a sequence of stochas-

tic processes corresponding to increasing amounts of data becoming available. Hence,

continuous-time locally stationary wavelet processes are defined as follows.

Definition 1. A continuous-time locally stationary wavelet process {X(t)}t∈R is a stochas-

tic process defined in the mean square sense as

X(t) =

∫ ∞

0

∫ ∞

−∞

W(u, v)ψ(u, v− t)L(du, dv), (8)

where L is a homogeneous square-integrable Lévy basis with E{L(A)} = 0 and E{L(A)2} =

Leb(A) for all A ∈ Bb(R
+ × R), {ψu,v(x), u ∈ R

+, v ∈ R} is a continuous wavelet family

and W ∈ L2(R+,R) is an amplitude function. Furthermore, the following conditions on W

hold.

(i) For each fixed scale u ∈ R
+ ,W(u, ·) is a Lipschitz continuous function with Lipschitz

constant K(u) . The Lipschitz constant function K(·) is bounded and satisfies

∫ ∞

0

uK(u) du < ∞. (9)
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6 H. A. Palasciano, M. I. Knight and G. P. Nason

(ii) For each fixed v ∈ R ,W(·, v) satisfies

∫ ∞

0

|W(u, v)|2 du < ∞.

Locally stationary time series are stochastic processes whose statistical properties change

gradually over time. The use of wavelets enables an implicit local representation of the

process, while the smoothness assumptions imposed on W ensure that locally the process

behaves in an approximately stationary fashion. The condition on the Lipschitz constants in

(9) guarantees that the rate at which the statistical properties are allowed to vary decreases as

the scales widen. This ensures that the process behaves in a realistic fashion and is required

for estimation.

For representation (8) to converge in the mean square sense, the amplitude functions

cannot be allowed to grow arbitrarily with u. Hence, assumption (ii) in Definition 1 ensures

that |W(u, v)|2 → 0 as u → ∞.

The requirement that the Lévy basis is homogeneous is essential, as this implies that the

basis is stationary, and vice versa; see the Supplementary Material or Barndorff-Nielsen

et al. (2018). This ensures that the nonstationarity is controlled entirely by the amplitude

functions W . Furthermore, since L is, by definition, independent when acting on disjoint

sets, any correlation structure in the process is captured entirely by the wavelets themselves.

Remark 1. The amplitude function W(u, v) is defined for all v ∈ R as opposed to its dis-

crete counterpart, which is only defined on (0, 1). Later, in § 4, when adapting this definition

for practical applications, we again return to the concept of rescaled time.

Example 1. A Haar moving average process of order α, or Haar ma(α), is a continuous-

time locally stationary wavelet process X(t) with amplitude function W(u, v) = 1 for u =

α ∈ R
+ and zero otherwise. The Lévy basis is L(du, dv) = δα(du)G(dv), where δα is the

Dirac measure centred at α and G is a homogeneous Gaussian Lévy basis on Bb(R). The

underlying wavelet family {ψu,v} is derived from the Haar wavelet (see the Supplementary

Material) through ψ(x) = ψH(−x), with the reflection about the y axis chosen to maintain

a backward-looking process. The Haar ma(α) can be written as

X(t) =

∫ ∞

0

∫ ∞

−∞

ψH(u, v− t)δα(du)G(dv) = α−1/2{(Bt − Bt−α/2)− (Bt−α/2 − Bt−α)},

where Bt is a standard Brownian motion. Essentially, Haar moving average processes cap-

ture the difference between consecutive Brownian increments, each of width α/2. SeeNason

et al. (2000) for the discrete-time analogue. There, for example, the Haar ma(1) and ma(2)

processes are

X1
t = 2−1/2(εt − εt−1), X2

t = 2−1(εt + εt−1 − εt−2 − εt−3),

respectively, where {εt}t∈Z is a sequence of independent and identically distributed random

variables with zero mean and unit variance.

3.2. Continuous-time evolutionary wavelet spectrum

The evolutionary wavelet spectrum gives a location-scale decomposition of the spectral

power of a continuous-time locally stationary wavelet process, and is defined as follows.
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Continuous-time locally stationary wavelet processes 7

Definition 2. The continuous-time evolutionary wavelet spectrum S of a locally stationary

wavelet process X(t), with respect to the wavelet family ψ , is defined by

S(u, v) = |W(u, v)|2

for all scales u ∈ R
+ and times v ∈ R.

Assumption (ii) in Definition 1 implies that, for each fixed v ∈ R,

∫ ∞

0

S(u, v) du < ∞.

Remark 2. More generally and technically, we can define

S(I)(du, dv) = E{|W(u, v)L(du, dv)|2},

where S(I) is the continuous-time integrated evolutionary wavelet spectrum. We can write

this as

S(I)(du, dv) = S(u, v) du dv,

since L is a homogeneous Lévy basis. We can then define

S(I)v (u) =

∫ u

0

S(x, v) dx =
∂S(I)

∂v
(u, v), (10)

representing the contribution to the total power of the process in a small neighbourhood

of v for scales less than or equal to u, mirroring the evolutionary power spectrum of

Priestley (1983).

Example 1 (continued). The evolutionary wavelet spectrum of a Haar ma(α) process is

S(u, v) =

{

1 for u = α,

0 for u |= α.

3.3. Continuous-time local autocovariance

Nason et al. (2000) showed that the autocovariance of a locally stationary wavelet process

has a wavelet representation, known as the local autocovariance.We investigate continuous-

time versions and begin with continuous autocorrelation wavelets; see Beylkin & Saito

(1992).

Definition 3. For scale u ∈ R
+ and lag τ ∈ R, the continuous autocorrelation wavelets

are

9(u, τ) =

∫ ∞

−∞

ψ(u, v)ψ(u, v− τ) dv.

Definition 4. For time t ∈ R and lag τ ∈ R, the continuous-time local autocovariance is

c(t, τ) =

∫ ∞

0

S(u, t)9(u, τ) du, (11)
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8 H. A. Palasciano, M. I. Knight and G. P. Nason

where S(u, t) and 9(u, τ), u ∈ R
+, are the continuous-time evolutionary wavelet spectrum

and autocorrelation wavelets, respectively.

The usual autocovariance function of a continuous-time locally stationary wavelet

process is

cX (t, τ) = cov{X(t),X(t+ τ)} = E{X(t)X(t+ τ)}, (12)

since X(t) has zero mean. This can also be written in terms of the evolutionary wavelet

spectrum and the underlying wavelets of the process as

cX (t, τ) =

∫ ∞

0

∫ ∞

−∞

S(u, t+ v)ψ(u, v)ψ(u, v− τ) dv du; (13)

see the proof of Proposition 1 in the Supplementary Material. Comparing (11) and (13),

we see that, at each time t, the local autocovariance effectively replaces S(u, t+ v) with the

constant S(u, t), as a function of v, over a finite interval centred around t of width match-

ing that of the wavelet. Given the slow evolution of the statistical properties of the process,

S(u, t+ v) is similar to S(u, t) in this region and, if the process is stationary, the two expres-

sions are equivalent. Therefore, the local autocovariance assumes that the spectrum is locally

constant, or, equivalently, that the process is stationary at a local level, a concept that under-

pins the framework of locally stationary processes. This is similar to the discrete-time local

autocovariance defined in Nason et al. (2000). The next proposition establishes a bound on

the maximum difference between (11) and (13).

Proposition 1. Let {X(t)}t∈R be a continuous-time locally stationary wavelet process, and

let cX (t, τ) be its autocovariance function and c(t, τ) its local autocovariance. Then,

|cX (t, τ)− c(t, τ)| ⩽ γ

∫ ∞

0

uK(u) du

for all scales u ∈ R
+ and times v ∈ R, where γ is a constant that depends on the decay

structure of wavelet ψ and K(·) is the Lipschitz constant function from Definition 1.

In essence, the more stationary process X(t) is, the closer cX (t, τ) and c(t, τ) will be, since
∫ ∞
0 uK(u) du can be interpreted as a measure of the nonstationarity of the process. For a

more local bound, if spectrum S admits a Taylor series representation, we can write

S(u, t+ v) = S(u, t)+ v
∂S

∂v
(u, t)+ o(v2)

for v close to t. Using this expansion, we can write

|cX (t, τ)− c(t, τ)| ⩽ γ

∫ ∞

0

u

∣

∣

∣

∣

∂S

∂v
(u, t)

∣

∣

∣

∣

du+M,

where M ⩾ 0 is a constant that bounds the discrepancy due to the higher-order terms.

From the above expression, it becomes clearer that the difference between the cX (t, τ) and

c(t, τ) depends on the local structure of the process. A comparison of the local and standard

autocovariance functions on a simple example can be found in the SupplementaryMaterial.
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Continuous-time locally stationary wavelet processes 9

Definition 5. The continuous-time local autocorrelation is defined as

ρ(t, τ) = σ−2(t)c(t, τ)

for all t, τ ∈ R, where σ 2(t) = c(t, 0) =
∫ ∞
0 S(u, t) du is the local variance of process X(t)

and c(t, τ) is the local autocovariance defined above.

Example 1 (continued). For the Haar ma(α) processes, we have

c(t, τ) = 9H(α, τ) = cX (t, τ), (14)

where 9H is the Haar autocorrelation wavelet; see the SupplementaryMaterial. Since Haar

ma processes are stationary, the local and standard autocovariance functions are equivalent.

Furthermore, ρ(t, τ) = c(t, τ), since 9H(α, 0) = 1, as shown in Proposition 2 below.

Remark 3. Strictly speaking, since the Dirac measure is not continuous with respect to

the Lebesgue measure, (14) is calculated using S
(I)
t from (10) as

c(t, τ) =

∫ ∞

0

9(u, τ)S
(I)
t (du) =

∫ ∞

0

9(u, τ)δα(du) = 9(α, τ).

To conclude this section, we list some useful properties of autocorrelation wavelets.

Proposition 2. For all u ∈ R
+, with 9(u, τ) denoting the autocorrelation wavelets

and 9(τ) = 9(1, τ), we have

(i) 9(u, τ) is symmetric as a function of τ , 9(u, τ) = 9(u,−τ);

(ii) 9(u, 0) = 1;

(iii) 9(u, τ) = 9(τ/u);

(iv) 9̂(u,ω) = u|ψ̂(uω)|2, where 9̂(u,ω) is the Fourier transform of 9(u, t);

(v)
∫ ∞
−∞9(u, τ) dτ = 0.

3.4. Relationship between the wavelet periodogram and spectrum

We now define the raw wavelet periodogram and its relationship to the evolutionary

wavelet spectrum. First, we need to define the wavelet coefficients.

Definition 6. The wavelet coefficients of process X(t) in terms of the wavelet basis ψ are

d(u, v) =

∫ ∞

−∞

X(t)ψ(u, t− v) dt (15)

for all u ∈ R
+ and v ∈ R.

Definition 7. The raw wavelet periodogram of process X(t) is

I(u, v) = |d(u, v)|2

for all scales u ∈ R
+ and times v ∈ R, where the d(u, v) are wavelet coefficients. We define

the notation β(u, v) = E{I(u, v)}, which turns out to be useful.
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10 H. A. Palasciano, M. I. Knight and G. P. Nason

Before going further, we introduce the continuous counterpart of the inner product

matrix defined by Nason et al. (2000), the inner product kernel.

Definition 8. For scales u, x ∈ R
+, the inner product kernel is

A(u, x) =

∫ ∞

−∞

9(u, τ)9(x, τ) dτ .

Proposition 3. The inner product kernel A is continuous, symmetric and nonnegative

definite. Furthermore, for all b > 0 and x, y ∈ R
+, A(bx, by) = bA(x, y).

The following theorem establishes a relationship between the raw wavelet periodogram

and the evolutionary wavelet spectrum, paralleling and extending that of Nason et al.

(2000).

Theorem 1. Let β(u, v) be the expectation of the raw wavelet periodogram of the locally

stationary wavelet process X(t), S(u, v) be the corresponding evolutionary wavelet spectrum

and A(u, x) be the inner product kernel. Then

∣

∣

∣

∣

β(u, v)−

∫ ∞

0

A(u, x)S(x, v) dx

∣

∣

∣

∣

⩽ γ

∫ ∞

0

xK(x) dx (16)

for all scales u ∈ R
+ and times v ∈ R, where γ is a constant that depends on the decay

structure of wavelet ψ and K(·) is the Lipschitz constant function from Definition 1.

As for Proposition 1, if X(t) is stationary then the two terms on the left-hand side of (16)

are equivalent. The expectation of the raw wavelet periodogram can be written as

β(u, v) =

∫ ∞

0

∫ ∞

−∞

S(x, y+ v)

{∫ ∞

−∞

ψ(x, y− t)ψ(u, t) dt

}2

dy dx;

see the proof of Theorem 1 in the SupplementaryMaterial, containing terms resembling the

cross-scale autocorrelation wavelets from the discrete setting (Killick et al., 2020; Embleton

et al., 2022). Hence,
∫ ∞
0 S(x, v)A(u, x) dx can be viewed as approximating the expectation of

the raw wavelet periodogram under the assumption that S(u, t+ v) = S(u, t) at a local level,

in the same way that the local autocovariance approximates the autocovariance. Because a

similar discussion follows Proposition 1, we omit a more detailed analysis here for brevity.

3.5. Solving for the spectrum and related quantities

Theorem 1 motivates the following definition.

Definition 9. The inner product operator TA : L
2(R+) 7→ L2(R+) is a linear integral

operator defined by

(TAf )(x) =

∫ ∞

0

A(x, y)f (y) dy (17)

for f ∈ L2(R+), where A(x, y) is the inner product kernel.
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Continuous-time locally stationary wavelet processes 11

Theorem 1 and Definition 9 suggest that one could approximate β(u, v) by

β(u, v) ≈

∫ ∞

0

A(u, x)S(x, v) dx = {TAS(·, v)}(u). (18)

Therefore, given β(u, v), we could invert the above linear integral equation to obtain the

evolutionary wavelet spectrum as a solution S̃. We now show how this could be done using

the properties of the inner product kernel andMercer’s theorem (Mercer, 1909): this is a key

difference with the earlier discrete-time version of Nason et al. (2000).

Since TA has a continuous symmetric kernel, it is compact, bounded and self-adjoint.

Furthermore, we have the following result.

Proposition 4. Let TA be the linear integral operator from Definition 9. Then TA has a

trivial null space, i.e., N(TA) = {f ∈ L2(R+) : TAf = 0} = {0}.

Since the inner product kernel is continuous, symmetric and nonnegative definite, we

can apply Mercer’s theorem (Mercer, 1909), see the Supplementary Material, to obtain a

decomposition of A of the form

A(x, y) =

∞
∑

n=1

λnϕn(x)ϕn(y),

where λn and ϕn are the eigenvalues and eigenfunctions of TA. Therefore,

(TAf )(x) =

∞
∑

n=1

λn⟨ϕn, f ⟩ϕn(x), ⟨f , g⟩ =

∫ ∞

0

f (x)g(x) dx,

for f , g ∈ L2(R+). Since TA is self-adjoint, this allows us to obtain the solution

S̃(u, t) =

∞
∑

n=1

λ−1
n ⟨β(·, t), ϕn(·)⟩ϕn(u) (19)

to the linear integral (18) for all u ∈ R
+ and t ∈ R, which is unique, since N(TA) = {0}.

The evolutionary wavelet spectral solution (19) can be used to obtain an estimate of the

local autocovariance using (11). Furthermore, the ability to invert TA also permits us to

invert (11) to obtain a representation of the spectrum in terms of the local autocovariance

as follows.

Theorem 2. Let c(t, τ) be the local autocovariance of a continuous-time locally stationary

wavelet process. Then the evolutionary wavelet spectrum can be written as

S(u, t) =

∫ ∞

−∞

B(u, τ)c(t, τ) dτ , B(u, τ) =

∞
∑

n=1

λ−1
n ⟨9(·, τ), ϕn(·)⟩ϕn(u),
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12 H. A. Palasciano, M. I. Knight and G. P. Nason

where 9 is an autocovariance wavelet and λn and ϕn are the eigenvalues and eigenvectors of

the inner product operator TA from Definition 9.

Example 2. The expectation of the Haar raw wavelet periodogram of a Gaussian white

noise process G((s, t]) ∼ N {0, (t− s)σ 2} is β(u, v) = σ 2 for all u ∈ R
+ and v ∈ R. From

σ 2 =

∫ ∞

0

AH(u, x)S(x, v) dx,

where AH is the Haar inner product kernel, we obtain

S(u, v) =
σ 2

log(2)u2

for all u ∈ R
+ and v ∈ R. Further details can be found in the Supplementary Material.

So far, we have ignored the fact that generally one does not work directly with β(u, v),

but rather with a realization, or in some cases a set of samples, of the locally stationary

wavelet processX(t), which can then be used to obtain an estimate of β(u, v). This, of course,

introduces noise into the linear integral equation. To address this problem, regularization

methods such as the spectral cut-off method discussed in the SupplementaryMaterial could

be employed.

4. Implementation of spectral and autocovariance estimators

4.1. Sampled process definition

In practice, one typically has access to a discrete and finite realization of the process,

rather than the entire sample path. Therefore, estimation of spectral and autocovariance

quantities requires adaptations of the previous section’s theoretical framework. To begin,

we provide a new definition of locally stationary wavelet processes in continuous time,

reintroducing a sequence of stochastic processes and the concept of rescaled time.

Definition 10. Let n(T) be a nondecreasing integer-valued function of T ∈ R
+, such

that n(T) → ∞ as T → ∞, and T = {t0, t1,…, tn(T)−1} be a set of times, such that 0 =

t0 < t1 < · · · < tn(T)−1 = T. A sequence of stochastic processes {XT(t)}t∈T indexed

by T is said to be a sampled continuous-time locally stationary wavelet process if it admits

the representation

XT(t) =

∫ Jψ (T)

0

∫ ∞

−∞

wT(u, v)ψ(u, v− t)L(du, dv),

in the mean square sense, where L is a square-integrable homogeneous Lévy basis

with E{L(A)} = 0 and E{L(A)2} = Leb(A) for all A ∈ Bb(R
+ ×R), {ψu,v(x), u ∈ R

+, v ∈

R} is a continuous wavelet family, wT ∈ L2(R+,R) is a sequence of location-scale amplitude

functions and Jψ (T) is an increasing function that depends on the wavelet ψ . Furthermore,

there exists a function W : R+ × (0, 1) 7→ R such that the following conditions hold.
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Continuous-time locally stationary wavelet processes 13

(i) For each fixed scale u ∈ R
+, W(u, ·) is a Lipschitz continuous function with Lipschitz

constant K(u) . The Lipschitz constant function K is bounded and satisfies

∫ ∞

0

uK(u) du < ∞.

(ii) For each fixed z ∈ (0, 1) ,W(·, z) satisfies

∫ ∞

0

|W(u, z)|2 du < ∞.

(iii) For each fixed scale u ∈ R
+ , there exists a constant C(u) such that, for each T ∈ R

+

,

sup
v∈T

∣

∣

∣

∣

wT(u, v)−W
(

u,
v

T

)

∣

∣

∣

∣

⩽
C(u)

T
,

∫ ∞

0

C(u) du < ∞.

We have now reintroduced the concept of rescaled time, z = v/T ∈ (0, 1), as is standard

in the literature on locally stationary processes; see Dahlhaus (1997) for example. In essence,

this means that, asT → ∞, we are collecting increasing amounts of data and so are learning

more and more about the local structure of the process. Assumption (iii) in Definition 10

formalizes this notion, ensuring thatwT(u, v) converges to its rescaled-time limitW(u, v/T),

while also becoming smoother in the process. In our setting, the growing number of obser-

vations is n(T), whereas T now denotes the total length of the data. Thus, we still rescale

the process by T , with the increased flexibility of being able to handle irregularly spaced

observations.

Function Jψ (T) determines the maximum scale that contributes to the process. As more

data become available, the model is able to include increasingly coarser scales and so

Jψ (T) → ∞ as T → ∞. We make the dependence of Jψ (T) on the structure of the

underlying wavelet explicit by including ψ in the subscript.

Continuous wavelets can be defined for any scale inR
+ and can be shifted to any location

in R. This makes the continuous wavelet transform particularly well suited for handling

missing observations or irregularly spaced data.

Definition 11. The evolutionary wavelet spectrum of the sampled continuous-time locally

stationary wavelet process XT(t) with respect to ψ is

S(u, z) = |W(u, z)|2

for all u ∈ R
+ and z = v/T ∈ (0, 1).

Assumptions (ii) and (iii) of Definition 10, imply that, for each fixed z ∈ (0, 1),

∫ ∞

0

S(u, z) du < ∞, S(u, z) = lim
T→∞

|wT(u, v)|
2,

for all u ∈ R
+ and v ∈ R.

The local autocovariance and autocorrelation remain as before, except that we replace t

with its rescaled-time version z, as was done for the evolutionary wavelet spectrum above.

To emphasize the dependence on T , we now denote the autocovariance by cXT (t, τ).
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14 H. A. Palasciano, M. I. Knight and G. P. Nason

Proposition 1 highlighted the discrepancy between the regular autocovariance from (12)

and the wavelet autocovariance from (11) for the theoretical process with equality in the

stationary case. In the sampled case, the autocovariances become close asymptotically.

Proposition 5. Let {XT(t)}t∈T be a sampled continuous-time locally stationary wavelet

process, cXT (t, τ) be its autocovariance function, c(z, τ) be the local autocovariance and z =

t/T. Then

|cXT (t, τ)− c(z, τ)| = O(T−1).

In other words, the autocovariance converges to the local autocovariance as T → ∞.

4.2. Estimation theory

The wavelet coefficients are defined as in (15), while the raw wavelet periodogram is now

defined in rescaled time z = v/T as

I(u, z) = I
(

u,
v

T

)

= |d(u, v)|2 = |d(u, zT)|2.

As in Definition 7, we again use the notation β(u, z) = E[I(u, z)]. This leads to the

following result.

Theorem 3. Let I(u, z) be the raw wavelet periodogram of the sampled continuous-time

locally stationary wavelet process XT(t), S(u, z) be its corresponding evolutionary wavelet

spectrum and A(u, x) be the inner product kernel. Then

∣

∣

∣

∣

β(u, z)−

∫ Jψ (T)

0

A(u, x)S(x, z) dx

∣

∣

∣

∣

= O(T−1) (20)

and

∣

∣

∣

∣

var{I(u, z)} − 2

{

∫ Jψ (T)

0

A(u, x)S(x, z) dx

}2 ∣

∣

∣

∣

= O(uT−1)

for all u ∈ (0, Jψ (T)] and z ∈ (0, 1).

Equation (20) suggests estimating spectrum S by solving the linear integral equation

β(u, z) =

∫ Jψ (T)

0

A(u, x)S(x, z) dx = {TAS(·, z)}(u), (21)

using estimates β̂ of β, on which we elaborate in the Supplementary Material, where

(TAf )(x) =

∫ Jψ (T)

0

A(x, y)f (y) dy.

The same properties hold for this linear integral operator as for its theoretical counterpart

defined in (17). The use of an estimate of β naturally introduces noise into (21). Hence,

to compute an estimate Ŝ of spectrum S, we use the iterative soft-thresholding algorithm
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Continuous-time locally stationary wavelet processes 15

developed by Daubechies et al. (2004) and described in § 2. This involves reformulating (21)

as a minimization problem with the aim of minimizing the discrepancy

1S(·, z) = ||TAS(·, z)− β̂(·, z)||22 + ||µ(·)S(·, z)||1 (22)

for each z ∈ (0, 1), where || · ||1 and || · ||2 denote theL
1(R+) andL2(R+) norms, respectively,

andµ > 0 is the regularization function. By definition, the evolutionary wavelet spectrum is

a nonnegative quantity and so we use asymmetric soft thresholding. Hence, in this setting,

we reformulate the iterative scheme as

Ŝn(·, z) = Sµ[Ŝn−1(·, z)+ TA{β̂(·, z)− TAŜ
n−1(·, z)}], n = 1,…,N, (23)

where N is the number of iterations and

(Sµf )(u) =

{

f (u)− µ(u)/2 if f (u) ⩾ µ(u)/2,

0 if f (u) < µ(u)/2,

for u ∈ R
+, which, as shown in § 2 of Daubechies et al. (2004), converges strongly to the

unique minimizer of (22). Unfortunately, an exact closed-form equation for estimating the

evolutionary wavelet spectrum from the raw wavelet periodogram does not exist, which is a

key difference from the discrete-time setting of Nason et al. (2000) and other later estimators

in the literature. More details on the convergence of this algorithm in practice can be found

in the Supplementary Material.

Remark 4. We have implicitly chosen to penalize the function values directly when impos-

ing the constraint in (22) and, subsequently, when defining the Sµ operator. This makes

guaranteeing the nonnegativity of the spectrum straightforward and is equivalent to select-

ing the standard basis in (5). The regularization in (22) takes the form of a function µ,

allowing us to penalize scales differently if necessary. We have replaced T
²
A with TA in (23),

as TA is, by definition, self-adjoint.

4.3. Smoothing the discretized raw wavelet periodogram across time

As for the discrete setting (Nason et al., 2000), the raw wavelet periodogram is not a con-

sistent estimator of β. A key advantage of the continuous wavelet transform is that we can

compute the wavelet coefficients d(u, v) on a regularly spaced grid, regardless of the time

series’ original structure. Hence, we assume that we have computed the continuous wavelet

transform at the evenly spaced discrete locations vj, j = 1,…,Mv = 2η for some η ∈ R
+,

such that Mv → ∞ as T → ∞, and the corresponding estimate of the raw wavelet peri-

odogram β(u, zj) for zj = vj/T . Full details can be found in the Supplementary Material.

Standard wavelet smoothing techniques using the discrete wavelet transform (see the 1993

University of California, Berkeley, PhD thesis byH.Gao, Donoho& Johnstone, 1994; Neu-

mann & von Sachs, 1995; Neumann, 1996; von Sachs & Schneider, 1996; Nason, 2008) can

then be applied to each level of β̂ across locations in a straightforward manner, as in Nason

et al. (2000).

Remark 5. In practice, one discretizes the scales as well; however, since we smooth each

level of β independently, we omit this here. Full details can be found in the Supplementary

Material.
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16 H. A. Palasciano, M. I. Knight and G. P. Nason

To apply wavelet shrinkage to the discretized periodogram, we introduce a separate

orthonormal discrete wavelet basis of L2(0, 1). We refer to these as the wavelet shrinkage

basis and coefficients to distinguish them from the continuous wavelets defined in (7) and

used throughout the article.

Definition 12. Let {φ̃ℓ0,m, ψ̃ℓ,m} be an orthonormal discrete wavelet basis of L2(0, 1), and

define the mother and father wavelet coefficients of the discretized raw wavelet periodogram

as

d̃uℓ,m =
1

Mv

Mv
∑

j=1

β̂(u, zj)ψ̃ℓ,m(zj), ℓ = ℓ0,…, η, m = 0,…, 2ℓ − 1, (24)

and

c̃uℓ0,m =
1

Mv

Mv
∑

j=1

β̂(u, zj)φ̃ℓ0,m(zj), m = 0,…, 2ℓ0 − 1, (25)

respectively, where ψ̃ℓ,m(z) = 2ℓ/2ψ̃(2ℓz−m), ψ̃ is a wavelet function satisfying (6), ℓ =

ℓ0,…, η, m = 0,…, 2ℓ − 1 and ℓ0 is the coarsest scale included in the scheme. The

superscript u is used to indicate that each level u is smoothed separately as a function of z.

Equations (24) and (25) parallel equation (39) of an unpublished technical report from

Stanford University by R. von Sachs, G. P. Nason and G. Kroisandt. Following Nason

(2008), we set ℓ0 = 3, since the finer scales are those most susceptible to noise. We can

then apply a soft threshold, which we define below, to the wavelet coefficients d̃uℓ,m to obtain

estimates d̃
u,S
ℓ,m. The resulting nonlinear estimate of the raw wavelet periodogram is then

β̃(u, zj) =

2ℓ0−1
∑

m=0

c̃uℓ0,mφ̃ℓ0,m(zj)+

η
∑

ℓ=ℓ0

2ℓ−1
∑

m=0

d̃
u,S
ℓ,mψ̃ℓ,m(zj).

The following theorem parallels that of Nason et al. (2000).

Theorem 4. For locally stationary wavelet processes with homogeneous Gaussian Lévy

bases, the wavelet coefficients d̃uℓ,m are asymptotically normally distributed with

∣

∣

∣

∣

E(d̃uℓ,m)−

∫ 1

0

∫ ∞

0

A(u, x)S(x, z) dx ψ̃ℓ,m(z) dz

∣

∣

∣

∣

= O(2ℓ/2T−1)

and

∣

∣

∣

∣

var(d̃uℓ,m)− 2T−1

∫ 1

0

{∫ ∞

0

A(u, x)S(x, z) dx

}2

ψ̃2
ℓ,m(z) dz

∣

∣

∣

∣

= O(2ℓuT−2).

Hence, Theorem 5 below follows from H. Gao’s 1993 University of California, Berkeley,

PhD thesis, von Sachs & Schneider (1996) and Nason et al. (2000).

Theorem 5. Define the threshold

λ(ℓ,m, u,T) = σ̃ uℓ,m log(T), σ̃ uℓ,m = {var(d̃uℓ,m)}
1/2. (26)
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Continuous-time locally stationary wavelet processes 17

Then, under the assumptions of Theorem 4, for each u ∈ R
+,

E

{

∫ 1

0

|β̃(u, z)− β(u, z)|2 dz

}

= O{T−2/3 log2(T)}.

The above relies on the assumption that the underlying Lévy basis is Gaussian. In other

settings, one could apply the techniques described by Neumann & von Sachs (1995). The

methods relying on the Haar-Fisz transform, as developed by Fryzlewicz &Delouille (2005)

and Fryzlewicz & Nason (2006) for the discrete setting, could be extended to work in the

continuous case as well.

In general, the smoothing techniques described here are applied to the logarithm of the

raw wavelet periodogram instead, which tends to stabilize the variance of the process; see

Remark 4.11 of von Sachs & Schneider (1996) or Nason et al. (2000). This mitigates the

varying spectral variance and also pulls the distribution closer to normality. Therefore, for

the remainder of this article, we apply any smoothing to the log raw wavelet periodogram.

To estimate the noise level σ̃ uℓ,m in threshold (26), Donoho & Johnstone (1994) suggested

using the median absolute deviation of the wavelet shrinkage coefficients at the finest scale,

divided by 0.6745, since the finest scale coefficients are generally just noise. The scaling term

of 0.6745 is used to ensure that the median absolute deviation is a consistent estimator in the

normal case, but often used for other symmetric distributions. Alternatively, Nason (2008)

proposed computing the median absolute deviation on the wavelet coefficients ranging from

a scale of 3 to the finest scale. Both methods estimate a threshold that does not depend on

ℓ and m, but does depend on u, as the smoothing is performed separately at each scale.

4.4. Estimating the spectrum from the smoothed raw wavelet periodogram

The smoothed rawwavelet periodogram β̃ is then used to compute an estimate of the evo-

lutionary wavelet spectrum Ŝ using the iterative soft-thresholding algorithm of Daubechies

et al. (2004). The initial value in (23) is set to S0(u, z) = β̂(u, z), although this can be chosen

arbitrarily. As shown in § 4 of Daubechies et al. (2004), one should select µ = µ(ε) such

that

lim
ε→0

µε = 0 and lim
ε→0

ε2/µε = 0,

to ensure convergence to the true solution as the noise level ε approaches zero. Therefore,

we set µε = ε. In practice, we estimate this quantity using the same method as for noise

estimation in wavelet shrinkage, as described by Donoho & Johnstone (1994), enabling us

to penalize each scale individually. Moreover, the iterative scheme in (23) operates on each

location separately, adding greater flexibility by allowing µ to vary by location.

4.5. Computational complexity

Our method uses the continuous wavelet transform, which, in a naive implementation,

expends O(n2) computational effort per scale, where n is the number of data points. How-

ever, several methods have been developed that can achieve O(n) instead (Wang & He,

2023). Smoothing the raw wavelet periodogram adds another O(n) operations per scale.

The iterative scheme (23) requires O(m2) operations per iteration and location, where m

is the number of scales. This can be reduced to O(m) if the inner product operator TA
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Fig. 1. (a) A single realization of a continuous-time nonstationary Haar ma process with n(T)= 1500 equally
spaced samples. (b) The underlying evolutionary wavelet spectrum. (c) The corresponding local autocorrelation.

is sparse (Daubechies et al., 2004), which is often the case. On a standard laptop it takes

approximately 30 s to simulate 1000 realizations, compute the raw wavelet periodograms

and average the results, for example the realizations in § 4.6 below. It takes a further 5±10 s

to smooth those estimates and compute the evolutionary wavelet spectrum estimates.

The earlier qualitative and approximate methods of Knight et al. (2012) require the

application of P lifting wavelet transforms, where P corresponds to the number of lift-

ing algorithm trajectories, with each lifting (wavelet) transform being O(n) computational

effort. Hence, the total computational effort for the methods of Knight & Nason (2009) is

O(nP), where P is typically of the order of thousands. The spectral estimation methods of

Knight et al. (2012) build on Knight & Nason (2009), resulting in a method that is consid-

erably more computationally intensive, but whose precise order cannot be established and

implementation code can take many hours to run.

4.6. Nonstationary Haar moving average example

We now apply our methods to realizations from a nonstationary continuous-time Haar

moving average process. Figure 1(b) shows the true underlying evolutionary wavelet spec-

trum. See the Supplementary Material for a complete functional specification and consid-

erably more detail. We also display n(T) = 1500 samples drawn from a single realization

and the true local autocorrelation, which, in this case, is equal to the local autocovariance.

The estimates of the evolutionary wavelet spectrum from a single realization of XT(t)

are shown on the far left of Fig. 2. The top row corresponds to running the iterative soft-

thresholding algorithm of Daubechies et al. (2004) for N = 100 iterations and the bottom

row for N = 10 000.

Figure 2 also shows the results of drawing R realizations each with n(T) = 1500

samples, estimating a raw wavelet periodogram for each, averaging them and then using

the iterative soft-thresholding algorithm of Daubechies et al. (2004) to obtain a spectral

estimate. Section S4.2 of the Supplementary Material defines this mathematically in equa-

tion (S8) and discusses the practical importance of this averaging when replicated samples

are available. The second, third and fourth columns of Figure 2 show estimates averaged

over R = 10, 100 and 1000 realizations.

Each estimate β̂ is smoothed, as described in § 4.3 using the wavelets of Daubechies (1992)

with three vanishing moments. As in Nason (2008), the threshold in (26) is estimated using,

and applied to, the coefficients ranging from level three to the finest scale. The local autocor-

relations obtained according to equation (S9) in the Supplementary Material are displayed

in Fig. 3.
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Fig. 2. Haar moving average evolutionary wavelet spectral estimates using the iterative soft-thresholding algo-
rithm of Daubechies et al. (2004). Top row: N = 100 iterations. Bottom row: N = 10 000 iterations. From left

to right: estimates computed using R = 1, 10, 100 and 1000 realizations.
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Fig. 3. Haarmoving average local autocorrelation estimates. From left to right: estimates computed usingR = 1,
10, 100 and 1000 realizations and N = 10 000.

As expected, results improve as we increase both the number of samples used to estimate

the raw wavelet periodogram and the number of iterations in the iterative soft-thresholding

algorithm of Daubechies et al. (2004). We observe that finer-scale information requires a

larger number of iterations to become as visible in the estimate as information at larger

scales. Spectral information also tends to deviate more from its true value at larger scales,

aligning with the results in Theorem 3. Even when only a single realization is employed, it

is still possible to distinguish between different frequency regions. However, all estimates

display a higher degree of variability in such cases, and so it may be beneficial to further

investigate more appropriate smoothing techniques, an avenue left for future research.

5. Real-world applications

5.1. Infant electrocardiogram

Weapply ourmethods to the electrocardiogram recording of an infant, consisting of 2048

regularly spaced observations sampled at 1/16 Hz, used in the original discrete-time work

of Nason et al. (2000) and displayed in Fig. 4. The BabyECG time series used to construct

this plot is freely available from the wavethresh (Nason, 2024) package on CRAN. To

compare our approach to that of Knight et al. (2012), we replace 25% of the observations

with missing values.

Nason et al. (2000) and Knight et al. (2012) used the least asymmetric wavelets of

Daubechies (1992) of order 10 for estimation and we use the similar Ricker wavelets; see the

SupplementaryMaterial.We estimate our spectrum for scales ranging from 1 to 1024 = 210,
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Fig. 4. (a) Electrocardiogram recording of a sleeping infant and (b) the corresponding sleep stages.
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Fig. 5. Sleeping infant heart rate spectral estimates. Top left: wavelet periodogram, reproduced with permis-
sion from Knight et al. (2012). Top right: continuous wavelet spectral estimate. Bottom left: wavelet spectrum
estimated with the methods of Nason et al. (2000). Bottom right: our discretized continuous wavelet spectrum.

smoothing the log periodogram using the wavelets of Daubechies (1992) with four vanish-

ing moments. We also discretize our spectral estimate into dyadic bins, but only to compare

it with that of Nason et al. (2000) estimated on the complete time series. Both continu-

ous and discretized estimates are displayed in the right column of Fig. 5. Since different

methods display scale numbering differently, all spectra in Fig. 5 are displayed so that the

scales become coarser when moving up the y axis.

Another appeal of our approach over the lifting-based method of Knight et al. (2012)

lies in the natural scale representation afforded by our construction. In contrast, the scales

associated with the lifting periodogram are discrete and unevenly distributed, as dictated

by the time-sampling regime that governs the scale construction. Therefore, Knight et al.

(2012) must carry out regression over scale to produce a continuous-like lifting spectral

representation. We contrast the lifting periodogram in Fig. 5 (top left) to its continuous

spectral counterpart (top right).

Reassuringly, all estimators capture the activity burst time localization. Our new spec-

trum captures relevant frequency behaviour in similar regions to Nason et al. (2000), which
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Fig. 6. (a) Heart rate of a sleeping individual and (b) the corresponding sleep stage. Data from Walch (2019).

benefits from complete data, whereas ours does not, whilst also providing a continuous

scale representation. However, these features are less clearly elicited by the lifting scale peri-

odogram mapping, possibly because of scale-smoothing artefacts. For example, the top

left plot of Fig. 5 does not seem to have any noticeable power at any scale around time

0100, whereas the estimate from Nason et al. (2000) and our methods (right column) do so,

particularly at mid-to-coarser scales.

5.2. Application to heart rate series

The data consist of n(T) = 4007 irregularly spaced observations spanning 21 569 s

(approximately 6 h). Mostly, the intervals between consecutive observations range from

1±10 s, though a few points are separated by longer gaps, up to 130 s. The discrete-time

methods of Nason et al. (2000) simply cannot be used, while existingmethods (Knight et al.,

2012), besides being computationally demanding, are unable tomaintain a theoretical frame

of reference for truly irregular data, as opposed to sampled with missingness. Our methods

are the only ones to our knowledge that can produce a genuine estimate in reasonable time.

Walch et al. (2019) usedwearable devices to collect heart rate data from several individuals

for a study aimed at predicting sleep stages. The data are available from Walch (2019). The

sleep stages are labelled 0 to 5, representing progressively deeper stages of sleep: stage 0

corresponds to wakefulness, stages 1 to 3 correspond to nonrapid eye movement sleep and

stage 5 corresponds to rapid eye movement sleep. Figure 6 displays the recordings of the

chosen individual.

Because of the notable nonstationarity exhibited by the heart rate time series, Haar

wavelets are used in our analysis. Whilst our approach directly models the series using

the locally stationary wavelet framework, an alternative approach might involve separat-

ing a local mean component from the series first, for example by extending the methods

of von Sachs & MacGibbon (2000), Vogt (2012) and McGonigle et al. (2022) to continu-

ous time. The raw wavelet periodogram is estimated at evenly spaced locations every 5 s,

across scales ranging from 10 to 10 000 with symmetric boundary conditions. The log peri-

odogram is smoothed using the least asymmetric wavelets of Daubechies (1992) with two

vanishing moments. Finally, the iterative soft-thresholding algorithm of Daubechies et al.

(2004) computes a spectral estimate, from which we obtain the local autocorrelation.

Figure 7 shows that the spectrum is concentrated primarily at coarser scales in regions

where the heart rate corresponds to deeper sleep stages, such as the nonrapid eye movement

stage. We can see three distinct peaks, which approximately align with the sleep stage. A

less clear relationship might be seen in the local autocorrelation estimate. This suggests that

spectral information at wider scales can be associated with deeper sleep stages.
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Fig. 7. Estimates for the heart rate data, with the sleep stage series overlaid on top in red. (a) Evolutionary
wavelet spectrum. (b) Local autocorrelation.

6. Discussion

For future work, promising directions could be improved smoothing techniques for the

raw wavelet periodogram, or alternative approaches to evolutionary wavelet spectrum esti-

mation. This could involve extending the framework in § S4.3 of the Supplementary Mate-

rial or adapting other algorithms, such as those of Daubechies et al. (2008, 2016), Beck &

Teboulle (2009) and Loris et al. (2009). One could investigate the impact of discrete approx-

imations on continuous-time models, particularly in relation to aliasing. Aliasing occurs

when high-frequency components contaminate lower frequencies due to a sampling rate

that is too low. Locally stationary wavelet processes have already shown promise in detecting

its absence (Eckley & Nason, 2018; Palasciano & Nason, 2023). Continuous-time models

could yield further insights into these behaviours, especially since the implementation of

such methods inherently requires some form of downsampling.
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Supplementary material

The SupplementaryMaterial provides backgroundmaterial, autocorrelation wavelet and

inner product kernels, a comparison of local and standard autocovariances on a simple

example, practical considerations, an extension of the Haar moving average example and

proofs. The code can be found at https://github.com/henrypalasciano/CLSWP.
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