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Abstract

Sensed data from high-value engineering systems is being increasingly exploited to optimise their operation and

maintenance. In aerospace, returning all measured data to a central repository is prohibitively expensive, often

causing useful, high-value data to be discarded. The ability to detect, prioritise and return useful data on asset and

in real-time is vital to move toward more sustainable maintenance activities.

We present a data-driven solution for on-line detection and prioritisation of anomalous data that is centrally pro-

cessed and used to update individualised digital twins (DT) distributed onto remote machines. The DT is embodied

as a convolutional neural network (CNN) optimised for real-time execution on a resource constrained gas turbine

monitoring computer. The CNN generates a state prediction with uncertainty, which is used as a metric to select

informative data for transfer to a remote fleet monitoring system. The received data is screened for faults before

updating the weights on the CNN, which are synchronised between real and virtual asset.

Results show the successful detection of a known in-flight engine fault and the collection of data related to high

novelty pre-cursor events that were previously unrecognised. We demonstrate that data related to novel operation

are also identified for transfer to the fleet monitoring system, allowing model improvement by retraining. In addition

to these industrial dataset results, reproducible examples are provided for a public domain NASA dataset.

The data prioritisation solution is capable of running in real-time on production-standard low-power embedded

hardware and is deployed on the Rolls-Royce Pearl 15 engines.

Nomenclature

Acronyms

CNN convolutional neural network

CPU central processor unit

DT digital twin

N1 fan speed [%]

GB gigabyte

GTE gas turbine engine

LReLU leaky rectified linear units

MAE mean absolute error

MB megabyte

OS operating system

P30 pressure near compressor exit [psi]
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RAdam rectified Adam optimizer algorithm

T30 temperature near compressor exit [K]

TGT turbine gas temperature near low pressure turbine inlet [K]

Symbols

αn natural log of model prediction standard deviation

B nodel training batch size

d̃ prediction distance score

en difference between model prediction and signal

g neuron activation function

K convolution kernel object

L likelihood function

LL log-Likelihood function

N length of model data window

sj neuron’s temporally convolved signal

S number of signals used by model instance

T number of data samples used by model instance

xn, yn model input data array and output scalar

X, y model input and output dataset

zl

j
neuron output

σn standard deviation of model prediction

µn mean of model prediction

Subscripts

n nth sample of model dataset

j jth neuron of a neural network layer

l lth neural network layer

1.0 Introduction

Equipment monitoring systems rely on rich data streams to make operational decisions on asset

usage and maintenance, but the data can overload communications and require computing that is both

commercially and environmentally expensive [1].

The motivating example of aerospace gas turbine engines (GTE) provides context and motivation

for the development of the methodology. Aerospace GTEs exhibit the problem attributes of complex

machines that must be monitored and maintained in order to ensure reliable operation over long time

periods [2]. GTEs are highly non-linear, dynamic and subject to many internal and external disturbances,

and their behaviour is measured by large raw data streams (>1GB/hour) from an array of sensors. It

is desirable to use the data to inform fleet-wide condition-based maintenance decisions [3], however

communication bandwidth and on-board storage limitations mean that it is not possible to return all

data to ground for comparative fleet analysis. It is, therefore, necessary to reduce the volume of data

returned by a factor of 1,000 times (i.e. reduce data file volume to low MBs for the communication

means available in aerospace systems). Any data prioritisation process must function in real-time using

the existing limited computational resources lest data become unavailable before it can be stored.

For equipment health monitoring, data indicating deviation from design intent is of paramount impor-

tance, whereas ideal nominal behaviour is known to propulsion engineers. Thus we can define important

data as that which is novel relative to design expectation. The digital twin paradigm [4, 5] provides a

useful basis for novelty detection, where an accurate model simulation of an individual ‘as-operated’

machine is used to provide a simulation of a correctly functioning asset.

A common digital twin implementation utilises physics-based models that run in parallel to the

real machine. Physical models have advantages, particularly in terms of explicability and their abil-

ity to extrapolate (when designed correctly). However, they are costly to develop, difficult to tune to
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an individual asset, typically bespoke, and are computationally expensive to run [6, 7]. An alterna-

tive paradigm is data-driven modelling, where a flexible model structure is trained on historical data

to approximate the measured outputs of the machine. Data-driven models are often poor in terms of

explicability and ability to extrapolate beyond the training set – but are more accurate in prediction for

individual assets with a reduced computational burden once trained. It is typical that a digital twin will

need to adapt to a changing physical plant as it ages, is maintained or changes its operational conditions.

This requires a feedback mechanism of data to allow its evolution while also supporting decision making

on when to perform preventative maintenance.

In our proposed framework, digital twins are distributed on both the asset, for access to full data

bandwidth, and on-ground to benefit from fleet data and human decision makers. In this paradigm, we

class any information returned from the machine as redundant if it matches that predictable by the digital

twin. Conversely, any residual difference between data and model indicates value in acquiring the data

for further investigation into potential changes in the machine and environment and for improving the

digital twin model. Thus the effectiveness of detection of machine data novelty relative to its digital twin

is the key determinant of the solution efficacy.

By detecting data that are novel relative to a model we can ensure that only data with information

content is given attention and resources. It is not known how novelty will manifest ahead of time and

therefore we must define normal in order to determine when anomalies occur. This viewpoint is also

particularly useful in the gas turbine context because their high reliability means that the vast majority

of available data are of nominal operation. Further, a prediction approach allows a proxy measurement

for detection in the form of prediction error. This is useful because it provides an indicator of model

performance even when there are limited data with faults available.

The difference between model prediction and measurement, termed the residual, has been widely

researched as a fault detection technique. The difficulty in obtaining an accurate model for the plant

led to significant early work [8] on the development of diagnostic methods with plant observers (using

data measurements to adapt state estimates), and with parity equation approaches decoupling known

disturbances from faults into model subspaces [9, 10]. These methods rely on analytical forms of the

plant, faults and expected disturbances. The difficulties in constructing suitable models for complex

machine behaviour (e.g. its non-linear nature and inter-unit variance) have led to these approaches being

augmented with data-driven ‘tuning’ elements [11, 12] at the cost of increased complexity. Machine

learning offers a more generic, lower cost and faster to market approach, as well as the potential to

accurately capture modelled physics behaviours embedded in the data.

Other researchers have explored full or partial gas turbine anomaly detection (with special interest

paid to anomaly detection in combustors) using the full gamut of machine learning techniques [13].

Deep learning techniques have been of particular relevance to the area in recent years [14–20] due to

their success in other fields. These solutions are not suited to deployment on resource-limited hardware

due to their high computational cost at run-time and/or their memory requirements.

Anomaly detection using limited hardware has also been explored, using remote processing [21],

look-up tables [22] and model-based comparison [23]. These solutions, however, do not readily account

for systems dynamics and hence are unsuitable for gas turbine system anomaly detection.

Non-linearity and high state dimensionality coupled with the variety of operating conditions and

environmental factors presents a data coverage problem for anomaly detection. It is difficult to acquire

enough data to well-defined normal for all possible conditions, environments and modes of operation.

Therefore, we designed our models following Nix and Weigend [24], so that each model predicts a

probability distribution characterised by a mean and confidence.

We propose a solution based on lightweight machine learning models running on the asset to con-

tinuously rank the utility of newly generated data at source and select only data of interest to store

and transmit to synchronise with an on-ground digital twin. There is, therefore, a need for a novelty

detection-based prioritisation method that is capable of running on-board under strict computational

resource limitations. To address this need, in this paper we present a data-driven model and decision

logic that is capable of real-time anomaly detection and prioritisation on embedded hardware.
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Figure 1. On-board architecture. Data from the gas turbine is streamed into a temporary buffer before

being run through the currently loaded models. Data with a higher novelty or lower confidence score

replaces lower ranked items in the data store.

Our research novelty is derived from a combination of a flexible modelling approach (allowing pre-

diction of any input-output path within a machine), a confidence prediction for quantifying uncertainty

in the models, and software that allows for real-time operation on embedded hardware. Further, our

solution is especially flexible as it allows drop-in, and drop-out of models without retraining.

2.0 Methods

Novelty detection methodologies are used to determine the utility, expressed as a data priority, in return-

ing data to the ground. To achieve this, a bespoke convolution neural network (CNN) has been designed

to capture the dynamic behaviour of multi-input and non-linear physical machines. This model allows

rapid update with new data and efficient deployment on embedded computing using model compression

techniques. It acts as both the digital twin and, when deployed on the machine, plays a central role in

the novelty detection mechanism. Other arrangements where the CNN is a surrogate to a physics-based

digital twin, which is updated with novel data, are also equally possible where model explicability is

paramount.

The confidence weighted model error, calculated on windows of time-series data, is used to provide

two rankings. One ranking for the most novel data relative to the model and the second ranking based

on the highest prediction uncertainty. Available communication bandwidth and media costs are used

in decision logic to determine a maximum number of data windows for transmission to ground. Novel

data may be linked to fault modes whereas high uncertainty can be associated with an operating regime

outside of the training set. A fleet-level assessment of the returned data and the use of transfer learning

strategies to update the CNN are discussed in Ref. [25].

2.1 Data prioritisation architecture

Data prioritisation is critical to determine the most informative, and hence potentially valuable, data to

send over a limited communication channel to a centralised fleet management facility. Data are returned

ordered on their novelty until a maximum data volume limit is reached.

The on-board architecture (see Fig. 1) allows real-time streaming of gas turbine data from sensors

(signals) into a local input buffer. The buffer is used to feed data snapshots from a subset of signals of

finite length to N models, where N is selected to provide at least one estimate of each signal needed for

decision making. The model output is a novelty score indexed to the input data, which is passed to the

prioritisation logic. The logic updates the ranked data store replacing lower novelty data snapshots with

more novel data while avoiding exceeding storage limits.
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Each model is designed to predict only a single output, multiple models with different input-output

subsets are then required to run in parallel to provide wide coverage of machine states. For example,

we may predict compressor pressure as a model output based on a short data window of past shaft

speeds, fuel flow and compressor inlet gas temperature. This allows each model to be made lean and

computationally efficient while simultaneously providing a simple way to scale to the computational

resources available without retraining existing models. Training is performed using nominal data to

make a prediction about a single signal given its input subset.

The model also predicts a confidence on its prediction based on the model input. Model inputs that are

not well described by the training data, e.g. the specific engine operates on routes where high altitudes

have not been flown, lead to a low confidence in prediction – thus allowing the distinction between

model errors that arise from the unusual data of interest, and those from previously unseen operating

conditions [24]. The model output forms an anomaly detector, which can be used to rank the novelty

and uncertainty of data generated by the machine.

A storage buffer is filled with the non-overlapping data windows that generate high uncertainty or

error when passed through the model. Once the buffer is filled, replacement of windows with higher

metrics occurs as the live data stream is passed through the model. The data stored can be any sensor

information from the machine and need not be limited to a model input-output subset. Data in the store

may be accessed whenever a data link is available, for example, via satellite link when in-flight, or airport

connectivity when landed. The store may be sized to match memory requirements of the hardware.

2.2 Data modelling

The anomaly detection scheme presented in the previous section is reliant on the existence of models

that can map sensor observations of the input data to observations of output data. Consider a single

input-output data set D = {X, y}, where

y = [y1, y2, . . . , yN]T ∈R
N×1, (1)

X = [xT

1
, xT

2
, . . . , xT

N
]T ∈R

N×m, (2)

where N is the length of the data series and m is the number of sensor signals in the input data. The

input-output mapping is approximated with a function f (·), such that the n’th element of the output can

be modelled as

yn = f (xn) + en, (3)

where en is additive noise that is dependant on the input data.

The estimation of the distribution of the output data is central to the anomaly detection scheme,

allowing the quantification of uncertainty on the estimate. Importantly, the uncertainty is a function of

the input data xn and quantifies the uncertainty in the model in different regions of the input space. The

output distribution is described by a multivariate Gaussian with mean µn = µ(xn) and standard deviation

σn = σ(xn) given by

N
(

yn|µn, σ
2

n

)

=
1

√

2πσ 2
n

e
−

(yn−µn)2

2σ2
n . (4)

In this work, the input dependant mean and variance are estimated simultaneously using a deep neural

network, the design, training and real-time implementation of which are discussed in the remainder of

this section.

2.2.1 Neural network design

Recurrent neural networks are an often-favoured choice when dealing with time-series data, however

their high computational and memory costs make them generally unsuitable to implement on current
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Figure 2. Overview of the network architecture. Number of hidden units and stride size given in brack-

ets, output size given in yellow. The design is flexible such that ‘T’ matches the number of incoming

timesteps in each window and ‘S’ is the number of signals. The ‘Dense Blocks’ are three dense layers

each followed by a dropout layer with rate = 0.5. The number of hidden units (N_X) in different layers

may be adjusted based on the complexity of the input-output set and available computation.

embedded hardware [26]. Therefore, we chose to use a CNN architecture in order to minimise the

computational cost of forward passes and an ability to compress the models for efficient execution on

embedded controllers [27].

The large number of sensors and the complexity of the gas turbine led to our decision to use a flexible

network design that can be adapted to a variety of target input-output data set. Further we also engineered

the design to be flexible in terms of the number of time-steps the network can take as an input. Typically

this requires a large number of extra weights to scale the number of time-steps. Our design uses a con-

strained convolutional layer (the temporal fold) to minimise the computational impact of inputting extra

time-steps. This is especially important as, while some input-output subsets are expected to have short

time-lag relationships, others, e.g. temperatures, may have much longer time constants.

The design is flexible in terms of the number of inputs, which allows for deployment on new data

by non-specialists; no redesign of the architecture is necessary to accommodate different input-output

subsets or timescales. The network architecture takes advantage of skip connections to improve per-

formance at minimal computational cost, dropout regularisation to reduce over-fitting [28], and leaky

rectified linear units (LReLU) throughout. The conceptual architecture is shown in Fig. 2, which is

described in more detail below.

Input Incoming data is treated as a 2D window with length T and width S, where T and S are

time steps and the number of signals for a particular input-output subset respectively. This simplifies

implementation and visualisation as it means the data can be treated in a similar manner to images.

Temporal fold The stage of the network is a 1D convolution in the time dimension, explicitly enforc-

ing feature extraction from individual signals at the lowest level, here named the temporal fold. Denoting

the convolution operator as ∗, the discrete 1D convolution operation is defined as

s[l]

j
=

(

z[l−1]

j
∗ K

)

=
∑

i

z[l−1]

j (i) ⊙ K(i) (5)

where z
[l−1]

j is the output of the j’th neuron at the l’th layer of the network, K is a 1D kernel of appropriate

size and ⊙ is the element-wise product operator. The temporal fold takes the network input as input
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z
[0]

j (i) = xk−T:k with K (i) equal to the ith column of KTF, the temporal fold kernel, with height T , width

1, and depth equal to the number of input signals. The output of the convolution can be seen as a weighted

average over the past T data points for each input channel, where the weighting is defined by the elements

of KTF. The output of the convolution is passed through a LReLU activation function defined as

z[l]

j
= g

(

s[l]

j

)

(6)

g
(

s[l]

j

)

=

(

s
[l]
j if s

[l]
j > 0,

0.01s
[l]
j otherwise

(7)

Squeeze The next stage of the network is the squeeze layer. It consists of a 1 × 1 squeeze convolution

which outputs to a 1 × S convolution and a 1 × 1 convolution, both described by Equation (5) with

appropriately sized kernels and with LReLU activation functions described by Equation (7). This method

is inspired by Squeezenet [29], and replaces the c × c convolution for a 1 × S convolution in order to

significantly reduce the number of parameters to be learned.

Spatial fold The two outputs of the squeeze layer are passed through a 1D convolution described by

Equation (5), where z
[l−1]

j (i) indicates ith element of the row vector z
[l−1]

j and K (i) is the ith element of the

spatial fold kernel KSF. The convolution is therefore performed in the spatial dimension (across the time

convolved signals output at the previous layer). A LReLU activation function is again used. The layer

determines cross-channel features and inter-filter features; these features are multi-signal transforms

that contain increasingly concentrated information essential for novelty identification. The outputs of

the convolutions are flattened and concatenated.

Dense layers – mean prediction: A skip connection is performed, where the output of the spatial

fold is concatenated with the flattened original input. The concatenated outputs are then passed into a

series of three dense layers described by

z[l]

j
= g

(

Wz[l−1]

j
+ b

)

(8)

where W and b are parameters to be learned and g(.) is the LReLU activation function defined by

Equation (7). A dropout layer with rate = 0.5 is placed after each dense layer to reduce over-fitting

during training. The output is a single value that is a mean estimate of the output for the given network

input.

Dense layers – confidence prediction: A further skip connection is performed where, again, the

output of the spatial fold is concatenated with the flattened original input, but here the mean estimate

is also concatenated. This is then passed through into a series of three dense layers and produces an

estimate of the log output standard deviation.

2.2.2 Neural network optimisation

Optimisation of the model weights of a deep neural network requires an optimisation cost function.

Considering the model described by Equation (4), it is simple to construct a likelihood function as

L=

B
∏

n=1

N
(

yn|µn, σ
2

n

)

, (9)

where B is the batch size. Maximisation of the likelihood is equivalent to the minimisation of the negative

log-likelihood

LL= −
1

B

∑B

n=1
ln

(

1
√

2πσ 2
n

e
− 1

2

(

(yn−µn)2

σ2
n

)

)

(10)

=
1

B

∑B

n=1

(

1

2

(

(yn − µn)
2

σ 2
n

)

− ln(σn) −
1

2
ln(2π)

)

(11)

which is used as the cost function for optimisation [24].
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Optimisation was performed using the rectified Adam (RAdam) algorithm [30, 31] combined with

early stopping on a separate validation data split. The parameters of the rectified Adam algorithm were

varied depending on the input-output subset based on experiments with the validation set. RAdam was

selected based on its performance relative to a small pool of candidate optimisers.

The network outputs the mean, µn, and the confidence αn = ln(σn). The re-parameterisation enforces

σn > 0 to ensure that the network output is always valid. σn is regenerated after the forward pass using

σn = eαn . The assumption of normally distributed residuals is reasonable, given that we expect random

fluctuations from sensor readings.

This confidence estimation approach is based on the work of Nix and Weigend [24] and similar to

more recent work e.g. bounding box estimation in computer vision [32]. Other approaches to uncertainty

estimation in neural networks include using dropout at run-time [33], using ensembles as a prediction

scatter and Bayesian neural network solutions. We utilise the explicit estimation approach since it allows

us to enforce a Gaussian confidence estimation while retaining the greater flexibility of non-Bayesian

neural networks and fast run-time of a single network solution, hence allowing on-board implementation.

2.2.3 Model and hyper-parameter selection

In order to ensure a neural network was an appropriate model choice, a number of simpler models

were tested on real engine data as a benchmark. These models included lasso, ridge, elastic net linear

regression and regression forests. Each was found to perform worse than the neural network solution

and naturally lacked the ability to estimate confidence. Typically it was possible to train these models

to work well at a local scale, performing the same or better than the neural network over small portions

of the data, but considerably worse elsewhere indicating a tendency to over-fit to the training data and a

lack of generalisation.

Network hyper-parameters were selected based on starting values from the literature followed by

jittered grid search and manual tuning. Validation set (not test set) data was used to evaluate performance

and inform selection. More information on the hyper-parameters are included in Appendix A.

2.2.4 Model comparison and data prioritisation

The system-level assessment of abnormality relies on being able to compare measurements to the outputs

of any number of different models where each model may have a different output range. This is achieved

by treating outputs of the network as a multivariate Gaussian and adopting the Mahalanobis distance

[34]. Since each model is independent, such that the co-variance matrix is diagonal, the Mahalanobis

distance reduces to standardised Euclidean distance. This leads to the consideration of the squared dis-

tance in Equation (12), referred to as the novelty score, that retains the intended functionality, but can

be computed quickly in an online context.

d̃(yn, µn, σn) =
(yn − µn)

2

σ 2
n

, σn = eαn (12)

A gas turbine control system has existing data validation to detect measurement errors and marking

signals as invalid. Models will not be executed in such sensor fault cases, and it is therefore important to

have a diverse set of models which require different inputs to ensure availability of novelty assessment.

2.2.5 Real-time implementation

Deployment to embedded hardware was achieved via an application written in C++. The TensorFlow

Lite [35] library was employed to ensure fast forward-passes of all models. This process transforms a

trained flexible machine learning model into a limited inference only model with a lightweight compute

engine. To maximise performance, no model specific optimisation (e.g. neither quantisation nor pruning

[27, 36, 37]) has been applied since the memory footprint was within the computational constrains of our
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Figure 3. Solution architecture. Data is continuously assessed for novelty by an on-board twin syn-

chronised with a ground-based digital twin. Novel data is returned and triaged before re-training the

on-ground twin.

on-board computing system. The model is integrated into efficient input and output circular buffering

functions that is accessed by the prioritisation decision logic.

Design assurance for the application was achieved via a combination of automated code analysis (via

CLang format), automated testing, memory profiling (via Valgrind) and static analysis.

In order to evaluate performance, internal timers were used around the critical code sections in order

to monitor data load and data evaluation times (model runs combined with data prioritisation), which

are reported later in this paper.

2.2.6 Distributed digital twin updating

Figure 3 represents our closed-loop data acquisition architecture based on distributed digital twins. The

asset specific digital twin parameters are synchronised with a ground-based counterpart so as to track

evolving asset behaviour and maintain novelty detection performance. The increased off-board compute

power is exploited to retrain the model with a training data set of historical asset and fleet data, which is

augmented with new data once it is verified by fleet-based novelty assessment and operators [25]. New

data are transferred to ground after an on-board assessment of high novelty or prediction uncertainty.

For example, a new aircraft route may result in the engine operating (unfaulted) at new conditions where

predicted behaviour must be extrapolated from the training data, and thus result in high prediction uncer-

tainty. It is desirable to use this data to produce an updated set of model parameters through off-board

training, and then use bidirectional communication to update the on-board model. The updated model

will no longer need to extrapolate if similar operations are again performed, thus similar predictions

will be confident and no data needs to be transferred to ground. The full set of off-board data (including

that from other engines in the fleet) may be used, as is common practice, to perform fault diagnosis and

monitoring of the received data. Additionally, the off-board digital twin may used for long-term asset

trending and prediction of required maintenance events.

3.0 Data sets

The effectiveness data prioritisation is dependent on the performance of machine data novelty relative

to its digital twin. Two different time-series data sets were used to validate the CNN model predictions

for a variety of signal types and its performance in identifying data of high novelty.
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Each data set was split into three subsets: training, validation and test. Test data was used solely for

evaluation and, unless otherwise specified, consisted of the most recently recorded data. Training and

validation data was drawn from earlier data randomly. This split setup mimics real-world applications

where only past data is available and models must be deployed to an aircraft. In all cases, the training

set was used for the determination of scaling, and the only data directly available to the networks for

learning. The validation set was used for early stopping and for hyper-parameter tuning while the test

set was kept solely for evaluation.

NASA turbofan degradation dataset [38]. This public dataset is made available from a prognostics

competition aimed at assessing the quality of remaining useful life prediction algorithms. Specifically,

subset “FD002” was used, which contains data on synthetically modelled gas turbine degradation over

six different operating conditions. There are three input signals: altitude, air speed and thrust setting. The

data simulate one measurement snapshot of each measured signal per flight to characterise an engine’s

performance during that flight. For the selected dataset, 519 different engines with different initial health

conditions were simulated over increasing synthetic degradation, with each engine termed a simulation

‘run’. Our training data contained only low degradation and no failures, while the test set had progressed

to failure conditions near the end of the simulation run. Further, only the first half of each run was used

during model training to only learn normal engine behaviours. We use this data to illustrate the ability

of the model to represent an arbitrary time-series different from the high-bandwidth streamed data and

detect the emergence of novelty.

In-service fault case study. This case study, provided by Rolls-Royce, includes continuous data

1 Hz from a twin-engine aircraft across 116 flights. These data, in contrast to the NASA dataset, contain

engine dynamics and real-world disturbances, but with a relatively low level of degradation and only

one engine. There is one known anomaly in this data (validated by domain experts to occur on the 113th

flight) as well as several other potential fault symptoms that manifest as data anomalies discovered by the

model. Only one engine from the aircraft is used for modelling so as to represent the real aircraft avionics,

which do not allow real-time access to signals from both engines by design, though validation from

both engines post-test was performed. The data presented here have been normalised and anonymised

to protect the interests of parties that supplied it. In this paper, the dataset has been reduced to four

signals for clarity, these being: engine fan speed (N1), compressor exit pressure (P30), high pressure

turbine gas temperature (TGT) and compressor exit temperature (T30).

4.0 Results and discussion

4.1 NASA turbofan degradation

A model was trained for each of the 21 sensor signals contained in the dataset using the modelling

approach described in Section 2.2. The three input signals as described in Section 3.0 were used as input

to the models. The inputs cause the engine to operate in six distinct operating modes or conditions. Only

data associated with nominal operation was used for training – and hence the digital twin represented the

nominal response of the system. The data consist of one measurement snapshot per flight, the window

length was therefore set to 1 i.e. only considering the most recent data and without information on engine

dynamics.

Validation of the model accuracy was performed using data from the ‘low degradation’ validation

dataset. The models achieved a mean absolute error (MAE) of 0.029 ± 0.034 (normalised range) across

all 21 sensors and across all the engines. Testing was then performed on the remaining data.

In the test data, it is known that the turbofan engine degrades to a failure state at the end of each

run. The growth in plant-model mismatch is measured by the novelty score d̃, given by Equation (12).

This metric provides a measure of novelty resulting from the increase in degradation towards the end

of each engine run. The novelty score d̃ is calculated over the outputs of each of the 21 models. Each

engine run is separated into 10 equally sized segments of testing data (based on time). The change

in the distribution in d̃ can clearly be seen to increase in terms of the mean, variance and maximum
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Figure 4. (a) Distribution of the novelty score d̃ based on position within a test run. Larger means,

variances and maximum values are observed towards the end of runs where faults occur. (b) Maximum

values of the novelty score d̃ across all model outputs for a single engine run. The operating condition is

indicated by colour. (c) Prediction error, y_n-µ_n, for Sensor 13 over a single engine run. (d) Standard

deviation, σ_n, for model predictions on Sensor 13.

values across each data segment, see Fig. 4a. In addition to a visual inspection, the distribution of d̃

is compared for the first and second half of each run contained in the test data, for each engine. The

statistical comparison is made using a Mann-Whitney U test (since there is no guarantee of normality)

under the null hypothesis that both sets came from the same distribution. The two sets of distributions

were determined to have different shapes with a p value ≈ 0 (< 10−308). The mean of the first part

of the runs was 0.980 while the latter portion was 3.466, thus demonstrating that the model provides

output allowing correct prioritisation of this data by predictive error. A large variance in d̃ is observed

in the later data segments. This large variance is explained by an analysis of the operating conditions

towards the end of the training data. It can be observed that model outputs associated with operating

condition 4 are significantly lower than for the other operating conditions, as seen in Fig. 4b.

The comparatively low value of d̃ for operating condition 4 should not be confused with a good

model prediction. In fact, the model predictions for data associated with operating condition 4 are con-

sistently worse than for the other conditions, see Fig. 4c which shows the prediction error, yn − µn, for the

model predictions on sensor 13 only. The standard deviation of the model predictions across operating

condition 4 are significantly larger in comparison to the other conditions, Fig. 4d.

The novelty score for data under each operating condition, except for operating condition 4, increase

as degradation increases. In operation of the digital twin-based novelty detection, this would correctly

trigger an alert and identify the degradation. The models are bad predictors for operating condition 4

leading to a high uncertainty, which would cause these points to be prioritised for data capture in order

to improve the model in the future. This is a desirable behaviour as it reduces false alerts where there is

a lack of knowledge – even if in this case it misses degradation.

These results illustrate that the modelling process and prioritisation methodology are applicable to

a time series of static snapshot generated by a time-varying process. The model flexibility allows the

approach to be applied without structural changes to dynamic data, as shown in the next section. The

above results can be recreated using the code that accompanies this manuscript.1

1The code to reproduce these models and results on the NASA data-set is made available alongside this paper:

https://doi.org/10.15131/shef.data.21695048
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Table 1. Model prediction performance.

Output Signal MAE Unit

N1 0.085 % of max speed

P30 0.715 psi

TGT 1.754 K

T30 0.872 K

Figure 5. Normalised signals for the flight with the confirmed fault. The highlighted timespan in the

top graph is enlarged on the bottom graph. The spike in the internal pressure signal (P30) in the bottom

graph is a result of a known fault as is all behaviour afterwards. The temperature T30 is an internal

temperature detected in the same locale as P30, N1 is the low-speed shaft and TGT is the turbine gas

temperature.

4.2 In-service fault case study

This case study concerns the emergence of a real fault that was detected in service and has been con-

firmed by other health monitoring systems and domain experts at our industrial partner. No precursor

warning of this fault was given by the existing health monitoring system. The symptoms were noted as

being most prominent in the compressor exit pressure (P30) and related engine systems. The initial spike

(at time point 12,000) is most prominent, although not unique in the dataset, and after the spike, engine

behaviour changes to an anomalous mode for the rest of the flight, see Fig. 5. Four models were trained

using the scheme described in Section 2.2.1, one for each of the four signals shown in Fig. 5. Given the

fault was known to occur at 11th flight, the first 60 flights were used for training, thus avoiding fault data

being included in the training set. The inputs to each model are the three signals not predicted for, see

Appendix B for more details. The prediction performance was evaluated across the test set in terms of

MAE in the original signal range. This demonstrates that the models performed exceptionally in terms

of predictive error (see Table 1).

Several interesting properties of the solution are observed from the models’ signal predictions at the

time region around the known fault (see Fig. 6). Firstly, the fault, and the ensuing anomalous behaviour,
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Figure 6. Top four graphs: prediction around the fault, in descending order of the novelty score d̃.

Highlighted regions indicate a 95% confidence interval (predicted). Bottom graph: d̃ for each model

around the fault.

is clearly detected by the model. Secondly, the dominant novelty score (highest magnitude) for this fault

is observed in the model predicting N1, despite the fault being most prominent in the P30 signal. This

indicates that it is possible for the model to detect anomalous behaviour in signals not being directly

predicted. Further, this indicates that the solution could detect anomalies in a wide range of signals with

a small number of models if the set of inputs and outputs is designed well.

In contrast, the T30 model (which also uses P30 as an input) is significantly more accurate in predic-

tion, and therefore assesses the data as less anomalous. During the fault, T30 still maintains the same

relationship with P30, so while using a signal as a model input may allow detection of faults that mani-

fest in that signal, it does not guarantee it. The residual signature across all models is of high diagnostic

value, in this example pressure and temperature (P30 and T30) are physically correlated, thus making a

sensor fault the most likely fault cause.

Thirdly, the confidence intervals for all the models remain self-similar, with the exception of the

P30 and TGT model during the initial spike, showing that the training data covers a sufficient range

of operating conditions to allow signals to be accurately predicted in this region. The large confidence

interval around the initial spike in these models demonstrates that this is the only section (from those

tested) that includes data outside previously seen ranges. A large confidence interval may be an indication

that something unusual is occurring; however, since these regions do not appear in training data, it is

not reasonable for the system to identify them as highly anomalous unless the error is also very high.

The fault shown in Figs. 5 and 6 is the only fault in the data that has been previously detected; how-

ever, the solution was able to identify multiple potential precursor events that show the same signature

as the known fault, but without the initial spike. These were detected in the data from three flights prior

(Fig. 7), and six flights prior, to the known fault event occurring. These events were not detected by cur-

rent health monitoring systems, however, compared to the other (assumed correctly functioning) engine

on the aircraft, they present the same fault signature [39]. The high magnitude of d̃ for these precursor

fault data segments (d̃ > 100) means they are stored and ranked highly for transmission to ground for

further analysis, and thus providing an opportunity to take early action to mitigate the emerging fault.

The novelty score for the flight containing the known fault (flight 113), as well as the following

flights, are observed to be distributed differently from the normal flights, see Fig. 8. The precursor faults
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Figure 7. Potential precursor fault, three flights before known fault.

Figure 8. Distribution of d̃ across test flights. The known fault has a large amount of mass at a much

higher novelty scores than other flights, and potential precursors show smaller mass at similar nov-

elty scores (d̃ > 100). Flight 111 also exhibits high novelty score density due to irregularity in the

shaft speed signal not found in other flights. Red lines represent a threshold for data collection, set

by communications capacity. Anomalous data with high novelty score is prioritised.

also show a similar, though less pronounced, shaped distribution with a second peak at d̃ > 100. Data

prioritisation is based on the novelty score, with a flight specific threshold (shown in red on the figure)

for the data volume returned is set by the limited communication capacity. The data to the right of the

threshold contains the unusual behaviours and is collected for off-board analysis.

Flight 111 also demonstrates an anomalous distribution; this is due to unusual behaviour in the shaft

speed signal, which is not found in other flights. It is unclear whether this is a fault symptom or an

unusual but harmless behaviour. This highlights the benefit of data prioritisation, over binary labelling

since an operator can review the data to make the final determination on asset health. Under conventional

on-board alerting schemes, a static threshold set to capture the faults and pre-cursors (at d̃ > 100) would

not alert to this unusual behaviour.

As well as identifying the potential faults, the system is also effective at collecting data from regions

where training data is sparse (see Fig. 9). This figure shows the distribution of the training and test data of

the in-service fault case study. Specifically, the distribution of the inputs of the network that predicts P30

are plotted in two dimensions after applying principal components analysis. In this plot the confidence

interval increases in regions where the training data is sparse. In other words, the prediction uncertainty
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Figure 9. P30 prediction confidence for different inputs. The test data is coloured based on confidence.

Large values indicate a wide confidence interval. Black points show the distribution of the training data.

increases for previously unseen inputs. Highly uncertain data are prioritised for collection and can be

used to update the model to improve its prediction.

4.3 Real-time performance

The application was deployed on an industrial grade Xilinx Zynq XC7Z020, with a custom Linux OS

running on the device’s ARM Cortex A7 microprocessor. In order to test real-time operation, the models

designed above were deployed to the device and constrained to <= 20% of CPU time. The communica-

tion channel was assumed to be limited to only 50 data windows per ground data transmission, thus an

output buffer of size 50 windows was configured. A synthetic data set of 25 signals over 100,000 time

points was sent to the device.

The actual processing time for each run was recorded; a run consisted of all currently uploaded mod-

els being run once, the novelty score being determined and the output buffer being updated if necessary.

The other primary resource-intensive operation, input retrieval and clean-up, was orders of magnitude

smaller than that of a run (∼ 25µs), and not included in the timing calculation.

Figure 10 shows the distribution of run durations when the 20 models used to evaluate the NASA

data set were used and Fig. 11 when the 4 models used to evaluate the in-service fault case study data

set were used.

Both histograms have a long tail caused by the fact that the software runs on a non-real-time operating

system (unpredictable system interrupts), which is why they are curtailed at the 95th quantile. These

results show that the application is capable of operating in soft real-time e.g. all 20 of the NASA case

study models could be run simultaneously on data at up to ∼ 50Hz and the fault case study models could

be run at up to ∼ 500Hz, including all overhead.
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Figure 10. 95th quantile of run durations for the NASA turbofan degradation data. Smaller peak likely

caused by cache hits.

Figure 11. 95th quantile of run durations for the fault case study data. Smaller number of models and

overall smaller model size relative to NASA data case study lead to the lower average run duration and

likely the reversal of shape due to more cache hits.

5.0 Conclusion

We have presented a data-driven data prioritisation design that runs in real-time on low-power embedded

hardware. Prioritised data enables the updating of an on-ground digital twin and supports engine health

monitoring decisions.

The system prioritises data based on real-signal prediction of an on-board digital twin constructed

from an elastically sized ensemble of models. A flexible neural network design is presented that is used

to build models for the ensemble from any input-output set and window length without the need for

architecture changes. Execution on embedded system hardware has practically demonstrated a com-

putationally inexpensive method for detection of unusual behaviour in real-time. The efficacy of the

detection has been demonstrated on both real time-series and synthetic snapshot data, plus its real-time

operation on embedded hardware has been proven and characterised. Further, the architecture is flexi-

ble and allows for deployment on new systems with minimal need for in-depth domain knowledge. The

data prioritised by the on-board digital twin is returned to ground as part of a novel fleet monitoring

architecture that overcomes communication bandwidth limiting the operator analysis of valuable health

monitoring data.

Our research novelty is derived from its combination of a flexible modelling approach (allowing

prediction of any input-output path within a machine), a confidence prediction for quantifying uncer-

tainty in the models, and a custom CNN design that allows for real-time novelty analysis on embedded
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hardware of data streams at 100s of samples per second over multiple signal channels. The solution will

be deployed on-board in an upcoming flight test program, and future work will focus on analysis of the

data returned by this test.
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Appendix A Network reproduction

The loss function (Equation 11) was simplified and reordered for batch-wise implementation since the

model’s confidence output α = log(σ ) rather than σ:

LL=
1

2

N
∑

n=1

(

yn − µ

eαn

)2

−

N
∑

n=1

αn −
1

2
log(2π) (13)

where N is the batch size. The final term is constant and could therefore be dropped for computational

efficiency, although it was kept during our work to keep the meaning of the equation intact.

Important network hyper-parameters not mentioned elsewhere:

• LReLU α = 0.3

• Dropout rate = 0.5

• Convolutional layers

– Each used 64 filters in the NASA study

– Each used 32 filters in the fault case study

∗ An optimisation found to cause minimal performance loss while reducing computation

– Padding irrelevant for 1x1 blocks, ‘same’ used internally

– No padding for temporal and spatial fold blocks
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Figure 12. Neural network architecture with seven input signals and a 10 second window.
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∗ Used to reduce the size of the input

∗ Equivalent to ‘valid’ padding

• Each dense layer had 64 hidden units for the signals tested

• Early stopping patience was 10 epochs without improvement

• RAdam parameters (adjusted based on validation data for each signal)

– Learning rate 1e − 3 to 1e − 5

– Min learning rate 1e − 5 to 1e − 7

– Total steps 50, 000 to 200, 000

– Warm-up proportion 0.1 to 0.5

An example implementation of the architecture used on our testing for seven inputs, looking at 10

seconds of data per window is shown in Fig. 12.

Appendix B Notes on data preprocessing

The same process was applied to each dataset:

• Data was scaled to the range [0,1]

– Based on 2% to 98% quantiles in the training set

Appendix C In-service fault case study

The four models were:

• P30 (internal pressure) from outside temperature, outside pressure and N1

• TGT (Turbine Gas Temperature) from outside temperature, outside pressure, P30 and N1

• T30 (internal temperature) from outside temperature, outside pressure, P30 and N1

• N1 (speed of low speed shaft) from outside temperature, outside pressure and P30
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