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Abstract

The magnitude and shape of the association between outdoor air pollution concentrations and health need to be characterized 

in order to estimate public health benefits from proposed mitigation strategies. Specialized parametric functions have been 

proposed for this characterization. However, non-parametric spline models offer more flexibility, less bias, and predictive 

power, in describing these associations and are thus preferred over relatively simple parametric formulations. Unrestricted 

spline representations are often reported but many are not suitable for benefits analysis due to their erratic concentration-

response behavior and are usually not presented in a format consistent with the requirements necessary to conduct a benefits 

analysis. We propose a method to adapt non-parametric spline representations of concentration-response associations that 

are suitable for public health benefits analysis by transforming spline predictions and its uncertainty over the study exposure 

range to a new spline formulation that is both monotonically increasing and restricted to concentration-response patterns 

suitable for use in health benefits assessment. We selected two examples of the association between long-term exposure 

to fine particulate matter and mortality in Canada and the USA that displayed spline fits that were neither monotonically 

increasing nor suitable, we suggest, for benefits analysis. We suggest our model is suitable for benefits analysis and conduct 

such analyses for both Canada and the USA, comparing benefits estimates to traditional models. Finally, we provide guid-

ance on how to report spline fitting results such they can be used either in benefits analysis directly, or to fit our new model.

Keywords Air pollution health effects · concentration-response models

Introduction

Outdoor air quality has been recognized as a leading cause 

of disease and death globally (GBD 2019). As such, strate-

gies to improve air quality have been proposed (Johnston 

et al. 2012; Liang et al. 2018; Gu et al. 2018; Lelieveld et al. 

2019). These strategies are often evaluated in terms of their 

societal monetary costs and extent to which they improve 

public health (World Bank 2016; Heo et al. 2017; Muller 

2018). Public health improvements are often measured by 

the number of attributable adverse health events (i.e., inci-

dence of disease or death) associated with a reduction in 

exposure to outdoor concentrations of pollution over a fixed 

time period (i.e., year). We can quantitatively represent the 

attributable number, A N, by the following equation:

 where zC is the current air pollution concentration, zF the 

future concentration predicted under a specific mitigation 

strategy, P the target population size for which the concen-

tration applies, BR the baseline rate of disease or death, and 

 PAFβ(zC, zF), the population attributable fraction defined by 

the following equation:

AN
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)

= P × BR × PAF�
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with Rβ(zC, zF) the relative risk between zC and zF, indexed 

by a vector of parameters β. Here, Rβ(zC, zF) represents the 

ratio of the probability of an adverse event over a fixed time 

period for a population which is exposed to zC to the cor-

responding probability if that population was contrary to the 

fact exposed to zF.

The magnitude, shape, and uncertainty in Rβ(zC, zF) need 

to be characterized in order to conduct a health benefits 

analysis. The relative risk function is usually defined with 

respect to a counterfactual concentration, zcf say, denoted by 

Rβ(zC|zcf) with Rβ(zcf|zcf) = 1. We then have

Uncertainty in Rβ(zC|zcf) is induced by uncertainty in the 

estimate of β given the algebraic form of how R varies with 

z. Let 𝛽  be the estimate of β with distribution F𝛽 . Then the 

uncertainty distribution of R𝛽

(

zC, zF

)

 is obtained by gener-

ating a (usually) large number, N, of realizations of 𝛽  from 

F𝛽 , denoted by 
{

𝛽(i), i = 1,… , N
}

 , thus yielding N estimates

for i = 1, …, N. These N estimates of relative risk are 

used to calculate N estimates of the PAF. Uncertainty in the 

estimate of attributable deaths can be determined by the joint 

uncertainty in P, BR, and PAF (GBD 2019).

Previous relative risk models

The most common form of Rβ(zC, zF) is the following 

equation

for scalar parameter β. This characterization is often 

termed the Log − Linear model (Cohen et al. 2004) since the 

logarithm of the relative risk function is linear in concentra-

tion. We note that under the Log − Linear model, Rβ(zC, zF) is 

independent of the counterfactual concentration zcf and only 

depends on the magnitude of the difference in concentrations 

zC − zF, but not the magnitude of each concentration.

The estimate of β is usually obtained from the analysis of 

primary health data with a normal uncertainty distribution, 

N
(

𝛽, �̂�𝛽

)

 , where �̂�𝛽 is the standard error of 𝛽  . In the case of 

the Log − Linear model, we have
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} = exp
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�
(
zC − zF

)}

since

The uncertainty distribution in Rβ(zC, zF) is com-

pletely characterized by N
(

𝛽, �̂�𝛽

)

 and the concentrations 

zC and zF.

In recent years, interest has focused on the shape 

of the association between air pollution exposure and 

health, specifically assessing evidence of departures 

from linearity. An early attempt (Cohen et al. 2004) was 

based on the Log − Log model of the form:

where the logarithm of the relative risk varied with the loga-

rithm of concentration. Note that the relative risk function is 

dependent on the counterfactual concentration, a departure 

from the Log − Linear model.

These models were extended to a broader family of 

shapes by the Shape Constrained Health Impact function 

(SCHIF) (Nasari et al. 2016) which has the form:

 where f is either a linear or logarithmic function of concen-

tration. The SCHIF can take near-linear, sub, and supra-lin-

ear forms in addition to sigmodal shapes. Ensemble model-

ling methods were used to estimate the unknown parameters 

(θ, μ, τ) and form of f (Nasari et al. 2016). Like the Log − Log 

model, the SCHIF is also dependent on the counterfactual 

concentration.

The Log − Linear, Log − Log, and SCHIF were 

intended to be used on primary health data. However, 

interest has also focused on combining information from 

selected studies to form a common relative risk model 

within a meta-regression framework. Log − Linear mod-

els have been used for this purpose (Chen and Hoek 

2020) in addition to non-linear models, including the 

integrated exposure-response (IER) (Burnett et al. 2014) 

with the form

the Global Exposure Mortality Model (GEMM) (Bur-

nett et al. 2018), that generalized the SCHIF, with the form

𝛽
(

zC − zF

)

∼ N
(

𝛽
(

zC − zF

)

, �̂�𝛽

(

zC − zF

))

√
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(
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)

=

√
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)
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(
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− 2 cov
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and the Fusion model (Burnett et al. 2022)

where

with 
∼

z = z − zcf  . These models are based on a small 

number of unknown parameters (three for the IER, and 

four for both the GEMM and Fusion). All three models 

report 1000 sets of parameter estimates, in addition to 

1000 sets of relative risk predictions over the concentra-

tion range, thus enabling calculation of 1000 PAFs based 

on any two concentrations (Burnett et al. 2014:2018:2022). 

This PAF uncertainty distribution can be used in benefits 

assessment.

Most researchers now use non-parametric spline meth-

ods to both characterize the shape and magnitude of the 

concentration-response function, either based on primary 

data (Brunekreef et al. 2021; Brauer et al. 2022; Dominici 

et al. 2022), or meta-regression combining information 

from multiple primary data studies (GBD 2019), in order 

to gain additional flexibility compared to parametric mod-

els with a few parameters, such as the IER, GEMM, and 

Fusion models. Splines have the general form

 where the basis functions bj(z| k1, …, kK) are transfor-

mations of concentration specified by K knot locations: 

κ = (k1, …, kK). The most common forms of bj(z| κ) are cubic 

polynomials, such as those used to define natural (Bartels 

et al. 1998) or restricted (Harrel 2015) cubic splines such 

that the second derivative of the spline is continuous at the 

knot values. They typically involve a limited number of 

terms, J, with the number of terms selected based on fit-

ting criteria. These regression splines have been extended 

to include a penalty term based on the integral of the second 

derivative of the spline that smooths the estimates of the βj. 

Smoothing splines (Eilers and Marx 1996) typically have 

many basis functions and estimates of the βj are a function 

of the penalty parameter, with larger values inducing more 

smoothing on these estimates.

For spline representations, the quantity of interest in ben-

efits assessment is as follows:

ln R�

(
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)

= �

ln
(

∼
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)

1 + exp
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−
(

∼
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)
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)
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)
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(
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(
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+ F

(
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(
∼
z, �

)
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))

F

(
∼
z|𝜌,𝜇, 𝜃

)
= ∫

min(𝜃,z̃)

𝜇

(
1 +

1 − 𝜌

𝜌

(
x − 𝜇

𝜃 − 𝜇

) 𝜃−𝜇

𝜃(1−𝜌)

)−1

dx

s�(z) =

J∑

j=1

�jbj(z|�)

independent of the counterfactual concentration zcf. 

Researchers typically report the results of fitting splines with 

the exponential of the mean spline prediction over the con-

centration range and the 95% confidence intervals of those 

exponentiated predictions (Brunekreef et al. 2021; Brauer 

et al. 2022; Dominici et al. 2022). The exponential of the 

mean spline prediction is shifted such that the prediction at 

the minimum concentration is unity.

The uncertainty in ŝ𝛽

(

zC

)

− ŝ𝛽

(

zF

)

 is given by the 

following:

 where b(z| κ) = (b1(z| κ), …, bJ(z| κ))′ and V̂  is the estimated 

covariance matrix of 𝛽 =

(

𝛽1,… , 𝛽
J

)�

 , the estimates of the 

spline parameters.

We note that

cannot be determined from the mean spline predictions 

over the concentration range and their associated variance 

since cov
(

ŝ𝛽

(

zC

)

, ŝ𝛽

(

zF

))

 cannot be calculated from these 

summary results. This is true even for the case where burden 

assessments are of interest. Here, all future concentrations 

are set to a counterfactual. However, the uncertainty in the 

spline prediction at the counterfactual is often positive.

One can form relative risk predictions such that 

var

(

ŝ𝛽
(

zcf

))

= 0 and thus cov
(

ŝ𝛽
(

zC

)

, ŝ𝛽
(

zcf

))

 =0. We then 

have: var
{

ŝ𝛽
(

zC

)

− ŝ𝛽
(

zcf

)}

= var
(

ŝ𝛽

(

zC

))

 , that can be 

determined from the spline prediction confidence intervals 

given knowledge of the distribution of ŝ𝛽
(

zC

)

 . Unfortunately, 

uncertainty in the difference between spline predictions at 

any two concentrations greater than the counterfactual can-

not be determined alone from the uncertainty in spline pre-

dictions at the two concentrations even if var
(

ŝ𝛽
(

zcf

))

= 0.

We conclude from these observations that the spline 

parameter estimates and their covariance matrix should be 

reported in addition to knot locations and type of spline 

used. Alternatively, many spline curves could be reported 

based on random draws of the spline parameters.

Spline representations often describe the association 

between concentration and response in a complex manner, 

including steep changes or waviness in the association over 

narrow concentration intervals. These types of associations 

may be of questionable biological plausibility and thus are 

ln R𝛽

(
zC, zF

)
=

(
ŝ𝛽
(
zC

)
− ŝ𝛽

(
zcf

))

−

(
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(
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(
zcf
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(
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ŝ𝛽

(
zC

)
− ŝ𝛽
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ŝ𝛽
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not desirable features in a benefits assessment. An extension 

of the SCHIF (eSCHIF) was proposed to transform spline 

predictions into a form thought to be more suitable for ben-

efits assessment (Brauer et al. 2022). Here

This algebraic function was fit to each of the 1000 series 

of spline predictions over the concentration range 0 to 20 μg/

m3 (Brauer et  al. 2022). Restrictions on the parameters 

(α0, α1, τ) were imposed in order to smooth each series of 

spline predictions. However, no restrictions were made on 

(θ0, θ1), resulting in fitted curves that were not necessarily 

monotonically increasing.

In this paper, we propose a new approach to using spline 

predictions of concentration-response associations that 

are monotonically increasing in the mean predictions over 

concentration, which we suggest is an additional desirable 

feature for benefits assessment. We allow the uncertainty 

in these predictions to possibly include the null or negative 

associations at any concentration, a property like the case if 

the original study data were in fact fit with a monotonically 

increasing spline (Pya and Wood 2015).

Monotonically increasing shape constrained 
health impact functions (mSCHIF)

Our approach is to generalize the eSCHIF to be able to 

characterize a wider variety of shapes and constrain the 

fit to be monotonically increasing. Under such constraints, 

the logarithmic function may not be flexible enough to 

model all the possible desirable shapes predicted by 

splines. In addition, using two terms may also not be flex-

ible enough to model all possible spline predictions and 

their associated uncertainty under the additional constraint 

of monotonicity. We thus propose a new spline formula-

tion defined by the following:

w i t h  t e r m s : 

M

(
∼

z|�l, �l,�l, �l

)
= F

(
∼

z|�l, �l

)
L

(
∼

z|�l, �l

)
, l = 1,… , L  , 

composed of the product of two functions

and

lneSCHIF
(

∼

z

)

= 𝜃0 ln

(

z̃

𝛼0

+ 1

)

+ 𝜃1

ln
(

z̃

𝛼1

+ 1
)

1 + exp
(

−

∼

z−𝜇

𝜏

)

mSCHIF
(
∼

z

)
= exp

{
L∑

l=1

�lM

(
∼

z|�l, �l,�l, �l

)}

F

(
∼

z|𝛼, 𝜆

)
= ∫

z̃

0

(
1 +

(
x

𝛼

)𝜆
)−1

𝜕x

with θl ≥ 0, 0 < αl, μl, τl ≤ r, and 0 ≤ λl ≤ r, (l = 1, …, L), 

where r is the range in concentration.

F  is a monotonically increasing supra-linear function 

while L is a two-parameter logistic function taking either 

sub-linear or sigmodal shapes over the concentration range 

depending on the values of μ and τ. When λ = 0, F  is linear 

in concentration, when λ = 1, F  is log-linear in concentra-

tion, and when λ = 2, F  is an arctangent function. For all 

other values of λ, an explicit form of F  is not available; thus, 

numerical integration is required.

F  has the property that it is nearly linear when 
∼

z < 𝛼 , 

with this approximation improving as λ increases. The 

decline in the derivative of F  increases as λ increases for 
∼

z > 𝛼 , resulting in a relatively flat functional form for F  over 

this concentration range. The smaller value of τ, the less 

increase in L for 
∼

z < 𝜇 . These properties of F  and L facili-

tate adding mSCHIF terms together under the constraint 

(θl ≥ 0, l = 0, …, L). We view the mSCHIF as a spline-type 

formulation with F
(
∼

z|�l, �l

)
L

(
∼

z|�l, �l

)
 as their basis func-

tions. They can take on a wide variety of shapes depending 

on the values of their associated parameters, a property not 

shared by traditional spline models.

mSCHIF parameter estimation and inference

We estimate the mSCHIF parameters by non-linear regres-

sion (nlxb routine in R package: nlsr 2020) where the 

response is the mean spline predictions, ŝ𝛽
(

zi

)

− ŝ𝛽
(

zcf

)

 , 

i = 1, …, I, over the concentration range, with zcf represent-

ing the minimum concentration of interest. We estimate the 

L × L covariance matrix, Σ, of 
(

�̂�
l
, l = 1,… , L

)

 by equating 

the covariance of the spline predictions across concentra-

tions to the covariance of the mSCHIF predictions. That is:

 where X is a J × I matrix consisting of the J spline bases 

functions evaluated at the I , and T is a L × I matrix con-

sisting of the L mSCHIF bases functions evaluated at the 

I concentrations. We then have the following:

The mSCHIF predictions will in most cases not fit the 

spline predictions perfectly. We incorporate this uncertainty 

by adding the squared difference between the two model 

predictions at each concentration to the covariance of the 

spline predictions. We then have the following:

L

(
∼

z|�, �
)
=

(
1 + exp

(
−

∼

z − �

�

))−1

X
�
V̂X = T

�
ΣT ,

Σ̂ =
(

TT
�
)−1

TX
�
V̂XT

�
(

TT
�
)−1
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 where D̂ is a I × I diagonal matrix of the squared differences 

in predictions among the two models.

We assign all the uncertainty in the mSCHIF predic-

tions to L parameters, �̂� =

(

�̂�
l
, l = 1,… , L

)

 , assuming that 
(

�̂�
l
, �̂�

l1, �̂�
l
, 𝜏

l
, l = 1,… ., L

)

 are known without error. How-

ever, we are capturing the total amount of uncertainty char-

acterized by the spline by equating the spline prediction 

uncertainty to that of the mSCHIF. We assume the differ-

ence between lnmSCHIF predictions at zC and zF is normally 

distributed with mean

and standard deviation

with z̃C = zC − zcf  and z̃F = zF − zcf .

In some cases, reporting a large number, N, of spline pre-

dictions over the concentration range is more convenient 

than reporting a potentially very large number of bases func-

tions and parameter estimates, as would be the case for some 

smoothing splines. We first subtract the spline prediction at 

the counterfactual for each of the N series of predictions, 

resulting in a prediction of zero for each of the N series. We 

do this since the lnmSCHIF prediction at the counterfactual 

is zero with zero uncertainty. We then replace X′
V̂X by the 

empirical covariance among the N predictions for all pairs 

of concentrations.

Illustrative examples

We provide two examples to illustrate some of the proper-

ties of our method. Both examples examine the association 

between mortality and exposure to outdoor concentrations of 

fine particulate matter  (PM2.5) based on primary data from 

the Medicare cohort (Dominici et al. 2022) and the 2006 

Canadian Census Health and Environment Cohort (Can-

CHEC) (Chen et al. 2022). In both examples, annual  PM2.5 

estimates were based on the same geostatistical model that 

incorporated satellite retrievals, chemical transport model 

estimates, and ground data (Meng et al. 2019).

Medicare cohort

The Medicare cohort consists of subjects enrolled in the 

Medicare program in the USA over the age of 65 years 

(Dominici et al. 2022). For this example, the cohort includes 

over 74 million enrollees entered from 2000 to 2016. Sub-

ject-level information included age, sex, race/ethnicity, and 

Σ̂ =
(

TT
�
)−1

T
(

X
�
V̂X + D̂

)

T
�
(

TT
�
)−1

m̂
(

z̃C, z̃F

)

=

(

T
(

z̃C

)

− T
(

z̃F

))�

�̂�

�̂�
(

z̃C, z̃F

)

=

√

(

T
(

z̃C

)

− T
(

z̃F

))�

Σ̂
(

T
(

z̃C

)

− T
(

z̃F

))

,

Medicaid eligibility (measure of lower income). Zip code 

area (ZIP) measures include median household income, 

median house value, proportion of residents in poverty, 

proportion of residents that own their own house, and pro-

portion of residents with a high school diploma. The data-

bases include the fact and date of death from any cause and 

the time-varying ZIP code of the enrollees mailing address. 

Subjects were followed until their date of death or until 

December 31, 2016, the end of the study period. A Pois-

son regression model was used with the response defined 

by the count of all-cause deaths during each follow-up year, 

calendar year, ZIP code, age (5-year groupings), sex, and 

race; offset by the corresponding total person-time under 

observation. Annual  PM2.5 concentrations were assigned to 

the same year of follow-up. A smoothing spline was used to 

characterize the magnitude and shape of the  PM2.5-mortality 

association with the smoothing parameter estimated from 

the data controlling for the five ZIP code area variables as 

linear terms in addition to the four category Census Region 

variable.

A smoothing spline was fit within the Generalized Addi-

tive Model framework using the R package “gam” and the 

s(PM2.5, bs = ”tp”) specification with the smoothing parame-

ter estimated from the data by cross-validation. We extracted 

1000 draws of the smoothing spline parameters and gener-

ated 1000 sets of spline predictions over the concentration 

range. We then calculated the empirical covariance matrix 

based on the spline predictions at all possible pairs of con-

centrations among the 1000 sets of predictions and used this 

matrix to estimate the covariance matrix Σ.

The mean spline predictions over the 1000 sets of pre-

dictions from the minimum concentration (0 μg/m3) to the 

99th percentile (17.4 μg/m3) (solid red line, Fig. 1, panel A) 

suggest a complex association between  PM2.5 and non-acci-

dental mortality. A near linear increase over the 0 −3 μg/m3 

range, flattening of the association over 3 −6 μg/m3 range, 

sharply increasing over the 6 −9 μg/m3 range, and finally 

a less steep increase above 9 μg/m3. The smoothing spline 

mean predictions display several waves over the concentra-

tion range that are not present in the mSCHIF mean predic-

tions (solid blue line – panel A). The lack of monotonically 

increasing spline predictions and the presence of waves 

makes it less suitable for benefits analysis. The mSCHIF 

95% confidence intervals (gray shaded area) are of similar 

magnitude to the spline confidence intervals (dashed red 

lines).

The two mSCHIF terms, exp
(
�̂�0F

(
∼

z|�̂�1, �̂�1

)
L

(
∼

z|�̂�1, 𝜏1

))
 

(solid red line) and exp
(
�̂�1F

(
∼

z|�̂�2, �̂�2

)
L

(
∼

z|�̂�2, 𝜏2

))
 (solid 

black line) are plotted against  PM2.5 in Fig. 1 (panel B). A 

l i n e a r  i n c r e a s e  i s  o b s e r v e d  f o r 

exp
(
�̂�1F

(
∼

z|�̂�1, �̂�1

)
L

(
∼

z|�̂�1, 𝜏1

))
 from 0 to 2 μg/m3 with 

another linear increase with smaller slope for concentrations 
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greater than 2 μg/m3. The second mSCHIF term, 

exp
(
�̂�2F

(
∼

z|�̂�2, �̂�2

)
L

(
∼

z|�̂�2, 𝜏2

))
 , displays a sigmodal shape 

with inflection point �̂�2 = 7.76 μg∕m3.

We compare the mSCHIF (solid blue line) and eSCHIF 

(solid brown line) predictions for this example as both mod-

els consist of two terms (Figure S1). The eSCHIF predic-

tions are not monotonically increasing with concentration. 

The mSCHIF predictions more accurately reflected the mean 

spline predictions than the eSCHIF predictions in this exam-

ple. This is due to the added flexibility of the F  function 

incorporated into the mSCHIF compared to the logarithmic 

function used by the eSCHIF.

2006 Canadian Census Environment and Health 

Cohort (CanCHEC)

The 2006 CanCHEC (Chen et al. 2022) consists of 2,663,645 

non-institutionalized subjects aged 30–79 years who com-

pleted the 2006 Canadian census long-form. Subject-level 

information included age, sex, education, income, occupa-

tion, marital status, and visible minority status. Area level 

contextual information included multiple measures of social 

and economic status, in addition to community size and 

region of Canada. Home addresses were annually identified 

by linkage to income tax records. Each subject was followed 

over time from time from January 1, 2007 to December 31, 

2016 to determine their vital status by linkage to mortality 

records, resulting in 25,730,790 person-years of observation. 

Cox proportional hazards models were used to relate time-

varying air pollution exposures, based on a 3-year moving 

average lagged one prior to follow-up year, to survival from 

all non-accidental causes of death (213,882), adjusting for 

subject and area level mortality risk factors. A restricted 

cubic spline (Harrel 2015) (RCS) was used to characterize 

the magnitude and shape of the  PM2.5-mortality associa-

tion based on minimizing the Akaike information criterion 

(Akaike 1974), resulting in the selection of 10 knots.

We illustrate a modelling feature of the mSCHIF by selec-

tively characterizing specific patterns in the mean spline 

predictions and associated uncertainty. The RCS mean 

predictions from the minimum concentration (2.5 μg/m3) 

to the 99th percentile (11.9 μg/m3) (solid red line, Fig. 2, 

panel A1) suggest a complex association between  PM2.5 and 

non-accidental mortality with a sub-linear increase over the 

2.5 − 5 μg/m3 range, a wavey pattern in the association with 

a slight increase in magnitude over the 5 − 10 μg/m3 range, 

followed by a much more rapid increase above 10 μg/m3. 

We would like to capture the sub-linear increase between 

2.5 and 5 μg/m3, replace the wavey pattern between 5 and 

10 μg/m3 with a linear increase, and finally closely model the 

rapid increase in risk above 10 μg/m3. We can model these 

features by limiting the allowable range in the μl mSCHIF 

parameters.

We start with two mSCHIF terms with the following 

parameter limitations: 0 < μ1 < 2.5 and 2.5 < μ2 < r. Note that 

the μl values are defined with respect to  PM2.5 − 2.5 μg/m3. 

We select 2.5 μg/m3 for the upper bound on μ1 since the logit 

function L
(
∼

z|�1, �1

)
 is sub-linear for concentrations below 

μ1 and supra-linear above. The resulting mean mSCHIF pre-

dictions are displayed in Fig. 2 (panel A1 – solid blue line), 

yielding a concentration-mortality pattern near the one we 

are designing for. However, the two-term mSCHIF 

Fig. 1  Smoothing spline mean 

PM2.5 predictions over 

concentration range 0 to 17.4 

μg/m3 (solid red line; panel A) 

for the Medicare cohort with 

corresponding 95% confidence 

intervals (dashed red lines) in 

addition to mSCHIF mean 

predictions (solid blue line) and 

95% confidence intervals (gray 

shaded area). mSCHIF terms 

( exp
(
�̂�1M

(
∼

z|�̂�1, �̂�1, �̂�1, 𝜏1

))

—solid red line; 

exp
(
�̂�2M

(
∼

z|�̂�2, �̂�2, �̂�2, 𝜏2

))

—solid black line; 

exp
(
�̂�1M

(
∼

z|�̂�1, �̂�1, �̂�1, 𝜏1

)
+ �̂�2M

(
∼

z|�̂�2, �̂�2, �̂�2, 𝜏2

))

—dashed blue line) are 

presented in panel B 
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uncertainty (gray shaded area) is clearly underestimated 

compared to that of the spline (dashed red lines) when 

 PM2.5 < 5 μg/m3, but gives a reasonable uncertainty estimate 

when  PM2.5 > 5 μg/m3.

To improve our estimate of uncertainty when 

 PM2.5 < 5 μg/m3, we add more mSCHIF terms such that 

the μ upper bounds are less than 2.5 μg/m3. The three-

term mSCHIF fit is displayed in Fig. 2, panel B1, with 

an improvement in uncertainty estimation. The four-term 

mSCHIF (Fig. 2, panel C1) gives an even better approxima-

tion to the spline uncertainty. The corresponding 2-,3-, and 

4-term mSCHIF terms are displayed in Fig. 2, panels A2, 

B2, and C2 respectively.

Comparison with the Log-Linear model

The Log − Linear is the most frequently used concentra-

tion-response model to estimate public health benefits 

due to exposure to outdoor air pollution. We estimated 

the slope parameter of the log-linear model, β, for each 

cohort using the exact same dataset as was used to fit the 

splines. Here we compare estimates of attributable deaths 

due to selected percentage reductions in outdoor concen-

trations to  PM2.5 based on the mSCHIF and Log − Linear 

model representations of the relative risk function (Fig. 3).

We extracted  PM2.5 estimated outdoor concentrations for 

the 3-year average (2015–2017) from the Air Quality Ben-

efits Assessment Tool (AQBAT) (Judek et al. 2023) used 

by Health Canada for each of the 293 census divisions in 

Canada in addition to the corresponding number of non-acci-

dental deaths in Canadians over the age of 25 years. We also 

extracted  PM2.5 estimated outdoor concentrations for 2018 

at 45,011 1km grid cells for the continental USA from Envi-

ronmental Benefits Mapping and Analysis Program – Com-

munity Edition (BenMAP – CE) (U.S. EPA 2023) with cor-

responding number of all causes of death over the age of 65 

years for 2020. These death categories correspond to those 

used to estimate the relative risk models of the two cohorts.

Fig. 2  Mean restricted cubic spline  PM2.5 predictions over concentra-

tion range 2.5 to 11.9 μg/m3 (solid red line) for the 2006 CanCHEC 

cohort with corresponding 95% confidence intervals (dashed red 

lines) in addition to mSCHIF mean predictions (solid blue line) and 

95% confidence intervals (gray shaded area) for 2-, 3-, and 4-term 

mSCHIF in panels A1, B1, and C1 respectively. Spline knot locations 

represented by green tick marks on x-axis. Corresponding mSCHIF 

terms presented in panels A2, B2, and C2
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In CanCHEC, any  PM2.5 person-year exposure value less 

than 2.5 μg/m3 was set to 2.5 μg/m3, representing 0.5% of 

all person-years of follow-up (Brauer et al. 2022). We made 

the same assignment for the census division concentrations, 

affecting 1% of the total deaths. To represent the population 

exposure to  PM2.5, we constructed a death-weighted  PM2.5 

distribution by either census division or grid cell (orange 

vertical bars, Fig. 3). The Canadian mean death-weighted 

exposure was 6.1 μg/m3 (sd=1.60) while the USA mean was 

8.1 μg/m3 (sd=1.69).

T h e  C a n C H E C  m S C H I F  a n d 

Log − Linear ∶ β̂ = 0.01056
(

�̂�𝛽 = 0.00166
)

 relative risk 

functions are plotted against  PM2.5 concentrations in Fig. 3 

(panel A1). The mSCHIF mean predictions (solid blue 

line) are much larger than the corresponding Log − Linear 

throughout the concentration range due to the steep increase 

in risk prediction over the 2.5 to 5 μg/m3 range.

This example illustrates that large differences in magni-

tude between non-parametric spline and parametric model 

predictions can occur due to how these models use data. 

The parametric model uses all the data together to estimate 

the unknown parameters while the spline model primarily 

uses different segments of the data to estimate parameters 

associated with basis functions whose support corresponds 

to those segments. The spline model predicts a relative risk 

of 1.10 between 5 and 2.5 μg/m3 while the Log − Linear 

predicts a 1.026 relative risk. This difference in relative risk 

is maintained throughout the concentration range. The 2.5 to 

5 μg/m3 range represents 20% of the person-years of follow-

up in the cohort; however, this rapid increase in relative risks 

appears to have minimal influence on the estimate of the 

Log − Linear parameter β.

To further examine differences between the two model 

predictions, we plot the change in the logarithm of the rela-

tive risk by 0.1 μg/m3 increments. These marginal changes 

in risk indicate a complex pattern between the models over 

concentration with the mSCHIF displaying a larger change 

between 2.5 and 5 μg/m3 compared to the constant change 

predicted by the Log − Linear, but a similar change for con-

centrations greater than 5 μg/m3. These differences between 

the models are reflected in estimates of attributable deaths 

(panel A3) for selected percent decreases in concentration 

(10% to 100% by 10% increments) with larger attributable 

death estimates for the mSCHIF model compared to the 

Fig. 3  CanCHEC mSCHIF 

mean predictions (solid blue 

line) and 95% confidence limits 

(gray shaded area) over Cana-

dian population based  PM2.5 

distribution (orange vertical 

bars) overlaid with Log − Linear 

model mean predictions (solid 

black line) and 95% confi-

dence intervals (dashed black 

lines) in panel A1. Panel A2 

presents mean marginal changes 

in relative risk per 0.1ug/m3 

(mSHCIF—solid blue line; 

Log − Linear—solid black line) 

and 95% confidence intervals 

(mSHCIF—gray shaded area; 

Log − Linear—dashed black 

lines) (panel A2) over Canadian 

population based  PM2.5 distribu-

tion. Attributable deaths due to 

selected percentage reductions 

in  PM2.5 presented in panel A3. 

Corresponding representation 

for Medicare cohort presented 

in panels B1–B3
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Log − Linear model, and differences increasing with increas-

ing percentage reductions in concentration. Note that the 

estimates of attributable deaths for 80%, 90%, and 100% are 

the same since these reductions change the highest concen-

tration of 8.8 μg/m3 to values less than the counterfactual 

of 2.5 μg/m3.

We conducted a similar analysis for the Medi-

care cohort (panels B1–B3 of Fig.  3). In this cohort, 

the increase in relative risk over the 0 to 2 μg/m3 

range was similar for both models (panel B1). The 

Log − Linear ∶ 𝛽 = 0.00494
(

�̂�𝛽 = 0.00040
)

 model predic-

tions were larger than the mSCHIF over the 2 to 8 μg/m3 

range, but smaller when  PM2.5 > 8 μg/m3 (panel B1). The 

marginal changes in risk were also similar for the two mod-

els in the 0 to 2 μg/m3 range, but the Log − Linear model 

predicted larger marginal changes in the 2 to 6 μg/m3 range, 

smaller changes in the 6 to 10 μg/m3 range, and similar 

changes when  PM2.5> 10 μg/m3 compared to the mSCHIF 

predictions (panel B2). Attributable death estimates were 

lower for the Log − Linear model for the 10–70% reductions 

compared to the mSCHIF estimate, but larger for the higher 

percent reductions.

Discussion

In order to estimate the public health burden of exposure 

to outdoor concentrations of air pollution, the magnitude 

and shape of the association between outdoor concentra-

tions and a health outcome must be characterized in addition 

to its uncertainty. Several attempts have been made using 

parametric functions indexed by a few parameters (Cohen 

et al. 2004; Chen and Hoek 2020; Burnett et al. 2014, 2018, 

2022). However, recent interest has focused on non-paramet-

ric approaches using either regression (Brauer et al. 2022; 

Brunekreef et al. 2021) or smoothing (GBD 2019; Dominici 

et al. 2022) splines. Typically, no restrictions on the shape of 

the splines are made, resulting in non-monotonic predictions 

with multiple changes in direction that make these functions 

less desirable for public health benefits analysis. Limiting 

the number of terms in a regression spline can smooth the 

curve (Brunekreef et al. 2021), thus making it more useful 

for benefits analysis. However, it is not clear how good this 

approach is at characterizing the concentration-response 

shape. Even smoothing splines, if not restricted, can result 

in non-monotonicity with waviness as evidenced by our 

Medicare example.

In these cohort studies, an estimate of the outdoor con-

centration near a subject’s home is related to their survival. 

There exists a complex association, that varies by subject, 

between their estimate of outdoor concentration and their 

personal exposure (Hammond et al. 2014), with an equally 

likely complex association between their personal exposure 

and probability of surviving any fixed time period. In addi-

tion, it is likely that components/sources of particulate mat-

ter have a different, and potentially non-linear association, 

with survival (Henneman et al. 2023), resulting in a poten-

tially complex concentration-response pattern based on total 

mass. Even if every component/source of particulate matter 

had a linear concentration-response, total mass may have a 

non-linear association due to variations in the atmospheric 

mixture at different total mass concentrations.

Although simple approximations have been suggested, 

such as linear or supra-linear, we suggest that we in fact 

do not know what the true concentration-response pattern 

should look like and can only rely on data to guide us. In this 

paper, we suggest a method that first identifies the best fitting 

unrestricted spline to the data, then transform the spline fit 

and its uncertainty to a monotonic function suitable for ben-

efits assessment. We make few restrictions on the algebraic 

form of the fit, other than monotonicity.

We also suggest that it is important to conduct cohort-

specific concentration-response analysis to examine the con-

sistency, or lack of, in the shape among cohorts. Pooling 

these shapes provides a means to constructing a common 

concentration-response model as was done for the Global 

Exposure Mortality Model (GEMM) (Burnett et al. 2018).

However, there is interest to examine the concentration-

response shape of cohorts representing the population of 

specific judications; as demographics, disease distribution, 

and how total mass represents the toxicity of the atmospheric 

mixture can vary by region. This raises concerns that a com-

mon concentration-response based on global studies may 

be a poor approximation to that of any specific region or 

country.

The Global Burden of Disease program (GBD 2019) fit a 

smoothing spline with their Integrated Exposure-Response 

(IER) meta-regression framework to predict risk from  PM2.5 

exposure to both outdoor and indoor pollution covering a 

very large range (0 to 1000 μg/m3) by combining informa-

tion from multiple studies. They restricted the spline to be 

monotonically increasing and concave resulting in a supra-

linear curve. However, such restrictions for individual stud-

ies may be too limiting as evidenced by our two examples. 

Restricting spline fits to be monotonically increasing may 

still not lead to a curve useful for benefits analysis as it may 

contain several concentration-response patterns like step-

functions over narrow concentration intervals.

We address these limitations by proposing a new spline 

formulation, denoted as “monotonically increasing Shape 

Constrained Health Impact Function” or mSCHIF. The 

mSCHIF consists of a series of basis functions, not defined 

by knot values, but by four parameters, that can model a 

wide variety of shapes including near-linear, sub-linear, 

supra-linear, and sigmodal. A linear combination of these 

basis functions, multiplied by a parameter restricted to be 
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positive, creates a monotonically increasing wide variety of 

shapes that we suggest can model virtually any monotoni-

cally increasing concentration-response pattern of interest. 

Since the basis functions can take a variety of shapes, far 

fewer are needed to make acceptable predictions compared 

traditional spline formulations. We also capture the total-

ity of uncertainty in the spline predictions by equating the 

covariance matrix of the spline predictions over the concen-

tration range to that of the mSCHIF predictions.

We give guidance to investigators in how to present 

results from spline model predictions. The typical method 

of reporting a spline fit is to plot mean predictions and their 

95% confidence intervals, transformed in a manner such that 

the spline prediction at a pre-specified counterfactual con-

centration, often the minimum, is set to zero. However, if the 

uncertainty at the counterfactual is also not set to zero, the 

curve cannot be used for burden (all concentrations reduced 

to the counterfactual) analysis. Even when the uncertainty 

at the counterfactual is set to zero, the spline fit cannot be 

used for benefits analysis (difference in risk between any two 

specific concentrations) since the uncertainty in risk associ-

ated with such changes in concentration cannot be deter-

mined from this summary information. The spline parameter 

estimates, their covariance matrix, knot locations, and type 

of spline need to be reported. Alternatively, reporting 1000 

sets of spline predictions over the concentration range is 

sufficient for benefits analysis using the spline fit directly. 

This information can also be used to estimate the mSCHIF. 

Benefits estimates and its uncertainty can be calculated from 

the mSCHIF parameter estimates and covariance matrix Σ̂.

Our comparison between the mSCHIF and Log − Linear 

model relative risk, marginal change in risk, and attributable 

deaths estimates, suggest there can be considerable depar-

tures in the concentration-response from linearity. These 

differences could potentially lead to differences in policy 

development.

Our two examples involved fitting either a regression or 

smoothing spline to primary data from cohorts. However, 

there is interest in characterizing concentration-response by 

combining information from multiple cohorts (GBD 2019; 

Burnett et al. 2014, 2018, 2022). Our mSCHIF is another 

option to create a common curve if an unrestricted spline fit 

is available to the meta-data.

Although we accessed mortality counts and  PM2.5 con-

centration data from AQBAT and BenMAP-CE, we pre-

formed the benefits calculations externally to these com-

puter programs. We did this due to how both programs 

accept input on the relationship between concentration 

and mortality. They were constructed to use the informa-

tion provided by the Log − Linear model, namely a single 

parameter estimate and its standard error, assuming a linear 

association between the logarithm of the hazard function 

and concentration. Since the mSCHIF is constructed as the 

sum of parameter estimates multiplied by transformations 

in concentration, with uncertainty described in terms of a 

multivariate normal distribution, it cannot be directly used 

by these computer programs.

We specifically selected spline model fits that met several 

criteria in order to illustrate properties of our new model. 

The spline fits had to display complex associations between 

 PM2.5 concentrations and mortality in such a manner was 

it would likely not be suitable for benefits analysis; such as 

having several changes in direction and thus not being mono-

tonically increasing with concentration. The mSCHIF can 

accept two formats of information from the spline fit: spline 

parameter estimates, their covariance matrix, knot locations, 

and type of spline or multiple sets of spline predictions over 

the concentration range. We selected a regression spline for 

the CanCHEC example where we accessed the first type of 

information and a smoothing spline for the Medicare exam-

ple where we accessed the second type. We therefore did 

not select these fits as the most appropriate representation 

of the  PM2.5-mortality association in either Canada or the 

USA. We did, however, further conduct benefits analysis to 

highlight potential differences in attributable death estimates 

between the mSCHIF and the most used model for such pur-

poses. We thus highlighted the fact that characterizing the 

exposure-response relationship in a potentially non-linear 

manner may influence policy decisions compared to using 

the traditional benefits analysis Log − Linear model.
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