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Systemic analysis of lipid metabolism from
individuals to multi-organism systems†
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Denise S. Fernandez-Twinn, f Jennifer Scott,d Ryan Patterson-Cross,g

Adam J. Watkins, h Samuel Virtue, f Thomas A. K. Prescott, a Ellen Baker, d
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Geoffrey C. Kite, a Milada Vı́tová, i Davide Chiarugi,gj John Moncur, k

Albert Koulman, bf Geraldine A. Wright, d Stuart G. Snowden l and
Philip C. Stevenson *am

Lipid metabolism is recognised as being central to growth, disease and health. Lipids, therefore, have an

important place in current research on globally significant topics such as food security and biodiversity

loss. However, answering questions in these important fields of research requires not only identification

and measurement of lipids in a wider variety of sample types than ever before, but also hypothesis-

driven analysis of the resulting ‘big data’. We present a novel pipeline that can collect data from a wide

range of biological sample types, taking 1 000000 lipid measurements per 384 well plate, and analyse

the data systemically. We provide evidence of the power of the tool through proof-of-principle studies

using edible fish (mackerel, bream, seabass) and colonies of Bombus terrestris. Bee colonies were found

to be more like mini-ecosystems and there was evidence for considerable changes in lipid metabolism

in bees through key developmental stages. This is the first report of either high throughput LCMS

lipidomics or systemic analysis in individuals, colonies and ecosystems. This novel approach provides

new opportunities to analyse metabolic systems at different scales at a level of detail not previously

feasible, to answer research questions about societally important topics.

1. Introduction

Investigation of metabolic systems is a key part of studies into

several globally important societal questions. For example,

biodiversity loss is more acute than ever, increasing the urgency

of studies on its underlying mechanisms. Studies on biodiver-

sity loss involve investigating ecosystems, in which nutrients

are passed between organisms. A closely related and important

topic is global food security, which requires sustainable food

production, including rearing of both livestock and crops.

Sustainable food production requires a detailed understanding

of health and metabolism within individual organisms as well

as their environment and the interaction between the two. A

common theme among investigations of biodiversity loss and
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global food security is the need for systemic analyses within or

between individuals. Typically, investigating biological systems

includes tackling questions about how those systems behave

when they are challenged and how they are controlled in

response to both intrinsic and extrinsic factors.

There has been an exponential expansion of genetics tech-

niques and tools available for investigating how systems are

controlled. These have been used in a wide range of applica-

tions, including to improve the production of foods1–3 and to

investigate climate change4–6 and have given an invaluable

insight into those systems and how they are constructed.

However, genetics approaches are not able to directly measure

how that system will respond to environmental challenges such

as an increase in temperature. This requires more direct read-

outs of modifiable factors such as metabolites, i.e. the abun-

dance and distribution of individual small molecules. Such an

approach will provide mechanistic insight into the phenotypic

effect(s) observed. Recently, investigations of how lipid meta-

bolism is controlled have been reported.7–9 These studies

used systemic or network analyses to answer questions about

how metabolism is controlled and challenged in the context of

dietary challenges, either through general changes (e.g., a

high fat diet) or individual nutrients (e.g., individual poly-

unsaturated fatty acids).

To answer questions about how metabolism is controlled or

challenged in individual organisms or ecosystems, analysis of

metabolites such as lipids is required from a range of sample

types. This requires automation to make the scale of analyses

feasible and subsequent wide-scale analysis in silico possible.

Lipids are a key focus in biology because they include mole-

cules used to supply and store energy (triglycerides), and others

with a structural role (e.g., phospholipids). Furthermore, as all

cells need energy and membranes, studies on lipid metabolism

are important for all cells. The study of lipid metabolism

therefore provides a broad and detailed way to investigate the

health and behaviour in biological systems from individual

organisms to whole ecosystems, i.e., across a range of scales.

Investigating lipid metabolism in ecosystems and individual

organisms requires sample preparation techniques that cover

the full range of sample types found in nature. This is a

relatively new challenge and represents an emerging need for

technological advancement as most lipidomics pipelines are

designed for human blood serum and so have not been

optimised for a range of sample types required for complex

biological systems. Some ground work has been done on

extending the range of tissue types in lipidomics studies,10,11

however none of these encompass diverse sample types such as

plant material and insects.

A second challenge that emerges from the need to investi-

gate whole ecosystems is the need to collect data from large

numbers of samples in parallel. For example, high throughput

techniques have emerged recently in metabolomics, with sev-

eral studies using thousands of samples.12–15 For these ana-

lyses, extractions need to be automated16 with the minimum of

steps to prepare samples.17 These and other methods have been

reviewed18–20 and even tested.11,21,22 Direct Infusion Mass

Spectrometry (DIMS) and semi-quantitative LCMS approaches

have been reported for collecting lipidomics data. DIMS is an

excellent tool for collecting lipidomics data from large numbers

of samples without chromatography, and has been used in

several of the largest lipidomics studies done to date.13,14

DIMS is a sensitive method that trades number of variables

measured for the speed of data collection. Semi-quantitative

high throughput LCMS has also been reported,23 measuring a

greater number of lipids than DIMS, but requiring longer

acquisition times per sample and with lower sensitivity.

For systemic analyses, a comprehensive survey of lipids is

required, along with efficient and effective identification. Big

and urgent societal questions on climate change and global

food security require scope for network analysis as well as

candidate biomarker analysis and similar statistical tests. This

points to the need for measurement of as many lipids as

possible in the system, and as consistently as possible.

To meet the needs of systemic analysis of ecosystems and

individual organisms, we suggest that three major advance-

ments are required to construct a lipidomics pipeline suitable

for the task. First, the best extraction method for collecting the

lipidome for high throughput LCMS in a 384 well plate format

must be determined. Second, a rapid and reliable way to

process raw lipidomics data to give a signals sheet with all

lipid variables ID-matched. Third, a way to undertake network

analysis in silico on the data acquired. We have responded to

these needs by constructing a pipeline for metabolomics-based

analysis of both individual organisms and multi-organism

systems (Fig. 1) and using it for proof-of-principle studies on

big questions in ecosystem performance and the health of

individual organisms.

We successfully applied our approach as proof-of-concept

studies that highlight how lipid-based systems biology can be

applied to address specific questions and hypotheses in biodi-

versity loss and other societally important questions.

2. Results and discussion

The construction of the lipidomics pipeline is described

sequentially, starting with sample preparation with the selec-

tion of lipid extraction method, followed by data processing.

Acquisition of lipidomics data from a range of sample types

that describe both laboratory and ecosystem studies is then

explained (Table S1, ESI†). How lipidomics data can be used to

answer timely and important questions about lipidomics is

then shown through two example proof-of-principle studies.

2.1. High throughput lipid extraction and data processing

We investigated methods for lipid extraction to identify the one

most suitable for high throughput lipidomics using 384w

plates. This was done in tandem with development of data

processing in order that the latter served the former. Three

solvent systems established for extracting lipidomes were tested,

along with a more environmentally sustainable alternative

that is not currently in widespread use (ethyl acetate, EAT).
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These solvent systems were the Bligh and Dyer24 (BAD), tert-

butylmethyl ether16 (TBM), dichloromethane-methanol-triethyl-

ammonium chloride10,25 (3 : 1 : 0.002, DMT). These four

extraction methods were tested on nine different sample types

(mouse brain, heart and liver, cows’ milk, whole Desmodesmus

quadricauda, leaves from Eucalyptus perriniana, polyfloral pol-

len, whole Bombus terrestris, whole Saccharomyces cerevisae;

BRA, HEA, LIV, BTM, DQu, EuL, PFH, WHB, YEA respectively),

with ten measurements of each stock. Extracts from all extrac-

tion methods were run on the same 384w plate. The extraction

performance measures used were (i) the number of variables

found, (ii) the total signal and (iii) the coefficient of variation,

i.e., a measure of how consistent the methods were. The data

were then processed using two processing methods before

numerical analysis and determination of which extraction

method performed best.

Data from the extraction methods was initially processed

using a conventional processing method.26 The number of

signals (with a unique m/z and Rt, Fig. S1A, ESI†) showed little

difference between methods, unlike the total signal which did

differ between methods (Fig. S1B, ESI†). Coefficients of varia-

tion (CV) of signal size were calculated for each variable in each

method on each sample type (Table S2, ESI†). These showed

that the BAD and DMT methods were similar, with slightly

more variables having a CV below 20% and 15% for the DMT

method. This type of analysis provided some insight into the

difference between methods, however this approach to proces-

sing LCMS data is incompatible with a systems analysis as the

latter requires ID-matching for all variables and this approach

identified secondary ions for more abundant signals. To over-

come this limit, we automated the matching of lipid IDs to

lipidomics data using commercially-available software (Analy-

zerPros XD from SpectralWorks Ltd) with a comprehensive

target library (TL) generated in-house. The TL consisted of

around 7.5k triglycerides, ceramides and phospholipids and

was used to assess extraction methods.

ID-matched processed data were then used to assess the

quality of the extraction procedures. Fig. S2 (ESI†) shows the

number of variables and total signal of ID-matched signals for

each method. These analyses show subtle differences between

the total signal measured for each of the methods, with BAD

and DMT being similar and DMT often but not always slightly

higher than BAD. Student’s t-tests showed that DMT gave

greater total signal for BRA, BTM, DQU, EuL, HEA and WHB

(p 0.015272, 0.001395, 2.63 � 10�6, 3.53 � 10�13, 4.94 � 10�6,

2.16 � 10�5, respectively) whereas BAD gave greater total signal

for YEA (p 0.001856). No difference in total signal was found

between DMT and BAD for either LIV or PFH (p 0.352035,

0.684561). The total signal strength of extracts collected using

EAT was higher than those of the TBM method, but not as high

as BAD or DMT.

Processing the data using a TL simplified and reduced the

computing power needed to produce a signals sheet. This

facilitated assessment of the consistency of the extraction

procedures (CV). The CV of the four methods calculated using

only lipid variables, shows that the BAD and DMT methods

performed similarly, with DMT giving 1–3% more lipid vari-

ables overall than the BAD (Table S3, ‘Sum’, ESI†). Here too, the

EAT method was more consistent than the other three meth-

ods, and TBM was less consistent. The impressively consistent

performance of the EAT method is encouraging, however the

total signal being less than for other methods suggested that

this solvent was saturated. So, of the methods tested, the DMT

method performed best and was thus the one used. These

results answer the question of which of the extraction methods

tested is the best for data collection of high throughput LCMS

lipidomics collection across a range of sample types needed for

analysis metabolic systems.

2.2. Data analysis

The depth and breadth of lipidomics data collection made

possible by this pipeline allowed us to determine the lipid

composition of a variety of sample types from different phylla,

including plants, algae, fish, mammals and insects (Table S1,

ESI†). Typically, analyses of data of this sort involves statistical

tests, usually starting with a multi-variate analyses such as a

principal component analysis (PCA). This type of test reduces

dimensionality and can be used to identify sub-groups of

samples and also to identify which variables drive the differ-

ence between two or more groups. Fig. 2A is a PCA of all

samples run, showing insects, plants, algae, mouse, fish and

even a human sample. These samples describe the range of

Fig. 1 The pipeline for high throughput data collection of LCMS data from large numbers of biological samples. Samples collected from the field are
stored at �80 1C (freeze-dried if needed), then (1) homogenised, (2) the lipids extracted, (3) profiled using LCMS, (4) the data extracted and processed to
give a signals sheet with metadata, and then (5) analysed.
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Fig. 2 Principal component analyses of biological samples, drawn from plants, fish, mammals, yeast, bacteria and insects. Panel (A), samples of the nine
different groups; (B), whole Bombus terrestris, fed one of three pollen diets; (C), plant and algal tissues; (D), Apis mellifera and Bombus terrestris tissues;
(E), tissues samples from edible fish; (F), tissue samples from queen bees (Bombus terrestris) fed either mono-floral pollen from either Fagopyrum

tataricum (buckwheat) or Helianthus annuus (sunflower) plants; (G), schematic representation of the exploitation of the known connections between
tissues to undertake a traffic analysis. 95% confidence intervals are shown with ellipses of the same hue as the associated sample points. Data were
log10-transformed (panel (A)) or signal corrected (panels B–F).
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sample types observed in studies of model laboratory organ-

isms (mice) as well as of ecosystems. The PCA showed that the

lipidome differed between these organisms. Plants overlapped

entirely with algae but very little with animals of any kind.

There was some similarity between the tissues of mice, bees,

humans and fish, but as expected, they are generally distinct.

PCAs also showed subgrouping within this, including between

species of social bee (Bombus terrestris and Apis mellifera) and

between storage conditions (Fig. 2B), feeding of Bombus terres-

tris (Fig. 2C), and plant tissues and algae (Fig. 2D). This type of

analysis therefore provides a way to distinguish samples by

identifying the lipids that differ the most between them. For

example, this shows clearly that the dietary intake of lab-reared

social bees was associated with contrasting lipid compositions

in vivo (Fig. 2B).

However, multi-variate analyses such as PCAs give very

limited insight into the mechanism that drives the effect seen.

This provides a problem for system-level studies. Interpreting

lipidomics data from several different tissues within individual

organisms using an MVA is limited in what it can explain about

how the system is controlled, as any visible distinction relies on

subgrouping of individual tissues in the different groups.

Similarly, ecology studies of landscapes that comprise several

trophic levels requires a strong distinction between the mole-

cular comparison of individual samples in order to see any

difference between them. This type of analysis may therefore

miss a range of sub-lethal differences between groups or

locations ascribed to differences in dietary intake or nutrient

availability form the landscape. For example, an important

question in ecology at present is how pollination services are

responding to climate change and how they can be maintained

in order to protect the biodiversity of flowering plants. Thus the

behaviour of both social and solitary bees with the rest of their

environment and whether they visit a range of plants (general-

ist) or are more restricted (oligolectic), by preference or neces-

sity, demands a more systemic approach than multi-variate

analyses can give.

Second, MVAs fail to exploit the relationships between the

samples, i.e., the structure of the biological system from which

they come. Fig. 2E and F show tissues that describe the

metabolic structure of edible fish and Bombus terrestris fed

contrasting diets, respectively. The difference between the

groups can be seen, however what is accumulated where and

thus how the system is controlled is not visible.

In order to understand how biological systems are con-

trolled and what happens when they are stressed, the known

connections between tissues or organisms must be exploited.

Including the spatial distribution in the analysis sorts the

metabolite composition data and allows it to be plotted such

that the parts of the system when the biggest changes are found

can be identified (shown schematically in Fig. 2G). We also

judged that an approach that does not rely on controversial

features such as p values associated with Students’ t-tests is also

attractive. We therefore updated and expanded a non-statistical

approach to network analysis for analysing metabolic systems,

and present Lipid Traffic Analysis v3.0 (LTA). This software

plots the spatial distribution of variables according to their

lipid type. A-type variables are lipids found in all compartments

(tissues/sample types) of a given group. B-type lipids are vari-

ables found in pairs of adjacent compartments, for example in

the liver and the serum in mammals or the brain and ocular

cortex in bees. U-type variables are found only in one compart-

ment for a given group. We also introduce N2-type variables that

are for variables found in pairs of non-adjacent groups. The N2-

type is useful for identifying variables that exist independently

or imply the existence of unexpected connections in a network.

Analysing lipid data in this way is useful because (i) it is a

plot of lipid distribution that does not rely on probability or

other metrics, (ii) the plots can be used to characterise the

system and (iii) the analysis sifts out the most important

variables and parts of the network, identifying how the control

of the systems differ. This approach therefore avoids a reliance

on probability and so the need for significance thresholds is

avoided. The combination of the data collection strategy we

have developed and the network analysis, i.e., the full pipeline,

was used for two sets of proof-of-principle experiments for

globally important societal challenges. One was on rearing

livestock (fish) and the other on protecting biodiversity through

understanding a generalist pollinator (bumble bee). These are

two separate questions that require a similar approach and that

this pipeline can be used to answer.

First, a proof-of-principle traffic analysis on edible fish

species from the same biome but different taxonomic orders

(moroniforme and perciforme) was performed, and then with

an Atlantic species of another order (scombiforme). The LTA of

Dicentrarchus labrax (seabass) against Sparus aurata (bream)

showed that there is a surprising uniformity of the PCs found

throughout the system in both species, with several phospha-

tidylcholines (PCs) found throughout the system in both spe-

cies (A-type lipids, Fig. 3A). However, there is no general pattern

of PCs throughout the network between D. labrax and S. aurata,

and only a modest overlap (J) between the two species. This

suggests that lipid metabolism has evolved differently in the

two taxonomic orders. Importantly, the traffic analysis of

triglycerides between D. labrax and S. aurata also showed that

there are over 200 triglycerides found throughout each species

(Fig. 3B), something that is also observed in S. scombrus

(mackerel, Fig. S3, ESI†).

These analyses show that there is a remarkable complexity

in the lipid metabolism of edible fish in general and hints that

for these fish to be healthy, the fatty acid profile of their dietary

intake may also need to be very rich. This type of analysis

therefore offers ways to manage the transition to eliminating

the use of wild fish in farmed fish feeds without negatively

affecting farmed fish growth or nutritional profile.27 Determin-

ing the precise dietary intake even of humans is notoriously

difficult28 and thus that of a wild or farmed animal is yet more

challenging. Gaining a greater understanding of the specific

lipid requirements for farmed fish for optimum growth is

critical for the aquaculture industry as it moves towards redu-

cing its economically and environmentally costly reliance upon

fishmeal and fish oil.29,30
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Systemic analysis of a colony or mini-ecosystem of indivi-

duals is useful in studies related to biodiversity loss as it can

tell us about the relationships between individuals. For exam-

ple, pollinating insects such as bees provide an important

Fig. 3 Switch Analyses (SA) of lipid pathways in Dicentrarchus labrax (seabass, D. lax) and Sparus aurata (bream, S. aur.). Panel (A), biological network;
(B), switch analysis of phosphatidylcholine; (C), switch analysis of triglycerides. The pie chart in the top left shows the number of ubiquitous lipid variables
for that network, for each phenotype (A-type variables). Pie charts on arrows represent variables found in the two adjacent compartments (B-type
variables). Smaller pie charts represent isolated variables (U-type). J represents the Jaccard–Tanimoto coefficient for the comparison, with
accompanying p value, as a measure of the similarity between the variables identified in the two phenotypes for each comparison. The p value shown
represents the probability that the difference between the lists of variables for the two phenotypes occurred by random chance. TGs include all adducts
of whole TGs and the DGs arising from in-source fragmentation of TGs during data collection.
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service to plant-based habitats that are themselves a system.

However, the living arrangements of bees also has a well-

defined structure that represents a system. There is also scope

for analysis of individual organisms. A proof-of-principle study

in a commercially available species of bumble bee (Bombus

terrestris) was done both within the queens and the whole

colonies of which they were part. The colonies (n = 1 per group)

were fed honeybee-collected pollen from Fagopyrum esculentum

(buckwheat) or Helianthus annuus (sunflower).

The traffic analysis of lipids within the queens showed that

for triglycerides, a diet of pollen from Fagopyrum esculentum

was associated with a greater number of triglycerides

Fig. 4 Switch analyses of phospholipid and triglyceride variables in Bombus terrestris colonies fed either Fagopyrum tataricum (FAG) or Helianthus

annuus (HEL) pollen. Panel (A), Biological network; (B), switch analysis of triglycerides; (C), switch analysis of phosphatidylcholines. The pie chart in the top
left shows the number of ubiquitous lipid variables for that network, for each phenotype (A-type variables). Pie charts on the arrows represent variables
found in the two adjacent compartments (B-type variables). Smaller pie charts represent isolated variables (U-type). J represents the Jaccard–Tanimoto
coefficient for the comparison, with accompanying p value, as a measure of the similarity between the variables identified in the two phenotypes for each
comparison. The p value shown represents the probability that the difference between the lists of variables for the two phenotypes occurred by random
chance.
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throughout the system (Fig. S4A, ESI†). However, the traffic

analysis of phosphatidylcholine suggested a more mixed pic-

ture for that lipid class (Fig. S4B, ESI†) and those of both

phosphatidylinositol and phosphatidylglycerol (Fig. S4C and D,

ESI†) suggest that the distribution of these lipids is more

complicated than simply more or fewer variables. These ana-

lyses suggest that the control of lipid metabolism changes

according to dietary intake and that this differs between

triglycerides (energy storage and distribution) and phospholi-

pids (cellular structure). This has potentially far-reaching con-

sequences as it means that feeding in bees may have short- and

long-term consequences on the individual bees. This raises

questions about whether the effects are similar at colony level

for social insects.

Traffic analysis showed a simpler picture for the colony than

within the queens (Fig. 4), with a greater number of variables

throughout for TG and PC in the colony fed pollen from

Fagopyrum esculentum than that fed pollen from Helianthus

annuus. This is reflected in the traffic analyses of PG and PI

(Fig. S5, ESI†). This therefore also shows that there are con-

siderable diet-driven effects on the control of metabolism at

colony level. These bee colonies also showed at least two

fundamental features. First, both the phosphatidylcholine

and triglyceride traffic showed that lipid composition of pupae,

newly-emerged drones and week-old drones were similar, how-

ever the lipid composition of larvae was rather different to that

of pupae whichever diet was fed. This suggested that there are

considerable changes in lipid metabolism late in the larval

development of bumble bees. Second, we see many more

variables in 1d old frass and 7d old frass than in fresh frass.

This suggests that new lipids are being made in the frass after it

is produced. As several new phosphatidylcholines are found, we

suggest that a eukaryotic species is probably responsible for

this change in lipid composition, presumably a fungus. Bumble

bee colonies may therefore represent a micro-ecosystem rather

than simply a colony of one organism. Together with other

evidence,31 this suggests that fungi play an important role in

colony development of bumble bees.

Taken together, the evidence that dietary intake influences

the control of lipid metabolism in colonies and individuals

contextualises concerns about global challenges such as agri-

cultural intensification and climate-change that can dramati-

cally influence the nutrient landscape for bees. It suggests that

changes to nutrient availability caused by biodiversity loss will

have effects on the health of colonies of generalist pollinator

bee species. This indicates that supporting pollination services

is a key component of halting biodiversity loss.

The systemic analysis of both individuals such as fish, bees

and an ecosystem has myriad applications for several timely

questions in addition to understanding biodiversity loss and

global food security. Lipid traffic analysis has already been

used in medical research, on type 2 diabetes32 and gestational

diabetes7,33 and feeding of essential nutrients.9 Studies

of obesity and associated factors also require analysis of

whole organisms and thus will rely on network analyses.

Similarly, conditions such as cancer and infectious disease

are system-wide and thus understanding of these diseases

using systemic analyses can be part of an hypothesis-driven

investigation of the progress of the disease and interventions to

halt it. To date, much of the work on obesity, cancer, metabolic

disease and infection has focused on lipid signatures of the

conditions34–36 or on genetics.37–39

3. Conclusion

This study establishes a lipidomics pipeline that can measure

the concentration of thousands of lipids in large numbers of

samples, 1 000 000 per 384w plate, and then perform network

analyses on the processed data to answer scientific questions.

This novel approach represents a substantial advance in our

ability to carry out the systemic metabolic analysis of individual

organisms, colonies and even ecosystems. Thorough and objec-

tive testing of lipid extraction methods was used to identify the

best method for resolution and consistency. The advances

described relied upon the development of end-to-end methods

for sample preparation and lipidomics data collection of a wide

variety of tissue types—everything from leaf to liver—promptly

and precisely. This enabled new insights in the proof-of-

principle studies done that show that triglyceride metabolism

was more varied and complicated in edible fish than expected,

and that colonies of bees represented mini-ecosystems rather

than simply groups of co-habiting individuals. The study of bee

colonies also found that there is considerable development of

lipid metabolism through the development of the bees. The

advances in breadth and capacity in lipidomics that this pipe-

line offers provides the necessary infrastructure to answer key

questions about how metabolic systems are controlled and

what happens when they are challenged. This technology has

immediate application in research into metabolic disease,

nutrition, conservation, sustainable farming and biodiversity

loss, amongst others.

4. Experimental

We report a pipeline for the systemic analysis of ecosystems

and individuals using metabolomics. It consists of five steps (i)

sample preparation, (ii) metabolite/lipid extraction, (iii) data

collection, (iv) processing and (v) data analysis (Fig. 1). The

advances that represent the development of unique steps—for

which there are currently no similar approaches—are reported

in methods. Analogous methods for extracting lipids from

biological samples exist, as do different ways to process meta-

bolomics data. We therefore investigated which was best and

report those tests in Results. Proof-of-principle studies, in

which the pipeline is used to investigate current questions,

are also reported in Results.

4.1. Sample preparation

We sought a method that could be applied across a wide range

of sample types, makes the lipid fraction chemically accessible

and produces a pipettable solution and preserves the lipid
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fraction of the sample. We based our approach on a prototype

developed for mammalian tissues in which the sample was

dispersed in a buffer.10,40 This approach involved homogenis-

ing the samples in an aqueous medium comprising guanidine

and thiourea, known as GCTU. This buffer is valuable because

it suppresses lipase activity and bacterial growth, dismantles

cellular structures at a molecular level without damaging lipids

and supports preparation of a pipettable solution. However,

adaptation of the existing method to cover the format of all the

sample types that describe an ecosystem was required.

Leaf material and insect samples have not previously been

used in large-scale lipidomics studies and presented unique

challenges. Leaves and whole bees were made more brittle and

partly preserved by being freeze-dried. Leaves were sliced to

shorten the fibres (o5 mm) or crushed when dry, before being

soaked in the buffer (2–6 h). The [dry] samples were then

homogenised using a robust laboratory homogeniser (steel

macerator). Bees required some blunt mechanical disruption

immediately before mechanical homogenisation to break the

head casing, and thoracic and abdominal exoskeleton. The

constituent tissues of bees (brain, gut, hypopharyngeal gland,

thoracic muscle, frass) and earlier developmental stages (lar-

vae, pupae, newly emerged adults) behaved similarly to mam-

malian tissues (Mus musculus; brain, liver, adipose, heart, Homo

sapiens; whole blood). Fish tissues (from Dicentrarchus labrax,

Scomber scombrus and Sparus aurata; belly, gut, back, heart, tail,

gill, head, cheek, skin, liver) also behaved in the same way. The

amount of buffer used varied according to the amount of lipid

in the sample, with fattier/more lipidic samples needing to be

more dilute (see Table S1, ESI†).

4.2. Lipid extraction and data collection

A small number of lipid extraction methods have been reported

for parallel or high throughput lipidomics application. How-

ever, although some objective tests of the performance of these

methods have been done for medium throughput applications,

and within other studies,11,21,22 no thorough performance

review of lipid extraction has been done for large, high through-

put studies or pipelines. We tested four lipid extraction meth-

ods and chose an extraction based on quantitative measures of

performance, i.e., the number of variables, the total signal

strength and the consistency of the method (see Results).

In order that data from large numbers of samples can be

collected in one batch, both for testing extractions and for

continued use in a pipeline, extractions must be carried out in

parallel. Parallel extractions were carried out in this study using

a 96-channel pipette mounted onto a movable platform (Integra

Viaflo,Bd15k). This allows preparation of 384w microplates for

data collection.

Data collection poses a particular challenge in investigating

whole systems as it requires large numbers of samples to be

handled in parallel. High throughput techniques have emerged

relatively recently in metabolomics, with several studies report-

ing thousands of samples per batch.12–15 For these analyses,

extractions need to be automated16 with the minimum of steps

to prepare samples.17 These and other methods have been

reviewed18–20 and even tested.11,21,22 Liquid Chromatography

Mass Spectrometry (LCMS) was chosen for this pipeline

because it is the optimum approach to separate and measure

the large number of lipids present in biological samples (only

an order of magnitude less than that of proteins41). Recent

advances in autosampler hardware mean that 384wmicroplates

can now be used in commercially-available LCMS set-ups.

4.3. Data analysis

The typical approach to analysing big data at present is to use

statistical tests and visualisations such as a principal compo-

nent analysis (PCA). Fig. 2A is a PCA of a variety of sample types

from different phylla, including plants, algae, fish, mammals

and insects (Table S1, ESI†). Principal component or other

ordinal analyses can be used to identify both sub-groups of

samples and the variables drive the difference between two or

more groups. However, this and other current methods can be

limited for systemic analysis. Fig. 2B shows a PCA for the

dissected tissues from queen bumble bees fed one of two

different diets and Fig. 2C shows the dissected tissues from

three species of fish. It is difficult to see how diet or taxonomy

drive differences in the lipid metabolism of the two systems

from ordinal analyses. The same problem is visible more

acutely when lipidomics data from bees from two colonies

fed different pollens are plotted (Fig. 2D), as the different parts

of the system and the relationship between them are not clear.

Our solution to this problem is to use a method for analysing

the data that exploits the known connectivity between the

different samples, such as the passing of nutrients between

tissues within an organism or between trophic levels in an

ecosystem.

Previously, we developed the concept of molecular traffic

analysis and built software in R. Lipid traffic analysis (LTA) v1.0

and 2.3 were focused on spatial analyses within

individuals.8,9,33,42 In order to be able to do systemic or network

analysis suitable for colonies and ecosystems as well as indivi-

duals, we built LTA v3.0 in Python (https://pypi.org/project/

lipidta/). This has additional features that are useful for

complex networks (vide infra). The principle of traffic analysis

in the context of metabolomics is based on the principle of

lipid types. A-type variables are lipids found in all compart-

ments (tissues/sample types) of a given phenotype group. B-type

lipids are variables found in pairs of adjacent compartments,

for example in the liver and the serum in mammals or the brain

and ocular cortex in bees. U-type variables are found only in one

compartment for a given group. We introduce N2-type variables

that are for variables found in pairs of non-adjacent groups.

The N2-type is useful for identifying variables that exist inde-

pendently or imply the existence of unexpected connections in

a network, something that is useful in complex networks or

networks that have not been fully explored. These lipid types

are represented on a traffic analysis diagram alongside statis-

tics to inform interpretation of the numbers. Jaccard–Tanimoto

coefficients (JTCs, J) are used to show the overlap between

the identities of the variables and associated p values were used

as a non-parametric measure of the probability that the

Molecular Omics Research Article

O
p
en

 A
cc

es
s 

A
rt

ic
le

. 
P

u
b
li

sh
ed

 o
n
 0

9
 S

ep
te

m
b
er

 2
0
2
4
. 
D

o
w

n
lo

ad
ed

 o
n
 1

/2
9
/2

0
2
5
 3

:0
8
:5

5
 P

M
. 

 T
h
is

 a
rt

ic
le

 i
s 

li
ce

n
se

d
 u

n
d
er

 a
 C

re
at

iv
e 

C
o
m

m
o
n
s 

A
tt

ri
b
u
ti

o
n
 3

.0
 U

n
p
o
rt

ed
 L

ic
en

ce
.

View Article Online



This journal is © The Royal Society of Chemistry 2024 Mol. Omics, 2024, 20, 570–583 |  579

dissimilarity occurred by random chance (they are not the same

as the p values used in t-tests).

We mapped the connectivity of samples in the proof-of-

principle tests using their known metabolic connections (see

Results). How these metabolites are distributed through two

different systems shows how the two differ and thus the way

they are controlled differs. This is the principal information

output of a traffic analysis. We ran two proof-of-principle

experiments, one was to understand how the control of biolo-

gical systems differed between species (fish, Fig. 3) and colo-

nies of Bombus terrestris fed different diets (Fig. 4).

4.4. Experimental information

4.4.1 Materials, animals, consumables and chemicals. Sol-

vents and fine chemicals were purchased from SigmaAldrich

(Gillingham, Dorset, UK) and not purified further. Purified

lipids were purchased from Avanti Polar lipids Inc. (Alabaster,

Alabama, US). Plasticware was bought from Sarstedt (Darm-

stadt, Germany), ThermoFisher (Breda, NL), Fisher Scientific

(Herfordshire, UK). Yeast strains were purchased from EURO-

SCARF (Oberursel, Germany). YPD medium was purchased

from Formedium Ltd (Norfolk, UK). Human serum was pur-

chased from SigmaAldrich (Gillingham, Dorset, UK). Mice were

purchased from Harlan Laboratories Ltd (Alconbury, Cambrid-

geshire, UK) or Charles River Laboratories (UK). This research

conformed to the Animals (Scientific Procedures) Act 1986

Amendment Regulations 2012 following ethical review by the

University of Cambridge Animal Welfare and Ethical Review

Body (AWERB). Unless otherwise indicated, mice were housed

3–5 per-cage in a temperature-controlled room (21 1C) with a

12 h light/dark cycle, with ‘lights on’ corresponding to 0600.

The animals had ad libitum access to food and water. Standard

chow diet was purchased from Safe diets (DS-105). Plant

samples were purchased locally (Osterley Garden Centre, UK;

PM Flowers, Kew, UK) or collected from the living collections at

RBG Kew.

4.4.2 Stock solutions

4.4.2.1 GCTU. Guanidine (6 M guanidinium chloride) and

thiourea (1.5 M) were dissolved in deionised H2O together and

stored at room temperature out of direct sunlight.

4.4.2.2 DMT. Dichloromethane (3 parts), methanol (1 part)

and triethylammonium chloride (500 mg L�1) were mixed and

stored at room temperature out of direct sunlight.

4.4.2.3 Internal standards. The mixture of deuterated inter-

nal standards used in high throughput LCMS (Table S4, ESI†)

4.4.2.4 XMI-AF. A mixture of xylene, methanol and isopro-

panol, 1:2:4, doped with 0.1% ammonium formate. The ammo-

nium formate was constructed from stock solutions of

ammonia (33%, aq.) and formic acid (100%, d = 1.2 g cm�3).

4.4.3 Maintenance of animals and algae

4.4.3.1 Mus musculus. All mouse procedures were conducted

in accordance with the UK Home Office Animal (Scientific

Procedures) Act 1986 Amendment Regulations 2012 following

ethical review by the Aston University or University of

Cambridge Animal Welfare and Ethical Review Body (AWERB).

Mice were housed in specific-pathogen-free facilities with 12 h

light and 12 h dark cycles. All mice were studied under fed

conditions and at 24 1C. C57BL/6 mice from which heart, liver

and adipose tissues were taken were fed a chow diet and

maintained at Aston University’s biomedical research facility.

C57BL/6J mice from which brain, heart, adipose, liver, sto-

mach, spleen, lung, skin and small intestine were taken were

fed a chow diet and maintained at the University of Cambrid-

ge’s animal facility at the Cambridge Biomedical campus.

4.4.3.2 Apis mellifera. Frames of capped female brood were

removed from three queen-right colonies of Apis mellifera, from

an outdoor apiary at the John Krebbs Field Station, University

of Oxford in 2021. Brood frames were suspended in a ventilated

box inside a climate chamber at 34 1C and 60% relative

humidity. Newly emerged bees were brushed off the frame each

day and collected.

4.4.3.3 Bombus terrestris. Commercial bumble bees for the

colony feeding experiment were purchased from Agralan (Swin-

don, Wilts., UK) and kept in colonies in a laboratory incubator

at the Insectary at RBG Kew (2022), and held at 28 1C and 60%

humidity, fed a diet of irradiated, honeybee-collected pollen of

either Fagopyrum esculentum (Buckwheat) or Helianthus annuus

(sunflower) origin (Betterbee, Greenwich, US) and sucrose water

(1 : 1 w/v). Bees fed chestnut, poppy or a combination of these

pollens were purchased from Agralan Growers (Wiltshire, UK)

and reared in a laboratory incubator at the Wytham research

station (Oxford, UK), being held at 22–27 1C and 35–40%

humidity.

All algae were cultivated in glass photobioreactors in liquid

media at continuous light to OD750 of 1.5, harvested by cen-

trifugation, frozen at �80 1C and freeze-dried.

Desmodesmus quadricauda (Turpin) Brébisson (strain Greifs-

wald/15), Culture Collection of Autotrophic Organisms Institute

of Botany, Czechia. Starting cultures were inoculated into SS

medium, and cultivated at 30 1C, 750 mmol photons m�2 s�1,

2% v/v CO2.
43

Chlamydomonas reinhardtii wild type 21gr (CC-1690) Chla-

mydomonas Resource Center at the University of Minnesota, St.

Paul, MN, USA. Starting cultures were inoculated into HS

medium, and cultivated at 30 1C, 500 mmol photons m�2 s�1,

2% v/v CO2.
44

Galdieria sulphuraria (Galdieri) Merola, 002, Algal Collection

of the University ‘‘Federico II’’ of Naples, Italy. Starting cultures

were inoculated into Galdieria medium, pH 3, and cultivated at

40 1C, 500 mmol photons m�2 s�1, 2% v/v CO2.
45 Hibberdia

magna K-1175, Norwegian Culture Collection of Algae, Norway.

Starting cultures were inoculated into WC medium, and culti-

vated at 20 1C, 150 mmol photons m�2 s�1, 1% v/v CO2.
46

4.4.4 Sample preparation

4.4.4.1 Mammalian tissues. Tissues were prepared as pre-

viously described.10 Briefly, the relevant tissue/organ was stored

at �80 1C and homogenised immediately in the presence of

GCTU (see Table S1 for ratio, ESI†) using a hand-held
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homogeniser (Tissue Tearor, 14 mm head, o2 min) and the

resulting homogenate stored (�80 1C) until lipid extraction.

Samples from 410 mice were pooled to prepare the pooled

stocks of adipose, heart, brain and liver. Individual mouse

tissues used were from one individual that had been fed a

chow diet. Human plasma and whole blood were used as

supplied.

4.4.4.2 Insect tissues
4.4.4.2.1 Apis mellifera. Newly emerged bees (Apis mellifera)

were collected and dissected before they ingested any external

feed (o6 h). Bees were pinned to a cork mat, on ice, before

prompt dissection of the brain, HPG, gut, eye and optical lobe,

and fat body. The resulting tissues stored briefly on wet ice

until completion of all animals’ dissection, whereupon all

samples were stored at �80 1C until they were homogenised.

Frozen samples were covered in GCTU (see Table S1 for ratio,

ESI†) before being homogenised (Tissue Tearor, 4 mm head,

low/medium power, 1–2 min). The resulting homogenates were

stored (�80 1C) until lipid extraction. Aged samples were stored

at �80 1C except for a period of one week where they were

refrigerated (5 1C).

4.4.4.2.2 Bombus terrestris. Queens from the B. terrestris

colonies were collected from the colony as it was being dis-

mantled, and dissected. Animals were culled (�20 1C) and

pinned to a cork or neoprene mat before prompt dissection

of the brain, ovaries, thoracic muscle, crop, mid-gut, hindgut,

venom gland, eye and ocular cortex, and fat body. The resulting

tissues stored briefly on wet ice until completion of all animals’

dissection, whereupon all samples were stored at �80 1C until

they were homogenised. Frozen samples were covered in GCTU

(see Table S1 for ratio, ESI†) before being homogenised (Tissue

Tearor, 9 mm head, low/medium power, 1–2 min). The result-

ing homogenates were stored (�80 1C) until lipid extraction.

4.4.4.3 Fish. Fresh, whole, healthy, individual examples of

fish were used. Dicentrarchus labrax and Sparus aurata were

acquired from Mediterranean farm waters. Scomber scombrus

were Atlantic wild-caught off the cost of Spain. All fish were

landed at Grimsby. Salmo salar were farmed in Scotland in Loch

Duart. All fish were transported to the dissection centre (Cam-

bridge) at �80 1C. For dissection, the fish were thawed to 2 1C

and dissected rapidly in a refrigerated room (2 1C) and the

tissues and whole blood frozen at �20 1C before being frozen

and stored at �80 1C.

4.4.4.4 Whole yeast (Saccharomyces cerevisiae). The diploid

homozygous deletion strain erg3D/erg3D (EUROSCARF acces-

sion number Y32667) and the isogenic control strain BY4743

were cultured (1 L, 30 1C, YPD medium, orbital shaking) for

three days to reach the stationary phase. The cultures were

centrifuged (720g, 5 min) and the medium discarded. The

pelleted yeast cells were transferred to a Falcon tube (50 mL)

and resuspended in GCTU (5 mL) before being flash-frozen

(liquid nitrogen), freeze-dried and stored (�80 1C, 24 months).

The solid was dispersed in water (double-distilled, 10 mL),

frozen (�80 1C) and freeze-dried again.

4.4.4.5 Plant tissues. Various tissues from a phylogenetically

varied set of four terrestrial plants was used (Table S1, ESI†).

Sap was collected from stems by application of pressure (hand)

on obliquely-cut sections of stem. Resulting liquid was diluted

(GCTU, 50 mL) and stored (�80 1C) until extraction. Leaves,

petals and mature capsules were sliced or diced using a razor

blade to give fibres that were typically o5 mm long, before

being covered in water (ddH2O, 5–10 mL), frozen (�80 1C

for storage, then �196 1C) and freeze-dried. The freeze-

dried samples were all covered in GCTU (typically 10� v/v, see

Table S1, ESI†) left to stand (2–6 h) and then homogenised

(14 mm head, full power, 1–2 min). The homogenates were

stored (�20 1C) before being used. Pollen samples were dis-

persed in GCTU (25 : 1 v/w).

4.4.5 Preparation of tissues for high throughput extraction

of the lipidome

4.4.5.1 Quality control samples. QC samples were used to

assess whether signal strength correlated with concentration.

Thus a range of sample types was combined randomly into two

QC stocks. Tissues homogenised in GCTU from Mus musculus

(brain, adipose, liver), Bees (whole, adult, pupa and larva, wax,

frass), plant (mixed pollen, leaf, algae) were combined. These

were pipetted onto the plate at 25, 50 or 100% (7.5, 15 or 30 mL).

Three technical replicated of each concentration were pipetted

onto each 96w plate. Each QC stock was used at least once on

each 384w plate, with both run on all 96w plates where

possible.

4.4.5.2 High throughput extraction of the lipidome. Extrac-

tions were carried out as closely as possible to the original

instructions for each method (BAD,24 DMT,10 TBM16), with

adjustments being made only for high throughput sample

handling. Before use on lipid experiments, the autosampler

and chromatography system were tested using a stock of polar

metabolites (proline, leucine, theobromine and catechin). Test-

ing showed the CV of all four of these metabolites was o3%,

and that of catechin 1.1% (96 samples). This indicated that the

hardware was remarkably consistent and thus well placed for

larger-scale data acquisition of more difficult metabolites such

as lipids.

4.4.5.3 BAD. Liquid homogenates of tissue preparations

were injected into the appropriate well of a 96-well extraction

plate (glass-coated, SureSTARTt WebSealt, 2.0 mL per well;

volumes of homogenate shown in Table S1, ESI†) along with

appropriate blanks and QCs, followed by internal standards

(mixture of internal standards in methanol/xylene/isopropanol,

150 mL, see Table S4, ESI†), water (500 mL), and chloroform

(500 mL), using a 96-channel pipette (VIAFLO 96/384, Integra

Biosciences, Berkshire, UK). The mixture was agitated (96-

channel pipette) before being centrifuged (3.2k � g, 2 min).

A portion of the organic solution (20 mL) was transferred to a

high-throughput plate (384-well, glass-coated, SureSTARTt

WebSealt Plate+) before being dried (N2(g)).

4.4.5.4 DMT. Liquid homogenates of tissue preparations

were injected into the appropriate well of a 96-well extraction
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plate (glass-coated, SureSTARTt WebSealt, 2.0 mL per well;

volumes of homogenate shown in Table S1, ESI†) along with

appropriate blanks and QCs, followed by internal standards

(mixture of internal standards in methanol/xylene/isopropanol,

150 mL, see Table S4, ESI†), water (500 mL) and DMT (500 mL)

using a 96-channel pipette (VIAFLO 96/384, Integra Biosciences,

Berkshire, UK) and GripTips (300 mL, Green choice). The

mixture was agitated thoroughly (96-channel pipette) before

being centrifuged (3.2k � g, 2 min). A portion of the organic

solution (20 mL) was transferred to a high-throughput plate

(384-well, glass-coated, SureSTARTt WebSealt Plate+) before

being dried (N2(g)).

4.4.5.5 TBM. Liquid homogenates of tissue preparations

were injected into the appropriate well of a 96-well extraction

plate (glass-coated, SureSTARTt WebSealt, 2.0 mL per well;

volumes of homogenate shown in Table S1, ESI†) along with

appropriate blanks and QCs, followed by internal standards

(mixture of internal standards in methanol/xylene/isopropanol,

150 mL, see Table S4, ESI†), water (500 mL) and TBME (500 mL).

The mixture was centrifuged (3.2k � g, 2 min). A portion of the

organic solution (20 mL) was transferred to a high throughput

plate (384-well, glass-coated, SureSTARTt WebSealt Plate+)

before being dried (N2(g)).

4.4.5.6 EAT. This procedure is novel to the present study,

using ethyl acetate saturated with triethylammonium chloride

(o500 mg L�1), referred to as EAT. Liquid homogenates of

tissue preparations were injected into the appropriate well of a

96-well extraction plate (glass-coated, SureSTARTt WebSealt,

2.0 mL per well; volumes of homogenate shown in Table S1,

ESI†) along with appropriate blanks and QCs, followed by

internal standards (mixture of internal standards in metha-

nol/xylene/isopropanol, 150 mL, see Table S4, ESI†), water

(500 mL) and EAT (500 mL) using a 96-channel pipette (VIAFLO

96/384, Integra Biosciences, Berkshire, UK). The mixture was

agitated thoroughly (96-channel pipette) before being centri-

fuged (3.2k� g, 2 min). A portion of the organic solution (20 mL)

was transferred to a high-throughput plate (384-well, glass-

coated, SureSTARTt WebSealt Plate+) before being dried

(N2(g)).

Once extracts from all four of the 96-well plates had been

placed in the 384 well plate (glass-coated, SureSTARTt Web-

Sealt Plate+), the dried films were re-dissolved (XMI-AF, 80 mL

per well) and the plate was heat-sealed with aluminium foil (AB-

0757, Fisher Scientific) and queued immediately, with the first

injection within 5 min. The extractions were timed so that the

instrument was available immediately after the completion of

extractions.

4.4.5.7 Liquid chromatography mass spectrometry. All LCMS

was carried out using a Thermo Scientific Vanquish LC system

with a quaternary pump, equipped with a Thermo Scientific

Hypersil GOLD LCMS C18 column (50 � 2.1 mm, particle size

1.9 mm) and a Thermo Scientific Orbitrap Fusions MS with an

H-ESI ioniser. Eluents were acetonitrile (LCMS grade); water

(deionised, ammonium formate 0.1% v/v added fresh, prepared

from ammonia and formic acid and pipetted by volume);

isopropanol (LCMS grade). The chromatographic method is

shown in Table 1. Once collected, the *.raw data files were

stored, backed up and data processing begun. Mass spectro-

metric data were collected in positive ionisation mode at a

resolution of 120 000 (m/z 200) with the H-ESI spray voltage set

to 2.86 kV, nitrogen gas flows of 45 (sheath), 5 (auxiliary) and 1

(sweep) arbitrary units, and ion transfer tube and vaporizer

temperatures of 300 1C and 350 1C. The AGC was set to

Standard (Full Scan 1 000 000 and SIM/PRM 200 000) with a

maximum ion injection time of 200 ms. The mass acquisition

window was m/z 480–1100, with the fluoranthene cation (m/z

202.077) used for internal mass calibration.

4.4.5.8 Data processing (unmatched IDs). All LCMS *.raw files

generated were converted into *.mzXML files using

Proteowizard(Chambers) (3.0.23). Converted data files were

processed using the CAMERA package using R (v3.6.0), with

peak picking performed using a ‘‘centwave’’ method that allows

for the deconvolution of closely eluting or slightly overlapping

signals.26 Metabolite features were then defined as any peak

with an average intensity at least 5 times higher in analytical

samples relative to the abundance seen in the extraction

blanks. All signals that passed were present in Z90% of

samples in at least 1 sample type.

4.4.5.9 Data processing (matched IDs). AnalyzerPros XD

(SpectralWorks, Ltd) was used for processing data. A Target

library (*.swix) was constructed from a generated m/z and lipid

ID list, with known samples and Internal Standards used to

determine retention times (Rt). All LCMS data *.raw files were

uploaded to the software and processed (Mass range 400–1200

Da; Rt window 0.5–18.5 min; area threshold 100k; detection

width 0.25 min; Mass accuracy 3 d.p.). The signals (matched

and unmatched) were recorded in a CSV file that was subse-

quently used for quality checks. Variables with an average

signal strength 43� that of the same signal/Rt in the blank

samples were regarded as passing the S/N test. QC samples

were used to assess whether the signal strength correlated with

the concentration, i.e. the correlation between 0.25�, 0.5� and

1.0� QCs against 25, 50 and 100% was calculated separately for

the two QC stocks. QC stock 1 consisted of mixtures of freeze-

dried leaf, pollen and whole bees, whereas QC stock 2 consisted

Table 1 Chromatographic method for analytical separation of lipids and
triglycerides for high throughput lipidomics

Chromatographic method for phospholipid/triglyceride extracts

Time (min) Acetonitrile Watera Isopropanol

0 15 40 45
2 15 32.5 52.5
2.1 15 25 60
6 15 20 65
12 15 17 68
12.1 15 40 45
15 15 40 45

a Ammonium formate (0.1%) was added fresh to water shortly before
use.
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of brain heart and liver homogenates from Mus musculus, and

belly, skin, heart and liver from Dicentrarchus labrax.

All signals for which the correlation was found to be 40.75

for at least one of the QC stocks used was regarded as passing

the QC test. 3198 variables passed both tests, across all

samples.

4.4.5.10 Traffic analysis. Traffic analyses were carried out

using v3.0 of the LTA software, updated from v2.37,9,33 for this

study and is available as open source software from GitHub

(https://pypi.org/project/lipidta/). The analyses in this study was

based on known maps of the metabolic systems studied.

Statistics are provided to aid interpretation of traffic analysis

diagrams. Jaccard–Tanimoto coefficients (JTCs, J) and asso-

ciated p values were used as a non-parametric measure of the

distinctions between lipid variables associated with

phenotype(s). These were used to calculate the overlap between

the identities of the variables and the probability that this

occurred by random chance, respectively. Variables were

regarded as present in a given group if they had a signal

strength 40 in Z66% of samples that group.

4.4.5.11 Software. Microsoft Office 365 Excel was used for

handling spreadsheets, data processing and signal sheet pre-

paration and storage (*.xlsx format). Figures were drawn in

Powerpoint or Origin 2018. LCMS data were proceed using R

(v3.6.0) or AnalyzerPros XD (SpectralWorks Ltd).
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T. Galica and P. Hrouzek, Microb. Cell Fact., 2023,

22, 73.

Research Article Molecular Omics

O
p
en

 A
cc

es
s 

A
rt

ic
le

. 
P

u
b
li

sh
ed

 o
n
 0

9
 S

ep
te

m
b
er

 2
0
2
4
. 
D

o
w

n
lo

ad
ed

 o
n
 1

/2
9
/2

0
2
5
 3

:0
8
:5

5
 P

M
. 

 T
h
is

 a
rt

ic
le

 i
s 

li
ce

n
se

d
 u

n
d
er

 a
 C

re
at

iv
e 

C
o
m

m
o
n
s 

A
tt

ri
b
u
ti

o
n
 3

.0
 U

n
p
o
rt

ed
 L

ic
en

ce
.

View Article Online


