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Abstract. Wildfires can have a significant impact on air quality in Australia during severe burning seasons,

but incomplete knowledge of the injection heights of smoke plumes poses a challenge for quantifying smoke

exposure. In this study, we use two approaches to quantify the fractions of fire emissions injected above the

planetary boundary layer (PBL), and we further investigate the impact of plume injection fractions on daily

mean surface concentrations of fine particulate matter (PM2.5) from wildfire smoke in key cities over northern

and southeastern Australia from 2009 to 2020. For the first method, we rely on climatological, monthly mean

vertical profiles of smoke emissions from the Integrated Monitoring and Modelling System for wildland fires

(IS4FIRES) together with assimilated PBL heights from NASA Modern-Era Retrospective Analysis for Re-

search and Application (MERRA) version 2. For the second method, we develop a novel approach based on

the Multi-angle Imaging SpectroRadiometer (MISR) observations and a random forest, machine learning model

that allows us to directly predict the daily plume injection fractions above the PBL in each grid cell. We apply

the resulting plume injection fractions quantified by the two methods to smoke PM2.5 concentrations simulated

by the Stochastic Time-Inverted Lagrangian Transport (STILT) model in target cities. We find that characteri-

zation of the plume injection heights greatly affects estimates of surface daily smoke PM2.5, especially during

severe wildfire seasons, when intense heat from fires can loft smoke high in the troposphere. However, using

climatological injection profiles cannot capture well the spatiotemporal variability in plume injection fractions,

resulting in a 63 % underestimation of daily fire emission fluxes injected above the PBL in comparison with

those fluxes derived from MISR injection fractions. Our random forest model successfully reproduces the daily

injected fire emission fluxes against MISR observations (R2 = 0.88, normalized mean bias = 10 %) and predicts

that 27 % and 45 % of total fire emissions rise above the PBL in northern and southeastern Australia, respectively,

from 2009 to 2020. Using the plume behavior predicted by the random forest method also leads to better model

agreement with observed surface PM2.5 in several key cities near the wildfire source regions, with smoke PM2.5

accounting for 5 %–52 % of total PM2.5 during fire seasons from 2009 to 2020.

Published by Copernicus Publications on behalf of the European Geosciences Union.
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1 Introduction

Wildfire is a strong seasonal source of air pollution in Aus-

tralia, significantly contributing to poor air quality especially

during severe burning seasons such as the “Black Summer”

in 2019 (e.g., Reisen et al., 2011; Aryal et al., 2018; Ryan

et al., 2021; Graham et al., 2021). The peak periods of wild-

fires over northern Australia are generally during the dry sea-

son (April to October), when the high-pressure systems lo-

cated in southern Australia bring dry and warm southeast-

erly winds to the Top End and Far North Queensland (FNQ)

(Australian Bureau of Meteorology, 2023b). The Australian

monsoon also governs fire seasonality in northern Australia.

During the monsoon periods from November to April, the

prevailing winds shift to northwesterly, bringing moist air

from the ocean and reducing the risk of wildfires (Australian

Bureau of Meteorology, 2023a). In southern Australia, the

burning season typically occurs in austral spring and summer

(September to February) when fuels are abundant. However,

fire activity in this region shows large interannual variability.

The fire danger increases when low-pressure systems in Tas-

mania bring hot and dry westerly winds to the coastal areas

(Australian Bureau of Meteorology, 2023b).

Smoke emitted from wildfires is a complex mixture of or-

ganic carbon (OC), black carbon (BC), and other types of

fine particulate matter (PM2.5), together with a suite of trace

gases. Smoke PM2.5 is harmful to human health and the am-

bient environment (Reid et al., 2016; Aguilera et al., 2021;

Johnston et al., 2021). There are large uncertainties, how-

ever, in estimates of exposure to smoke PM2.5 downwind

of fires, in part because the transport of wildfire plumes is

challenging to quantify in space and time. In Australia, most

fire emissions are released in the planetary boundary layer

(PBL), but sufficient buoyancy generated by the heat from

intense wildfires can inject emissions into the free tropo-

sphere or even stratosphere (Fromm et al., 2006; Dirksen et

al., 2009; Mims et al., 2010; Val Martin et al., 2018; Solomon

et al., 2022). Val Martin et al. (2018) showed that signifi-

cant fractions (5 %–25 %) of total column biomass burning

emissions were injected above 2 km in Australia during the

summer months from 2008 to 2010. The plume injection

heights determine the vertical distribution of fire emissions,

affecting surface smoke exposure, long-range transport, and

removal processes of emitted pollutants (e.g., Jian and Fu,

2014; Zhu et al., 2018). A recent study used three plume rise

schemes in the Community Multiscale Air Quality model to

study the plume injection heights and their impacts on air

quality, indicating that higher plume injection heights led to

lower surface PM2.5 concentrations near the source region

but higher concentrations in regions downwind due to the

transport at higher altitudes followed by downward mixing

(Li et al., 2023). Here, we develop two methods to quantify

the fraction of fire emissions injected above the PBL, and we

further investigate the impacts of plume injection heights on

daily smoke PM2.5 over Australia.

Previous studies have retrieved the plume injection heights

and estimated the climatological injection profiles from satel-

lite data, including from the Multi-angle Imaging SpectroRa-

diometer (MISR), the Cloud–Aerosol Lidar with Orthogonal

Polarization (CALIOP) instruments (Kahn et al., 2007; Tosca

et al., 2011; Raffuse et al., 2012; Paugam et al., 2016; Val

Martin et al., 2010, 2018), and the Tropospheric Monitor-

ing Instrument (TROPOMI; Griffin et al., 2020). These ap-

proaches have drawbacks. For example, MISR and CALIOP

provide global coverage every 9 d and every 16 d, respec-

tively, near the Equator, though more frequently at high lati-

tudes. These instruments thus may miss fire occurrences due

to their inadequate temporal resolution and the narrow detec-

tion swath. In addition, digitizing the plumes of MISR im-

agery is both labor intensive and computationally expensive,

resulting in limited datasets of plume injection heights (Nel-

son et al., 2013; Val Martin et al., 2018). The plume heights

retrieved from TROPOMI offer daily global coverage, but

TROPOMI data are available only from 2018 onwards and

therefore cannot be utilized for a long-term study.

To address these issues, several biomass burning emis-

sion inventories have incorporated information on injection

height at high spatiotemporal resolution. These inventories

include the Global Fire Assimilation System (GFAS; Rémy

et al., 2017) and the Integrated Monitoring and Modelling

System for Wildland Fires (IS4FIRES; Sofiev et al., 2009;

Soares et al., 2015). Both GFAS and IS4FIRES rely on

a plume rise model (Freitas et al., 2007, 2010) and semi-

empirical parameterization (Sofiev et al., 2012, 2013) to de-

termine injection heights. Besides these two methods for es-

timating injection heights, Yao et al. (2018) used a machine

learning model (random forest) and CALIOP data to predict

the minimum heights of forest fire smoke in Canada. These

three datasets represent the vertical extent of smoke plumes

with high-resolution single parameters that specified the top

and bottom heights of plumes, as well as the mean height of

maximum injection (MHMI). (The definitions of these vari-

ables are described in Sect. S1 in the Supplement.) However,

such parameters do not quantify the fraction of fire emissions

within the PBL, a critical value for quantifying smoke expo-

sure within the PBL. IS4FIRES also provides climatological,

monthly mean profiles of plume injection heights, which do

specify the fire emissions that remain within the PBL. But

this climatological dataset cannot capture the large interan-

nual variability in plume injection heights and wildfire inten-

sity (Val Martin et al., 2010, 2018).

Another challenge in calculating smoke exposure involves

the modeling of smoke plume transport. Previous studies

have applied multiple modeling techniques to capture trans-

port, including use of 3-D offline or online coupled atmo-

spheric chemistry models (e.g., Fann et al., 2018; Liu et

al., 2017; Gan et al., 2017) and Lagrangian particle disper-

sion models such as HYSPLIT or STILT (e.g., Thelen et

al., 2013; Mallia et al., 2015). The 3-D chemistry models

can simulate the physical and chemical processes of smoke

Atmos. Chem. Phys., 24, 2985–3007, 2024 https://doi.org/10.5194/acp-24-2985-2024
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PM2.5 based on the biomass burning emission inventory but

are computationally expensive for long-term simulations at

fine spatial resolution (Johnson et al., 2020). In contrast, La-

grangian modeling applies a receptor-oriented framework,

allowing (1) computationally efficient tracking of the smoke

emitted across a finely gridded, large spatial domain and

(2) determination of the contributions of smoke to the air

quality in the receptor city downwind. This modeling frame-

work performs better in terms of numerical stability and mass

conservation than do 3-D models (Lin et al., 2013; Wohlt-

mann and Rex, 2009). However, Lagrangian modeling usu-

ally lacks chemical processes and is unable to capture back-

ground PM2.5 concentrations from other anthropogenic and

natural sources.

Many studies on wildfire smoke exposure in Australia

are based on ground-based observations (e.g., Morgan et

al., 2010; Johnston et al., 2021; Cortes-Ramirez et al., 2022).

These studies usually use statistical methods to separate the

smoke PM2.5 from background PM2.5, as the air quality mon-

itors measure only total PM2.5. This method, however, is

unable to determine the spatial distribution of smoke emis-

sions that contribute to the observed PM2.5. Alternatively,

some studies use atmospheric chemistry models to explic-

itly simulate smoke PM2.5 concentrations from open fires

and their impacts on air quality and health in Australia (Rea

et al., 2016; Nguyen et al., 2020, 2021; Graham et al., 2021).

These studies can provide more accurate spatiotemporal vari-

ability in smoke air quality but may focus only on short-term

simulations due to computational expense. Furthermore, the

accuracy of simulated smoke PM2.5 concentrations in these

models depends on reliable meteorology, biomass burning

emissions, and plume injection heights.

In this paper, we build on past efforts to model smoke ex-

posure in Australia. Our goal is to improve the accuracy of

smoke exposure in the receptor cities by better quantifying

the fraction of smoke plumes remaining in the PBL across

northern and southeastern Australia. We also quantify the

source regions of smoke PM2.5 in these cities. We first fo-

cus on two methods to quantify the daily fractions of fire

emissions within and above the PBL: (1) the climatologi-

cal injection profiles from IS4FIRES and (2) plume injec-

tion heights from MISR observations. Both methods are de-

scribed in Sect. 2. We apply the predicted injection fractions

to the Lagrangian plume model STILT to simulate the daily

smoke PM2.5 in key cities across Australia during the fire

seasons from 2009 to 2020. In Sects. 3 and 4, we compare the

plume injection fractions predicted by our two methods and

we validate the derived smoke PM2.5 concentrations against

the surface PM2.5 observations.

2 Methods and data

2.1 Estimation of plume injection fractions using

climatological injection profiles

We estimate the fractions of smoke plumes injected above the

PBL using two methods. In the first method, we first com-

pare the daily PBL and the plume injection heights for each

fire event. For those plumes that rise above the PBL, we use

the climatological, monthly mean profile of plume injection

heights in that grid cell to apportion smoke abundance within

the PBL and above it.

Daily mean PBL heights across Australia are obtained

from the Modern-Era Retrospective Analysis for Research

and Applications version 2 (MERRA-2; Gelaro et al., 2017)

at a spatial resolution of 0.5° latitude × 0.625° longitude.

This reanalysis is often used to drive chemical transport mod-

els such as GEOS-Chem (Bey et al., 2001; Keller et al., 2014;

Kim et al., 2015). We use the daily injection heights compiled

by the GFAS emission inventory (Rémy et al., 2017), which

provides four parameters representing the vertical extent of

each smoke plume at 0.1° × 0.1° resolution: the top and bot-

tom heights of plumes, the MHMI, and injection height.

These parameters are calculated with two distinct algorithms:

the 1-D plume rise model (Freitas et al., 2007, 2010; Rémy

et al., 2017) and the IS4FIRES parameterization (Sofiev et

al., 2012, 2013). The plume rise model predicts the daily

vertical velocity, horizontal plume velocity, temperature, and

plume radius. The model relies on assimilated meteorol-

ogy from the European Centre for Medium-Range Weather

Forecasts (ECMWF) and active fire area retrieved from the

Moderate Resolution Imaging Spectroradiometer (MODIS).

In contrast, IS4FIRES calculates the daily plume injection

height based on fire radiative power (FRP) from MODIS as

well as on ECMWF meteorology (Sofiev et al., 2012).

In addition to plume height, we determine the mass frac-

tion of smoke emitted above the PBL. IS4FIRES also of-

fers global maps of monthly mean injection profiles of fire

emissions at a spatial resolution of 1° × 1° × 500 m from

the surface to 10 km altitude (20 layers), averaged over the

years 2000–2012 (http://is4fires.fmi.fi; last access: 21 Oc-

tober 2022). The IS4FIRES parameterization assumes that

each fire lasts for 24 h and that the plume heights of this fire

depend on fire intensity, which is based on the mean diurnal

variation of the FRP derived from the geostationary orbit-

ing instrument Spinning Enhanced Visible and Infrared Im-

ager (Roberts et al., 2009; Sofiev et al., 2013). The resulting

hourly injection profiles are averaged over the whole day and

aggregated to the monthly level. The profiles are then nor-

malized by monthly mean emissions in that vertical column.

More details are described in Sofiev et al. (2013).

In this study, we match the plume top heights from

GFAS and the meteorology from MERRA-2 values to align

with 0.25° × 0.25° resolution of the Global Fire Emission

Database version 4.1 inventory (GFED 4.1s; van der Werf

https://doi.org/10.5194/acp-24-2985-2024 Atmos. Chem. Phys., 24, 2985–3007, 2024
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et al., 2017). Since regridding the GFAS plume top heights

would lead to excessive smoothing, we choose the largest

height within each GFED grid cell, matching plume by

plume. In some cases, we needed to search a 1° border

around the GFED grid cell to locate the corresponding

plume in GFAS. We follow a similar approach for matching

MERRA-2 meteorology with the GFAS plume top heights,

choosing the largest PBL height in the GFED grid cell. We

then compare the MHMI derived from the plume rise model

with the associated daily mean PBL height from MERRA-2

to determine whether the fire emission should be lifted above

the PBL at each grid cell. We assume that total fire emissions

remain within the PBL if the daily mean PBL height (Hpbl)

is higher than the MHMI (HMHMI). For those grid cells in

which the MHMI is higher than the PBL heights, we calcu-

late the daily injection fractions of fire emissions above the

PBL as follows:

fabovePBL (i,j,d)

=















0 , HMHMI (i,j,d) < Hpbl (i,j,d)

Ztop
∑

k=Zpbl

f (i,j,k,m) , HMHMI (i,j,d) ≥ Hpbl (i,j,d)
, (1)

where fabovePBL (i,j,d) is the daily injection fractions at lo-

cation (i,j ) over the day d, and f (i,j,k,m) is the monthly

mean normalized vertical fraction of fire emissions injected

into the layer k in month m calculated by the IS4FIRES

parameterization. We sum up the fractional fire emissions

f (i,j,k,m) from Zpbl, the vertical layer where the daily

mean PBL height Hpbl (i,j,d) is located, to the top layer of

the normalized injection profile (Ztop). This yields the plume

mass fraction above the PBL.

2.2 Estimation of plume injection fractions using

machine learning models

2.2.1 MISR data and target variable

We also develop a novel approach using random forest mod-

els to predict the fractions of smoke plumes injected above

the PBL in each grid cell. The explanatory variables consist

of satellite retrievals of plume heights, fire information, land

use classification, and meteorological variables.

The plume heights used for training are those observed

by the MISR instrument. MISR is on board Terra, a polar-

orbiting satellite, overpassing the Equator in the descending

mode at 10:30 local time. MISR acquires imagery in four

spectral bands along the orbiting track, using nine cameras

with viewing angles from ±70.5° to ±26.1° relative to nadir.

The four spectral bands are centered at wavelengths of 446,

558, 672, and 866 nm (Diner et al., 1998). The swath width

of MISR is 380 km, covering Australia every 4–5 d. Data ac-

quired from the blue (446 nm) and red (672 nm) bands can

be used to retrieve smoke plume heights at horizontal spa-

tial resolutions of 1.1 km and 275 m, respectively. Although

the red-band data have higher spatial resolution, the retrieval

quality of the red band is usually worse than that of the blue

band, especially for thin plumes over a bright surface such as

is typical for Australia (Nelson et al., 2013).

The MISR Interactive eXplorer (MINX, https://github.

com/nasa/MINX; last access: 21 October 2022) is an interac-

tive software that digitizes the plume heights from MISR data

using a stereoscopic height retrieval algorithm (Nelson et

al., 2008, 2013). Digitizing the plume heights using MINX is

time-consuming as the perimeters of individual plumes need

to be identified manually by users (described in Sect. S2).

As a consequence, archived MISR retrievals of global plume

heights are available only for a limited number of months –

the years 2008–2011 and for June, July, and August of 2017

and 2018. These plume heights were calculated for the MISR

Plume Height Project 2 (MPHP2, https://misr.jpl.nasa.gov/

get-data/misr-plume-height-project-2/; last access: 21 Octo-

ber 2022).

For training and validating the random forest models, we

collected 2212 records of plume height retrievals in Aus-

tralia, including 2021 records from MPHP2 and 191 supple-

mental records that we generated using MINX for Novem-

ber 2019 during the severe wildfire season. These MISR

plume records are mainly distributed over the coastal areas of

northern and southern Australia (Fig. S1 in the Supplement).

In general, each record represents one plume, but some-

times several plumes overlap. There may exist more than one

record per plume or one record may describe more than one

plume. For each identified plume, MINX digitizes two re-

trievals of plume heights based on the blue-band and red-

band data within the plume perimeter, each of which is clas-

sified as having “good”, “fair”, or “poor” retrieval quality. We

exclude plume records labeled “poor”. For all other plumes,

we choose one record from either the blue-band or red-band

data, depending on which band exhibits better retrieval qual-

ity. Here we use the zero-wind heights (described in Sect. S2)

to calculate the vertical profile for each plume. We remove

unrealistic heights lower than the terrain heights (i.e., when

zero-wind height minus terrain height is less than 0 km), as

well as those higher than 8 km above the local terrain. Nega-

tive zero-wind heights are due to the retrieval biases of pixels

near to or on the ground, while heights greater than 8 km are

likely an artifact caused by pyro-cumulus clouds overlaying

the plumes (Val Martin et al., 2010). We obtain the injection

profile by normalizing the vertical distribution of retrieved

plume heights above local terrain in increments of 0.25 km

altitude from 0 to 8 km for each plume. We then compute the

injection fractions above the PBL based on Eq. (1), where the

daily mean PBL height is the same as the data described in

Sect. 2.1.

2.2.2 Predictors for random forest model

We use daily meteorological variables, fire information, and

land use classifications as predictors (Table 1) for the ran-

Atmos. Chem. Phys., 24, 2985–3007, 2024 https://doi.org/10.5194/acp-24-2985-2024
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dom forest models. The meteorological variables are from

MERRA-2 at 0.5° latitude × 0.625° longitude resolution and

include the daily means of PBL height, air temperature at 2 m

above the surface, surface relative humidity, U/V wind at

10 m, and total precipitation. Fire information consists of the

fire location for each plume and FRP, both from the MODIS-

/Terra Thermal Anomalies/Fire 5-Min L2 Swath 1km V061

(MOD14; Giglio and Justice, 2021). The MINX software cal-

culates the total FRP of the digitized plume from this dataset.

The daily fire emissions of OC from the GFED 4.1s are also

incorporated into the random forest model. We use only OC

emissions because variations in OC and BC, the other main

component of smoke PM2.5, are assumed to correlate. We

sample the MERRA-2 grid and GFED grid closest to the

initial source point of the smoke plume specified, based on

MOD14. We also include the yearly land cover classifica-

tion of the International Geosphere–Biosphere Programme

(IGBP) derived from the MODIS Land Cover Climate Mod-

eling Grid Version 6 (MCD12C1; Friedl and Sulla-Menashe,

2015) at 0.05° × 0.05° spatial resolution. Wildfires occurring

in various vegetation types, such as forest, shrubland, and

grassland, usually lead to different plume injection heights,

which can be classified by land use data. The MINX software

diagnoses the land use type at the location with the maximum

FRP within the digitized plume boundary.

2.2.3 Random forest algorithm

Random forest is a widely used machine learning method for

both classification and regression, containing an ensemble of

bootstrap aggregated, or “bagged”, decision trees. Each in-

dividual decision tree is trained using a random sample of

the training dataset to reduce the correlation between differ-

ent decision trees. The final predictions of a random forest

model are based on the average of predictions from each de-

cision tree (Breiman, 2001). A decision tree is built by split-

ting the data into left and right nodes recursively, based on

the standard Classification And Regression Tree (CART) al-

gorithm (Breiman, 2001). In node p, the mean squared error

(MSE) is calculated as Eq. (2):

MSE(p) =
∑

j∈P

1

n

(

yj − yp

)2
, (2)

where yj and yp are the target variable with observation

index j and the mean value of target variable samples in

node p, respectively. P represents the set of all observation

indices in node p and n is the sample size. The algorithm

sorts one of the predictors xi (i = 1,2, . . .,11) and uses each

element of xi as a split point to divide the samples into two

subsets. The algorithm then calculates the decline in MSE

(1MSE) for each splitting point as Eq. (3):

1MSE =
∑

j∈P

1

n
MSE(p) −

∑

j∈PL

1

n
MSE(pL)

−
∑

j∈PR

1

n
MSE(pR) , (3)

where the pL and pR are the left and right nodes. The best

split point is determined by maximizing the decline in MSE

(1MSE). Each node will stop splitting when there are less

than five samples within this node, which avoids overfitting

on the training datasets. To estimate the importance of each

predictor, the algorithm randomly permutes the values of

each predictor within the dataset and calculates the increases

in MSE over each decision tree, compared with the original

set of MSEs. More important predictors will generate greater

increases in MSE when permuted. The importance of each

predictor is then indicated by its mean value divided by the

standard deviation of the increases in MSE over all decision

trees.

In this study, we construct the random forest model with

100 regression decision trees. As noted above, Table 2 shows

the predictors and the target variable (i.e., daily plume in-

jection fractions above the PBL). Total records of the target

variable and associated predictors are divided into a train-

ing dataset (n = 2012 records) and a test dataset (n = 200

records). We select as test data 1 record of every 10 records

in order of observed dates, which ensures evenly sampling

the whole dataset. We first train the random forest model us-

ing the training dataset and then apply the predictors from

the test dataset to the resulting random forest model. Valida-

tion is carried out by comparing the predictions with the true

values of the target variable from the test dataset.

A shortcoming of our machine learning approach is that

the MISR dataset used for our study includes relatively few

plumes in southeastern Australia compared with northern

Australia (Fig. S1). The fire season is shorter in this region

and there is much greater interannual variability in fire activ-

ity. As a consequence, we have available only 244 training

records in the southeast and only 10 for testing there, com-

pared with 1447 records for training and 152 records for test-

ing in the north. We further discuss this limitation in Sect. 5.

2.3 Calculation of smoke PM2.5 concentrations using

the STILT model

2.3.1 STILT and fire emission inventory

We use the STILT model version 2 (Lin et al., 2003; Fasoli et

al., 2018) to simulate the daily smoke PM2.5 concentrations

in 12 key cities (shown in Table S1 in the Supplement) over

Australia during the fire seasons from 2009 to 2020. STILT is

a Lagrangian particle dispersion model driven by assimilated

meteorology from the National Oceanic and Atmospheric

Administration Air Resources Laboratory and National Cen-

https://doi.org/10.5194/acp-24-2985-2024 Atmos. Chem. Phys., 24, 2985–3007, 2024
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Table 1. Predictors and target variable for the random forest model in this study.

Target variable

Short name Description (unit) Data source

Plume Daily plume injection fractions MISR Plume Height Project 2 (1.1 km for blue band,

injection above the PBL (%)∗ 275 m for red band; daily);

fractions MERRA-2 (0.5° latitude × 0.625° longitude, 1 h)

Predictors

Short name Description (unit) Data source (spatial and temporal resolution)

LANDUSE Land use classification (unitless) MODIS Land Cover Climate Modeling Grid version 6 (MCD12C1)

(0.05° latitude × 0.05° longitude, yearly)

PBLH Daily mean PBL height (m) MERRA-2 (0.5° latitude × 0.625° longitude, 1 h)

T2 Daily mean air temperature at 2 m (K) MERRA-2 (0.5° latitude × 0.625° longitude, 1 h)

RH Daily mean surface relative humidity (%) MERRA-2 (0.5° latitude × 0.625° longitude, 3 h)

U10 Daily mean U wind at 10 m (m s−1) MERRA-2 (0.5° latitude × 0.625° longitude, 1 h)

V10 Daily mean V wind at 10 m (m s−1) MERRA-2 (0.5° latitude × 0.625° longitude, 1 h)

PRECIP Daily total precipitation MERRA-2 (0.5° latitude × 0.625° longitude, 1 h)

(kg m−2 s−1)

EMIS Daily mean OC biomass burning GFED 4.1s (0.25° latitude × 0.25° longitude, daily)

emissions (kg m−2 s−1)

LON Longitude of the biomass burning GFED 4.1s (0.25° latitude × 0.25° longitude, daily)

emission grid cell (degree)

LAT Latitude of the biomass burning GFED 4.1s (0.25° latitude × 0.25° longitude, daily)

emission grid cell (degree)

FRP Maximum fire radiative power within MODIS/Terra Thermal Anomalies/Fire 5-Min L2 Swath 1km V061

the plume (MW) (MOD14) (2030 km along swath × 2300 km across swath, 5 min)

∗ Fraction of plume pixels injected above the PBL within plume perimeter. Detailed calculation is described in Eq. (1) Sect. 2.2.1.

ters for Environmental Prediction (Stein et al., 2015). The

model calculates “sensitivity footprints” in units of concen-

tration divided by emissions (ppm µmol−1 m2 s), as described

in Sect. S3. These footprints relate potential emissions across

a source region upwind of a given receptor to air pollution

within the PBL at that receptor. As we describe below, mul-

tiplication of these footprints by emissions within the source

region yields the concentration change in an air pollutant

at the receptor. The model yields the concentrations of fire-

related BC and OC particulate matter at each receptor within

the source region via multiplying the sensitivity footprints by

the fire emissions on daily timescales. Smoke PM2.5 is typ-

ically defined as the sum of the fire-related BC and organic

matter (OM) (Chow et al., 2011; Koplitz et al., 2016; Cus-

worth et al., 2018; Li et al., 2020). OM is calculated using a

mass ratio of OM to OC, which is assumed to be 2.1 (Philip

et al., 2014).

We apply the fire emissions of OC and BC over Australia

from the GFED 4.1s inventory (van der Werf et al., 2017),

which compares well with other inventories for Australia

(Liu et al., 2020; Desservettaz et al., 2022) and includes

methodologies specifically designed to better capture small

fires (Randerson et al., 2012). GFED 4.1s estimates the

monthly emissions at 0.25° spatial resolution from 1997 to

the present based on the burned area data from MODIS

MCD64A1 (Giglio et al., 2013). The monthly emissions are

redistributed into daily timescales using daily scale factors

determined by the MODIS active fire products (MCD14ML)

and the burning day reported in MCD64A1 (van der Werf et

al., 2017).

2.3.2 Setup of sensitivity experiments

We conduct three sensitivity experiments to evaluate the

effects of plume injection fractions on the calculations of

smoke PM2.5 concentrations. Table 2 shows the configura-

tions of the STILT model and the sensitivity experiments.

The domain covers mainland Australia at 0.25° × 0.25° spa-
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Table 2. Configurations of STILT experiments in this study.

Experiment Case CTLa Case INJ-CLIMb Case INJ-RFc

Domain (spatial resolution) 112.0–165.5° E, 45.5–9.5° S (0.25° × 0.25°)

Simulation period 1 April to 31 December (for 2 receptors in northern Australia)

1 August to 31 December (for 10 receptors in southeastern Australia)

Backward simulation time (start time) 120 h (00:00:00 AEST, UTC+10)

Air parcel number 1000

Meteorological data, GDAS, 0.5° × 0.5° (2009–2018)

spatial resolution (years) GFS, 0.25° × 0.25° (2019–2020)

STILT algorithm Gaussian kernel density estimation w/o the hyper-near field vertical mixing depth correction

Fire emissions No scaling Scaling with injection fraction Scaling with injection fraction

from the climatological method from the random forest method

a Case CTL represents the control experiment that assumes total fire emissions are released within the PBL.
b Case INJ-CLIM represents the first sensitivity experiment that assumes some fire emissions are injected above the PBL based on injection fractions from the climatological

method.
c Case INJ-RF represents the second sensitivity experiment that assumes some fire emissions are injected above the PBL based on injection fractions from the random forest

method.

tial resolution, consistent with that of the GFED 4.1s inven-

tory. The STILT simulations are driven by archived meteoro-

logical variables from the Global Data Assimilation System

(GDAS) at 0.5° × 0.5° resolution for 2009–2018 and from

the Global Forecast System (GFS) at 0.25° × 0.25° resolu-

tion for 2019–2020. STILT simulates the sensitivity foot-

prints backwards in time for 120 h, which allows the air

parcels to travel the equivalent of the whole of Australia.

For the control experiment (case CTL), we assume that

all fire emissions are released within the PBL, where they

are evenly distributed. Daily smoke PM2.5 concentrations at

the receptors are then derived from the total fire emissions

of OM (scaled from OC) and BC multiplied by the simulated

sensitivity footprints. For the two sensitivity experiments, we

consider the impacts of plume injection on the surface con-

centrations of smoke PM2.5 downwind. In both these cases,

we scale the fire emissions by the fractions of smoke mass

remaining within the PBL. We assume that the fire emis-

sions injected above the PBL have no impact on the surface

PM2.5. For case INJ-CLIM, we estimate these fractions using

climatological plume profiles (Sect. 2.1), and for case INJ-

RF, we make these estimates using the random forest algo-

rithm (Sect. 2.2). However, the INJ-CLIM and INJ-RF meth-

ods estimate the plume injection fractions only in the source

grids, and they are unable to estimate to what extent smoke

plumes mix down to the surface in remote regions downwind.

This assumption may lead to the low biases of surface smoke

PM2.5 in remote regions, which we discuss in Sect. 4.

2.4 Calculation of non-fire PM2.5 concentrations

To validate the simulated smoke PM2.5, we need to estimate

the contribution of non-fire PM2.5 to total PM2.5, as only

measurements of total PM2.5 are available (Sect. 2.5). To

that end, we utilize the surface measurements of PM2.5 on

low-fire days (defined below) to calculate a non-fire PM2.5

concentration for each year, as in Cusworth et al. (2018).

For each receptor in a given year, we first define an up-

wind burning region as those grid cells where the mean

simulated footprint sensitivities during the fire season are

higher than a certain threshold, which we arbitrarily spec-

ify as 10−4 ppm µmol−1 m2 s. We then analyze the time se-

ries of daily OC fire emissions from the GFEDv4s inventory

summed over all grid cells in this upwind burning region dur-

ing the wildfire season every year and specify the 20th per-

centile at the low end of the fire emissions frequency distri-

bution as an emission threshold. We tag a day as “low fire”

if the daily OC fire emissions over the upwind burning re-

gion during the previous 2 d fall below the emission threshold

(Cusworth et al., 2018). The average of all PM2.5 surface ob-

servations at the receptor during the low-fire days is assumed

to be the non-fire PM2.5 concentration for the fire season in

that year.

2.5 Ground-based observations of PM2.5 in Australia

We rely on ground-based measurements of total PM2.5 con-

centrations to validate the modeled smoke PM2.5. Table 3

shows the sites and time periods of the historical data used

for this validation. These data include hourly ground-based

PM2.5 observations from the Northern Territory Environ-

ment Protection Authority (http://ntepa.webhop.net/NTEPA/

Default.ltr.aspx; last access: 7 June 2023), the Victoria En-

vironment Protection Authority (https://www.epa.vic.gov.au/

for-community/airwatch; last access: 21 October 2022), the

Queensland Government Open Data Portal (https://apps.

https://doi.org/10.5194/acp-24-2985-2024 Atmos. Chem. Phys., 24, 2985–3007, 2024



2992 X. Feng et al.: Importance of quantifying plume injection heights for smoke exposure in Australia

des.qld.gov.au/air-quality/download/; last access: 7 June

2023), the New South Wales Department of Planning

and Environment (https://www.dpie.nsw.gov.au/air-quality/

air-quality-data-services/data-download-facility; last access:

7 June 2023), and the Australian Capital Territory Gov-

ernment Open Data Portal (https://www.data.act.gov.au/

Environment/Air-Quality-Monitoring-Data/94a5-zqnn; last

access: 7 June 2023). Daily PM2.5 concentrations are cal-

culated as the average of the available hourly observations

on each day. We exclude the daily mean observations when

more than eight values of the hourly data are missing for that

day.

3 Plume injection fractions during Australian fire

seasons

3.1 Wildfire activity in Australia

Figure 1 shows the spatial distributions of annual mean

total OC fire emissions averaged from 2009 to 2020, in-

dicating that the northern and southeastern areas are the

most fire-prone in Australia. In this study, we focus on the

regional smoke exposure in northern Australia (118.125–

150.875° E, 18.875–10.125° S) and southeastern Australia

(140.125–153.875° E, 43.875–24.125° S; dashed boxes in

Fig. 1), where seasonal wildfires produce 39.5 % and 41.1 %,

respectively, of total fire emissions in Australia, and where

80 % of the Australian population lives (Australian Bureau

of Statistics, 2022). In northern Australia, the two main burn-

ing regions are located in the Top End and FNQ, which are

covered by eucalypt forests and woodlands. In southeastern

Australia, burning regions are mainly distributed in coastal

eucalypt forested areas in New South Wales and Victoria, as

well as in the Australian Capital Territory. In this study, we

focus on the smoke exposure during April to December in

northern Australia and August to January of the next year

in southeastern Australia. In 2020, fire activity in southeast-

ern Australia continued to some extent into February, but this

lengthening of the typical fire season was unusual (Ellis et

al., 2022).

3.2 Evaluation of plume injection fractions calculated by

climatological injection profiles and predicted by

random forest

Figure 2a compares the plume injection fractions above the

PBL (fabovePBL) derived from the MISR plume records with

those calculated using the climatological plume profiles with

assimilated PBL data (first method described in Sect. 2.1).

There are 2212 samples in total. Each sample represents an

individual plume digitized from the MISR imagery. Results

show that the estimated daily plume injection fractions are in-

consistent with MISR observations with a low correlation co-

efficient of 0.24 and a large root mean square error (RMSE)

of 0.39, indicating that climatological profiles cannot repro-

Figure 1. Spatial distributions of annual mean total OC fire emis-

sions (in Gg per month) during April to the following January from

2009 to 2020. The dashed boxes represent northern and southeast-

ern Australia in this study. Also shown are the locations of the Top

End and Far North Queensland (FNQ).

duce the daily variation in plume injection fractions. We find

that 90 % of the overestimated injection fractions with rel-

ative low-fire emissions are located in northern and central

Australia, a finding which we attribute to inaccuracies in the

climatological plume profiles. The plume injection height of

the plume profile is proportional to the PBL height in this

method (Sect. S1; Sofiev et al., 2013), and given the rela-

tively deep PBL in this region, the injection fractions above

the PBL tend to be overestimated. Next, we compare the ob-

served and modeled fire emission fluxes in the atmosphere

above the PBL (Fig. 2b). These fluxes are calculated by scal-

ing total emission fluxes from GFED 4.1s using injection

fractions derived from the first method and from MISR ob-

servations (Eq. 1). We find that the climatological method

can explain 76 % of the variance in the injected emission

fluxes derived from MISR but still underestimates the mean

value by 63 %. The large bias is mainly due to the underes-

timations of injection fractions for some megafires, such as

those in 2019. The intense heat generated by the megafires

can loft fire emissions high in the troposphere, a process

which is not captured by the climatological profiles. For low-

fire emissions, the climatological method shows high biases

in injected emission fluxes above the PBL due to inaccurate

climatological plume profiles in northern and central Aus-

tralia.

Figure 2c compares the plume injection fractions above

the PBL forecast by the random forest model against those

derived from the MISR plume profiles and daily mean PBL

height. These samples are from the test dataset, which is in-

dependent from the data used for random forest training. Our

random forest model generally captures the plume injection

fractions compared with the MISR observations, with a nor-

malized mean bias (NMB) of 1.3 % and an RMSE of 0.22.
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Table 3. Statistics for daily mean PM2.5 concentrations simulated by CTL, INJ-CLIM, and INJ-RF experiments, compared with the ground-

based observations at 12 receptors. The daily mean concentrations are calculated over each receptor’s observing period. Shown are the

temporal correlation coefficients R, NMBs, and RMSEs of daily total PM2.5 concentrations compared with the surface measurements.

Cities Observation periods R a NMB RMSE

(site) (Locations) (µg m−3)

CTL INJ-CLIM INJ-RF CTL INJ-CLIM INJ-RF CTL INJ-CLIM INJ-RF

Darwinb 2011–2020 0.76 0.76 0.76 17.1 % −17.8 % −2.1 % 5.9 3.9 4.0

(Palmerston) (130.94° E, 12.50° S)

Gladstonec 2009–2020 0.57 0.55 0.55 −5.4 % −11.0 % −11.2 % 1.9 1.7 1.7

(South Gladstone) (151.27° E, 23.86° S)

Brisbanec 2009–2020 0.24 0.17 0.40 13.2 % 2.2 % −4.8 % 2.2 1.9 1.2

(Springwood) (153.13° E, 27.61° S)

Newcastled 2009–2020 0.53 0.48 0.52 16.1 % 2.3 % −6.0 % 6.6 3.9 2.4

(Wallsend) (151.66° E, 32.89° S)

Sydneyd 2009–2020 0.40 0.38 0.37 14.8 % 6.8 % 0.4 % 4.8 3.4 2.8

(Liverpool) (150.90° E, 33.93° S)

Wollongongd 2009–2020 0.27 0.28 0.27 −6.3 % −11.6 % −14.7 % 1.5 1.4 1.6

(Wollongong) (150.88° E, 34.41° S)

Melbournee 2009–2020 0.25 0.25 0.25 −9.5 % −10.1 % −14.6 % 4.6 4.6 3.6

(Footscray) (144.87° E, 37.80° S)

Melbournee 2009–2020 0.41 0.39 0.40 23.7 % 22.9 % 14.4 % 2.0 2.0 1.2

(Alphington) (145.03° E, 37.77° S)

Alburyd 2017–2020 0.93 0.93 0.93 −22.2 % −23.7 % −31.7 % 5.6 5.8 7.3

(Albury) (146.93° E, 36.05° S)

Canberraf 2014–2020 0.67 0.63 0.68 19.3 % −8.6 % −16.0 % 22.5 17.7 15.3

(Florey) (149.04° E, 35.22° S)

Sydneyd 2014–2020 0.72 0.69 0.71 7.5 % −1.2 % −7.2 % 2.2 1.5 1.4

(Prospect) (150.91° E, 33.79° S)

Newcastled 2014–2020 0.59 0.50 0.55 28.9 % 9.2 % −1.6 % 6.9 4.0 2.7

(Newcastle) (151.75° E, 32.93° S)

a Temporal correlation coefficient between the observed and simulated annual mean total PM2.5 concentrations during the fire seasons (April to December for Darwin and Gladstone; August to

December for other cities).
b Observation data source: Northern Territory Environment Protection Authority (http://ntepa.webhop.net/NTEPA/Default.ltr.aspx; last access: 7 June 2023).
c Queensland Government Open Data Portal (https://apps.des.qld.gov.au/air-quality/download/; last access: 7 June 2023).
d New South Wales Department of Planning and Environment (https://www.dpie.nsw.gov.au/air-quality/air-quality-data-services/data-download-facility; last access: 7 June 2023).
e Victoria Environment Protection Authority (https://www.epa.vic.gov.au/for-community/airwatch; last access: 21 October 2022).
f Australian Capital Territory Government Open Data Portal (https://www.data.act.gov.au/Environment/Air-Quality-Monitoring-Data/94a5-zqnn; last access: 7 June 2023).

The model explains 53 % of the variance in the injection frac-

tions derived from MISR, with overestimations at the low

end and underestimations at the high end of the distribution,

which can be partly attributed to systematic biases associated

with ensemble-tree machine learning regressions (Zhang and

Lu, 2012; Belitz and Stackelberg, 2021). In addition, we in-

clude only 191 records of plume height retrievals in Novem-

ber 2019, most of which are associated with large injection

fractions. This relatively limited plume record may not have

been adequate to predict the plume behavior of intense fires

with confidence. We also compare the observed model fire

emission fluxes injected above the PBL (Fig. 2d). Here our

model successfully captures 88 % of the variance in the ob-

served fluxes in the test dataset, with an NMB of 10 %. The

high model bias for small injection fractions leads to only

a slight overestimation of smoke fluxes above the boundary

layer, as such small fractions are generally associated with

low mass fluxes.

3.3 Predictor importance for predicting plume injection

fractions by random forest

Figure 3 shows the importance of each predictor from the

random forest model, which is calculated as described in

Sect. 2.2.3. Larger values indicate greater importance. We

find that the important variables include daily mean PBL

height (PBLH), air temperature at 2 m (T2), meridional wind

speed at 10 m (V10), and the corresponding fire emissions

(EMIS). The first three variables are highly related to am-
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Figure 2. Scatter plots of plume injection fractions above the PBL calculated by (a) the climatological method and (c) the random forest

method, compared with the MISR derived plume injection fractions. Scatter plots of mass fluxes of fire emissions injected above the PBL

estimated by injection fractions from (b) the climatological method and (d) the random forest method, compared with MISR observations,

in units of kg m−2 s−1. Also shown are the R2 values and the RMSEs and NMBs between the predictions and MISR observations.

bient atmospheric stability (Mohan and Siddiqui, 1998) and

fire behavior (Schroeder and Buck, 1970). Wildfire smoke

disperses more under higher PBL heights and unstable at-

mospheric conditions, which in turn may be affected by the

movement of warmer air into the area near the surface or

colder air into the area aloft (Schroeder and Buck, 1970).

Thermal advection can be highly related to the meridional

wind speed. Fire emissions implicitly reflect both the fire in-

tensity and fuel load. The combined effects of these factors

thus influence the degree to which the smoke plume is in-

jected above the boundary layer. The maximum FRP within

the plume is relatively less important in predicting injection

fractions above the PBL, consistent with previous studies

which documented the weak correlation between FRP and

injection height (Kahn et al., 2007; Val Martin et al., 2012).

This weak correlation can be traced in part to clouds or

smoke obscuring fires from satellite detection or to incom-

plete knowledge of the local temperature profile. Previous

studies have attempted to directly correlate plume injection

heights with FRP observations. However, the relationship be-

tween observed FRP and the convective heat flux driving the

plume rise depends in large part on the local temperature pro-

file, which may not be well known (Kahn et al., 2007). In

addition, the satellite pixels may be only partly filled by fire,

leading to an underestimation of the heat flux driving plume

rise.

3.4 Comparison of plume injection fractions calculated

by random forest and climatological injection profiles

Figure 4 illustrates the spatial distributions of annual mean

fractions of total fire emissions injected above the PBL in

each grid cell, calculated by the two methods during April

to January of the next year, averaged over 2009–2020. (This

time frame includes the fire seasons of both northern and

southeastern Australia.) The injection fractions derived from

the climatological injection profiles range from 10 % to 50 %

across much of northern Australia. In contrast, the random

forest method predicts strong lofting of smoke in more lim-

ited regions in FNQ and in the eastern area of the Top End,
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Figure 3. The importance of each predictor in the resulting random

forest model. PBLH: daily mean PBL height; T2: daily mean air

temperature at 2 m; V10: daily mean meridional wind speed at 10 m;

EMIS: daily mean OC fire emission flux; LON/LAT: the longitude

and latitude of the plume source point; U10: zonal wind speed at

10 m; PRECIP: daily total precipitation; RH: daily mean relative

humidity; LANDUSE: land use classification; FRP: maximum fire

radiative power within the plume.

where about 30 % of total fire emissions are injected into the

free troposphere. Elsewhere in northern Australia, the ran-

dom forest method yields injection fractions above the PBL

of only 10 %–20 % of total fire emissions. In the coastal ar-

eas of southeastern Australia, the climatological method es-

timates that less than 40 % of fire emissions are lifted above

the boundary layer, while the random forest method pre-

dicts that the injection fractions account for 40 %–60 %. Put

another way, the climatological method predicts that about

∼ 18 % less OC emissions remain within the PBL on aver-

age over northern Australia, compared with the random for-

est method (Fig. 4c). Over southeastern Australia, the situ-

ation is reversed, with INJ-CLIM predicting ∼ 14 % more

emissions within the PBL on average than INJ-RF (Fig. 4c).

In southeastern Australia, we find that the spatial distribution

of large plume injection fractions predicted by random forest

is highly correlated with that of high OC fire emissions in

coastal areas (Fig. 1). Given the good match of these injec-

tion fractions with MISR observations, we conclude that our

random forest model better captures extreme wildfire events

compared with the climatological method due to inclusion of

daily fire emissions and FRP as predictors.

Figure 5 compares the estimated monthly mean OC fire

emissions within the PBL using the two methods in north-

ern Australia and southeastern Australia during their respec-

tive fire seasons from 2009 to 2020. In northern Australia,

the climatological method predicts an average 17.6 Gg per

month of fire-emitted OC lifted above the PBL, or 45 % of

the total OC fire emissions (39 Gg per month) during the fire

season (April to December). In contrast, the random forest

method predicts just 10.6 Gg per month of fire-emitted OC

lifted above the PBL, or just 27 % of total OC fire emissions

on average (Fig. 5c). Although there is large interannual vari-

ation of monthly mean total OC fire emissions, ranging from

18.6 to 62.9 Gg per month, neither method shows a long-

term trend of plume injection fractions in northern Australia

over the past decade. In southeastern Australia, the interan-

nual changes in both fire emissions and plume injection frac-

tions estimated by the INJ-CLIM and INJ-RF methods are

more pronounced from 2009 to 2020 compared with those

in northern Australia. This is due to the dramatic changes

in the total amount of wildfires and fire intensity in this re-

gion. In 2019, monthly mean total OC fire emission during

the extreme fire season is 481 Gg per month, significantly

higher than in other years, in which total OC fire emissions

average just 13.7 Gg per month (Fig. 5b). In addition, Fig. 5d

shows that 48 % of total OC fire emissions are released above

the PBL in the 2019 forecast by the random forest model,

much larger than the injection fraction (30 %) estimated by

the climatological method. During other years, the injec-

tion fractions estimated by the two methods are similar, with

mean values of 33.5 % (climatological injection profiles) and

37.9 % (random forest model). On average across southeast-

ern Australia, the climatological method and random forest

method yield 31 % and 45 %, respectively, of total fire emis-

sions rising above the PBL from 2009 to 2020.

4 Application to smoke PM2.5 concentrations and

their contributions to air quality across Australia

during fire seasons

4.1 Validation of total PM2.5 simulated by sensitivity

experiments

We apply the resulting plume injection fractions quantified

by the two methods to smoke PM2.5 simulations using the

STILT model at 12 receptors in nine key cities with large

populations during the fire seasons from 2009 to 2020. Fig-

ure 6 shows the receptor locations, which are located in

northern and southeastern Australia. The three sensitivity ex-

periments (CTL, INJ-CLIM, and INJ-RF) are driven by fire

emissions with different injection scenarios, as described in

Sect. 2.3.2 and Table 2. We rely on the ground-based mea-

surements of total PM2.5 concentrations and the estimated

non-fire PM2.5 concentrations (described in Sect. 2.4) to test

the accuracy of our two approaches for quantifying the plume

injection fractions and their impacts on long-term smoke ex-

posure. Total modeled PM2.5 is assumed to consist of smoke

PM2.5 and non-fire PM2.5. Table S1 shows the statistics of

annual mean surface total PM2.5 simulated by the three sen-

sitivity experiments, compared with total PM2.5 observations

at 12 receptors during the fire seasons over the past decade.

The three experiments reproduce the interannual variabil-

ity in PM2.5 concentrations with temporal correlation coef-
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Figure 4. Spatial distributions of mean fractions of total OC fire emissions injected above the PBL (in %) estimated by (a) the climatological

method (INJ-CLIM) and (b) the random forest method (INJ-RF), as well as (c) the percent differences in OC fire emissions within the PBL

between the two methods relative to total OC fire emissions during April to the following January from 2009 to 2020.

Figure 5. Panels (a) and (b) show estimated monthly mean OC fire emissions released within the PBL and panels (c) and (d) show annual

mean fractions of OC fire emissions injected above the PBL based on the climatological method (INJ-CLIM; green bars) and the random

forest method (INJ-RF; red bars) summed over all grid cells in northern Australia during April to December (left column) and in southeastern

Australia during August to the following January (right column) from 2009 to 2020. Also shown are the monthly mean total fire emissions

of OC during the respective fire seasons in northern and southeastern Australia (total; blue bars in panels a and b). The y-axis values

of panels (a) and (b) are on a log scale. We assume that the plume injection fractions for BC fire emissions are the same as those for OC fire

emissions.
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ficients ranging from 0.54 to 0.99, except for the receptor

Footscray in Melbourne. The NMBs and RMSEs between

the simulations and observations vary depending on the in-

jection scenario, ranging from −32.2 % to 19 % for NMBs

and 0.69 to 7.0 µgm−3 for RMSEs. At most sites, the re-

sults from the INJ-RF and INJ-CLIM experiments yield rel-

atively lower RMSEs and NMBs against observations com-

pared with the CTL experiment, indicating the importance

of considering plume injection heights on modeling smoke

concentration for exposure estimates in Australia. However,

there are large biases in simulated total PM2.5 concentrations

from the INJ-RF experiment compared with the observations

in Gladstone, Brisbane, Wollongong, Canberra, Newcastle

(Wallsend), and Albury. In Gladstone, Wollongong, and Al-

bury, we also find the low biases in simulated total PM2.5

concentrations from the CTL experiment, indicating that the

total fire emissions from the original GFED 4.1s or the esti-

mated non-fire PM2.5 concentrations may be underestimated.

The inclusion of plume injection in the INJ-RF and INJ-

CLIM experiments thus aggravate low biases in simulated

smoke PM2.5 concentrations over the three cities. In Bris-

bane, Canberra, and Newcastle (Wallsend), the low biases

are relatively significant during the high-fire years of 2009

and 2019. We speculate that these biases arise from neglect

in our model setup from downward mixing of smoke plumes

in remote regions (Sect. 2.3.2).

Figure 7 compares the time series of total PM2.5 con-

centrations simulated by the three experiments against the

surface measurements at six representative sites in northern

and southeastern Australia during the fire seasons from 2019

to 2020. We use the 10 d averages of simulated total PM2.5

concentrations to reduce the impacts of weather conditions

on day-to-day variability in non-fire PM2.5, which is set to

a constant value for each year at each receptor in our study,

and to smooth out the response of smoke PM2.5 to modeled

fluctuations in fire activity. These fluctuations depend on the

daily scale factors provided by GFED 4.1s and are some-

what uncertain. The three experiments successfully capture

the remaining variability in PM2.5 with temporal correla-

tion coefficients ranging from 0.59 to 0.93, indicating that

smoke PM2.5 contributes much of the synoptic-scale vari-

ation of total PM2.5 in these cities during the fire season.

Compared with the CTL experiment, the INJ-RF experiment

significantly reduces the overestimation of total PM2.5 con-

centration in Newcastle (77.5 % to 9.2 %), Sydney (27.9 % to

−6.3 %), and Canberra (47 % to −8.2 %), three cities which

are close to the most extreme fire events of 2019–2020. In

particular, compared with results from the INJ-CLIM exper-

iment, the peak values of total PM2.5 simulated by the INJ-

RF experiment agree best with observations in Newcastle and

Sydney during the megafires of November to mid-December,

with the lowest NMBs of 31 % and −5.0 %. In Melbourne,

three experiments capture fire events from December to Jan-

uary with temporal correlation coefficients over 0.92. How-

ever, the simulated total PM2.5 concentrations are underesti-

mated with NMBs ranging from −28.2 % to −20.9 % in all

three experiments. Again, the peak values of smoke PM2.5

concentrations are also unable to be captured by the CTL ex-

periment, an inability which can be traced to the low biases

from the fire emission inventory.

We further validate the time series of simulated and ob-

served total PM2.5 concentrations at all receptors, averaged

over their respective observation periods (Fig. S2). Table 3

shows the statistics for daily mean PM2.5 concentrations sim-

ulated by CTL, INJ-CLIM, and INJ-RF experiments, com-

pared with the ground-based observations at 12 receptors.

These average concentrations reveal the long-term smoke ex-

posure at these receptors. The three model experiments suc-

cessfully reproduce the time series of daily PM2.5 at most

receptor cities, except for Wollongong and Melbourne, with

temporal correlation coefficients ranging from 0.4 to 0.93.

In Wollongong and Melbourne (Footscray), where R = 0.27

and 0.25, smoke PM2.5 contributes only 10 % and 5 % of

total PM2.5 from 2009 to 2020 (Fig. 6). The daily varia-

tions in PM2.5 in the two cities are thus mainly affected

by weather conditions and anthropogenic emissions in some

low-fire years, and our model is unable to capture this. Com-

pared with INJ-CLIM, INJ-RF yields higher correlation co-

efficients and smaller RMSEs at most receptors, indicating

that INJ-RF better captures the daily variability and peak

values of total PM2.5 concentrations during the fire seasons.

However, INJ-RF improves the NMBs only in Darwin, Syd-

ney (Liverpool), Melbourne (Alphington), and Newcastle. In

other receptors, the total PM2.5 concentrations are more un-

derestimated in the INJ-RF experiment than in INJ-CLIM,

possibly due in part to the neglect in our model setup of

downward mixing of smoke in remote regions.

4.2 Impacts of plume injection heights on annual mean

smoke exposure in northern and southeastern

Australia

Figure 8 compares the annual mean smoke PM2.5 simulated

by STILT and background PM2.5 against ground-based ob-

servations of total PM2.5 at six representative sites in Aus-

tralia over the past decade. Figure S3 shows the results in

other six sites. The differences in simulated total PM2.5 are

driven by different plume injection scenarios and derived

smoke PM2.5 concentrations. Figure 9 shows the mean sen-

sitivity footprints at six representative cities during the fire

seasons from 2009 to 2020. The panels indicate the time-

average source regions of the air masses reaching these re-

ceptors within 120 h. When these air masses originate from

burning regions, the surface PM2.5 concentrations at the re-

ceptors show enhancements of smoke PM2.5. In contrast, the

impacts of wildfire smoke are quite small when the upwind

source regions are over the ocean or non-burning areas.

Darwin is the capital city of Northern Territory located in

the Top End, with long fire seasons from April to Decem-

ber. We find that this city is significantly affected by biomass
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Figure 6. Contributions of simulated smoke PM2.5 concentrations from the INJ-RF experiment to the observed total PM2.5 concentrations

(numbers on the pie charts) at 12 receptors averaged over the fire seasons of their respective observation periods (see Table 3). Names of

the observation sites are given in parentheses. Red sectors represent smoke contributions, while dark yellow sectors signify the differences

between observed total PM2.5 and simulated smoke PM2.5 concentrations, i.e., the non-fire PM2.5. Small red circles on map represent the

locations of these receptors. Different colors (red, blue, and black) are used to distinguish adjacent receptors.

burning in the Top End, where the mean sensitivity footprints

are higher than 1 × 10−3 ppm µmol−1 m2 s (Fig. 9a). In the

CTL experiment, simulated total PM2.5 is 16.7 % higher than

the observations on average, with overestimations increasing

to 31 %–47 % during the years with stronger fire emissions

(e.g., 2011, 2012, and 2015). However, the INJ-CLIM exper-

iment underestimates the simulated total PM2.5 by 18.0 %,

indicating a likely overestimation of fire emissions injected

above the PBL. One possible reason for this overestimation

can be traced to the inaccuracies in the input data and the

semi-empirical parameterization (Rémy et al., 2017). Based

on Sofiev et al. (2013), plume injection height is proportional

to PBL height, which is usually large in northern Australia

compared with other regions, leading to a higher injection

fraction of fire emissions above the PBL. In the INJ-RF ex-

periment, the mean simulated total PM2.5 concentrations are

in best agreement with the surface measurements with an

NMB of −2.5 % averaged from 2011 to 2020. This finding

demonstrates the importance of considering the plume injec-

tion heights of smoke PM2.5 during the severe fire seasons,

as well as the regional differences in fire dynamics.

Gladstone is located on the east coast of Queensland and

is influenced by burning in eastern Australia (Fig. 9b). We

find that annual mean wildfire contributions to total PM2.5

varies greatly at this site, from 2 % to 36 % over the past

decade based on the results of the INJ-RF experiment. Smoke
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Figure 7. Time series of the 10 d moving average of observed and simulated total PM2.5 concentrations from the CTL (blue), INJ-CLIM

(green), and INJ-RF (red) experiments during the fire seasons of 2019–2020 at six sample receptors: (a) Darwin (Palmerston), (b) Gladstone

(South Gladstone), (c) Newcastle (Wallsend), (d) Sydney (Liverpool), (e) Canberra (Florey), and (f) Melbourne (Footscray). Shown inset are

the temporal correlation coefficients R, NMBs, and RMSEs of daily total PM2.5 concentrations compared with the surface measurements.

Figure 8. Mean simulated concentrations of smoke PM2.5 and background PM2.5 from the three sensitivity experiments (blue: CTL; green:

INJ-CLIM; and red: INJ-RF), as well as observed total PM2.5 concentrations (black: OBS) in (a) Darwin (Palmerston), (b) Gladstone (South

Gladstone), (c) Brisbane (Springwood), (d) Newcastle (Wallsend), (e) Sydney (Liverpool), and (f) Melbourne (Alphington). The different

receptors have different observation periods. The modeled total PM2.5 concentrations are designated by the height of the colored bars,

consisting of smoke PM2.5 (color-filled bars) and the background PM2.5 (empty bars) in units of µgm−3.
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Figure 9. Mean of sensitivity footprints simulated by STILT (in ppmµmol−1 m2 s) during the fire seasons (April to December for Darwin

and Gladstone, and August to the following January for other cities) in (a) Darwin (Palmerston), (b) Gladstone (South Gladstone), (c) Bris-

bane (Springwood), (d) Newcastle (Wallsend), (e) Sydney (Liverpool), and (f) Melbourne (Alphington) from 2009 to 2020. The names in

parentheses are site names. The black squares represent the locations of receptors.

PM2.5 concentrations account for less than 10 % of the to-

tal PM2.5 in Gladstone during 2009–2010, 2012, and 2014–

2017. During low-fire years, the low biases in simulated total

PM2.5 are likely caused by an underestimation of background

PM2.5 concentrations from anthropogenic emissions. During

the high-fire years of 2013 and 2018, the INJ-RF experi-

ment performs better than the CTL experiment, with negli-

gible NMBs of 0.8 % and 6.3 %. In 2011 and 2019, however,

INJ-RF underestimates total PM2.5 by 22 % and 29.5 %. The

significant underestimations of total PM2.5 can be partially

attributed to the low biases in the fire emission inventory,

which also leads to 15 % and 18 % underestimations of to-

tal PM2.5 from the CTL experiment. Another reason may be

neglect in our model setup of downward mixing of smoke far

from the source regions. During the fire seasons in 2011 and

2019, Gladstone experiences the impacts of smoke from both

local and remote burning regions in the eastern coastal area.

In southeastern Australia, we find similar trends in annual

mean smoke PM2.5 concentrations and their contributions to

total PM2.5 in Brisbane, Newcastle, and Sydney (Fig. 8c, d,

and e). These sites are sensitive to the fire emissions in east-

ern coastal areas. Figure 9c–e show that general upwind re-

gions to the three cities are over both land and ocean from

2009 to 2020. During the 2019 high-fire year, the CTL ex-

periment greatly overestimates total PM2.5 concentrations by

73 % and 30 % in Newcastle and Sydney, respectively. An-

nual mean smoke PM2.5 in the CTL simulation is even larger

than observed total PM2.5 in Newcastle, which suggests that

a considerable fraction of fire emissions is released above

the PBL in the source regions upwind of this city. The CTL

experiment also overestimates total PM2.5 concentrations by

30 %–54 % in Brisbane during 2010, 2012–2013, and 2018,

and by 15 %–29 % in Sydney from 2012 to 2013. The con-

tributions of smoke PM2.5 to total PM2.5 ranges from 20 %

to 45 % during these years. The INJ-CLIM experiment par-

tially improves the modeled smoke PM2.5 compared with the

CTL experiment by introducing the climatological plume in-

jection of fire emissions, but the climatological injection pro-

files are unable to accurately reflect the fire emission injec-

tions during severe fire seasons. In contrast, the INJ-RF ex-

periment best matches the smoke PM2.5 simulations in the

cities near the burning regions during these high-fire years.

For example, INJ-RF and INJ-CLIM reduce the large CTL

overestimation of total PM2.5 concentrations in Newcastle

from 73 % to 6.6 % (INJ-RF) and 25.5 % (INJ-CLIM) dur-

ing 2019. But in remote downwind regions, both INJ-RF and

INJ-CLIM underestimate the smoke PM2.5 concentrations in

2019, probably due to neglect in our model of downward

mixing of fire plumes from high altitudes. The INJ-CLIM

experiment estimates more fire emissions remaining within

the PBL, which yields a smaller low bias in Brisbane. INJ-

RF yields NMBs of total PM2.5 ranging from 1.5 % to 24.3 %

compared with observations in Sydney and Brisbane during

2010, 2012, and 2013, smaller than the NMBs (6.3 %–54 %)

in the CTL experiments. During other low-fire years when

smoke PM2.5 contributes less than 10 % of total PM2.5, the

simulated smoke PM2.5 concentrations from the INJ-CLIM

and INJ-RF experiments are similar.
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Figure 8f shows the results of three simulations in Mel-

bourne, where the fire seasons have significantly varied dur-

ing the austral summer (December to the following Jan-

uary) over the past decade. The fire season in Melbourne is

shifted later in the year compared with New South Wales

and Queensland. The sensitivity footprint of Fig. 9f il-

lustrates that Melbourne is mainly affected by southwest-

erly winds, which may bring marine air onshore. Thus,

fire emissions from southeastern Australia contribute just

1 %–8 % of total PM2.5 concentrations at this site, except

for the high-fire years 2009, 2011, and 2018–2019, when

these contributions range from 15 % to 22 %. In the high-

fire years, we also find a modest improvement in sim-

ulated total PM2.5 from the INJ-RF experiment (2009:

NMB = 4.4 %; 2018: NMB = 11.6 %), compared with the re-

sults from the INJ-CLIM experiment (2009: NMB = 13.5 %;

2018: NMB = 34.5 %).

4.3 Contributions of long-term smoke PM2.5 to regional

air quality

We next calculate the ratios of simulated smoke PM2.5 con-

centrations from the INJ-RF experiment to observed total

PM2.5 concentrations averaged in respective observation pe-

riods at 12 receptors to quantify the long-term contribu-

tions of wildfires in key Australian cities (Fig. 6). Here we

use observations for total PM2.5 concentrations in these ra-

tios, rather than the sum of modeled smoke and non-smoke

PM2.5, as the observations provide greater certainty. Fig-

ure 10 shows the annual mean contributions of smoke PM2.5

at all receptors during the past decade. On average, the long-

term smoke PM2.5 accounts for 5 %–52 % of total PM2.5

across all receptors during the fire seasons. Smoke PM2.5

contributes the most in Darwin, accounting for 35 %–74 %

from 2011 to 2020. In the 7 receptors located in the east-

ern coastal area, mean smoke PM2.5 contributions range from

9 % to 23 % with large interannual variations. For example, at

the Liverpool site in Sydney, smoke PM2.5 accounts for 4 %–

38 % of total PM2.5 and as much as 33 %–38 % during the

intense 2013 and 2019 fire seasons. In other inland receptors

and Melbourne, the annual smoke PM2.5 contributions are

usually less than 10 %, but the contributions rise as high as

20 % during the high-fire years of 2009, 2011, and 2019 in

southeastern Australia. The large mean smoke contribution

(73 %) in Florey, a suburb of Canberra, is caused by the ex-

treme fire events in 2019. The smoke contributions are less

than 5 % in other years from 2014 to 2020.

Figure S4 shows the contributions of wildfires to total

PM2.5 during the 2019–2020 fire season, when extreme fire

events occurred in southeastern Australia. We find that in

northern cities, the smoke PM2.5 contributions are consistent

with those in the long-term averages (Fig. 6). But in some

densely populated cities in southeastern Australia, the con-

tributions of smoke PM2.5 significantly increase during this

time frame, from 17 % to 38 % in Sydney, 17 % to 54 % in

Newcastle, 40 % to 73 % in Canberra, and 9 % to 15 % in

Melbourne. Our results highlight the short-term impacts that

this severe wildfire season had on regional air quality.

At most sites examined in Australia, smoke PM2.5 drives

the seasonal variations in total PM2.5. Figure S5 shows the

monthly mean contributions of smoke PM2.5 at six repre-

sentative sites over the past decade. In Darwin, mean smoke

PM2.5 contributions rise to over 50 % from May to August

but fall to less than 20 % from November to December. This

seasonality is consistent over the past decade and can be

traced to the influence of the Australian monsoon, as de-

scribed in the Introduction. The wildfires in the Top End and

FNQ usually last from April to December. From April to Au-

gust, a high-pressure system is typically located in southern

Australia. Southeasterly winds from this area are warm and

dry, bringing smoke from burning regions in the Top End

to Darwin. After September, the monsoon carries warm and

moist oceanic air into Darwin from the northwest, limiting

the impact of wildfire smoke emitted over the Top End and

FNQ on air quality into the city. The STILT model usually

yields a better performance capturing the patterns of sensi-

tivity footprints due to the reliable meteorological variables

provided by GDAS and GFS. In southeastern Australia, the

peak time of smoke PM2.5 contributions to total PM2.5 are

from August to the following January, lagging that in north-

ern Australia. In Gladstone, smoke PM2.5 accounts for less

than 5 % during April to July as a result of low-fire emis-

sions in the upwind eastern coastal area. During August to

December, mean smoke PM2.5 contributions in this city in-

crease from 8 % to 16 % due to more frequent fire activity in

the region. In Brisbane, Newcastle, Sydney, and Melbourne,

the peak fire periods occur during October to January, when

summer heat dries out the forest and grasses that fuel the

fires. These four cities then become vulnerable to the threat

of wildfire smoke, with mean contributions to total PM2.5

ranging from 13 % to 25 %. However, the wildfire events in

southeastern Australia experience large interannual variabil-

ity, resulting in variable spatiotemporal distributions of fire

emissions during fire seasons over the past decade. Air qual-

ity in the other five cities of southeastern Australia that we

examine are affected by surface air fluxes from both land and

ocean. The day-to-day variability in sensitivity footprints in

these receptors are pronounced, which may be challenging

for the STILT model to accurately reproduce.

5 Discussion and conclusion

We have developed two approaches to quantify the plume in-

jection fractions above the PBL over Australia during the fire

seasons from 2009 to 2020, with the goal of improving esti-

mates of smoke PM2.5 exposure in cities downwind of fires.

Both methods estimate the daily fraction of smoke plumes in-

jected above the PBL. The climatological approach is based

mainly on the climatological monthly mean injection profiles

https://doi.org/10.5194/acp-24-2985-2024 Atmos. Chem. Phys., 24, 2985–3007, 2024



3002 X. Feng et al.: Importance of quantifying plume injection heights for smoke exposure in Australia

Figure 10. Boxplot of annual contributions of simulated smoke PM2.5 concentrations from the INJ-RF experiment to observed total PM2.5

concentrations at 12 receptors during the fire seasons of respective observations periods. The order of the 12 receptors in this figure is based

on the locations from north to south in Australia. The bottom, top, and red lines in the middle of each box are the 25th and 75th percentiles,

as well as the median of all data. The distance between the 75th and 25th percentiles is the interquartile range. The lower and upper whisker

limits represent the most extreme data values within 1.5 times the interquartile range. The data greater than 1.5 times outside the interquartile

range are considered outliers and are shown as red crosses.

from IS4FIRES and daily injection heights compiled by the

GFAS emission inventory. For the second approach, we train

a random forest model to predict the daily plume injection

fractions, using plume heights derived from MISR obser-

vations, assimilated meteorology, and fire information from

MODIS and GFED 4.1s. The climatological method can ex-

plain 76 % of variances in daily mass flux of fire emissions

injected above the PBL derived from MISR, but it underesti-

mates the mean value of this flux by 63 % in the test dataset.

A likely reason for this weakness is that the climatological

injection profiles cannot capture the spatiotemporal variabil-

ity in plume injection fractions. The resulting random forest

model, in contrast, more successfully reproduces the mass

flux of fire emissions injected above the PBL, with an R2 of

0.88 and NMB of 10 %, compared with MISR observations.

To quantify the impact of plume injection fractions on smoke

air quality, we then apply total fire emissions to STILT to-

gether with the plume injection fractions that remain within

the PBL.

We find that characterization of the plume injection frac-

tions greatly affects estimates of the surface daily smoke

PM2.5 in northern and southeastern Australia, especially dur-

ing severe fire seasons when intense heat from fires can loft

smoke high in the troposphere or even to the stratosphere.

The random forest model predicts plume behavior that best

agrees with observed surface PM2.5, especially over the re-

ceptors near the burning regions during most high-fire years.

For example, in northern Australia, when assuming that all

fire emissions are released within the PBL, STILT generates

total PM2.5 concentrations ∼ 16 % higher than surface obser-

vations on average in Darwin during the past decade. Using

the climatological method, however, we estimate that ∼ 45 %

of smoke emissions rises above the PBL at Darwin, while the

random forest method estimates just 27 %. Applying these

plume injection fractions to STILT reduces the NMBs be-

tween simulated and observed total PM2.5 concentrations to

−18 % for the climatological method and −2.5 % for the ran-

dom forest method.

In southeastern Australia, we find that both fire fre-

quency and injection fractions significantly vary over the past

decade. During the severe fire season of 2019, the random

forest method predicts that 48 % of smoke plume mass rises

above the PBL, much higher than the 30 % estimated by the

climatological method. In Sydney and Newcastle, these two

methods generate surface concentrations in better agreement

with observations than the control simulation, with NMBs

of −4.5 % (INJ-RF) to −7.0 % (INJ-CLIM) in Sydney and

6.6 % (INJ-RF) to 25.5 % (INJ-CLIM) in Newcastle. How-

ever, neither method can quantify the possible downward

mixing of fire smoke plumes in downwind regions and the

subsequent impact on surface air, a process which may be es-

pecially important during more severe fire seasons when in-

tense heat lofts greater quantities of smoke above the PBL in

source regions. In Brisbane, Gladstone, and Melbourne, the

INJ-RF method leads to more pronounced underestimations

of surface PM2.5 concentrations compared with INJ-CLIM,

perhaps because of this shortcoming.

We further quantify the long-term contributions of smoke

PM2.5 in key Australian cities based on the simulations

with the INJ-RF plume injection scenario. Results show that
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smoke PM2.5 accounts for 5 %–52 % of the total PM2.5 dur-

ing the fire seasons from 2009 to 2020. In most cities in

southeastern Australia, we find large interannual variations

in smoke PM2.5 contribution to total PM2.5, ranging from

1 % to 73 %, suggesting the vulnerability of this region to

infrequent but extreme smoke events. For example, during

the 2019–2020 “Black Summer”, smoke accounts for 38 %

of total PM2.5 in Sydney, 54 % in Newcastle, and 73 % in

Canberra, indicating the vulnerability of populations living

close to the intense wildfires.

The machine learning approach (INJ-RF) has two main

limitations. First, the relatively short fire season and inter-

annual variability in fire activity in southeastern Australia

means that fewer MISR records are currently available to

train and test the INJ-RF model. Digitizing more smoke

plume records from MISR, a laborious process, could en-

hance the training and testing of the INJ-RF model. Future

studies could then train the random forest models separately

in the two regions – northern and southeastern Australia –

and identify the drivers for each region. Second, as noted

above, the STILT model cannot capture downward mixing

of smoke away from source regions. Future studies could

explore the impacts of long-range transport and downward

mixing of fire emissions on surface smoke concentrations by

applying the estimated injection fractions to 3-D chemical

transport models.

Climate change is projected to increase fire frequency in

many regions worldwide (Abatzoglou and Williams, 2016;

Di Virgilio et al., 2019; Canadell et al., 2021), and knowl-

edge of plume behavior is essential to accurately quantify

the resulting smoke exposure and health impacts. Our ran-

dom forest model for calculating plume injection fractions

promises to improve assessment of surface smoke concen-

trations downwind of fires. The model can predict the daily

plume injection fractions above the PBL at 0.25° × 0.25°

horizontal resolution or higher, depending on the spatial res-

olution of the fire emission inventory. Thus, this approach

predicts plume behavior at a higher spatiotemporal resolu-

tion than the climatological approach used here. Our method

can be easily applied to other regions and implemented in 3-

D chemical transport models, which can better represent the

long-term transport of smoke in vertical layers than can La-

grangian plume models like STILT. The accuracy of the ran-

dom forest predictions may be further improved once more

satellite retrievals of fire plume heights become available for

model training. The utility of the machine learning approach

can also be explored in regions where satellite observations

of plume heights are missed due to cloud obscuration or in-

adequate overpass frequency.
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