
This is a repository copy of The P3 Explorer:An Open Database of Performance,
Portability, and Productivity.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/222455/

Version: Accepted Version

Proceedings Paper:
Smith, Matthew, Wright, Steven A. orcid.org/0000-0001-7133-8533, Lantra, Zaman et al. (1
more author) (2025) The P3 Explorer:An Open Database of Performance, Portability, and
Productivity. In: 33rd Euromicro International Conference on Parallel, Distributed, and
Network-Based Processing. 33rd Euromicro International Conference on Parallel,
Distributed, and Network-Based Processing, 12-14 Mar 2025 , ITA

https://doi.org/10.1109/PDP66500.2025.00079

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse
This article is distributed under the terms of the Creative Commons Attribution (CC BY) licence. This licence
allows you to distribute, remix, tweak, and build upon the work, even commercially, as long as you credit the
authors for the original work. More information and the full terms of the licence here:
https://creativecommons.org/licenses/

Takedown
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

The P3 Explorer: An Open Database of

Performance, Portability, and Productivity

Matthew A. Smith, Steven A. Wright

Department of Computer Science

University of York

York, UK

{ms3408,steven.wright}@york.ac.uk

Zaman Lantra, Gihan Mudalige

Department of Computer Science

University of Warwick

Coventry, UK

{zaman.lantra,g.mudalige}@warwick.ac.uk

Abstract—This paper introduces a web-based tool designed
to organise and present visual representations of performance,
portability, and productivity (P3) data from previously published
scientific studies. The P3 Explorer operates as both an open
repository of application performance data and a data dashboard,
providing visual heuristic analyses of performance portability
and developer productivity, created using Intel’s P3 Analysis
library. The goal of the project is to create a community-led
database of P3 studies to better inform application developers
of alternative approaches to developing new applications that
target high performance on diverse hardware, considering the
productivity of the developer. In this paper, we evaluate our tool
using a recently published study outlining a performance portable
domain-specific language for particle-in-cell applications.

Index Terms—High Performance, Performance Portability,
Developer Productivity

I. INTRODUCTION

High Performance Computing (HPC) plays an important role

in the field of computational science, and is used for a wide

range of computationally intensive tasks across the engineering

and science disciplines. For the past decade, heterogeneity has

been one of the driving forces behind the push towards, and

beyond, Exascale computing (i.e. 1018 FLOP/s). The largest

HPC systems in the world now derive the vast majority of

their computational power from accelerators, such as GPUs.

Extracting high performance from such accelerators typ-

ically requires an alternative approach to application devel-

opment, such as the use of language extensions like CUDA.

Porting applications to these architectures is an arduous task,

and in some cases an application developed for one accelerator

architecture may not run or may not achieve high performance

on another accelerator architecture.

The need to maintain application portability, and in particu-

lar performance portability [1], has led to the development of

a number of competing parallel programming paradigms that

aim to deliver portability from a single-source code base [2].

Evaluating the performance of these programming approaches

on a range of different hardware has been the focus of many

previous scientific studies [3]–[13].

While each of these studies provides guidance to appli-

cation developers, the conclusions are typically specific to

an application, a platform, and/or a development approach.

This paper presents a tool designed to provide a holistic

view of these performance studies; firstly, through an open-

source repository of scientific data, and secondly through a

visualisation dashboard, designed to showcase performance,

portability, and productivity (P3) data with plots and insights

automatically generated using Intel’s P3 Analysis Library [14].

Specifically, this paper makes the following contributions:

• We introduce an open GitHub repository for archiving

performance, portability, and productivity data for HPC

application from published scientific studies;

• We present the P3 Explorer, a data dashboard for visu-

alising P3 data for published scientific studies [15];

• Finally, we demonstrate our tool with a recent study [16],

demonstrating the insights that can be generated by the

P3 Analysis Library and our visualisation pipeline.

The P3 Explorer provides an interface for application develop-

ers to assess a variety of approaches to developing new parallel

software with the goal of maximising performance, portability,

and productivity.

The remainder of this paper is structured as follows: Sec-

tion II provides an overview of related work and an introduc-

tion to the concepts explored in this paper; Section III outlines

our data repository and the P3 Explorer interface; Section IV

presents a case-study of the CabanaPIC application using our

exploration tool; and finally, Section V concludes this paper.

II. RELATED WORK

HPC hardware is diversifying, and there is a proliferation

of parallel programming models that target heterogeneous

systems, containing GPU accelerators from vendors such

as NVIDIA, AMD, and Intel. In recent years, there has

been a focus on measuring and evaluating the performance,

portability, and productivity of approaches to parallel pro-

gramming [1], [17], [18]. Developing and subsequently main-

taining applications that achieve high performance, and are

portable between architectures from different manufacturers

is a difficult task, and has been the subject of numerous

recent surveys [2], [19]. Moreover, developing maintainable

performance portable applications has been a focus of both

the Exascale Computing Project [20], [21], and the UK’s

ExCALIBUR programme [22].

A. Evaluating Performance, Portability, and Productivity

There are numerous well-tested metrics for assessing the

performance of a scientific application, including application

runtime, FLOP/s, or memory bandwidth. Assessing the porta-

bility of an application, or developer productivity is typically

much more difficult.

While portability could be considered a binary metric – an

application either runs correctly or it does not – in this work

we consider the more nuanced metric outlined by Pennycook

et al. [1] that provides a view of how well an application

runs across multiple platforms. In Equation 1, the performance

portability PP, of an application a, solving problem p, on a

given set of platforms H , is calculated by finding the harmonic

mean of an application’s efficiency (ei(a, p)). Efficiency is

a measure of either the achieved performance against the

best recorded (possibly non-portable) performance on each

individual target platform (i.e. the application efficiency), or

the achieved performance against the theoretical maximum

performance achievable on each individual platform (i.e. the

architectural efficiency).

PP(a, p,H) =

|H|
∑

i∈H

1

ei(a, p)

if i supported ∀i ∈ H

0 otherwise

(1)

This metric provides us with an objective view of portability,

where an application that runs but performs badly will have

a lower performance portability score than a more performant

alternative, and should an application fail to run on a particular

platform, it will achieve a score of zero.

Measuring developer productivity is more difficult still,

but in our tool we use the code divergence metric proposed

by Harrell et al. [18], and adopted by Intel’s P3 Analysis

Library [14].

CD(a, p,H) =

(

|H|

2

)−1
∑

{i,j}∈H×H

di,j(a, p) (2)

In Equation (2), code divergence is a measure of the average

“distance” between the source code required to compile an

application a, and execute problem p for each pair of platforms

in H , where di,j(a, p) is any distance metric between two

source codes. Pennycook et al. [17] suggest using the Jaccard

distance (shown in Equation (3)), where ci(a, p) represents

the set of source lines required to compile application a and

execute problem p on a given platform i.

di,j(a, p) = 1−
|ci(a, p) ∩ cj(a, p)|

|ci(a, p) ∪ cj(a, p)|
(3)

These metrics provide a single data point for performance

portability and developer productivity that may be useful in

assessing a particular approach to developing performance

portable applications. However, to provide a more holis-

tic view of performance portability and developer produc-

tivity, our dashboard visualises these data using cascade

plots and performance-portability code-convergence (PP-CC)

charts [17]. These allow users to better evaluate the P3

properties of an application visually.

B. Previous P3 Studies

There are a number of studies focused on “the three Ps”,

with many of these focused on the evaluation of a particular

programming model, language, or compiler. One of the earliest

approaches to portable heterogeneous application development

is OpenCL; Pennycook et al. evaluate the performance of

the LU mini-application from the NAS Parallel Benchmarks,

demonstrating the importance of selecting the right data layout

for each target platform [9].

Applications from the UK Mini-App Consortium (UKMAC)

have been the target of numerous studies, demonstrating

the performance and portability of OpenMP, MPI, CUDA,

OpenACC, Kokkos, RAJA, and the OPS and OP2 domain-

specific languages [4], [8], [10], [12].

Asahi et al. evaluate the performance portability of a Vlasov

code using OpenACC, OpenMP, and Kokkos across a range

of CPU and GPU platforms [13]. Deakin et al. track the

efficiency of various approaches to developing performance

portable software over a number of years, showing the growing

maturity of various software stacks [3].

The SYCL programming model has been the focus of a

number of recent works, in particular evaluating the maturity

of SYCL compiler toolchains [6], [7] and the performance of

the programming model at Exascale on the Aurora system [5].

Of particular note, the work by Rangel et al. includes an eval-

uation of productivity, in addition to performance portability,

showing that SYCL can deliver portability with little to no

code divergence between platforms [5].

III. THE P3 EXPLORER

The P3 Explorer consists of two components: (i) a P3 data

repository for storing study data alongside detailed artifact

descriptions; and (ii) a data dashboard, displaying visual

representations of P3 data for comparison and analysis [15].

Application developers can explore the dashboard to gain an

insight into historic data to better inform their own approach

to application development – primarily focused on which

programming approaches to apply to maximise efficiency over

a broad range of hardware, while considering the impact on

developer productivity. The dashboard is available at https:

//p3-explorer.github.io.

A. The Data Repository

The data repository stores user-submitted data, consisting of

performance and productivity results, and associated metadata.

It is stored on the main branch of a GitHub repository, with all

submitted data located within a “submissions” directory. This

directory is structured as shown in Figure 1, with a directory

for each scientific application.

Each unique application has its own directory, containing

an associated TOML file of metadata, such as an application

description, scientific domain classifications, and references to

application sources. Within each application directory there is

a data directory containing study data. Each unique study is

stored based on the year, month, and first author surname, and

data should contain performance data in CSV, and an artifact

application_name

submissions

data

yyyy-mm-surname.csv

yyyy-mm-surname-coverage.csv

yyyy-mm-surname.toml

readme.toml

Fig. 1: An illustration of the submissions directory structure

Fig. 2: An example of the database exploration page

description in an associated TOML file. Code coverage data

can optionally be included in CSV format (see the P3 Analysis

Library for further information [14]).

B. The Explorer Interface

The P3 Explorer dashboard is hosted through GitHub Pages,

and renders visualisations of the performance studies stored

within the data repository. The website is updated via GitHub

Actions on merged pull requests to the data repository.

On the dashboard, studies are organised by application,

and categorised by scientific domain(s). Figure 2 shows an

example of the exploration interface. Each application has its

own subpage, which lists all associated performance studies

by published article title.

Each study subpage contains plots generated from per-

formance and productivity data, and metadata such as an

artifact description, links to sources, and a DOI reference. Plots

generated from performance data can be found at the top of

each study page, as shown in Figure 3. These plots include a

bar chart of the raw performance data and P3 visualisations,

generated with the P3 Analysis Library [14]. In all cases a

cascade plot is generated, and where code coverage data is

present, a PP-CC chart is generated [17].

C. Contributing

The intent for the P3 Explorer is to be a community-led

effort to collate data from scientific studies in a single GitHub

repository, to enable easier data analysis and study replication.

Contributors should first fork the main branch of the p3-

explorer from GitHub. Next, a contributor should find their

application, or create a new directory for their application,

within the submissions directory. They should then create

or update the required CSV and TOML files (as illustrated in

Figure 1). The final step for contributing data to the repository

Fig. 3: An example experimental data page for Kirk et al. [4]

title = "TeaLeaf"

appDomain = ["Structured Grid", ...]

sources = [["GitHub", "https://github.com/..."]]

description = """A C++ based implementation of the ..."""

Fig. 4: An example TOML file for a new application

title = "Achieving Performance Portability for ..."

authors = ["R. O. Kirk" , "G. R. Mudalige", ...]

sources = [

["TeaLeaf Repository", ...],

["OPS APPS Repository", ...],

...

]

doi = "10.1109/CLUSTER.2017.122"

fom = "Runtime (s)"

tags = ["Structured Grid", ...]

description = """In this paper, we investigate ..."""

Fig. 5: An example TOML file for a new data submission

is to commit these changes to the forked repository, and

then create a Pull Request through GitHub to the p3-explorer

repository.

For a new application, a TOML readme file is required in

the application’s root directory containing relevant application

information. Figure 4 shows an example for the TeaLeaf

application [4].

As a minimum, scientific study data submissions should

include performance data in CSV format (with column labels

matching the P3 Analysis Library [14]), and a TOML file with

information about the submission. Figure 5 shows an example

study submission TOML file, where the description explains

how the performance data was collected (e.g. computational

environment, compiler versions, compiler flags).

TABLE I: Runtime (s) comparison of CabanaPIC using Kokkos and OP-PIC across different devices and architectures

Platform Architecture Kokkos OP-PIC (Backend)

Intel Xeon 6252 24-Core Cascade Lake 66.039 48.197 (OpenMP)
41.811 (MPI)

Intel Xeon 5418Y 24-Core Sapphire Rapids 35.813 33.213 (OpenMP)
29.258 (MPI)

AMD EPYC 7543 32-Core Zen3 (Milan) 29.786 27.986 (OpenMP)
28.199 (MPI)

AMD EPYC 9334 32-Core Zen4 (Genoa) 30.080 31.816 (OpenMP)
40.074 (MPI)

NVIDIA P100 Pascal 22.406 22.749 (CUDA)
NVIDIA V100 Volta 15.128 15.631 (CUDA)
NVIDIA H100 Hopper 9.949 10.097 (CUDA)
AMD MI100 GFX908 562.239 32.983 (HIP, seg-reductions)

587.505 (HIP, atomics)
AMD MI210 GFX90A 8.492 8.113 (HIP, unsafe atomics)

All submissions must adhere to the submission guidelines

and format, and each pull request is reviewed prior to accep-

tance into the repository. Datasets can be updated at any time,

overwriting old or incorrect data if necessary. The P3 Explorer

dashboard automatically updates all data pages and plots on a

commit or merge.

IV. CASE STUDY

To demonstrate the application of the P3 Explorer, we present

a case study using the CabanaPIC mini-application, which is

a 3D electromagnetic Particle-in-Cell (PIC) code. The original

application is developed as a part of the Exascale Computing

Project’s Co-design center for Particle Applications (CoPA)

using the performance portable Cabana library, based on

Kokkos [23].

Our case study is based on a recent publication by Lantra

et al. assessing the performance of OP-PIC, a new domain-

specific language (DSL) for unstructured-mesh PIC simula-

tions [16]. The OP-PIC DSL is aimed at gaining perfor-

mance portability on current and emerging, massively parallel

architectures using source-to-source translation to generate

platform-specific optimisations.

The original CabanaPIC implementation consists of shared

memory parallelisations using the Kokkos C++ template li-

brary to target CPUs (with OpenMP) and GPUs (with CUDA,

HIP, or SYCL). Conversely, OP-PIC uses code generation to

target CPUs and GPUs, using combinations of OpenMP, MPI,

CUDA, and HIP, while also having the ability to generate code

optimised to particular generations of hardware.

Although CabanaPIC is a structured-mesh PIC application,

OP-PIC is a DSL for unstructured-mesh PIC, and so the

OP-PIC implementation uses unstructured-mesh mappings,

solving the same physics as the original.

For the comparisons presented here, we investigate the

performance on a single CPU socket or a single GPU. Ta-

ble I lists the achieved runtimes of the Kokkos and OP-PIC

implementations of CabanaPIC across a range of CPU and

GPU architectures, from Intel, NVIDIA, and AMD. For the

simulation, the configuration is a mesh of 96,000 cells and 72

million particles for 200 iterations in double-precision (FP64).

One known bottleneck of the PIC algorithm is when par-

ticles try to accumulate current/charge to cells. To handle

the data races that occur when multiple particles deposit

to the same cell, the original CabanaPIC uses scatter-views

(which may use atomics underneath for GPUs); conversely, the

OP-PIC implementation can use either atomics or segmented

reductions depending on the platform.

The study shows that atomics on NVIDIA GPU hardware

provides good performance and causes little serialisation;

however, to gain performance on AMD GPUs, an alternative

approach is required. Using the -munsafe-fp-atomics

compiler flag means that comparable performance can be seen

on the AMD MI210 GPU with both Kokkos and OP-PIC.

However, unsafe-atomics is not supported on the AMD MI100

GPU, and using atomics leads to an uncompetitive runtime.

OP-PIC provides an alternative optimisation, known as seg-

mented reductions, that brings down the runtime significantly,

but at the expense of higher memory consumption; this is

an implementation not available through the Kokkos-backed

original code.

A. Exploring the Performance, Portability, and Productivity

To analyse this data with respect to the performance porta-

bility, we prepare the data in Table I as a CSV file using the

appropriate column headings for the P3 Analysis Library [14].

For the Kokkos programming model, there is a single runtime

for each platform; for OP-PIC, there may be numerous, based

on the backend used. In our CSV dataset we include the OP-

PIC results along with the backend used, and additionally

we duplicate the best OP-PIC result for each platform to

an additional “OP-PIC (Best)” data set. To complete our

data submission, we prepare appropriate TOML files for the

CabanaPIC application and to document the source of our

study data [16]. Figures 6, 7, and 8 show the plots generated

by the P3 Explorer for our dataset.

Figure 6 visualises the results in Table I, highlighting that

each platform has a comparable runtime for both Kokkos

and OP-PIC, with the exception of the AMD MI100. In this

case, as previously mentioned, the Kokkos implementation

relies on double-precision hardware atomic operations that are

poorly supported on this platform. A similar result is achieved

Fig. 6: A bar chart showing the runtime performance of CabanaPIC across 9 platforms

Fig. 7: A P3 cascade plot generated for CabanaPIC

with OP-PIC using hardware atomics, but significantly better

performance is possible with an alternative backend.

Figure 7 shows a P3 cascade plot for this data, showing

how the portability of OP-PIC compares to Kokkos as we

add more platforms to our evaluation set. Overall, we can

see that OP-PIC is able to achieve better portability across

our 9 platforms based on its code generation technology –

achieving a PP ≈ 0.987, compared to PP ≈ 0.347 for Kokkos.

However, we can see from Figure 7 that platform H (MI100)

is the source of the largest degradation in portability for

Kokkos, where hardware atomics are not well supported. We

can additionally observe that platforms A and B (both Intel

Xeon CPUs) are another source of portability degradation for

the Kokkos implementation, where both the OpenMP and MPI

Fig. 8: A P3 PP-CC chart generated for CabanaPIC

implementations from OP-PIC perform better. Besides these

platforms, the performance of Kokkos and OP-PIC are largely

comparable.

Figure 8 shows a PP-CC chart for our dataset. Since both

Kokkos and OP-PIC are single-source approaches to software

development, no code divergence is seen, hence the plot

repeats the performance portability data from Figure 7.

The P3 Explorer allows us to conduct such portability

feasibility studies, and then observe trends in the data visually,

to better inform development efforts.

V. CONCLUSION

Performance, portability, and productivity are vital when de-

signing and developing new HPC applications for heteroge-

neous systems [2]. In this paper we have outlined an open-

source database of P3 study results, alongside a visualisation

framework for analysing P3 data. We have applied this frame-

work to a recent study of the CabanaPIC application by Lantra

et al. [16], demonstrating the analysis that can be performed

using the P3 Analysis Library and our visualisation pipeline.

Our repository provides an open archive of scientific data

from past studies focused on “the three Ps”, and we aim for

this database to become a community effort to collect data

and artifact descriptions to better inform future development

efforts across the various HPC application domains.

The success of this project depends on community par-

ticipation in building an effective database, with appropriate

metadata to enable reproducibility. The primary ongoing work

will therefore be to collect, collate, and validate study data and

metadata, and to encourage wide participation in the project.

ACKNOWLEDGEMENT

Matthew Smith was funded under EPSRC’s Vacation Intern-

ships scheme.

This work used the ARCHER2 UK National Supercomput-

ing Service (https://www.archer2.ac.uk).

REFERENCES

[1] S. J. Pennycook, J. D. Sewall, and V. W. Lee, “Implications of a metric
for performance portability,” Future Generation Computer Systems,
vol. 92, 2019.

[2] S. A. Wright, C. Ridgers et al., “Developing performance portable
plasma edge simulations: A survey,” Computer Physics Communica-

tions, vol. 298, 2024.
[3] T. Deakin, A. Poenaru, T. Lin, and S. McIntosh-Smith, “Tracking

Performance Portability on the Yellow Brick Road to Exascale,” in
The IEEE/ACM International Workshop on Performance, Portability and

Productivity in HPC (P3HPC), 2020, pp. 1–13.
[4] R. O. Kirk, G. R. Mudalige et al., “Achieving Performance Portability

for a Heat Conduction Solver Mini-Application on Modern Multi-core
Systems,” in The IEEE International Conference on Cluster Computing,
Sep. 2017.

[5] E. M. Rangel et al., “A Performance-Portable SYCL Implementation
of CRK-HACC for Exascale,” in IEEE/ACM International Workshop on

Performance, Portability and Productivity in HPC (P3HPC), 2023.
[6] W. Shilpage and S. A. Wright, “An Investigation into the Performance

and Portability of SYCL Compiler Implementations,” Lecture Notes in

Computer Science (LNCS), vol. 13999, Aug. 2023.
[7] W.-C. Lin, T. Deakin, and S. McIntosh-Smith, “On Measuring the

Maturity of SYCL Implementations by Tracking Historical Performance
Improvements,” in International Workshop on OpenCL (IWOCL’21),
2021, pp. 1–13.

[8] D. Truby, S. A. Wright, R. Kevis, S. Maheswaran, J. A. Herdman,
and S. A. Jarvis, “BookLeaf: An Unstructured Hydrodynamics Mini-
Application,” in 2018 IEEE International Conference on Cluster Com-

puting (CLUSTER), Sep. 2018, pp. 615–622.
[9] S. J. Pennycook, S. D. Hammond, S. A. Wright, J. A. Herdman, I. Miller,

and S. A. Jarvis, “An Investigation of the Performance Portability
of OpenCL,” Journal of Parallel and Distributed Computing (JPDC),
vol. 73, no. 11, pp. 1439–1450, November 2013.

[10] J. A. Herdman, W. P. Gaudin, S. McIntosh-Smith, M. Boulton, D. A.
Beckingsale, A. C. Mallinson, and S. A. Jarvis, “Accelerating Hy-
drocodes with OpenACC, OpenCL and CUDA,” in Proceedings of

the 2012 SC Companion: High Performance Computing, Networking

Storage and Analysis, ser. SCC ’12. USA: IEEE Computer Society,
2012, p. 465–471.

[11] M. T. Bettencourt, D. A. S. Brown et al., “EMPIRE-PIC: A Perfor-
mance Portable Unstructured Particle-in-Cell Code,” Communications

in Computational Physics, vol. 30, no. 4, pp. 1–37, Mar. 2021.
[12] T. R. Law, R. Kevis, S. Powell, J. Dickson, S. Maheswaran, J. A.

Herdman, and S. A. Jarvis, “Performance Portability of an Unstruc-
tured Hydrodynamics Mini-application,” in 2018 IEEE/ACM Interna-

tional Workshop on Performance, Portability and Productivity in HPC

(P3HPC), Nov 2018, pp. 0–12.
[13] Y. Asahi, G. Latu, J. Bigot, and V. Grandgirard, “Optimization strategy

for a performance portable Vlasov code,” in The International Workshop

on Performance, Portability and Productivity in HPC (P3HPC), 2021,
pp. 79–91.

[14] S. J. Pennycook et al., “Performance, Portability and Productivity
Analysis Library,” 10.5281/zenodo.7733678, Mar. 2023.

[15] M. A. Smith, S. A. Wright, Z. Lantra, and G. R. Mudalige, “The
P3 Explorer: Exploring the Performance, Portability, and Productivity
Wilderness,” in The IEEE/ACM International Conference for High

Performance Computing, Networking, Storage, and Analysis (SC24),
2024.

[16] Z. Lantra, S. A. Wright, and G. R. Mudalige, “OP-PIC – an
Unstructured-Mesh Particle-in-Cell DSL for Developing Nuclear Fusion
Simulations,” ser. ICPP ’24, 2024, pp. 294––304.

[17] S. J. Pennycook et al., “Navigating Performance, Portability, and Pro-
ductivity,” Computing in Science & Engineering, vol. 23, no. 5, 2021.

[18] S. L. Harrell, J. Kitson et al., “Effective performance portability,” in
IEEE/ACM International Workshop on Performance, Portability and

Productivity in HPC (P3HPC), 2018, pp. 24–36.
[19] I. Z. Reguly and G. R. Mudalige, “Productivity, performance, and

portability for computational fluid dynamics applications,” Computers

& Fluids, vol. 199, pp. 1–10, 2020.
[20] Exascale Computing Project, “ECP Proxy Applications,” https://

proxyapps.exascaleproject.org/ (accessed April 20, 2021), 2021.
[21] T. M. Evans, A. Siegel, E. W. Draeger, J. Deslippe, M. M. Francois,

T. C. Germann, W. E. Hart, and D. F. Martin, “A survey of software
implementations used by application codes in the Exascale Computing
Project,” The International Journal of High Performance Computing

Applications, vol. 36, no. 1, pp. 5–12, 2022.
[22] E. J. Threlfall, R. J. Akers et al., “Software for Fusion Reactor De-

sign: ExCALIBUR Project NEPTUNE:Towards Exascale Plasma Edge
Simulations,” in 29th IAEA Fusion Energy Conference, October 2023.

[23] S. M. Mniszewski, J. Belak et al., “Enabling particle applications
for exascale computing platforms,” The International Journal of High

Performance Computing Applications, vol. 35, no. 6, pp. 572–597, 2021.

	Introduction
	Related Work
	Evaluating Performance, Portability, and Productivity
	Previous P3 Studies

	The P3 Explorer
	The Data Repository
	The Explorer Interface
	Contributing

	Case Study
	Exploring the Performance, Portability, and Productivity

	Conclusion
	References

