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Abstract: Insurance companies need to calculate solvency capital requirements in order to
ensure that they can meet their future obligations to policyholders and beneficiaries. The
solvency capital requirement is a risk management tool essential for addressing extreme
catastrophic events that result in a high number of possibly interdependent claims. This
paper studies the problem of aggregating the risks coming from several insurance business
lines and analyses the effect of reinsurance on the level of risk. Our starting point is to
use a hierarchical risk aggregation method which was initially based on two-dimensional
elliptical copulas. We then propose the use of copulas from the Archimedean family and
a mixture of different copulas. Our results show that a mixture of copulas can provide a
better fit to the data than an individual copula and consequently avoid over- or under-
estimation of the capital requirement of an insurance company. We also investigate the
significance of reinsurance in reducing the insurance company’s business risk and its effect
on diversification. The results show that reinsurance does not always reduce the level of
risk, but can also reduce the effect of diversification for insurance companies with multiple
business lines.

Keywords: copula; reinsurance; capital requirement; risk aggregation; value at risk; tail
value at risk

1. Introduction

Determining the level of capital required for business continuity is essential for insur-
ance companies. Interest in the literature concerning the significance of capital requirements
is increasing, as evidenced by the studies by Nguyen and Molinari (2011), Floreani (2013),
Clemente et al. (2015), Becker et al. (2022), and, most recently, Li and Yin (2024). The capital,
which is mostly referred to as a capital requirement or business capital, should support an
insurance company in minimizing the risk of insolvency and fulfilling its obligations to
its policyholders. When extreme events happen, such as floods, earthquakes, hurricanes,
and other catastrophic events, the claims amount to be paid by an insurance company can
be extremely high. However, part of the claims can be passed to reinsurance companies.
An insurance company (cedent) can transfer some risks to another insurer (the reinsurer),
exchanging part of its unexpected future losses by the payment of a fixed premium.

Typically, the cedent insurance company keeps most of the risk and when large
amounts of claims occur, these can originate not just from one business line but involve
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other products as well. In other words, some insurance business lines are dependent on
each other, in the sense that an increase in the claims amount being filled in one business
line is accompanied by a higher claims amount in other business lines too. In addition, these
claims due to correlated catastrophic events could lead to defaults in insurance systems,
as highlighted by Giuzio et al. (2019) and Torri et al. (2022). Therefore, it is essential that
regulators monitor these issues. To the best of our knowledge, the interaction between two
critical aspects of insurance—dependence among risks and partial risk cession—remains
underexplored. This study addresses this gap by evaluating the impact of reinsurance
on the composition and risk profile of an insurer’s portfolio across multiple business
lines. Leveraging flexible copula models and portfolio diversification metrics, we analyse
empirical data from the Australian insurance market to quantify these effects. Our findings
provide actionable insights for policymakers, enabling them to design more effective
strategies for the reinsurance industry and enhance systemic stability. Hence, there is a need
to properly model the aggregate risk of losses across a broad range of insurance products.

Aggregating the risk of losses for insurance companies is challenging. The most crucial
aspect of the aggregation process is modelling the dependence structure between the risks
of losses across different business lines. Examining linear correlations is a classic approach
to model risk dependence but fails to incorporate all possible dependence structures. The
use of the classic multivariate Gaussian model implicitly assumes symmetry between the
multivariate tails and a linear relationship between variables. To investigate potential
non-linearities, for instance, whether losses are more strongly related than gains in financial
data, we use copula models, which can be seen as a generalisation of the classic multivari-
ate Gaussian model. When selecting a copula model, if the multivariate Gaussian is the
most appropriate distribution, then it will still be the chosen model. In the case of insur-
ance claims, we must consider the possibility of asymmetries and non-linearities. Small
claims might originate more independently from each other, while very large claims might
have underlying common causes (e.g., weather-related events) and thus exhibit stronger
dependence. When linearity and symmetry may not hold, copulas are the appropriate
method to model the dependence structure. Copulas have received increasing interest from
researchers and practitioners in recent years.

This aims of this paper are twofold . First, we focus on modelling the aggregation of
risks from different business lines in insurance. Second, we explore the effect of reinsurance
on the level of risks and how this relates to the dependence structure between different busi-
ness lines. To model the multivariate structure of the insurance risks, we use a hierarchical
risk aggregation method based on two-dimensional copulas. As an alternative to hierarchi-
cal copulas, one could use vine copula models, as in Joe (1996) and Czado (2019), but these
may not perform as well as hierarchical copulas when some variables, more strongly related
than others, form natural groups inherent to the specific application (Chaoubi et al. 2021).
However, hierarchical copulas may outperform vine copulas when certain variables that are
more strongly related than others form natural groups inherent to the specific application.
If we ignore the particular application, both methods can be used to model multivariate
distributions. These two procedures have been compared in Nanthakumar (2022) from
a purely probabilistic point of view. In our study, fire and house insurance claims are
expected to be strongly related, as are liability and CTP* (compulsory third party liability)
insurance claims. This natural hierarchical dependence is confirmed in our data analysis,
justifying our choice of the hierarchical copula methodology.

The hierarchical risk aggregation approach recently adopted by Côté and Genest (2015)
was developed by Arbenz et al. (2012). The hierarchical aggregation procedure is based on
rooted trees, which include branching and leaf nodes, and uses the elliptical copula family
for each aggregation step. However, as highlighted by Embrechts et al. (2003), this copula
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family has certain drawbacks, such as its inability to capture dependence structures that
are not radially symmetric. Especially in the case of extreme events, the dependence of
large losses from different business lines cannot be modelled by the elliptical copula family
(see Nguyen and Molinari 2011).

In this paper, we address this issue by proposing a novel hierarchical framework that
integrates copulas from the Archimedean family. Archimedean copulas offer inherent
asymmetry and flexibility for modelling diverse dependence structures, particularly in
tail dependencies. To further enhance adaptability, we incorporate mixtures and rotated
variants of Archimedean copulas, selected through rigorous goodness of fit tests to match
empirical data patterns. This dual approach of combining hierarchical aggregation with
Archimedean-based copulas represents a key innovation, enabling robust risk modelling
without relying on restrictive conditional assumptions.

For the empirical application, we use data from the Australian Prudential Regulation
Authority (APRA). Modelling insurance claims for capital requirements using Australian
data is relevant not only for Australian insurers but also for insurers based in other countries.
While Solvency II establishes the capital requirements in Europe, APRA’s GPS Prudential
Standards similarly regulate insurers’ capital requirements in Australia. Solvency II es-
tablishes the equivalence between the two supervisory frameworks, which is essential for
European insurers operating in Australia. Hence, the methodology and results from this
study are relevant for all countries with regulatory equivalence under Solvency II.

Tang and Valdez (2006) analyse APRA’s data consisting of 19 semi-annual gross
incurred claims and earned premiums from December 1992 to June 2002. We chose to
use more recent data with a quarterly frequency in order to increase the sample size and
improve the estimation of the risk aggregation model. As a result, a total of 28 observations,
consisting of quarterly premiums earned and incurred claims—both gross and net of
reinsurance—for five business lines, were selected for the period between September 2010
and June 2017. The quarterly incurred claims and premiums earned were then used to
calculate loss ratios for the five different business lines. The risk aggregation model was
selected based on the resulting loss ratios to measure the associated risks. The gross and
net of reinsurance loss ratios were used to examine the change in the level of risk for each
business line and for the aggregate risk.

Research on risk aggregation with copulas applied to insurance was pioneered by
Wang (1998). This research introduces the concept of copulas and chooses a Gaussian cop-
ula as one of the useful tools in determining the risk aggregation of an insurance company
by combining correlated loss distributions. More specifically, the aggregate loss distribution
is determined by the combination of the effects of claim frequency and claim severity distri-
bution. By contrast, Tang and Valdez (2006) use copula models to aggregate risks in order
to determine economic capital as well as diversification benefits, focusing on the insurance
industry. Using multiple insurance business lines’ data, they analyse the importance of
selecting an appropriate copula model to avoid underestimation or overestimation of cap-
ital required, which consequently may affect the level of capital for insurance products.
Bürgi et al. (2008) highlight that modelling the dependence between risks is important as it
is a form of rule for risk aggregation. Their research also considers various methods for
modelling dependencies, which subsequently affect diversification benefits, and shows that
overestimation of diversification may cause inaccurate computation of risk-based capital
(RBC). Nguyen and Molinari (2011) use copulas to address the loopholes of Solvency II,
such as linear correlations being used to measure the dependence structure of correlated
risks. However, a linear correlation may not be suitable for modelling dependence structure
and may not be able to capture all the information of a tail distribution. To overcome this
problem, the authors propose a method of risk aggregation via copula to determine the
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dependence structure between risks. Nevertheless, their focus is based on the perspective
of Solvency II, rather than on risk aggregation modelling based on real data.

Modelling risk aggregation using a dimensional copula can be very challenging and
requires more parameters to be estimated than traditional two-dimensional or bivariate
copula models (Bürgi et al. 2008). With this in mind, we consider hierarchical aggregation as
an alternative modelling technique based on two-dimensional copulas for high-dimensional
copulas. This model, introduced by Arbenz et al. (2012), has the advantage of not requiring
the specification of a copula for all business lines. Instead, a copula and the joint dependence
between the aggregated sub-business lines are determined at each aggregation step. The
aggregation model is represented by a rooted tree, which consists of branching nodes and
leaves based on graph theory.

In addition, we investigate the significance of reinsurance from a risk management
perspective. Insurance companies are able to transfer risks to reinsurance, and, as a
result, capital is saved from being allocated to these risks (Baur et al. 2004). Previous
research by Cummins et al. (2008) proves that insurance companies purchase reinsurance
for the benefits of reducing the loss ratio, measured by its volatility. Reinsurance also
provides protection against catastrophes by limiting the liability on specific risks. The
drawback of reinsurance is that insurers’ cost of production is increased. Furthermore,
reinsurance provides other benefits, such as capital relief as well a flexible financing.
In our study, we use two measures of portfolio diversification, where the portfolio is
defined as a collection of insurance business lines. The first measure, diversification,
is derived from Shannon entropy (Shannon 1948), while the second was introduced in
Choueifaty and Coignard (2008). While the first measure concentrates on the weights of the
business lines, the second one focuses on the risk of the portfolio. In our empirical analysis
of Australian insurance data, we find that, although the portfolio of business lines without
reinsurance is more balanced and hence more diversified according to Shannon’s measure,
reinsurance reduces the risk of the (reinsured) portfolio, thereby increasing diversification
according to Choueifaty and Coignard’s measure.

The remainder of this paper is organised as follows: Section 2 discusses the methods
for aggregating risk using a hierarchical copula aggregation model, copula simulations,
and the determination of capital requirements. Section 3 contains the estimation of the
hierarchical aggregation copula model and analysis of the results. In Section 4, we study
the effects of reinsurance on the level of risk and diversification of the portfolio of different
business lines. Section 5 concludes the paper.

2. Copula-Based Hierarchical Aggregation Model

In finance and insurance, popular models for problems involving a large num-
ber of random variables have been based on copula functions. Different copula mod-
els have been proposed. These include Archimedean and elliptical copula models
(Genest and Nešlehová 2012), vine copula models (Aas et al. 2009; Kurowicka and Joe
2010), and hierarchical copula models (Mai and Scherer 2012; Côté and Genest 2015;
Cossette et al. 2017).

While some of these models impose restrictive dependence structures, complicating
inference, vine copulas—despite their growing popularity—require a critical assumption:
each conditional bivariate copula must be independent of the conditioning variable, except
through its marginal distributions (Haff et al. 2010). This assumption, while essential for
accurate inference, limits their applicability in practice. In contrast, hierarchical copulas
eliminate the need for conditional copulas entirely, avoiding such assumptions. Their
straightforward structure requires only a single copula and corresponding joint dependence
at each aggregation step, significantly simplifying estimation. In this study, we adopt
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hierarchical copulas to strike an optimal balance between ease of estimation and model
flexibility, offering a robust alternative to more complex approaches. This article adopts the
hierarchical copula model with the goal of achieving a good compromise between ease of
estimation and flexibility.

2.1. The Definition of Copula

Bivariate copulas are the main building block of hierarchical aggregation copula
models. Here we only provide the basic definition in order to introduce the notation and
we refer the reader to Nelsen (2006) and McNeil et al. (2015) for an introduction to copulas
and the definition of specific copula families.

Given a d-dimensional random vector (X1, X2, . . . , Xd)
′,1 according to Sklar (1959),

there exists a function C : [0, 1]d → [0, 1] such that

P(X1 ≤ x1, X2 ≤ x2, . . . , Xn ≤ xd) = C(F1(x1), F2(x2), . . . , Fd(xd)),

where Fi(x) = P(Xi ≤ xi) is the cumulative distribution function (cdf) of Xi for
i = 1, 2, . . . , d, and C is a copula function. In fact, a copula is a multivariate joint cdf
with uniform margins. If the univariate cdf’s Fi are continuous, then the copula function C

is unique.

2.2. Hierarchical Aggregation Copula Models

Hierarchical copula models draw on results from graph theory on rooted trees
(Diestel 2017). Following the notation used in Arbenz et al. (2012), a rooted tree τ is
composed of leaf nodes and branching nodes where one of the branching nodes is the root.
The subset of branching nodes is denoted by B (τ), the subset of leaf nodes is denoted
by L (τ), and the root node by ∅. Naturally, B (τ)∪L (τ) = τ and B (τ)∩L (τ) = ∅.
In order to use rooted trees to aggregate the losses of several business lines, we make the
following assumptions:

• Each leaf node in the rooted tree is associated with the loss of business line i, repre-
sented by a random variable Xi.

• Each branching node is associated with the sum of the business lines mapped to that
node’s children.

In Figure 1, we illustrate the mapping to a rooted tree of three insurance loss random
variables, Xm, X f , and Xh, representing the business lines Motor, Fire, and Household,
respectively. Each leaf node corresponds to a business line and each branching node
corresponds to the sum of the variables associated with its children leaf nodes. As in
Arbenz et al. (2012), for simplicity, we assume that each branching node has two children,
although the results on rooted trees used in this paper are valid for branching nodes with
any number of children (see Arbenz et al. 2012). By assuming that each branching node
has only two children, we can simplify the construction and estimation of the model, as
only bivariate copulas are involved. In order to define the aggregation model, we denote
by (Xi)

′
i∈T = (X1, X2, . . . , Xd)

′ the vector of random variables, where each Xi represents
the loss of the business line i. The rooted tree aggregation model for the random vector
(Xi)i∈τ is determined by

• a rooted tree structure τ,

• univariate cdf’s Fi : R → [0, 1] for all leaf nodes i in L (τ), and

• bivariate copula functions Cj : [0, 1]2 → [0, 1] for the two children of each branching
node j in B (τ).
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We denote the tree aggregation model by (τ, (Fi)i∈L(τ), (Cj)j∈B(τ)). Using this modelling
approach, we obtain the distribution of the root node, which represents the aggregate
total loss

X∅ = X1 + X2 + . . . + Xd = ∑
i∈L(τ)

Xi

based on the univariate cdf’s Fi for the business lines associated with the leaf nodes and
the bivariate copulas associated with the branching nodes.

X∅ = (Xm + X f ) + Xh

Xm + X f

Xm X f Xh

✟
✟

✟
✟
✟✟

❍
❍

❍
❍

❍❍

✟
✟
✟
✟
✟✟

❍
❍

❍
❍

❍
❍

❍
❍

❍
❍

❍
❍

❍❍

Figure 1. Illustration of a hierarchical loss aggregation copula model built by allocating each of the
three individual business lines, represented by Xm, X f , and Xh, to a leaf node of a rooted tree. The
structure of the tree in this example is determined by the assumption that the pair (Xm, X f ) has the
strongest dependence among the three possible pairs of individual business lines.

2.2.1. Existence and Uniqueness of a Joint Distribution

The existence and uniqueness of the joint distribution of the hierarchical aggregation
copula model for the vector (X1, X2, . . . , Xd)

′ have been studied in Arbenz et al. (2012).
Here we only summarise the conditions and the main results necessary in this paper.
Given a rooted tree aggregation model (τ, (Fi)i∈L(τ), (Cj)j∈B(τ)) where each branching

node j ∈B (τ) is the sum of its children, the random vector (Xi)i∈τ is called mildly tree-

dependent. A mildly tree-dependent random vector (Xi)i∈τ is called tree-dependent if for each
branching node i ∈B (τ), given Xi, its descendants (Xj)j∈D (i), where D (i) is the set
of descendent nodes, are conditionally independent of the remaining nodes (Xj)j∈τ\D (i);
that is,

(Xj)j∈D (i) ⊥ (Xj)j∈τ\D (i) | Xi for all i ∈B (τ).

This conditional independence condition does not, however, imply that (Xj)j∈D (j) is
independent of (Xj)j∈τ\D (i), because their dependence may come from Xi.

Theorem 1. Given a rooted tree aggregation model
(

τ, (Fi)i∈L(τ), (Cj)j∈B(τ)

)

, a tree-dependent

random vector exists and its joint distribution is unique.

For the proof of this result, see Arbenz et al. (2012). For the example illustrated in
Figure 1, the joint distribution of the hierarchical aggregation copula model for the vector
(Xm, X f , Xh)

′ exists and is unique if and only if

(Xm, X f ) ⊥ (X∅, Xh) | Xm + X f ,

where X∅ = Xm + X f + Xh. This means that all the information in Xm and X f that
influences Xh is contained in Xm + X f .

Under the above theorem, if all the univariate and copula distributions are absolutely
continuous, then the joint density function is given by the following proposition shown in
Côté and Genest (2015).
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Proposition 1. Given a rooted tree aggregation model (τ, (Fi)i∈L(τ), (Cj)j∈B(τ)) with d leaf

nodes associated with the vector X = (X1, X2, . . . , Xd)
′, the joint density function of the vector X

is given by

fX(x1, . . . , xd) =
d−1

∏
j=1

cj



F
LD (j1)



 ∑
i∈LD (j1)

xi



, F
LD (j2)



 ∑
i∈LD (j2)

xi









d

∏
i=1

fi(xi),

for all x1, . . . , xd ∈ R, where LD (ji) represents the leaf nodes in the set of descendants of child

node i of the branching node j, F
LD (jk) is the cdf of the sum of the leaf nodes in LD (jk),

f1, . . . , fd are the univariate density functions of X1, X2, . . . , Xd respectively, and cj is the copula

density function of the children of Xj for j ∈B (τ).

As an example, for the business lines represented by the random vector (Xm, X f , Xh)
′

associated with the rooted tree τ illustrated in Figure 1, the joint density function is given by

fX(xm, x f , xh) = cm, f

(

Fm(xm), Ff (x f )
)

cm+ f ,h

(

Fm+ f (xm + x f ), Fh(xh)
)

· fm(xm) f f (x f ) fh(xh),

for all (xm, x f , xh), where Fi is the cdf of the univariate random variable Xi with the density
function fi, Fm+ f is the cdf of Xm + X f , cm, f is the copula density function of (Xm, X f ), and
cm+ f ,h is the bivariate copula density function of ((Xm + X f ), Xh).

2.2.2. Simulation of Joint Distributions

Given the set of d business lines represented by the random variables X1, X2, . . . , Xd,
we determine the tree structure by iteratively aggregating the pair of variables with the
strongest dependence. We use Kendall’s tau to measure the dependence between pairs
of random variables in the hierarchical aggregation procedure. For the motivation and
justification for using Kendall’s tau in this setting, see Côté and Genest (2015).

After defining the structure of the tree, we proceed with selecting the probability
distribution for the random variable allocated to a leaf node and the copula family for the
two children of each branching node in order to specify the hierarchical aggregation model.
We use maximum likelihood estimation to estimate the parameters, and the goodness of fit
methods outlined in Anderson and Darling (1954) and Genest et al. (2009) to select the best
probability distributions.

The hierarchical aggregation model allows for estimating measures of risk based on
the sum of the individual variables considered. We estimate these risk measures based on
the simulation of observations from the aggregation model by generalising the algorithm
introduced in Arbenz et al. (2012), which consists of a numerical approximation procedure
where sample reordering induces the dependence structure, a technique that goes back to
the work of Iman and Conover (1982).

We present below the algorithm for the case where all branching nodes have two
children and the functional that produces the aggregation is a weighted sum of the branch-
ing nodes. Brechmann (2014) generalize the case where the aggregation functionals are
Kendall functions.

2.2.3. Sample Reordering Numerical Approximation Algorithm

1. Define the number of simulations N ∈ N.

2. Simulate N independent samples from the univariate random variables Xi (i ∈L (τ))
associated with d leaf nodes: Xk

i ∼ Fi for k = 1, . . . , N and i = 1, . . . , d, where Fi is the
pre-determined univariate cdf for Xi.



Risks 2025, 13, 44 8 of 23

3. Simulate N independent samples from the bivariate copula Cj (j ∈B (τ)) associated
with each of the d − 1 branching nodes: Uk

j = (Uk
j1, Uk

j2) ∼ Cj for k = 1, . . . , N and
j = 1, . . . , d − 1.

4. Following a bottom-up approach, beginning at the branching nodes closer to the leaf
nodes and ending at the root nodes, define the approximation for the cdf of each
branching node j ∈B (τ) as

FN
j (x) =

1
N

N

∑
k=1

✶

{

wj1 x
(rk

j1)

j1 + wj2 x
(rk

j2)

j2 ≤ x

}

,

recursively, where ✶ is the indicator function2, xk
j1 and xk

j2 are (simulated) sample
values of the random variables associated with the two children of the branching node
j, wji is the weight given to variable Xji, rk

ji is the (component-wise) rank of uk
ji, and

{x
(1)
ji , x

(2)
ji , . . . , x

(N)
ji } , i = 1, 2 are the ordered sample.

Once we have the estimate for the cdf of the total aggregate loss, we proceed with
estimating the risk measures of interest.

2.3. Risk Estimation of the Aggregate Loss

After building the model for the aggregate loss, using the hierarchical copula model,
we can estimate the risk of the aggregate loss. In the process of risk aggregation, the
bivariate copula is used to link every two losses, such as X1 and X2. TVaR is then applied
to estimate the risks of the aggregate losses. TVaR is used to fulfil the coherent risk measure
property, as suggested by Acerbi et al. (2001), Acerbi and Tasche (2002), and Bargès et al.
(2009). The TVaR of the loss represented by the random variable X at the confidence level
α, for α ∈ (0, 1), is defined as

TVaRα(X) =
1

1 − α

∫ 1

α

VaRu(X) du,

where the VaRα of the random loss X is given by

VaRα(X) = inf{x ∈ R : P(X ≤ x) ≥ α}.

Conventionally, α typically takes the values 90%, 95%, or 99%. In order to estimate the
TVaR, we use the following non-parametric estimator, of which a more detailed description
can be found in Adam et al. (2008). Given n observations {x1, x2, . . . , xn} of the variable X,
the TVaR estimator is given by

T̂VaRα =
1

n(1 − α)

(

⌊n(1−α)⌋

∑
i=1

x(n−i+1) + (n(1 − α)− ⌊n(1 − α)⌋)x(n−⌊n(1−α)⌋)

)

, (1)

where {x(1), x(2), . . . , x(n)} is the ordered sample, and ⌊v⌋ denotes the largest integer not
greater than v. In our setting, we estimate the TVaR by applying Equation (1) to the N

observations simulated by the sample reordering algorithm. Given its wide use by insur-
ance regulators, we also report the VaR estimates for the three commonly used confidence
levels below.

2.4. The Data

The data on general insurance are obtained from the Australian Prudential Regulation
Authority (APRA) (https://www.apra.gov.au/, accessed on 21 February 2025), as also
used by Tang and Valdez (2006). However, we use a more recent time period and quarterly
data instead of annual data to increase the sample size. Australia has a large market share
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in the insurance industry within developed countries. Based on the data published by
the OECD (see OECD 2017), Australia’s general insurance is above the 70th percentile
in terms of total gross premiums in 2016. In September 2010, a change in the reporting
format was introduced, so the definitions of some variables used are also modified. To
avoid inconsistencies, we focus on the period from September 2010 to June 2017. We are
interested in four variables: gross incurred claims (including movements in outstanding
claims liability during the period); gross earned premium; net incurred claims (net of
reinsurance recoveries revenue); and net earned premium (net of outwards reinsurance
expense). We consider both the gross and the net variables as one of our goals to evaluate
the effect of reinsurance on capital requirements. As in MunichRe (2010) and Cipra (2010),
reinsurance is a mechanism used by an insurance company (the reinsured, cedent, or
primary insurance company) to transfer all or part of its unforeseen or extraordinary losses
under a policy or policies that it has issued to another insurance company (the reinsurer).
To indemnify the reinsurer, a premium is paid to the reinsurer by the ceding company. We
source data for five insurance business lines, namely, domestic motor vehicle (hereafter
referred to as Motor), houseowners/households (House), fire and ISR3 (Fire), liability,
and compulsory third-party motor vehicle (CTP). According to the data collected from
the APRA webpage, these five business lines made up more than 85% of the Australian
general insurance market in terms of net earned premiums as at June 2017. In the process
of cleaning the data, we removed the observations from two quarters where there were two
negative observations of gross incurred claims. Our final dataset has 26 observations for
each business line.

Loss Ratios

To quantify the insurance risk, we use loss ratio (LR)4, defined as

LRi,t =
ICi,t

EPi,t
.

The numerator ICi,t denotes the incurred claims corresponding to the earned premium
EPi,t (the denominator) for business line i at time t, based on the accident year insurance
company’s accounting principal; see Taylor (1997) for details on the loss ratio variable.
The loss ratio can be seen as a measure of claims standardised by the risk exposure (given
by the earned premium). Using loss ratios can eliminate temporal effects of business
growth and inflation, allowing for comparisons between business lines with different risk
exposures. Individual loss ratios are added up to form the aggregated loss ratio for capital
requirement estimation.

The aggregate loss ratio at time t, LRt, can then be written as the weighted sum of the
individual loss ratios of the d business lines as

LRt =
ICt

EPt

=
∑

d
i=1 ICi,t

∑
d
i=1 EPi,t

=
∑

d
i=1

(

ICi,t
EPi,t

× EPi,t

)

∑
d
i=1 EPi,t

=
d

∑
i=1

LRi,t ×
EPi,t

∑
d
i=1 EPi,t

=
d

∑
i=1

LRi,t × wi,t, (2)
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where ICt and EPt are the incurred claims and earned premium aggregated across all
business lines, and wi,t is the weight of earned premiums for business line i in period t.
Below we will also examine gross loss ratios and net (after reinsurance) loss ratios compared
to the total earned premiums across all business lines. The gross loss ratio is the ratio of gross
claims to gross premiums while the net loss ratio is the ratio of net claims to net premiums.

The descriptive statistics for the five business lines’ loss ratios are summarised in
Table 1. The ‘Aggregate loss’ column contains the quantities for the aggregate loss ratio,
which are calculated as in Equation (2). From Table 1, we observe that for all the business
lines, the average loss ratios—both gross and net of reinsurance—are not statistically differ-
ent. Although reinsurance is essentially a risk transfer (or sharing) tool, loss distributions
tend to be positively skewed and hence we would expect the average loss ratio to reduce
from gross to net of reinsurance. However, reinsurance seems to have no strong effect on
the average loss ratio. We explore later in the paper how this may result from the interplay
between the premium ceded to and claim recoveries from reinsurance. The standard devia-
tion is higher for Fire. However, while it decreases for House, Motor, and especially Fire, it
actually increases for CTP and Liability when reinsurance is taken into account. The values
estimated for skewness show that the loss ratios for House and Fire do not have symmetric
distributions. There is also significant excess kurtosis of the loss ratios for House and Fire,
with both reducing with reinsurance. In terms of the aggregate loss ratio, reinsurance has a
larger effect on the skewness and kurtosis than on the mean and standard deviation of the
loss ratio. Most notably, reinsurance reduces the excess kurtosis of the aggregate loss ratio
by 74%.

Table 1. Summary statistics of the loss ratios for the period from September 2010 to June 2017.

House Fire Motor CTP Liability Aggregate Loss

Gross loss ratios

Mean 0.5849 0.7820 0.7211 0.8172 0.7024 0.7005
Standard deviation 0.2981 0.8334 0.0682 0.3100 0.1566 0.1971
Skewness 2.6290 3.6449 0.9729 −0.7432 −0.2392 2.8759
Excess kurtosis 8.0694 13.819 0.0075 0.0036 0.0671 9.6254
Average weight, w̄i,t 0.25 0.14 0.33 0.11 0.18 1
Weight at June 2017, wi,T 0.26 0.12 0.33 0.13 0.16 1

Net loss ratios

Mean 0.6272 0.6549 0.7394 0.8051 0.6499 0.7018
Standard deviation 0.2105 0.2639 0.0454 0.3333 0.1907 0.1659
Skewness 2.0440 1.4870 0.3835 −0.8458 −0.6556 1.3425
Excess kurtosis 5.6319 2.2074 −0.9542 0.0960 1.5980 2.4629
Average weight, w̄i,t 0.22 0.10 0.36 0.13 0.18 1
Weight at June 2017, wi,T 0.24 0.09 0.36 0.13 0.17 1

3. Estimation of the Hierarchical Aggregation Copula Model

In this section, we implement the estimation of the hierarchical copula model for the
aggregate loss from the individual business lines as presented in Section 2.2.

3.1. Tree Structure of the Hierarchical Copula Model

The first element of the hierarchical copula model is the rooted tree τ associated with
random variables Xi, representing the loss ratios for individual business lines. As explained
in Section 2.2, to build the tree, we start by allocating the loss ratio of each business line to
one leaf node and then aggregate the two random loss ratios, with the highest dependence
measured by Kendall’s tau. Table 2 shows the Kendall’s tau estimates for the gross loss
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ratios of each pair of business lines. At each stage, we aggregate the two loss ratio random
variables with the strongest Kendall’s tau estimate.

Table 2. Sequential aggregation of the gross loss ratios for the five business lines.

Stage 1
House Fire Motor CTP

Fire 0.5262 1 – –
Motor 0.4338 0.2308 1 –
CTP 0.0154 −0.0523 −0.1815 1
Liability 0.0585 −0.1323 0.1446 0.3662

Stage 2
House + Fire Motor CTP

Motor 0.3169 1 –
CTP −0.0400 −0.1815 1
Liability −0.0338 0.1446 0.3662

Stage 3
House + Fire Motor

Motor 0.3169 1
CTP+Liability 0.0154 −0.0523

After allocating each business line to a leaf node, as in the bottom row of the tree
depicted in Figure 2, we aggregate the two business lines with the strongest dependence.
From Table 2, we observe that House and Fire have the largest Kendall’s tau. Hence, at
this first stage, we aggregate these two business lines. In Stage 2, the largest Kendall’s tau
observed is between CTP and Liability. We then aggregate CTP and Liability. In Stage 3, the
strongest dependence is between Motor and Fire + House, leading to the aggregate between
them. In the final stage, we aggregate together the two resulting loss ratios, namely Motor
+ Fire + House and Liability + CTP. This is illustrated in Figure 2.

Xm X f Xh Xl Xc

X f + Xh (Stage 1) Xl + Xc (Stage 2)

Xm + (X f + Xh) (Stage 3)

X∅ = [Xm + (X f + Xh)] + (Xl + Xc) (Final stage)

✟
✟

✟
✟

❍
❍

❍
❍

✟
✟
✟
✟

❍
❍

❍
❍

✟
✟
✟
✟
✟
✟

✟
✟
✟
✟
✟

❍
❍

❍
❍

❍
❍

❍
❍

❍
❍

❍
❍

❍
❍

❍
❍

❍

✟
✟
✟
✟

Figure 2. Hierarchical loss aggregation copula model for the gross (and net) loss ratio of the the
five business lines, Motor, Fire, House, Liability and CTP, represented by Xm, X f , Xh, Xl , and Xc,
respectively. The structure of the tree is determined by iteratively aggregating the two nodes with the
strongest dependence.

Table 3 contains the Kendall’s tau values for the case of the net (after reinsurance) loss
ratio for the five business lines. The more strongly dependent variables, at the different
stages of construction of the tree, are the same as for the gross loss ratios case. As a
consequence, the structure of the rooted tree for the net loss ratios hierarchical copula
model is the same as for the gross loss ratios shown in Figure 2. In the last stage of the
aggregation model, the Kendall’s tau between the net loss ratios for House, Fire, Motor,
CTP, and Liability together is −0.0892.
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Table 3. Sequential aggregation of the net loss ratios for the five business lines.

Stage 1
House Fire Motor CTP

Fire 0.5446 1 – –
Motor 0.4338 0.2492 1 –
CTP −0.0154 −0.0031 −0.2369 1
Liability 0.0092 −0.0646 −0.0523 0.4954

Stage 2
House + Fire Motor CTP

Motor 0.3969 1 –
CTP −0.0400 −0.2369 1
Liability −0.0523 −0.0523 0.4954

Stage 3
House + Fire Motor

Motor 0.3969 1
CTP + Liability −0.0523 −0.2123

3.2. Fitting the Univariate Probability Distributions

Next, we will fit the probability distributions for individual loss ratios, based on the
maximum likelihood estimation method and Anderson and Darling’s (A-D) goodness of fit
test. As we are primarily interested in estimating the measures of risk, which are based
on the tail of the distributions, it is important to use an appropriate test. It is known that
the A-D test is more powerful and sensitive to the tails of the distribution (see Engmann
and Cousineau 2011) than other alternative tests such as the commonly used Kolmogorov–
Smirnov (Kolmogorov 1933; Smirnov 1948) goodness of fit test. Hence, we choose the
distribution that produces the highest p-value according to the A-D test. For each business
line, we fit the following families of distributions: lognormal, gamma, Weibull, log-logistic,
Pareto, and Burr. The results for the distribution with the highest A-D test p-value and
corresponding parameter estimates are listed in Table 4. The fitted distributions for the loss
ratios are log-logistic, Burr, and Weibull distributions. These fitted distributions are also
visualised in Figures 3 and 4 for gross and net loss ratios, respectively.

Table 4. Family of distributions selected for each business line’s gross and net loss ratios. The
parameter and corresponding standard error estimates are listed for each business line together with
the Anderson and Darling (A-D) statistic and p-value. For the purpose of comparison, the table also
has the estimates for the aggregate loss ratio with the weights fixed as at June 2017. * In the case of
the Burr distribution, the value listed in the table as being the scale is in fact the estimate for the rate,
which is 1/scale.

House Fire Motor CTP Liability
Aggregate

Loss

Gross loss ratios

Distribution Log-logistic Burr Burr Weibull Burr Burr
Shape 1 4.76266 0.19159 0.04799 3.00527 7.70166 0.3732
(s.e.) (0.776) (0.122) (0.042) (0.505) (22.63) (0.199)
Shape 2 – 8.11427 189.928 – 5.64960 15.8580
(s.e.) – (4.012) (155.0) – (1.555) (5.441)
Scale * 0.52243 3.04747 1.55319 0.90936 0.92955 1.70254
(s.e.) (0.037) (0.415) (0.014) (0.061) (0.604) (0.095)
A-D statistic 0.294 0.147 0.335 1.417 0.270 0.230
A-D p-value 0.942 0.998 0.909 0.197 0.958 0.979
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Table 4. Cont.

House Fire Motor CTP Liability
Aggregate

Loss

Net loss ratios

Distribution Log-logistic Log-logistic Log-logistic Weibull Weibull Burr
Shape 1 6.37499 4.96750 27.9840 2.53352 3.87399 0.50244
(s.e.) (1.031) (0.801) (4.469) (0.439) (0.599) (0.269)
Shape 2 – – – – – 18.4406
(s.e.) – – – – – (5.898)
Scale * 0.59180 0.59840 0.73616 0.89199 0.71298 1.55857
(s.e.) (0.031) (0.041) (0.009) (0.071) (0.037) (0.073)
A-D statistic 0.246 0.455 0.371 1.962 0.602 0.197
A-D p-value 0.971 0.791 0.875 0.097 0.643 0.991
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Figure 3. Fitted probability distributions (in blue) vs. observed cumulative distribution functions
(CDF) for the gross loss ratios.
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Figure 4. Fitted probability distributions (in blue) vs. observed cumulative distribution functions
(CDF) for the net loss ratios.

3.3. Determining Joint Distribution Through Copulas

Having determined the best fit univariate distribution for each business loss ratio, we
can estimate the joint distributions for each pair of loss ratios at each branching node in
Figure 2 by coupling the corresponding univariate probability distributions. We consider
the following commonly used copulas: Gaussian, Student-t, Frank, Clayton, Gumbel, and
the mixtures of Clayton and Gumbel copulas and their corresponding survival copulas.
The Gaussian copula is appropriate for modelling data with an elliptical shape but does
not allow for tail dependence between the business lines. The Student-t copula, although
also elliptical, allows for tail dependence. The Frank copula is suitable for symmetric data
and can perform better than the Gaussian copula in certain cases. The Clayton and the
Gumbel copulas are used when data show asymmetric tail dependence (lower or upper,
respectively). Mixtures of Clayton and Gumbel copulas and their corresponding survival
copulas can potentially perform better when the data exhibit tail dependence in both tails,
even if asymmetric.

In Table 5, we calculate and report the non-parametric estimates of the upper and
lower tail dependence coefficients (see Sibuya 1960; Schmid and Schmidt 2007) for each pair
of loss ratios associated with the children of each branching node. As the risk of extreme
events is one of the main concerns when it comes to capital requirements, it is important
to pay particular attention to the tails of the copula distributions in the modelling process.
Table 5 summarizes the results of the selected copulas for the four branching nodes for both
gross and net loss ratios.

To select between copula models, we use the goodness of fit test statistic Sn from
(Genest et al. 2009). In the cases of the mixture models, to determine the weight of each
copula family, we fit a model with weight α for the first copula and 1 − α for the second
copula, for a sequence of values α varying in [0, 1]. We then choose the estimate α̂ for the
mixture that maximises the goodness of fit statistic. For the gross loss ratios, the first node is
Fire and House (X f + Xh), as shown in Figure 2. From Table 5, we can see that both the lower
(λL) and upper (λU) tail coefficient estimates are different from zero. The copula with the
highest p-value (using the goodness of fit test statistic Sn from is a mixture of 40% Clayton
and 60% survival Clayton copulas. As the Clayton copula allows for tail dependence, and
the estimates for the upper and lower tail dependence are slightly different, the mixture
model seems to be a reasonable choice. The p-value of the Sn goodness of fit test, the
parameters, and the standard errors estimates are also listed in Table 5. For the CTP and
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Liability business lines, the best copula is a mixture of 25% Clayton and 75% survival
Clayton copulas. The same copula mixture is again the best for Motor and Fire plus House,
but with only 10% weight on the Clayton component of the mixture. The estimates for
the tail coefficients for the two root node children, Motor plus Fire plus House and CTP
plus Liability, are zero. Indeed, the best copula, according to the goodness of fit test, is the
Gaussian copula, which has no tail dependence. This choice makes sense, as the estimates
for the upper and lower tail dependence are zero.

Table 5. Upper (λU) and lower (λL) tail coefficient non-parametric estimates for the pairs of children
of each branching node of the copula hierarchical model tree. The best-fitting copula, corresponding
goodness of fit test p-value, and parameter estimates (with standard errors in parenthesis) are also
listed. For the mixture copulas, θ1 is the parameter estimate of the first component of the mixture
and θ2 corresponds to the second component of the mixture. For the last pair of net loss ratios,
(Xm + X f + Xh, Xc + Xl), λL measures the tail coefficient in the second quadrant of the sample space
and λU measures the tail coefficient in the fourth quadrant.

λL λU Copula p-Value
θ̂1 θ̂2

(s.e.) (s.e.)

Gross loss ratios

(Xh, X f ) 0.5218 0.5694 0.4 Clayton + 0.6 SurvClayton 0.4640 4.886 2.148
(4.161) (1.966)

(Xc, Xl) 0.1496 0.2742 0.25 Clayton + 0.75 SurvClayton 0.5410 1.022 1.482
(3.194) (1.596)

(Xm, X f + Xh) 0.2772 0.4383 0.1 Clayton + 0.9 SurvClayton 0.8986 1.160 1.029
(5.796) (0.548)

(Xm + X f + Xh, Xc + Xl) 0.0000 0.0000 Gaussian 0.9815 0.013036
(0.285)

Net loss ratios

(Xh, X f ) 0.5390 0.5401 0.6 Gumbel + 0.4 SurvGumbel 0.7298 2.126 2.801
(1.265) (2.083)

(Xc, Xl) 0.2772 0.1070 Student-t 0.5549 0.7376 1.2910
(0.115) (0.593)

(Xm, X f + Xh) 0.3977 0.4038 0.7 SurvGumbel + 0.3 SurvClayton 0.7607 1.750 1.047
(0.954) (2.884)

(Xm + X f + Xh, Xc + Xl) 0.0143 0.1531 90◦ Rotated Gumbel 0.5569 1.0865
(0.186)

For the net loss ratios, the best copula for the House and Fire pair is 60% Gumbel plus
40% survival Gumbel. The resulting copula has both upper and lower tail dependence,
which is in line with the non-parametric estimates. The CTP and Liability pair is best mod-
elled by a Student-t copula, which also allows for both upper and lower tail dependence.
A mixture of 70% survival Gumbel with 30% survival Clayton has the higher p-value for
Motor and Fire plus House. The estimate for the Kendall’s tau for the Motor plus Fire plus
House and the CTP plus Liability pairs is close to zero but negative. Hence, we flip the
Motor plus Fire plus House variable after transforming it into the zero-one interval. By
flipping, we mean subtracting the variable from one. The best copula for the resulting pair
is then a Gumbel copula, which allows for tail dependence between low values of Motor
plus House plus Fire and high values of CTP and Liability.

3.4. Simulation of the Aggregate Loss Ratios

In order to estimate VaR and TVaR from the hierarchical copula aggregation model,
we can now simulate observations of aggregate loss ratios using the model constructed in
the previous sections. We implement the sample reordering algorithm from Section 2.2.2
for the gross and net loss ratios using N = 1000. Using the estimator from Equation (1), we
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estimate the TVaR for each business line’s gross and net loss ratios for the confidence levels
of 90%, 95%, and 99%. The VaR estimate for a given confidence level is the corresponding
empirical quantile. The results are presented in Table 6, and their analysis follows in the
next sections.

Table 6. VaR and TVaR estimates for the five business lines. The values in square brackets are
95% confidence intervals. The column labelled ‘Weighted Sum of Risk Measures’ corresponds to
the weighted sum of the risk measures (VaR or TVaR) from each business line with weights as at
June 2017. The column labelled ‘Risk measure of Aggregate Loss’ has the values obtained from the
hierarchical aggregation copula model with weights for each business line as at June 2017.

Weighted Sum of Risk Measure of
House Fire Motor CTP Liability

Risk Measures Aggregate Loss, LRt

Gross loss ratios

90% VaR 0.8284 1.4422 0.8283 1.1991 0.8915 0.9603 0.8806
[0.800,0.856] [1.301,1.60] [0.814,0.843] [1.172,1.225] [0.879,0.903] [0.940,0.981] [0.859,0.902]

95% VaR 0.9693 2.2516 0.8931 1.3088 0.9417 1.1377 1.0184
[0.925,1.024] [1.959,2.593] [0.872,0.916] [1.278,1.341] [0.926,0.957] [1.099,1.182] [0.979,1.064]

99% VaR 1.365 6.2017 1.0602 1.5049 1.0346 1.8101 1.5937
[1.227,1.534] [4.463,8.642] [1.008,1.122] [1.451,1.56] [1.008,1.061] [1.603,2.095] [1.385,1.891]

90% TVaR 1.063 4.1271 0.9299 1.3413 0.9576 1.4060 1.2644
[1.007,1.128] [2.873,6.202] [0.906,0.957] [1.313,1.37] [0.944,0.972] [1.256,1.652] [1.118,1.518]

95% TVaR 1.2353 6.4776 1.0026 1.4322 1.0003 1.7755 1.5895
[1.144,1.341] [4.096,10.578] [0.966,1.042] [1.397,1.466] [0.983,1.019] [1.488,2.276] [1.304,2.094]

99% TVaR 1.7244 18.4861 1.1898 1.6042 1.0836 3.4412 3.1437
[1.459,2.074] [8.037,37.647] [1.1,1.299] [1.54,1.669] [1.051,1.118] [2.178,5.761] [1.897,5.461]

Net loss ratios

90% VaR 0.835 0.9313 0.7961 1.2386 0.8843 0.8821 0.801
[0.813,0.857] [0.9,0.965] [0.791,0.801] [1.207,1.273] [0.869,0.899] [0.874,0.89] [0.792,0.81]

95% VaR 0.9383 1.0821 0.8177 1.3737 0.9462 0.9563 0.844
[0.904,0.973] [1.033,1.134] [0.811,0.825] [1.334,1.414] [0.927,0.965] [0.945,0.967] [0.832,0.857]

99% VaR 1.2087 1.4985 0.8662 1.6234 1.0549 1.1271 0.9443
[1.124,1.311] [1.366,1.668] [0.851,0.883] [1.56,1.693] [1.026,1.083] [1.101,1.156] [0.916,0.976]

90% TVaR 0.9987 1.1803 0.8273 1.4158 0.9638 0.9916 0.8651
[0.959,1.04] [1.121,1.246] [0.821,0.835] [1.379,1.453] [0.948,0.981] [0.979,1.004] [0.853,0.878]

95% TVaR 1.1164 1.3622 0.8487 1.5303 1.0144 1.0674 0.9098
[1.055,1.183] [1.266,1.468] [0.839,0.859] [1.483,1.579] [0.995,1.034] [1.049,1.087] [0.891,0.93]

99% TVaR 1.4311 1.8778 0.8983 1.7503 1.1077 1.2516 1.021
[1.27,1.636] [1.605,2.216] [0.876,0.924] [1.664,1.837] [1.074,1.146] [1.201,1.312] [0.976,1.075]

Analysis of the Results

From Table 6, we can see that Fire has the largest VaR and TVaR among the five
business lines for the gross loss ratios, followed by CTP, except for the 99% TVaR, where
House has the second largest. When we consider reinsurance, by analysing the net loss
ratios, CTP has the largest risk measure values while Fire has the second largest, except for
the 99% TVaR, where Fire still has the largest value. Nevertheless, the 99% TVaR for Fire
shows a staggering reduction after reinsurance. Overall, Motor has the lowest values of
risk measures in terms of both gross and net loss ratios, implying that it is the least risky
business line. The VaR and TVaR 95% confidence intervals for gross and net losses overlap
in the cases of House, CTP, and Liability. For Fire, Motor, and (copula) aggregate losses, the
confidence intervals for gross and net losses do not overlap. We conclude that reinsurance
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is effectively reducing the level of risk only for Fire and Motor, and that this reduction is
strong enough to carry over to the (copula) aggregate loss. The effect of reinsurance in
changing the risk level for House, CTP, and Liability is much less pronounced. We come
back to this point later in this article. It is worthwhile to recall here that the average loss is
also not significantly different both with and without reinsurance.

Comparing the two right columns of Table 6, we can see that the weighted sum of
the risk measures, VaR and TVaR, is larger than the value obtained using the hierarchical
aggregation copula model. This is true both for VaR and TVaR at all the probability
levels considered and for gross and net loss ratios. The risk measures obtained using the
hierarchical copula model incorporate the dependence between the different business lines
while the weighted sum of VaR and TVaR does not. Hence, the result obtained is clear
evidence that there is a risk reduction effect in the tails when combining the five business
lines. This reduction in risk by pooling different business lines (risks) corresponds to the
well-known notion of diversification in financial portfolio selection and asset allocation.

4. The Effect of Reinsurance

Our goal now is to explore the effect of reinsurance on the diversification of the port-
folio composed of the different business lines. Conceptually, we draw some parallel here
between a portfolio of financial assets and the set of business lines. When addressing diver-
sification in terms of portfolio selection, we can think of two aspects: First, diversification
is affected by the weights of each component of the portfolio. Second, diversification can
also be affected by the sources of risk and the interaction between the different business
lines. We address these two cases separately below.

4.1. Reinsurance and Weighted Premiums Diversification

Here we evaluate the effect of reinsurance on diversification due to changing the
proportion of underwritten premiums (weights) for the different business lines. Insurance
companies cede risk to the reinsurer in different proportions for the different business
lines. As a result, the weights of each business line—corresponding to the proportion of
underwritten premiums—in the insurers portfolio before and after considering reinsurance
are different. For the data analysed in this paper, the weights as at June 2017 are reported
in Table 1; we can see that reinsurance reduces the proportion of the business lines of Fire
and House, and increases the weight of Motor.

A measure of diversification which concentrates on the weights of each portfolio
component is derived from the concept of Shannon’s entropy, introduced in Shannon (1948)
for information theory. Within a financial portfolio setting, Shannon’s entropy measures
diversification as

H(w) = −
N

∑
i=1

wi ln wi,

where ∑
N
i=1 wi = 1, wi ≥ 0 and N is the number of portfolio components. According to this

measure, equal weights correspond to the highest diversification. The background idea is
that equal weights correspond to maximum information. We refer to DeMiguel et al. (2009)
for a study on the (superior) out-of-sample performance of an equally weighted finan-
cial portfolio.

The values obtained for the Shannon’s entropy measure for the insurance data are
listed in Table 7. We find that the diversification of the portfolio considering reinsurance
is lower than the diversification of the portfolio without reinsurance. The change in the
weights between the business lines is largely due to the higher cession rate on Fire. We
can see that there is a link here between a higher cession rate (mainly) on the Fire business
line through reinsurance and a reduction in the diversification of the portfolio. The value
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for the Shannon’s entropy of an equally weighted portfolio is 1.61. Therefore, the equally
weighted portfolio is 6% more diversified than the portfolio without reinsurance and 8%
more diversified than the portfolio after considering reinsurance.

Table 7. Shannon’s entropy measure of diversification for the insurance portfolio of the five business
lines using the weights as at June 2017.

House Fire Motor CTP Liability Shannon’s Entropy

Gross loss ratio weights 0.26 0.12 0.33 0.13 0.16 1.52
Net loss ratio weights 0.24 0.09 0.36 0.13 0.17 1.49

4.2. Reinsurance and Source of Risk Diversification

One goal of diversification is to reduce the risk in the portfolio by taking advantage of
the relation between the different components. One way of measuring portfolio diversifica-
tion while taking the sources of risk into account is by calculating the diversification ratio
(DR) from Choueifaty and Coignard (2008). This measure uses both the weights and the
risk of each component of the portfolio, producing a weighted average of the components’
risk. The expression for the diversification ratio is given by

DR =
∑

N
i=1 wi λi

λP
,

where ∑
N
i=1 wi = 1, wi ≥ 0, λi is the risk of component i, and N is the number of portfolio

components. In the denominator of the diversification ratio, λP is the portfolio risk, and
hence the relation between the different components of the portfolio is taken into account
by the diversification ratio. Using standard deviation, with VaR and TVaR as measures
of risk, we obtain the diversification ratio values. The VaR and TVaR risk measures for
the weighted sum of business lines’ loss ratios are the ones obtained by the hierarchical
aggregation copula model. The weights are fixed and based on the premiums as at June
2017. The results are reported in Table 8.

Table 8. Weighted sum of risk measures for the five business lines compared with the risk measure of
the weighted sum of business lines obtained by the hierarchical copula model. The last column of the
table gives the values for the diversification ratio from Choueifaty and Coignard (2008).

Weighted Sum of Risk Measure of
DR

Risk Measures Aggregate Loss, LRt

Gross loss ratios

σ 0.2654 0.1956 1.35
90% VaR 0.9603 0.8806 1.09
95% VaR 1.1377 1.0184 1.12
99% VaR 1.8101 1.5937 1.14
90% TVaR 1.4060 1.2644 1.11
95% TVaR 1.7755 1.5895 1.12
99% TVaR 3.4412 3.1437 1.09

Net loss ratios

σ 0.1752 0.1040 1.68
90% VaR 0.8821 0.8010 1.10
95% VaR 0.9563 0.8440 1.13
99% VaR 1.1271 0.9443 1.19
90% TVaR 0.9916 0.8651 1.15
95% TVaR 1.0674 0.9098 1.17
99% TVaR 1.2516 1.0210 1.23
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The results show that the diversification ratio increases with reinsurance most strik-
ingly when we use standard deviation as measure of risk, where the diversification ratio
increases by 24%. This indicates that reinsurance increases diversification for the smaller,
more frequent claims to a larger extent than for the larger, less frequent claims. For the VaR
and TVaR, the increase in diversification is modest, at around 3%, with the exception of
TVaR, at the 99% level, to which reinsurance implies a 12% increase in the diversification
ratio. This indicates that, from a multivariate or portfolio point of view, by reducing the
high upper tail dependence of some of the loss ratios across the different business lines
(the estimates for λU in Table 5 do not contradict this assertion), reinsurance increases the
diversification ratio. Considering the results from Shannon’s entropy measure, we conclude
that, although reinsurance reduces the (weights’) diversification, this is compensated by the
reduction in risk producing higher diversification ratios. As far as we know, these effects of
reinsurance on the multivariate overall portfolio of business lines have not been previously
found in the literature.

5. Conclusions

It is important for every insurance company to determine and maintain the right
amount of capital to maintain a solvency margin against the risk of not being able to
cover the its liabilities. This calls for adequate methods of aggregating all risks and the
use of appropriate risk measures to determine the capital requirement. In this article, we
use a hierarchical aggregation copula model to address the dependence structure of the
different insurance business lines. We use several copula families to model the aggregated
loss, with particular emphasis on capturing the tail dependence. We consider a range of
copulas: asymmetric, symmetric, with and without tail dependence, Gaussian, Student-t,
Archimedean, Clayton, Gumbel, and Frank. Selecting the best copula families for the
hierarchical aggregation model is crucial, as it influences the estimated level of risk and
consequently avoids over- or underestimation of the capital required. We must stress
that this study looks for empirical evidence of the effect of reinsurance on a portfolio of
insurance business lines. This means that the methodology used is very much tailored for
the particular case and dataset used, and the following conclusions are constrained by our
specific application. Our goal is to show, based on the data used, that there are important
issues to be considered and show a possible roadmap for other cases.

A very important tool for risk management is reinsurance. Insurance companies
diversify away part of their underwriting risk to reinsurance companies. In this paper,
we use the case of the Australian insurance market to investigate the effect and relevance
of reinsurance on the risk of individual business lines, and particularly on the aggregate
risk. These effects are measured in this paper by considering both gross and net loss
ratios, where gross loss ratios are used to measure the insurance risk without considering
the reinsurance business, while net loss ratios are used to determine the insurance risk
while taking reinsurance into account. For most business lines, especially Fire and Motor,
reinsurance reduces the risk. However, it can also increase the risk, even when measured
by the standard deviation, as we can see in Tables 1 and 6 for the CTP and Liability
business lines.

Another aspect of reinsurance pertains to diversification. By leveraging the interdepen-
dencies among various business lines, reinsurance enhances the diversification ratio, which
takes into account both the weights and the source of risk. Conversely, it diminishes Shan-
non’s entropy diversification, which solely focuses on weights. Consequently, in the context
of the Australian insurance market, we deduce that reinsurance can decrease the aggregate
risk’s sensitivity to alterations in the proportions of different business lines. Therefore, if
the objective is to manage risk by adjusting the proportion of underwriting among business
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lines, reinsurance may alleviate the decrease in aggregate risk. Hence, a comprehensive
risk management strategy must encompass the three facets of weights, interdependencies
among business lines, and reinsurance cession rates to effectively mitigate the aggregate
risk in the insurance portfolio when the primary insurer transfers risk through reinsurance.
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Notes

1 The symbol ′ denotes the transpose of vector.
2

✶{sj ≤ x} =

{

1, if si ≤ x

0, otherwise.

3 ISR stands for industrial special risk.
4 To simplify notations, we will use X for the LR, unless otherwise stated.
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Torri, Gabriele, Davide Radi, and Hana Dvořáčková. 2022. Catastrophic and systemic risk in the non-life insurance sector: A
micro-structural contagion approach. Finance Research Letters 47: 102718. [CrossRef]

Wang, Shaun. 1998. Aggregation of correlated risk portfolios: Models and algorithms. In Proceedings of the Casualty Actuarial Society.
Arlington: Citeseer, vol. 85, pp. 848–939.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.


	Introduction
	Copula-Based Hierarchical Aggregation Model
	The Definition of Copula
	Hierarchical Aggregation Copula Models
	Existence and Uniqueness of a Joint Distribution
	Simulation of Joint Distributions
	Sample Reordering Numerical Approximation Algorithm

	Risk Estimation of the Aggregate Loss
	The Data

	Estimation of the Hierarchical Aggregation Copula Model
	Tree Structure of the Hierarchical Copula Model
	Fitting the Univariate Probability Distributions
	Determining Joint Distribution Through Copulas
	Simulation of the Aggregate Loss Ratios

	The Effect of Reinsurance
	Reinsurance and Weighted Premiums Diversification
	Reinsurance and Source of Risk Diversification

	Conclusions
	References

