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Abstract   Machine learning (ML) components are recognized for their potential to 

undertake tasks such as object detection and classification across a range of safety 

related applications. In order to be used safely, it is crucial that safety requirements 

for the ML components are correctly understood, specified in a manner that supports 

ML development, and can be demonstrated to be sufficient and valid. Traditional 

safety requirements approaches may not apply well to ML, due to their data-

driven nature especially      in complex environments. Defining safety requirements 

for ML components will require an understanding of the unique mechanisms by 

which ML can contribute to system safety and the potential failure modes of ML 

components. So far, little work has been done that attempts to systematically derive 

safety requirements specific to ML components and to ensure a traceable link be-

tween system-level and component-level safety requirements. This work aims to 

address this gap by providing a comprehensive survey of existing literature on meth-

ods for the elicitation of safety requirements for ML components. We identify key 

challenges and limitations in current methods and propose possible solutions. This 

paper highlights these issues and reviews current research to lay a foundation 

for  developing robust and effective safety requirements for ML components. 

1 Introduction 

The integration of machine learning (ML) into autonomous systems (AS) repre-

sents a major technological advancement, leading to widespread adoption across di-

verse fields. In some of these applications, the undesirable behaviour of AS might 

result in harm to human lives or damage valuable property. Therefore, one of the 

most significant challenges for companies that develop safety-critical systems 

(SCS) is to assure (ensure and demonstrate) the safety of these systems (McDermid 
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et al., 2024). This is particularly challenging where AS operates in a complex envi-

ronment and requires the creation of a compelling and comprehensive safety case. 

One of the most critical and challenging steps in developing a safety case is to 

formulate a comprehensive, accurate, unambiguous, and testable set of safety re-

quirements (SR). These requirements must be specified across multiple levels of au-

tonomous system (AS) design decomposition, ensuring that they preserve the origi-

nal intent and maintain traceability to the SRs from preceding levels (Hawkins et al., 

2021). The literature on SCS has reported on many cases where systems have failed 

due to a lack in SRs specifications, or misunderstandings traced to problems in re-

quirements engineering, contributing to accidents that cause damage to the environ-

ment, injury to people and even the loss of lives (Martins and Gorschek, 2016). One 

of the most notable example of this failure occurred with Uber’s autonomous vehicle 
(AV) in March 2018 where the vehicle struck and killed a pedestrian in Tempe, Ar-

izona. 

Historically, software safety requirements have been derived through structured 

and standards- driven processes designed to mitigate risks using predictable and 

quantifiable methods. These approaches focus on ensuring that the software performs 

reliably under various conditions and gracefully fails when faults occur (Ebert, 

2013). These structured approaches are governed by well-established standards that 

outline methodologies for deriving, specifying, and validating software SRs. Alt-

hough these standards and practices provide a solid foundation for understanding and 

extending modern methodologies, they are insufficient to ensure the safety of AS, 

especially when they include ML components (Habiba et al., 2024). 

Various methodologies have been developed to address the challenges of assuring 

AS, of which one of the most thorough is Safety Assurance of Autonomous Systems 

in Complex Environments (SACE) (Hawkins et al., 2021). SACE systematically in-

tegrates safety assurance of the AS into its development and also generates evidence 

for explicitly justifying the acceptable safety of AS. 

SACE is a highly iterative eight stage process that runs in parallel with a baseline 

systems engineering and safety assurance process to modify, enhance, or add activi-

ties to address the challenges of safety assurance that comes with operation of an AS, 

Figure 1. 

The SACE process defines a set of AS-specific safety assurance activities that 

supports the generation of artefacts that can be used as safety assurance evidence in 

a comprehensive safety case for an AS. In the first stage, SACE defines and validates 

the operating context for the AS, ensuring a clear understanding of the conditions 

under which the system will function. This validated context then informs stage two, 

where hazardous scenarios are identified and validated. These are situations that the 

AS might encounter during its operation that could lead to unsafe outcomes under 

certain conditions. Then in stage three, SACE focuses on defining and validating the 

safe operating concept (SOC), which includes specifying system SRs. 

Stage four is particularly critical and highly relevant to this paper, as it focuses on 

defining and managing SRs across various levels of system decomposition. At each 
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tier, these requirements must accurately capture the intent established at the previous 

level. This process involves evaluating the proposed design for each tier to ensure 

that SRs are appropriately decomposed and allocated to relevant components. Accu-

rate interpretation of these requirements for each component is essential, ensuring 

alignment with its specific design. Demonstrating this alignment goes beyond simply 

establishing traceable relationships between requirements at different tiers; it  

 

 

 

Fig.1: SACE process flow. 

 

 

necessitates a clear explanation and justification of their adequacy and suffi-

ciency, as illustrated in Figure 2. 

Stage five focuses on developing design proposals to meet the SRs from Stage 

four. This involves iterative analysis, refinement, and updates to both the design and 

the requirements to ensure a robust and assured system across multiple tiers.  Stages 

six, seven, and eight are responsible for identifying and mitigating hazardous fail-

ures, ensuring safe operation when out of defined context, and conducting thorough 

verification respectively. SACE does not cover the development of requirements for 

individual system components or their implementation. These aspects are addressed 

in other associated guidance documents. For example, the safety assurance of com-

ponents implemented using ML is handled within the Assurance of Machine Learn-

ing for Autonomous Systems (AMLAS) framework (Hawkins et al., 2021). 

AMLAS provides a six-stage process that describes the safety assurance activities 

that should be undertaken when developing an ML component for use as part of an 

AS. It also describes the artefacts that are generated from these activities and de-

scribes how these can be used to create a safety case for the ML component. While 

AMLAS offers valuable guidance on identifying ML-specific safety requirements 

and clarifying what needs to be demonstrated, it does not provide detailed method-

ologies or techniques for implementing these steps. Several studies have applied 

AMLAS to various use cases, demonstrating its practical applicability (Feather et al., 

2022; Laher et al., 2022; Borg et al., 2023). Figure 3 illustrates the development 

lifecycle of an AS, highlighting the roles of SACE and AMLAS within this frame-

work. This illustrates how SACE can be used to identify safety requirements for 
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components of an AS, and how AMLAS can then be used for any ML components 

to refine, implement and assure those safety requirements in an ML model. Ensuring 

a sufficient translation from component safety requirements defined from the system 

safety process using SACE to specific ML safety and data requirements using AM-

LAS is crucial to the overall safety of the AS. Traditional safety requirements pro-

cesses will not be sufficient when considering ML components. Neither SACE nor 

AMLAS provide detailed guidance on how to define and structure clear and effective 

ML safety requirements, the criteria for assessing ML safety requirements or  

 

Fig. 2: The decomposition of AS safety requirements. 

 

methods for demonstrating their traceability. This is a significant gap, as poorly 

defined or ambiguous requirements can undermine the overall safety and reliability 

of the AS (Kuwajima et al., 2020; Habiba et al., 2024). 

This paper aims to address key research questions surrounding requirements en-

gineering for ML in safety-critical systems: 

 

• How does Requirements Engineering for ML differ from traditional re-

quirements engineering approaches? 

• What is a safety requirement Specification for ML? 

• What has been done in the field of requirements for ML components? 

• What are the existing gaps and challenges in developing SRs for ML-based 

systems? 
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The next section begins with an introduction to the concept of requirements for 

ML components, highlighting their significance in ensuring safe performance. This 

is followed by a discussion of key challenges in ML requirements, including speci-

fication, variability, traceability, data requirements, the emergence of new  

 

Fig. 3: The scope of SACE and AMLAS. 

 

requirements, and safety metrics. Each challenge is explained in detail, with a 

review of proposed solutions from the literature. The chapter concludes with a dis-

cussion and future directions, where we provide our perspective on these challenges 

from a safety standpoint. Finally, the paper summarizes the key insights and conclu-

sions drawn from this analysis. 

2 Requirements for ML component 

A software requirement engineering process encompasses activities for eliciting, an-

alysing, specifying, and validating software requirements, along with the manage-

ment and documentation of requirements throughout the software product lifecycle 

(Belani et al., 2019). Introducing ML components into systems complicates the re-

quirement development process compared to traditional components that follow a set 
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of predefined requirements (Vogelsang and Borg, 2019). Kuwajima et al. underscore 

the importance of defining clear requirements for ML components, as the absence of 

well-specified requirements can compromise the overall quality of these systems 

(Kuwajima et al., 2020). Additionally, the roles and responsibilities involved in re-

quirement engineering (RE) processes for ML have evolved. For example, ML de-

velopment’s reliance on data highlights the importance of domain expertise through-
out the ML lifecycle, as domain experts play a critical role in ensuring the relevance 

and applicability of the training data, model objectives, and interpretability of results 

(Von Rueden et al., 2021). Despite these transformations, the literature on RE for 

ML components mostly focuses on utilising AI to manage RE (Habiba et al., 2024). 

Furthermore, most of the research that focused on RE for ML does not consider it as 

part of a broader system. 

The ML lifecycle typically comprises several iterative stages that address unique 

challenges distinct from traditional software development (Ashmore et al., 2021). 

The lifecycle starts with a data management stage, which includes data collection 

and preparation, where relevant data is sourced, cleaned, and labelled to ensure qual-

ity for model training. Following this stage is the model learning step, which involves 

selecting and tuning algorithms through experimentation, necessitating collaboration 

among data scientists to optimise performance. Once models are developed, they 

undergo rigorous evaluation based on both quantitative metrics and qualitative as-

pects such as fairness and interpretability. After successful evaluation, models are 

deployed, integrating them into broader systems while optimising for runtime per-

formance and scalability. Finally, the workflow includes ongoing monitoring and 

maintenance, which are essential for ensuring that models maintain their perfor-

mance in real-world conditions and can adapt to changes in data patterns (Amershi 

et al., 2019). 

A fundamental activity in this lifecycle is to specify the requirements for the ML 

component. Requirement development is regarded as one of the most challenging 

tasks in ML development, as noted in several studies (Vogelsang and Borg, 2019; 

Perez-Cerrolaza et al., 2024; Ishikawa and Yoshioka, 2019). In this section, we re-

view the literature on RE for ML, focusing on two key questions: What constitutes 

these requirements, and what challenges prevent the use of traditional methods? In 

this work, we are concerned with the requirements for the ML component, i.e. the 

model and data. The requirements for the development process are not the concern 

of this study. In the rest of this section, we will review the literature on the challenges 

of RE for ML and the proposed solutions to overcome these obstacles. 

2.1 Specification  

Specifying all expected behaviour of ML components may be impractical and unre-

alistic (Pei et al., 2022; Salay and Czarnecki, 2019). However, overlooking this step 
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completely might result in higher costs and complications as demonstrated by two 

examples, one in automotive and one in healthcare, in (Giunchiglia et al., 2023). 

Traditional software systems use fixed definitions for concepts, ensuring consistency 

across the system’s functions. However, ML models lack a standardised approach 
for interpreting concepts; instead, they rely on datasets for training, which can intro-

duce ambiguity and inconsistency in how concepts are recognised. This becomes 

especially evident in tasks such as perception. For example, a pedestrian detection 

function in an autonomous vehicle needs to detect pedestrians in their surroundings. 

However, “pedestrian” is an inherently unspecifiable concept, which leads to chal-

lenges in safety and assurance activities (Rahimi et al., 2019). 

The ambiguity caused by the uncertain concept specification also affects the qual-

ity of the data used to train the ML. The supervised ML algorithms must generalise 

from training data to identify objects. Data labelling is labour-intensive and costly. 

labellers annotate the dataset based on their own concept definition, familiarity with 

the item being labelled. Based on the experiment conducted in (Kulesza et al., 2019), 

people labelling a set of web pages twice with a four-week gap between labelling 

sessions were, on average, only 81% consistent with their initial labels. This incon-

sistency in labelled data significantly contributes to the inconsistencies in input-out-

put patterns which is difficult to detect. 

To address the specification problem, Salay et al. propose a partial specification 

approach to bridge the safety assurance gap of developing ML components (Salay 

and Czarnecki, 2019). They discuss methods through which partial specification can 

be incorporated into the various stages of the ML development pipeline. Addition-

ally, they discuss some safety related properties for specification language such as 

formality, uncertainty accommodation, and appropriateness. For instance, in the au-

tomotive domain, an effective specification language should account for the input 

domain’s characteristics. Representing concepts like pedestrians using pixel infor-
mation from camera images, such as defining them through kinematic wireframes, 

can be both intuitive and practical. This approach has proven successful in pedestrian 

detection methods such as histogram of oriented gradients (HOG) (Dalal and Triggs, 

2005), channel features or deformable part models (Cao et al., 2021). 

To address the concept specification issue in the data labelling for ML training, 

which is referred to as concept evolution, Kulesza et al. propose a structured labelling 

tool that assists the labellers and was proven to improve the consistency of the anno-

tation task (Kulesza et al., 2019). 

A more recent approach for integrating domain knowledge into ML development 

is neuro- symbolic AI (Besold et al., 2021; Gaur et al., 2022; Hitzler et al., 2022). 

This method combines the symbolic reasoning of rule-based systems with the pat-

tern-recognition capabilities of neural networks, allowing structured knowledge to 

complement data-driven learning [9]. In the context of RE for ML, neuro-symbolic 

AI ensures that domain-specific rules and constraints are consistently applied 

throughout the development process. This combination enhances both the robustness 

and interpretability of ML systems, as illustrated by Giunchiglia et al., who 
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demonstrate its effectiveness in applying domain knowledge across all stages of the 

ML lifecycle (Giunchiglia et al., 2023). 

In conclusion, while fully specifying ML components remains impractical due to 

their inherently non-deterministic nature, partial specification presents a viable path 

forward. Defining what constitutes a sufficient partial specification is challenging, 

as it requires balancing formalised constraints with the flexibility to accommodate 

uncertainty and evolving concepts. Runtime verification and monitoring will be es-

sential in bridging the gaps left by partial specifications, ensuring that ML compo-

nents continue to meet safety requirements under dynamic conditions. Incorporating 

domain knowledge into the specification process and enforcing its consistency across 

development can benefit from modern approaches like neuro-symbolic AI, which 

integrates structured rules with data-driven learning to enhance robustness and reli-

ability. Table 1 summarises the keypoints from the literature for the specification 

challenges for ML. 

 
Table 1: Key Challenges and Solutions for ML Component Specification 

2.2 Variability 

ML components must generalise from training data to identify objects under diverse 

and sometimes unpredictable conditions. Such variability necessitates performance 

robustness requirements (Hawkins et al., 2021). For example, a trained model must 

Challenge Description Proposed Solutions 

Incomplete 

Concept  

Specification 

Specifying all behaviours is im-

practical due to ML’s non- deter-

ministic nature (Pei et al., 2022; 

Salay and Czarnecki, 2019). 

Partial specifications: define key re-

quirements with flexibility to ac-

commodate uncertainty (Salay and 

Czarnecki, 2019). 

Ambiguity in 

Concept  

Recognition 

ML models lack standard defini-

tions, leading to inconsistencies 

in concept recognition (Rahimi et 

al., 2019). 

Use intuitive representations (e.g., 

kinematic wireframes) for percep-

tion task (Dalal and Triggs, 2005; 

Cao et al., 2021). 

Inconsistent 

Data Labelling 

Labellers’ subjective interpreta-
tions lead to inconsistent annota-

tions (Kulesza et al., 2019). 

Structured labelling tools improve 

consistency and definition coherence 

(Kulesza et al., 2019). 

Concept  

Evolution in 

Training Data 

Changing definitions of concepts 

affects the reliability of training 

data (Kulesza et al., 2019). 

Continuous monitoring and adaptive 

processes to maintain robustness. 

Lack of Domain 

Knowledge  

Integration 

Traditional ML lacks structured 

integration of domain knowledge 

(Besold et al., 2021; Gaur et al., 

2022; Hitzler et al., 2022). 

Neuro-symbolic AI integrates sym-

bolic reasoning with neural networks 

to apply domain knowledge consist-

ently (Giunchiglia et al.). 
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detect a pedestrian in rainy weather conditions as well as a sunny one, Fig. 4. While 

robustness is a critical requirement for ML systems, a formal definition remains lack-

ing (Drenkow et al., 2021; Freiesleben and Grote, 2023). There may be various rea-

sons and deployment scenarios where robustness is essential, each driving attention 

toward different aspects of this property. This, in turn, leads to a focus on distinct 

sub-types of robustness. 

 
Figure 4: Machine learning algorithms likelihood of failure in presence of adverse weather condition 

increases unless a mechanism is utilised to reduce the noise due to these conditions. (a) input images, 

(b) Enhanced images using algorithm proposed by (Y. Liu, 2021), and (c) the YOLOv4 ML algo-

rithm fails to detect the pedestrian in these two images.  

For instance, in computer vision tasks, robustness against image noise—such as 

Gaussian noise, occlusions, or adversarial perturbations—is particularly crucial 

(França et al., 2021). In contrast, for natural language processing (NLP) systems, 

robustness might involve handling noisy inputs like typos, slang, or ambiguous 

phrasing (Wang et al., 2021). 

Additionally, it must be noted that the same failure modes due to lack of robust-

ness might have different criticalities depending on the operating context. For in-

stance, missing a speed limit sign on an empty highway poses less risk than in a busy 

one, illustrating how situational factors influence requirement prioritisation and spec-

ification. Reflecting this need, Kuwajima et al. argue that attributes tied to opera-

tional scenarios, such as time of day, weather, and road type, should be incorporated 

into the requirements for ML (Kuwajima et al., 2020). Furthermore, a task-aware risk 

assessment of the perception failure of an AV would be helpful in understanding and 

establishing the relationship between the failures in perception and those in naviga-

tion (Antonante et al., 2023). In another work, researchers attempt to specify and test 

robustness against geometric transformations requirements by benchmarking it 

against human perception in autonomous driving applications (Hu et al., 2020). They 

argue that the robustness performance of the ML should match that of a human 
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driver, namely, if a human driver can detect an object under a transformation so 

should an ML component.  

To capture these situational factors systematically, the automotive industry relies 

on the concept of the operational design domain (ODD). Integrating requirements 

with ODD has given rise to new challenges in RE for automotive applications, such 

as determining the appropriate level of detail for ODD features and establishing a 

standardised representation. Furthermore, functionalities that detect entry into and 

exit from different ODDs are now required (Habibullah et al., 2024). Given this de-

pendence on the operational context, RE for ML must adapt to complex and often 

unpredictable system behaviours. This adaptation necessitates requirements that are 

continuously validated and refined throughout the lifecycle to account for changes in 

data, evolving model behaviour, and shifting operational contexts (Amershi et al., 

2019; Belani et al., 2019). 

 
Table 2: Challenges and Solutions for Variability in ML behaviour 

Challenge Description Proposed Solutions 

Variability in 

Environmental 

Conditions 

ML components must generalise to 

diverse, unpredictable conditions 

(e.g., weather, time of day) (Haw-

kins et al., 2021). 

Define robustness requirements 

that address variations in opera-

tional conditions like weather, 

lighting, and road type (Kuwajima 

et al., 2020). 

Lack of Formal 

definition for 

Robustness 

No formal, unified definition for ro-

bustness in ML systems across do-

mains (e.g., computer vision vs 

NLP) (Drenkow et al., 2021; Freies-

leben and Grote, 2023). 

Establish specific robustness sub-

types for various applications, such 

as image noise resilience in vision 

and typo handling in NLP (França 

et al., 2021; Wang et al., 2021). 

Context- 

Sensitive  

Failure Modes 

The criticality of failure modes var-

ies by operating context (e.g., fail-

ure in detecting a speed limit sign) 

(Hawkins et al., 2021). 

Incorporate operational context 

features, like time, weather, and 

traffic conditions, into requirement 

specification and prioritisation 

(Kuwajima et al., 2020). 

Operational  

Design Domain 

(ODD) 

Defining the operational context for 

ML systems is complex and lacks 

standardisation, particularly in auto-

motive applications (Habibullah et 

al., 2024). 

Develop standardised representa-

tion of ODD features and func-

tionalities for detecting transitions 

between different ODDs (Habibul-

lah et al., 2024). 

Dynamic and 

Evolving  

Operational 

Contexts 

ML components must adapt to 

changes in data, model be- haviour, 

and operational con- text over time 

(Amershi et al., 2019; Belani et al., 

2019). 

Implement an iterative process for 

continuous validation and refine-

ment of requirements to accom-

modate dynamic operational con-

ditions (Amershiet al., 2019). 
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2.3 Traceability 

Another issue in RE for systems with ML components is traceability. Unlike tradi-

tional software systems where traceability links between requirements, design, and 

implementation can be well-defined, ML-based systems add complexity due to their 

black box treatment (Pei et al., 2022). Since ML models learn from data and contin-

uously update their responses, establishing direct traceability between initial require-

ments and system outputs becomes challenging. Traceability becomes even more 

elusive as ML models are frequently re-trained and refined, creating a disconnection 

between requirements and the evolving model behaviour over time (Belani et al., 

2019). 

However, despite the importance of this issue, the literature reveals a lack of con-

crete solutions for achieving effective traceability in systems with ML components. 

Instead, the focus is mostly on using ML models to manage the requirements. Still 

even these proposed solutions do not seem practical for industrial adoption (Maro et 

al., 2018). Husen et al. propose a top-down methodology consisting of six different 

modelling techniques including KAOS goal model, UML, STAMP/STPA, and 

safety case analysis (Husen et al., 2022). They then use a matrix to demonstrate the 

related elements between these models. However, they do not discuss the rationale 

behind the relationships or how these models apply. Additionally, Aravantinos et al. 

(Aravantinos and Diehl, 2018) propose replacing conventional low-level require-

ments (LLRs) with deep-neural-network-specific artifacts such as training datasets, 

neural network architectures, and learning configurations. They also propose a do-

main coverage model, similar to ODD concept, to ensure dataset relevancy. How-

ever, further detail is necessary to evaluate the applicability of their work (Aravanti-

nos and Diehl, 2018). A summary of the traceability challenges and solution in ML-

based systems is provided is Table 3. 

 
Table 3: Challenges and Proposed Solutions for Traceability in ML Systems 

Challenge Description Proposed Solutions 

Complex 

Traceability 

Traditional traceability links be-

tween requirements, design, and im-

plementation are difficult to main-

tain in ML systems due to their 

evolving, data-driven nature (Pei et 

al., 2022; Belani et al., 2019). 

Limited practical solutions: focus 

has been on managing requirements 

with ML models (Maro et al., 2018). 

Rich traceability with satisfaction ar-

guments might address this (Dick, 

2002). 

Lack of 

Standardised 

Methods 

Continuous model updates and re-

training causes disconnections be-

tween initial requirements and 

Husen et al. propose a top-down 

methodology with six modelling 

techniques (e.g., KAOS, UML, 
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outputs, com- plicating traceability 

(Belani et al., 2019). 

STAMP/STPA) and matrix- based 

traceability, but without rationale for 

relationships (Husen et al., 2022). 

Evolving 

Model Behav-

iour 

ML systems’ dynamic behaviour 
makes it difficult to trace back to 

original requirements over time (Pei 

et al., 2022). 

Aravantinos et al. suggest using 

DNN-specific artefacts (e.g., training 

datasets, architectures) instead of 

low-level requirements, along with a 

domain coverage model for dataset 

relevancy (Aravantinos and Diehl, 

2018). Further evaluation needed. 

 

2.4 Data requirements  

Since there is a shift for ML components from hard-coded rules to learning-enabled 

models, there is now a new requirement on the data. There have been many works 

that explore this new type of requirement. For example, Hawkins et al. suggest that 

the requirement on data can be categorised into relevancy, completeness, accuracy, 

and balance criteria (Hawkins et al., 2021). Kuwajima et al. state the ISO/IEC 25000 

series mention of system and software quality requirements and evaluation 

(SQuaRE), which defines a set of quality characteristics for product, data, in use, and 

IT service models (Kuwajima et al., 2020). The data quality model consists of char-

acteristics such as accuracy, completeness, consistency, currency, and understanda-

bility. Gauerhof et al. provide a pedestrian detection example to demonstrate how the 

desiderata (desired properties), defined in (Ashmore et al., 2021), can be used to de-

fine a set of safety requirements on the data used for ML development (Gauerhof et 

al., 2020). To further consider the collaborative nature of data requirement develop-

ment, Dey et al. introduce a three-layer framework with a verifiable template for 

eliciting data requirements (Dey and Lee, 2023). Jahić et al. propose a structured, 

domain specific language called SEMKIS-DL that focuses on linking customer re-

quirements directly to dataset construction and neural network (NN) performance 

metric (Jahić et al., 2023). 

While many researchers highlight properties such as correctness, sufficiency, and 

consistency as important properties of datasets, these terms are subjective and call 

for a reference for comparison. In that regard, Barzamini et al. propose a framework 

which develops a benchmark to evaluate the dataset requirements (Barzamini and 

Rahimi, 2022). To the best of our knowledge, this is the only existing work, that we 

found, that looks into this challenge. Their framework, illustrated in Figure 4, 

searches and vets relevant concepts and their variations in a specific domain utilising 

methods such as NLP. On the other hand, the same concepts are identified in the 

dataset. Comparing the coverage of domain concepts specifications and the dataset 
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one, the level of discrepancy between the two determines the quality of the dataset. 

A summary of the challenges and solutions related to the data requirement for ML-

based systems in this section is presented in Table 4. 

 
Table 4: Challenges and Proposed Solutions for Data Requirements for ML Systems 

Requirement 

Type 

Description Proposed Solutions 

Data Quality New requirements focus on data 

relevancy, completeness, accuracy, 

and balance due to ML’s data-

driven nature (Hawkins et al., 

2021). 

ISO/IEC 25000 SQuaRE frame-

work outlines quality criteria like 

accuracy, completeness, con-

sistency, and understandability 

(Kuwajima et al., 2020). 

Safety and  

Relevancy 

Ensuring datasets meet safety re-

quirements are crucial for ML ap-

plications like pedestrian detection 

(Ashmore et al., 2021). 

Gauerhof et al. use desiderata to 

define safety-related data require-

ments for ML development (Gau-

erhof et al., 2020). 

Collaborative 

Requirement 

Development 

Eliciting data requirements involves 

collaboration among stakeholders to 

ensure relevance and completeness 

(Dey and Lee, 2023). 

Dey et al. propose a three-layer 

framework with a verifiable tem-

plate for collaborative data re-

quirement development (Dey and 

Lee, 2023). 

Domain-Spe-

cific Linkage 

Linking requirements to dataset 

construction and NN performance is 

challenging due to subjectivity 

(Jahić et al., 2023). 

SEMKIS-DL, a structured lan-

guage, links customer require-

ments directly to datasets and per-

formance metrics (Jahić et al., 

2023). 

Benchmarking 

and 

Evaluation 

Terms like correctness, sufficiency, 

and consistency need objective 

benchmarks for comparison (Barza-

mini and Rahimi, 2022). 

Barzamini et al.  propose a 

framework to develop bench- 

marks for evaluating dataset re-

quirements (Barzamini and 

Rahimi, 2022). 

 

2.5 Emergence of new requirements 

The need for transparency in ML decisions has introduced new requirement catego-

ries focused on interpretability and explainability (Pei et al., 2022; Habiba et al., 

2024). In safety-critical applications, for instance, stakeholders must understand and 

trust the system’s decisions, requiring RE processes to specify not only functional 
requirements but also interpretability standards that make model behaviour traceable 

and explainable (Rudin, 2019; Doshi-Velez and Kim, 2017). Methods such as model 
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visualisation or employing interpretable surrogate models are being explored to help 

fulfil these requirements, allowing stakeholders to interpret complex ML behaviour 

without compromising performance (Arrieta et al., 2020). 

The integration of ML has also expanded RE’s interdisciplinary scope, requiring 
inputs from fields such as ethics, law, and data security to address concerns around 

bias, fairness, and privacy (Mittelstadt et al., 2016; Raji and Buolamwini, 2019; Lepri 

et al., 2018; Koopman and Wagner, 2017). As ML systems increasingly influence 

areas with societal impacts, capturing requirements that reflect ethical and legal con-

siderations is essential for ensuring fairness and protecting user rights (Holstein et 

al., 2019). 

2.6 Safety metrics 

To evaluate the performance of machine learning models, it is essential to understand 

the fundamental concepts of prediction outcomes. A True Positive (TP) occurs when 

the model correctly predicts a positive instance. A True Negative (TN) is when the 

model correctly predicts a negative instance. A False Positive (FP), also known as a 

Type I error, happens when the model incorrectly predicts a positive instance. Con-

versely, a False Negative (FN), or Type II error, occurs when the model incorrectly 

predicts a negative instance. Using these notions, we can define the most commonly 

used performance metrics (Powers, 2020): 

 

• Accuracy = 
TP+TN

TP+TN+FP+FN represents the overall correctness of the 

model by measuring the proportion of correct predictions (both posi-

tives and negatives) out of all predictions. 

• Precision = 
TPTP+FP measures the proportion of correctly predicted positive 

instances among all instances predicted as positive. It indicates the 

model’s ability to avoid false positives. 
• Recall = 

TPTP+FN Also known as sensitivity, recall quantifies the proportion 

of actual positives correctly identified by the model. It is particularly im-

portant in safety-critical applications where missing a positive instance 

(false negative) could have severe consequences. 

• F1 score = 2 × precision × recall
precision + recall

 Provides a balanced measure by taking the 

harmonic mean of precision and recall. It considers both false positives 

and false negatives, making it useful for evaluating performance on im-

balanced datasets. 

 

Although certain metrics, like recall, can provide partial indications of safety per-

formance, they exhibit significant limitations in safety-critical applications. For in-

stance, as demonstrated by Berry et al. (Berry, 2022), a high or low recall does not 
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directly translate into safe or unsafe ML operation. The relationship between these 

metrics and safety is complex, influenced by factors such as the operational context 

and the quality of the model. This complexity makes developing appropriate safety 

metrics challenging and often application specific. To address these shortcomings 

and incorporate uncertainty into performance metrics for a more conservative safety 

assessment, Herd et al. (Herd and Burton, 2024) propose considering factors such as 

sample size, model calibration, and dataset coverage into these performance metrics. 

4 Discussions and future directions 

The specification challenges associated with ML components in AS are multifaceted 

and deeply interconnected. The emergence of data-driven models introduces unique 

complexities that differ significantly from traditional software systems, necessitating 

a shift in RE approaches. These challenges, such as incomplete concept specification, 

ambiguity in data labelling, robustness requirements, and the lack of effective trace-

ability, are not isolated but form a complex web where each issue impacts and is 

influenced by others. For instance, incomplete or inconsistent concept specification 

directly affects data labelling quality, leading to ambiguous training datasets that 

compromise model performance. This ambiguity exacerbates robustness issues, as 

models trained on inconsistent data may fail under diverse or unforeseen conditions. 

Evolving operational contexts, such as changing weather conditions or varying road 

types (for AVs), further complicate the situation by necessitating continuous updates 

to datasets and model parameters, making traceability even more challenging. Ad-

dressing any single challenge in isolation is unlikely to yield significant improve-

ments; a holistic approach that considers these interdependencies is essential. 

Traceability, a cornerstone of traditional RE, is particularly complex in ML-based 

systems due to their dynamic and data-driven nature. Establishing clear links be-

tween requirements, design, implementation, and verification becomes challenging 

when models learn from data and continuously evolve. Rich traceability frameworks, 

specifically those incorporating satisfaction arguments, offer a promising solution to 

this issue. Satisfaction arguments provide a structured rationale explaining how spe-

cific requirements are met through the system’s design and operation (Dick, 2002). 

By extending this concept to ML, traceability can encompass not only static links 

between artifacts but also dynamic relationships involving data, model behaviour, 

and contextual factors. For example, linking performance metrics to specific data 

requirements and operational scenarios can help ensure that the system remains 

aligned with its intended purpose, even as the model evolves. This approach can also 

aid in validating partial specifications by demonstrating that critical safety and per-

formance criteria are consistently satisfied across different stages of development 

and deployment. 
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Despite these potential solutions, many challenges in specifying and ensuring the 

safety of ML components remain unresolved. Partial specification methods and data 

quality evaluation frameworks provide valuable tools, but they do not fully address 

the inherent uncertainties and evolving nature of ML systems. Robustness require-

ments, for example, still lack a formal, universally accepted definition, and existing 

approaches often focus on specific aspects, such as image noise or adversarial at-

tacks, without considering the broader operational context. Moreover, practical so-

lutions for effective traceability are still in their infancy. While proposals such as 

structured labelling tools and domain- specific languages offer partial solutions, they 

have yet to see widespread adoption in industry. Integrating these tools into existing 

workflows and ensuring their scalability remain significant challenges. 

5 Conclusion 

In conclusion, specifying safety requirements for ML components in AS presents 

a complex and evolving challenge. Unlike traditional software, ML systems intro-

duce new dimensions of uncertainty, particularly in areas such as incomplete concept 

specification, data ambiguity, variability, and traceability. While partial specifica-

tions, structured labelling tools, and emerging frameworks like neuro-symbolic AI 

offer promising approaches, significant gaps remain.  Effective solutions require a 

holistic, multidisciplinary approach that addresses the interconnections between 

these challenges, and considers evolving contextual factors. Continued research and 

collaboration are essential to develop practical, scalable methods that ensure the 

safety of ML-based systems in real-world applications. 

To explicitly address the research questions outlined in the introduction: 

• How does Requirements Engineering for ML differ from traditional 

requirements engineering approaches? 

RE for ML differs from traditional approaches due to the dynamic, data-

driven, and iterative nature of ML systems. Unlike conventional systems with fixed, 

predefined requirements, ML systems rely on training datasets to generalise con-

cepts, leading to inherent ambiguities and inconsistencies in recognising and inter-

preting tasks like perception. Traceability is also more complex, as linking require-

ments to implementation is challenging due to the evolving nature of ML models. 

Additionally, RE for ML requires the integration of domain-specific knowledge, eth-

ical considerations, and adaptability to shifting operational contexts, which are less 

prominent in traditional frameworks. Furthermore, ML development involves itera-

tive processes, including data preparation, model training, and continuous evalua-

tion, demanding ongoing validation and refinement of requirements throughout the 

system's lifecycle. These differences underscore the inadequacy of traditional meth-

ods and the need for tailored RE approaches to address ML's unique challenges. 
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• What is a safety requirement specification for ML? 

A safety requirement specification for ML includes not only traditional 

functional requirements but also specific requirements tailored to the unique aspects 

of ML systems. These include data requirements like relevance, completeness, accu-

racy, and balance, as well as robustness requirements to handle variability in envi-

ronmental conditions and adversarial scenarios. Safety requirement specifications 

must also address traceability by linking high-level system goals to ML-specific 

components, ensuring alignment between design and operational outcomes. Addi-

tionally, interpretability and fairness are critical, as ML systems must provide expla-

nations for their behaviour and ensure unbiased outcomes across diverse user groups. 

Tools like partial specification approaches, structured labelling techniques, and 

neuro-symbolic AI have been proposed to support the development of such specifi-

cations, enabling the integration of domain knowledge and enhancing the robustness 

of ML components in safety-critical contexts. 

• What has been done in the field of requirements for ML components? 

Our survey of the state-of-the-art show significant advancements in meth-

odologies such as partial specifications, use of neuro-symbolic AI, and structured 

labelling tools. These methods address issues like concept evolution and the integra-

tion of domain knowledge, providing a foundation for more robust requirements for 

ML components. 

• What are the existing gaps and challenges in developing SRs for ML-

based systems? 

Existing gaps and challenges in developing safety requirements (SRs) for 

machine learning (ML)-based systems include the lack of formalised and universally 

accepted robustness definitions and effective traceability frameworks. Robustness 

requirements are often narrowly defined, addressing specific aspects like image noise 

or adversarial attacks, without considering the broader operational context of ML 

components. Ambiguity in data labelling and the inconsistent specification of con-

cepts further exacerbate these challenges, as ML models rely heavily on datasets for 

training, which may introduce variability and inconsistency in recognising key ele-

ments. Additionally, existing frameworks like AMLAS and SACE provide valuable 

guidance but fail to offer detailed methodologies for structuring, assessing, and im-

plementing SRs, leaving significant gaps in defining and demonstrating their ade-

quacy and sufficiency. Practical tools, such as structured labelling or domain-specific 

languages, are emerging but remain underdeveloped and lack widespread adoption, 

further hindering the integration of SRs into established workflows. 
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